3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
190 * Bufctl's are used for linking objs within a slab
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
225 unsigned short nodeid;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head;
246 struct kmem_cache *cachep;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount;
266 unsigned int touched;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned int free_limit;
295 unsigned int colour_next; /* Per-node cache coloring */
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 static int enable_cpucache(struct kmem_cache *cachep);
317 static void cache_reap(struct work_struct *unused);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline int index_of(const size_t size)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size)) {
335 #include "linux/kmalloc_sizes.h"
343 static int slab_early_init = 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3 *parent)
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
355 parent->colour_next = 0;
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache *array[NR_CPUS];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount;
388 unsigned int buffer_size;
389 u32 reciprocal_buffer_size;
390 /* 3) touched by every alloc & free from the backend */
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder;
399 /* force GFP flags, e.g. GFP_DMA */
402 size_t colour; /* cache colouring range */
403 unsigned int colour_off; /* colour offset */
404 struct kmem_cache *slabp_cache;
405 unsigned int slab_size;
406 unsigned int dflags; /* dynamic flags */
408 /* constructor func */
409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411 /* de-constructor func */
412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
414 /* 5) cache creation/removal */
416 struct list_head next;
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
429 unsigned long node_overflow;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
446 * We put nodelists[] at the end of kmem_cache, because we want to size
447 * this array to nr_node_ids slots instead of MAX_NUMNODES
448 * (see kmem_cache_init())
449 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450 * is statically defined, so we reserve the max number of nodes.
452 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 * Do not add fields after nodelists[]
458 #define CFLGS_OFF_SLAB (0x80000000UL)
459 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461 #define BATCHREFILL_LIMIT 16
463 * Optimization question: fewer reaps means less probability for unnessary
464 * cpucache drain/refill cycles.
466 * OTOH the cpuarrays can contain lots of objects,
467 * which could lock up otherwise freeable slabs.
469 #define REAPTIMEOUT_CPUC (2*HZ)
470 #define REAPTIMEOUT_LIST3 (4*HZ)
473 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
474 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
475 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
476 #define STATS_INC_GROWN(x) ((x)->grown++)
477 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
478 #define STATS_SET_HIGH(x) \
480 if ((x)->num_active > (x)->high_mark) \
481 (x)->high_mark = (x)->num_active; \
483 #define STATS_INC_ERR(x) ((x)->errors++)
484 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
485 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
486 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
487 #define STATS_SET_FREEABLE(x, i) \
489 if ((x)->max_freeable < i) \
490 (x)->max_freeable = i; \
492 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
493 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
494 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
495 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #define STATS_INC_ACTIVE(x) do { } while (0)
498 #define STATS_DEC_ACTIVE(x) do { } while (0)
499 #define STATS_INC_ALLOCED(x) do { } while (0)
500 #define STATS_INC_GROWN(x) do { } while (0)
501 #define STATS_ADD_REAPED(x,y) do { } while (0)
502 #define STATS_SET_HIGH(x) do { } while (0)
503 #define STATS_INC_ERR(x) do { } while (0)
504 #define STATS_INC_NODEALLOCS(x) do { } while (0)
505 #define STATS_INC_NODEFREES(x) do { } while (0)
506 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
507 #define STATS_SET_FREEABLE(x, i) do { } while (0)
508 #define STATS_INC_ALLOCHIT(x) do { } while (0)
509 #define STATS_INC_ALLOCMISS(x) do { } while (0)
510 #define STATS_INC_FREEHIT(x) do { } while (0)
511 #define STATS_INC_FREEMISS(x) do { } while (0)
517 * memory layout of objects:
519 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
520 * the end of an object is aligned with the end of the real
521 * allocation. Catches writes behind the end of the allocation.
522 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * cachep->obj_offset: The real object.
525 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
526 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
527 * [BYTES_PER_WORD long]
529 static int obj_offset(struct kmem_cache *cachep)
531 return cachep->obj_offset;
534 static int obj_size(struct kmem_cache *cachep)
536 return cachep->obj_size;
539 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
545 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
549 return (unsigned long *)(objp + cachep->buffer_size -
551 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
554 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
556 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
557 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 #define obj_offset(x) 0
563 #define obj_size(cachep) (cachep->buffer_size)
564 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
565 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
574 #if defined(CONFIG_LARGE_ALLOCS)
575 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
576 #define MAX_GFP_ORDER 13 /* up to 32Mb */
577 #elif defined(CONFIG_MMU)
578 #define MAX_OBJ_ORDER 5 /* 32 pages */
579 #define MAX_GFP_ORDER 5 /* 32 pages */
581 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
582 #define MAX_GFP_ORDER 8 /* up to 1Mb */
586 * Do not go above this order unless 0 objects fit into the slab.
