2 * linux/arch/arm/mm/cache-v7.S
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 * Copyright (C) 2005 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This is the "shell" of the ARMv7 processor support.
13 #include <linux/linkage.h>
14 #include <linux/init.h>
15 #include <asm/assembler.h>
17 #include "proc-macros.S"
20 * v7_flush_dcache_all()
22 * Flush the whole D-cache.
24 * Corrupted registers: r0-r5, r7, r9-r11
26 * - mm - mm_struct describing address space
28 ENTRY(v7_flush_dcache_all)
29 mrc p15, 1, r0, c0, c0, 1 @ read clidr
30 ands r3, r0, #0x7000000 @ extract loc from clidr
31 mov r3, r3, lsr #23 @ left align loc bit field
32 beq finished @ if loc is 0, then no need to clean
33 mov r10, #0 @ start clean at cache level 0
35 add r2, r10, r10, lsr #1 @ work out 3x current cache level
36 mov r1, r0, lsr r2 @ extract cache type bits from clidr
37 and r1, r1, #7 @ mask of the bits for current cache only
38 cmp r1, #2 @ see what cache we have at this level
39 blt skip @ skip if no cache, or just i-cache
40 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
41 isb @ isb to sych the new cssr&csidr
42 mrc p15, 1, r1, c0, c0, 0 @ read the new csidr
43 and r2, r1, #7 @ extract the length of the cache lines
44 add r2, r2, #4 @ add 4 (line length offset)
46 ands r4, r4, r1, lsr #3 @ find maximum number on the way size
47 clz r5, r4 @ find bit position of way size increment
49 ands r7, r7, r1, lsr #13 @ extract max number of the index size
51 mov r9, r4 @ create working copy of max way size
53 orr r11, r10, r9, lsl r5 @ factor way and cache number into r11
54 orr r11, r11, r7, lsl r2 @ factor index number into r11
55 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way
56 subs r9, r9, #1 @ decrement the way
58 subs r7, r7, #1 @ decrement the index
61 add r10, r10, #2 @ increment cache number
65 mov r10, #0 @ swith back to cache level 0
66 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
71 * v7_flush_cache_all()
73 * Flush the entire cache system.
74 * The data cache flush is now achieved using atomic clean / invalidates
75 * working outwards from L1 cache. This is done using Set/Way based cache
76 * maintainance instructions.
77 * The instruction cache can still be invalidated back to the point of
78 * unification in a single instruction.
81 ENTRY(v7_flush_kern_cache_all)
82 stmfd sp!, {r4-r5, r7, r9-r11, lr}
83 bl v7_flush_dcache_all
85 mcr p15, 0, r0, c7, c5, 0 @ I+BTB cache invalidate
86 ldmfd sp!, {r4-r5, r7, r9-r11, lr}
90 * v7_flush_cache_all()
92 * Flush all TLB entries in a particular address space
94 * - mm - mm_struct describing address space
96 ENTRY(v7_flush_user_cache_all)
100 * v7_flush_cache_range(start, end, flags)
102 * Flush a range of TLB entries in the specified address space.
104 * - start - start address (may not be aligned)
105 * - end - end address (exclusive, may not be aligned)
106 * - flags - vm_area_struct flags describing address space
108 * It is assumed that:
109 * - we have a VIPT cache.
111 ENTRY(v7_flush_user_cache_range)
115 * v7_coherent_kern_range(start,end)
117 * Ensure that the I and D caches are coherent within specified
118 * region. This is typically used when code has been written to
119 * a memory region, and will be executed.
121 * - start - virtual start address of region
122 * - end - virtual end address of region
124 * It is assumed that:
125 * - the Icache does not read data from the write buffer
127 ENTRY(v7_coherent_kern_range)
131 * v7_coherent_user_range(start,end)
133 * Ensure that the I and D caches are coherent within specified
134 * region. This is typically used when code has been written to
135 * a memory region, and will be executed.
137 * - start - virtual start address of region
138 * - end - virtual end address of region
140 * It is assumed that:
141 * - the Icache does not read data from the write buffer
143 ENTRY(v7_coherent_user_range)
144 dcache_line_size r2, r3
147 1: mcr p15, 0, r0, c7, c11, 1 @ clean D line to the point of unification
149 mcr p15, 0, r0, c7, c5, 1 @ invalidate I line
154 mcr p15, 0, r0, c7, c5, 6 @ invalidate BTB
160 * v7_flush_kern_dcache_page(kaddr)
162 * Ensure that the data held in the page kaddr is written back
163 * to the page in question.
165 * - kaddr - kernel address (guaranteed to be page aligned)
167 ENTRY(v7_flush_kern_dcache_page)
168 dcache_line_size r2, r3
171 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line
179 * v7_dma_inv_range(start,end)
181 * Invalidate the data cache within the specified region; we will
182 * be performing a DMA operation in this region and we want to
183 * purge old data in the cache.
185 * - start - virtual start address of region
186 * - end - virtual end address of region
188 ENTRY(v7_dma_inv_range)
189 dcache_line_size r2, r3
193 mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
197 mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line
199 mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line
207 * v7_dma_clean_range(start,end)
208 * - start - virtual start address of region
209 * - end - virtual end address of region
211 ENTRY(v7_dma_clean_range)
212 dcache_line_size r2, r3
216 mcr p15, 0, r0, c7, c10, 1 @ clean D / U line
224 * v7_dma_flush_range(start,end)
225 * - start - virtual start address of region
226 * - end - virtual end address of region
228 ENTRY(v7_dma_flush_range)
229 dcache_line_size r2, r3
233 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
242 .type v7_cache_fns, #object
244 .long v7_flush_kern_cache_all
245 .long v7_flush_user_cache_all
246 .long v7_flush_user_cache_range
247 .long v7_coherent_kern_range
248 .long v7_coherent_user_range
249 .long v7_flush_kern_dcache_page
250 .long v7_dma_inv_range
251 .long v7_dma_clean_range
252 .long v7_dma_flush_range
253 .size v7_cache_fns, . - v7_cache_fns