588 #define BREAK_GFP_ORDER_HI 1
589 #define BREAK_GFP_ORDER_LO 0
590 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
593 * Functions for storing/retrieving the cachep and or slab from the page
594 * allocator. These are used to find the slab an obj belongs to. With kfree(),
595 * these are used to find the cache which an obj belongs to.
597 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599 page->lru.next = (struct list_head *)cache;
602 static inline struct kmem_cache *page_get_cache(struct page *page)
604 page = compound_head(page);
605 BUG_ON(!PageSlab(page));
606 return (struct kmem_cache *)page->lru.next;
609 static inline void page_set_slab(struct page *page, struct slab *slab)
611 page->lru.prev = (struct list_head *)slab;
614 static inline struct slab *page_get_slab(struct page *page)
616 BUG_ON(!PageSlab(page));
617 return (struct slab *)page->lru.prev;
620 static inline struct kmem_cache *virt_to_cache(const void *obj)
622 struct page *page = virt_to_head_page(obj);
623 return page_get_cache(page);
626 static inline struct slab *virt_to_slab(const void *obj)
628 struct page *page = virt_to_head_page(obj);
629 return page_get_slab(page);
632 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635 return slab->s_mem + cache->buffer_size * idx;
639 * We want to avoid an expensive divide : (offset / cache->buffer_size)
640 * Using the fact that buffer_size is a constant for a particular cache,
641 * we can replace (offset / cache->buffer_size) by
642 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
645 const struct slab *slab, void *obj)
647 u32 offset = (obj - slab->s_mem);
648 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
652 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 struct cache_sizes malloc_sizes[] = {
655 #define CACHE(x) { .cs_size = (x) },
656 #include <linux/kmalloc_sizes.h>
660 EXPORT_SYMBOL(malloc_sizes);
662 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
668 static struct cache_names __initdata cache_names[] = {
669 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
670 #include <linux/kmalloc_sizes.h>
675 static struct arraycache_init initarray_cache __initdata =
676 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
677 static struct arraycache_init initarray_generic =
678 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
680 /* internal cache of cache description objs */
681 static struct kmem_cache cache_cache = {
683 .limit = BOOT_CPUCACHE_ENTRIES,
685 .buffer_size = sizeof(struct kmem_cache),
686 .name = "kmem_cache",
689 #define BAD_ALIEN_MAGIC 0x01020304ul
691 #ifdef CONFIG_LOCKDEP
694 * Slab sometimes uses the kmalloc slabs to store the slab headers
695 * for other slabs "off slab".
696 * The locking for this is tricky in that it nests within the locks
697 * of all other slabs in a few places; to deal with this special
698 * locking we put on-slab caches into a separate lock-class.
700 * We set lock class for alien array caches which are up during init.
701 * The lock annotation will be lost if all cpus of a node goes down and
702 * then comes back up during hotplug
704 static struct lock_class_key on_slab_l3_key;
705 static struct lock_class_key on_slab_alc_key;
707 static inline void init_lock_keys(void)
711 struct cache_sizes *s = malloc_sizes;
713 while (s->cs_size != ULONG_MAX) {
715 struct array_cache **alc;
717 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
718 if (!l3 || OFF_SLAB(s->cs_cachep))
720 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723 * FIXME: This check for BAD_ALIEN_MAGIC
724 * should go away when common slab code is taught to
725 * work even without alien caches.
726 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
727 * for alloc_alien_cache,
729 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
733 lockdep_set_class(&alc[r]->lock,
741 static inline void init_lock_keys(void)
747 * 1. Guard access to the cache-chain.
748 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 static DEFINE_MUTEX(cache_chain_mutex);
751 static struct list_head cache_chain;
754 * chicken and egg problem: delay the per-cpu array allocation
755 * until the general caches are up.
765 * used by boot code to determine if it can use slab based allocator
767 int slab_is_available(void)
769 return g_cpucache_up == FULL;
772 static DEFINE_PER_CPU(struct delayed_work, reap_work);
774 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
776 return cachep->array[smp_processor_id()];
779 static inline struct kmem_cache *__find_general_cachep(size_t size,
782 struct cache_sizes *csizep = malloc_sizes;
785 /* This happens if someone tries to call
786 * kmem_cache_create(), or __kmalloc(), before
787 * the generic caches are initialized.
789 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
791 while (size > csizep->cs_size)
795 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
796 * has cs_{dma,}cachep==NULL. Thus no special case
797 * for large kmalloc calls required.
799 #ifdef CONFIG_ZONE_DMA
800 if (unlikely(gfpflags & GFP_DMA))
801 return csizep->cs_dmacachep;
803 return csizep->cs_cachep;
806 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
808 return __find_general_cachep(size, gfpflags);
811 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
813 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
817 * Calculate the number of objects and left-over bytes for a given buffer size.
819 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
820 size_t align, int flags, size_t *left_over,
825 size_t slab_size = PAGE_SIZE << gfporder;
828 * The slab management structure can be either off the slab or
829 * on it. For the latter case, the memory allocated for a
833 * - One kmem_bufctl_t for each object
834 * - Padding to respect alignment of @align
835 * - @buffer_size bytes for each object
837 * If the slab management structure is off the slab, then the
838 * alignment will already be calculated into the size. Because
839 * the slabs are all pages aligned, the objects will be at the
840 * correct alignment when allocated.
842 if (flags & CFLGS_OFF_SLAB) {
844 nr_objs = slab_size / buffer_size;
846 if (nr_objs > SLAB_LIMIT)
847 nr_objs = SLAB_LIMIT;
850 * Ignore padding for the initial guess. The padding
851 * is at most @align-1 bytes, and @buffer_size is at
852 * least @align. In the worst case, this result will
853 * be one greater than the number of objects that fit
854 * into the memory allocation when taking the padding
857 nr_objs = (slab_size - sizeof(struct slab)) /
858 (buffer_size + sizeof(kmem_bufctl_t));
861 * This calculated number will be either the right
862 * amount, or one greater than what we want.
864 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
868 if (nr_objs > SLAB_LIMIT)
869 nr_objs = SLAB_LIMIT;
871 mgmt_size = slab_mgmt_size(nr_objs, align);
874 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
877 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
879 static void __slab_error(const char *function, struct kmem_cache *cachep,
882 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
883 function, cachep->name, msg);
888 * By default on NUMA we use alien caches to stage the freeing of
889 * objects allocated from other nodes. This causes massive memory
890 * inefficiencies when using fake NUMA setup to split memory into a
891 * large number of small nodes, so it can be disabled on the command
895 static int use_alien_caches __read_mostly = 1;
896 static int __init noaliencache_setup(char *s)
898 use_alien_caches = 0;
901 __setup("noaliencache", noaliencache_setup);
905 * Special reaping functions for NUMA systems called from cache_reap().
906 * These take care of doing round robin flushing of alien caches (containing
907 * objects freed on different nodes from which they were allocated) and the
908 * flushing of remote pcps by calling drain_node_pages.
910 static DEFINE_PER_CPU(unsigned long, reap_node);
912 static void init_reap_node(int cpu)
916 node = next_node(cpu_to_node(cpu), node_online_map);
917 if (node == MAX_NUMNODES)
918 node = first_node(node_online_map);
920 per_cpu(reap_node, cpu) = node;
923 static void next_reap_node(void)
925 int node = __get_cpu_var(reap_node);
928 * Also drain per cpu pages on remote zones
930 if (node != numa_node_id())
931 drain_node_pages(node);
933 node = next_node(node, node_online_map);
934 if (unlikely(node >= MAX_NUMNODES))
935 node = first_node(node_online_map);
936 __get_cpu_var(reap_node) = node;
940 #define init_reap_node(cpu) do { } while (0)
941 #define next_reap_node(void) do { } while (0)
945 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
946 * via the workqueue/eventd.
947 * Add the CPU number into the expiration time to minimize the possibility of
948 * the CPUs getting into lockstep and contending for the global cache chain
951 static void __devinit start_cpu_timer(int cpu)
953 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
956 * When this gets called from do_initcalls via cpucache_init(),
957 * init_workqueues() has already run, so keventd will be setup
960 if (keventd_up() && reap_work->work.func == NULL) {
962 INIT_DELAYED_WORK(reap_work, cache_reap);
963 schedule_delayed_work_on(cpu, reap_work,
964 __round_jiffies_relative(HZ, cpu));
968 static struct array_cache *alloc_arraycache(int node, int entries,
971 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
972 struct array_cache *nc = NULL;
974 nc = kmalloc_node(memsize, GFP_KERNEL, node);
978 nc->batchcount = batchcount;
980 spin_lock_init(&nc->lock);
986 * Transfer objects in one arraycache to another.
987 * Locking must be handled by the caller.
989 * Return the number of entries transferred.
991 static int transfer_objects(struct array_cache *to,
992 struct array_cache *from, unsigned int max)
994 /* Figure out how many entries to transfer */
995 int nr = min(min(from->avail, max), to->limit - to->avail);
1000 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1001 sizeof(void *) *nr);
1011 #define drain_alien_cache(cachep, alien) do { } while (0)
1012 #define reap_alien(cachep, l3) do { } while (0)
1014 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1016 return (struct array_cache **)BAD_ALIEN_MAGIC;
1019 static inline void free_alien_cache(struct array_cache **ac_ptr)
1023 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1034 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1035 gfp_t flags, int nodeid)
1040 #else /* CONFIG_NUMA */
1042 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1043 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1045 static struct array_cache **alloc_alien_cache(int node, int limit)
1047 struct array_cache **ac_ptr;
1048 int memsize = sizeof(void *) * nr_node_ids;
1053 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1056 if (i == node || !node_online(i)) {
1060 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1062 for (i--; i <= 0; i--)
1072 static void free_alien_cache(struct array_cache **ac_ptr)
1083 static void __drain_alien_cache(struct kmem_cache *cachep,
1084 struct array_cache *ac, int node)
1086 struct kmem_list3 *rl3 = cachep->nodelists[node];
1089 spin_lock(&rl3->list_lock);
1091 * Stuff objects into the remote nodes shared array first.
1092 * That way we could avoid the overhead of putting the objects
1093 * into the free lists and getting them back later.
1096 transfer_objects(rl3->shared, ac, ac->limit);
1098 free_block(cachep, ac->entry, ac->avail, node);
1100 spin_unlock(&rl3->list_lock);
1105 * Called from cache_reap() to regularly drain alien caches round robin.
1107 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1109 int node = __get_cpu_var(reap_node);
1112 struct array_cache *ac = l3->alien[node];
1114 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1115 __drain_alien_cache(cachep, ac, node);
1116 spin_unlock_irq(&ac->lock);
1121 static void drain_alien_cache(struct kmem_cache *cachep,
1122 struct array_cache **alien)
1125 struct array_cache *ac;
1126 unsigned long flags;
1128 for_each_online_node(i) {
1131 spin_lock_irqsave(&ac->lock, flags);
1132 __drain_alien_cache(cachep, ac, i);
1133 spin_unlock_irqrestore(&ac->lock, flags);
1138 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1140 struct slab *slabp = virt_to_slab(objp);
1141 int nodeid = slabp->nodeid;
1142 struct kmem_list3 *l3;
1143 struct array_cache *alien = NULL;
1146 node = numa_node_id();
1149 * Make sure we are not freeing a object from another node to the array
1150 * cache on this cpu.
1152 if (likely(slabp->nodeid == node))
1155 l3 = cachep->nodelists[node];
1156 STATS_INC_NODEFREES(cachep);
1157 if (l3->alien && l3->alien[nodeid]) {
1158 alien = l3->alien[nodeid];
1159 spin_lock(&alien->lock);
1160 if (unlikely(alien->avail == alien->limit)) {
1161 STATS_INC_ACOVERFLOW(cachep);
1162 __drain_alien_cache(cachep, alien, nodeid);
1164 alien->entry[alien->avail++] = objp;
1165 spin_unlock(&alien->lock);
1167 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1168 free_block(cachep, &objp, 1, nodeid);
1169 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1175 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1176 unsigned long action, void *hcpu)
1178 long cpu = (long)hcpu;
1179 struct kmem_cache *cachep;
1180 struct kmem_list3 *l3 = NULL;
1181 int node = cpu_to_node(cpu);
1182 int memsize = sizeof(struct kmem_list3);
1185 case CPU_UP_PREPARE:
1186 mutex_lock(&cache_chain_mutex);
1188 * We need to do this right in the beginning since
1189 * alloc_arraycache's are going to use this list.
1190 * kmalloc_node allows us to add the slab to the right
1191 * kmem_list3 and not this cpu's kmem_list3
1194 list_for_each_entry(cachep, &cache_chain, next) {
1196 * Set up the size64 kmemlist for cpu before we can
1197 * begin anything. Make sure some other cpu on this
1198 * node has not already allocated this
1200 if (!cachep->nodelists[node]) {
1201 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1204 kmem_list3_init(l3);
1205 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1206 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1209 * The l3s don't come and go as CPUs come and
1210 * go. cache_chain_mutex is sufficient
1213 cachep->nodelists[node] = l3;
1216 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1217 cachep->nodelists[node]->free_limit =
1218 (1 + nr_cpus_node(node)) *
1219 cachep->batchcount + cachep->num;
1220 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1224 * Now we can go ahead with allocating the shared arrays and
1227 list_for_each_entry(cachep, &cache_chain, next) {
1228 struct array_cache *nc;
1229 struct array_cache *shared = NULL;
1230 struct array_cache **alien = NULL;
1232 nc = alloc_arraycache(node, cachep->limit,
1233 cachep->batchcount);
1236 if (cachep->shared) {
1237 shared = alloc_arraycache(node,
1238 cachep->shared * cachep->batchcount,
1243 if (use_alien_caches) {
1244 alien = alloc_alien_cache(node, cachep->limit);
1248 cachep->array[cpu] = nc;
1249 l3 = cachep->nodelists[node];
1252 spin_lock_irq(&l3->list_lock);
1255 * We are serialised from CPU_DEAD or
1256 * CPU_UP_CANCELLED by the cpucontrol lock
1258 l3->shared = shared;
1267 spin_unlock_irq(&l3->list_lock);
1269 free_alien_cache(alien);
1273 mutex_unlock(&cache_chain_mutex);
1274 start_cpu_timer(cpu);
1276 #ifdef CONFIG_HOTPLUG_CPU
1277 case CPU_DOWN_PREPARE:
1278 mutex_lock(&cache_chain_mutex);
1280 case CPU_DOWN_FAILED:
1281 mutex_unlock(&cache_chain_mutex);
1285 * Even if all the cpus of a node are down, we don't free the
1286 * kmem_list3 of any cache. This to avoid a race between
1287 * cpu_down, and a kmalloc allocation from another cpu for
1288 * memory from the node of the cpu going down. The list3
1289 * structure is usually allocated from kmem_cache_create() and
1290 * gets destroyed at kmem_cache_destroy().
1294 case CPU_UP_CANCELED:
1295 list_for_each_entry(cachep, &cache_chain, next) {
1296 struct array_cache *nc;
1297 struct array_cache *shared;
1298 struct array_cache **alien;
1301 mask = node_to_cpumask(node);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc = cachep->array[cpu];
1304 cachep->array[cpu] = NULL;
1305 l3 = cachep->nodelists[node];
1308 goto free_array_cache;
1310 spin_lock_irq(&l3->list_lock);
1312 /* Free limit for this kmem_list3 */
1313 l3->free_limit -= cachep->batchcount;
1315 free_block(cachep, nc->entry, nc->avail, node);
1317 if (!cpus_empty(mask)) {
1318 spin_unlock_irq(&l3->list_lock);
1319 goto free_array_cache;
1322 shared = l3->shared;
1324 free_block(cachep, shared->entry,
1325 shared->avail, node);
1332 spin_unlock_irq(&l3->list_lock);
1336 drain_alien_cache(cachep, alien);
1337 free_alien_cache(alien);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep, &cache_chain, next) {
1348 l3 = cachep->nodelists[node];
1351 drain_freelist(cachep, l3, l3->free_objects);
1353 mutex_unlock(&cache_chain_mutex);
1361 static struct notifier_block __cpuinitdata cpucache_notifier = {
1362 &cpuup_callback, NULL, 0
1366 * swap the static kmem_list3 with kmalloced memory
1368 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371 struct kmem_list3 *ptr;
1373 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376 local_irq_disable();
1377 memcpy(ptr, list, sizeof(struct kmem_list3));
1379 * Do not assume that spinlocks can be initialized via memcpy:
1381 spin_lock_init(&ptr->list_lock);
1383 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1384 cachep->nodelists[nodeid] = ptr;
1389 * Initialisation. Called after the page allocator have been initialised and
1390 * before smp_init().
1392 void __init kmem_cache_init(void)
1395 struct cache_sizes *sizes;
1396 struct cache_names *names;
1401 if (num_possible_nodes() == 1)
1402 use_alien_caches = 0;
1404 for (i = 0; i < NUM_INIT_LISTS; i++) {
1405 kmem_list3_init(&initkmem_list3[i]);
1406 if (i < MAX_NUMNODES)
1407 cache_cache.nodelists[i] = NULL;
1411 * Fragmentation resistance on low memory - only use bigger
1412 * page orders on machines with more than 32MB of memory.
1414 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1415 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417 /* Bootstrap is tricky, because several objects are allocated
1418 * from caches that do not exist yet:
1419 * 1) initialize the cache_cache cache: it contains the struct
1420 * kmem_cache structures of all caches, except cache_cache itself:
1421 * cache_cache is statically allocated.
1422 * Initially an __init data area is used for the head array and the
1423 * kmem_list3 structures, it's replaced with a kmalloc allocated
1424 * array at the end of the bootstrap.
1425 * 2) Create the first kmalloc cache.
1426 * The struct kmem_cache for the new cache is allocated normally.
1427 * An __init data area is used for the head array.
1428 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * 4) Replace the __init data head arrays for cache_cache and the first
1431 * kmalloc cache with kmalloc allocated arrays.
1432 * 5) Replace the __init data for kmem_list3 for cache_cache and
1433 * the other cache's with kmalloc allocated memory.
1434 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437 node = numa_node_id();
1439 /* 1) create the cache_cache */
1440 INIT_LIST_HEAD(&cache_chain);
1441 list_add(&cache_cache.next, &cache_chain);
1442 cache_cache.colour_off = cache_line_size();
1443 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1444 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1447 * struct kmem_cache size depends on nr_node_ids, which
1448 * can be less than MAX_NUMNODES.
1450 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1451 nr_node_ids * sizeof(struct kmem_list3 *);
1453 cache_cache.obj_size = cache_cache.buffer_size;
1455 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_cache.reciprocal_buffer_size =
1458 reciprocal_value(cache_cache.buffer_size);
1460 for (order = 0; order < MAX_ORDER; order++) {
1461 cache_estimate(order, cache_cache.buffer_size,
1462 cache_line_size(), 0, &left_over, &cache_cache.num);
1463 if (cache_cache.num)
1466 BUG_ON(!cache_cache.num);
1467 cache_cache.gfporder = order;
1468 cache_cache.colour = left_over / cache_cache.colour_off;
1469 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1470 sizeof(struct slab), cache_line_size());
1472 /* 2+3) create the kmalloc caches */
1473 sizes = malloc_sizes;
1474 names = cache_names;
1477 * Initialize the caches that provide memory for the array cache and the
1478 * kmem_list3 structures first. Without this, further allocations will
1482 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1483 sizes[INDEX_AC].cs_size,
1484 ARCH_KMALLOC_MINALIGN,
1485 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1488 if (INDEX_AC != INDEX_L3) {
1489 sizes[INDEX_L3].cs_cachep =
1490 kmem_cache_create(names[INDEX_L3].name,
1491 sizes[INDEX_L3].cs_size,
1492 ARCH_KMALLOC_MINALIGN,
1493 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1497 slab_early_init = 0;
1499 while (sizes->cs_size != ULONG_MAX) {
1501 * For performance, all the general caches are L1 aligned.
1502 * This should be particularly beneficial on SMP boxes, as it
1503 * eliminates "false sharing".
1504 * Note for systems short on memory removing the alignment will
1505 * allow tighter packing of the smaller caches.
1507 if (!sizes->cs_cachep) {
1508 sizes->cs_cachep = kmem_cache_create(names->name,
1510 ARCH_KMALLOC_MINALIGN,
1511 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1514 #ifdef CONFIG_ZONE_DMA
1515 sizes->cs_dmacachep = kmem_cache_create(
1518 ARCH_KMALLOC_MINALIGN,
1519 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1526 /* 4) Replace the bootstrap head arrays */
1528 struct array_cache *ptr;
1530 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1532 local_irq_disable();
1533 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1534 memcpy(ptr, cpu_cache_get(&cache_cache),
1535 sizeof(struct arraycache_init));
1537 * Do not assume that spinlocks can be initialized via memcpy:
1539 spin_lock_init(&ptr->lock);
1541 cache_cache.array[smp_processor_id()] = ptr;
1544 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1546 local_irq_disable();
1547 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1548 != &initarray_generic.cache);
1549 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1550 sizeof(struct arraycache_init));
1552 * Do not assume that spinlocks can be initialized via memcpy:
1554 spin_lock_init(&ptr->lock);
1556 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1560 /* 5) Replace the bootstrap kmem_list3's */
1564 /* Replace the static kmem_list3 structures for the boot cpu */
1565 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1567 for_each_online_node(nid) {
1568 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1569 &initkmem_list3[SIZE_AC + nid], nid);
1571 if (INDEX_AC != INDEX_L3) {
1572 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1573 &initkmem_list3[SIZE_L3 + nid], nid);
1578 /* 6) resize the head arrays to their final sizes */
1580 struct kmem_cache *cachep;
1581 mutex_lock(&cache_chain_mutex);
1582 list_for_each_entry(cachep, &cache_chain, next)
1583 if (enable_cpucache(cachep))
1585 mutex_unlock(&cache_chain_mutex);
1588 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 g_cpucache_up = FULL;
1596 * Register a cpu startup notifier callback that initializes
1597 * cpu_cache_get for all new cpus
1599 register_cpu_notifier(&cpucache_notifier);
1602 * The reap timers are started later, with a module init call: That part
1603 * of the kernel is not yet operational.
1607 static int __init cpucache_init(void)
1612 * Register the timers that return unneeded pages to the page allocator
1614 for_each_online_cpu(cpu)
1615 start_cpu_timer(cpu);
1618 __initcall(cpucache_init);
1621 * Interface to system's page allocator. No need to hold the cache-lock.
1623 * If we requested dmaable memory, we will get it. Even if we
1624 * did not request dmaable memory, we might get it, but that
1625 * would be relatively rare and ignorable.
1627 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1635 * Nommu uses slab's for process anonymous memory allocations, and thus
1636 * requires __GFP_COMP to properly refcount higher order allocations
1638 flags |= __GFP_COMP;
1641 flags |= cachep->gfpflags;
1643 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1647 nr_pages = (1 << cachep->gfporder);
1648 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_RECLAIMABLE, nr_pages);
1652 add_zone_page_state(page_zone(page),
1653 NR_SLAB_UNRECLAIMABLE, nr_pages);
1654 for (i = 0; i < nr_pages; i++)
1655 __SetPageSlab(page + i);
1656 return page_address(page);
1660 * Interface to system's page release.
1662 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1664 unsigned long i = (1 << cachep->gfporder);
1665 struct page *page = virt_to_page(addr);
1666 const unsigned long nr_freed = i;
1668 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1669 sub_zone_page_state(page_zone(page),
1670 NR_SLAB_RECLAIMABLE, nr_freed);
1672 sub_zone_page_state(page_zone(page),
1673 NR_SLAB_UNRECLAIMABLE, nr_freed);
1675 BUG_ON(!PageSlab(page));
1676 __ClearPageSlab(page);
1679 if (current->reclaim_state)
1680 current->reclaim_state->reclaimed_slab += nr_freed;
1681 free_pages((unsigned long)addr, cachep->gfporder);
1684 static void kmem_rcu_free(struct rcu_head *head)
1686 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1687 struct kmem_cache *cachep = slab_rcu->cachep;
1689 kmem_freepages(cachep, slab_rcu->addr);
1690 if (OFF_SLAB(cachep))
1691 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1696 #ifdef CONFIG_DEBUG_PAGEALLOC
1697 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1698 unsigned long caller)
1700 int size = obj_size(cachep);
1702 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1704 if (size < 5 * sizeof(unsigned long))
1707 *addr++ = 0x12345678;
1709 *addr++ = smp_processor_id();
1710 size -= 3 * sizeof(unsigned long);
1712 unsigned long *sptr = &caller;
1713 unsigned long svalue;
1715 while (!kstack_end(sptr)) {
1717 if (kernel_text_address(svalue)) {
1719 size -= sizeof(unsigned long);
1720 if (size <= sizeof(unsigned long))
1726 *addr++ = 0x87654321;
1730 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1732 int size = obj_size(cachep);
1733 addr = &((char *)addr)[obj_offset(cachep)];
1735 memset(addr, val, size);
1736 *(unsigned char *)(addr + size - 1) = POISON_END;
1739 static void dump_line(char *data, int offset, int limit)
1742 unsigned char error = 0;
1745 printk(KERN_ERR "%03x:", offset);
1746 for (i = 0; i < limit; i++) {
1747 if (data[offset + i] != POISON_FREE) {
1748 error = data[offset + i];
1751 printk(" %02x", (unsigned char)data[offset + i]);
1755 if (bad_count == 1) {
1756 error ^= POISON_FREE;
1757 if (!(error & (error - 1))) {
1758 printk(KERN_ERR "Single bit error detected. Probably "
1761 printk(KERN_ERR "Run memtest86+ or a similar memory "
1764 printk(KERN_ERR "Run a memory test tool.\n");
1773 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1778 if (cachep->flags & SLAB_RED_ZONE) {
1779 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1780 *dbg_redzone1(cachep, objp),
1781 *dbg_redzone2(cachep, objp));
1784 if (cachep->flags & SLAB_STORE_USER) {
1785 printk(KERN_ERR "Last user: [<%p>]",
1786 *dbg_userword(cachep, objp));
1787 print_symbol("(%s)",
1788 (unsigned long)*dbg_userword(cachep, objp));
1791 realobj = (char *)objp + obj_offset(cachep);
1792 size = obj_size(cachep);
1793 for (i = 0; i < size && lines; i += 16, lines--) {
1796 if (i + limit > size)
1798 dump_line(realobj, i, limit);
1802 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1808 realobj = (char *)objp + obj_offset(cachep);
1809 size = obj_size(cachep);
1811 for (i = 0; i < size; i++) {
1812 char exp = POISON_FREE;
1815 if (realobj[i] != exp) {
1821 "Slab corruption: %s start=%p, len=%d\n",
1822 cachep->name, realobj, size);
1823 print_objinfo(cachep, objp, 0);
1825 /* Hexdump the affected line */
1828 if (i + limit > size)
1830 dump_line(realobj, i, limit);
1833 /* Limit to 5 lines */
1839 /* Print some data about the neighboring objects, if they
1842 struct slab *slabp = virt_to_slab(objp);
1845 objnr = obj_to_index(cachep, slabp, objp);
1847 objp = index_to_obj(cachep, slabp, objnr - 1);
1848 realobj = (char *)objp + obj_offset(cachep);
1849 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1851 print_objinfo(cachep, objp, 2);
1853 if (objnr + 1 < cachep->num) {
1854 objp = index_to_obj(cachep, slabp, objnr + 1);
1855 realobj = (char *)objp + obj_offset(cachep);
1856 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1858 print_objinfo(cachep, objp, 2);
1866 * slab_destroy_objs - destroy a slab and its objects
1867 * @cachep: cache pointer being destroyed
1868 * @slabp: slab pointer being destroyed
1870 * Call the registered destructor for each object in a slab that is being
1873 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1876 for (i = 0; i < cachep->num; i++) {
1877 void *objp = index_to_obj(cachep, slabp, i);
1879 if (cachep->flags & SLAB_POISON) {
1880 #ifdef CONFIG_DEBUG_PAGEALLOC
1881 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 kernel_map_pages(virt_to_page(objp),
1884 cachep->buffer_size / PAGE_SIZE, 1);
1886 check_poison_obj(cachep, objp);
1888 check_poison_obj(cachep, objp);
1891 if (cachep->flags & SLAB_RED_ZONE) {
1892 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1893 slab_error(cachep, "start of a freed object "
1895 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1896 slab_error(cachep, "end of a freed object "
1899 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1900 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1904 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1908 for (i = 0; i < cachep->num; i++) {
1909 void *objp = index_to_obj(cachep, slabp, i);
1910 (cachep->dtor) (objp, cachep, 0);
1917 * slab_destroy - destroy and release all objects in a slab
1918 * @cachep: cache pointer being destroyed
1919 * @slabp: slab pointer being destroyed
1921 * Destroy all the objs in a slab, and release the mem back to the system.
1922 * Before calling the slab must have been unlinked from the cache. The
1923 * cache-lock is not held/needed.
1925 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1927 void *addr = slabp->s_mem - slabp->colouroff;
1929 slab_destroy_objs(cachep, slabp);
1930 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1931 struct slab_rcu *slab_rcu;
1933 slab_rcu = (struct slab_rcu *)slabp;
1934 slab_rcu->cachep = cachep;
1935 slab_rcu->addr = addr;
1936 call_rcu(&slab_rcu->head, kmem_rcu_free);
1938 kmem_freepages(cachep, addr);
1939 if (OFF_SLAB(cachep))
1940 kmem_cache_free(cachep->slabp_cache, slabp);
1945 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1946 * size of kmem_list3.
1948 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1952 for_each_online_node(node) {
1953 cachep->nodelists[node] = &initkmem_list3[index + node];
1954 cachep->nodelists[node]->next_reap = jiffies +
1956 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1960 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1963 struct kmem_list3 *l3;
1965 for_each_online_cpu(i)
1966 kfree(cachep->array[i]);
1968 /* NUMA: free the list3 structures */
1969 for_each_online_node(i) {
1970 l3 = cachep->nodelists[i];
1973 free_alien_cache(l3->alien);
1977 kmem_cache_free(&cache_cache, cachep);
1982 * calculate_slab_order - calculate size (page order) of slabs
1983 * @cachep: pointer to the cache that is being created
1984 * @size: size of objects to be created in this cache.
1985 * @align: required alignment for the objects.
1986 * @flags: slab allocation flags
1988 * Also calculates the number of objects per slab.
1990 * This could be made much more intelligent. For now, try to avoid using
1991 * high order pages for slabs. When the gfp() functions are more friendly
1992 * towards high-order requests, this should be changed.
1994 static size_t calculate_slab_order(struct kmem_cache *cachep,
1995 size_t size, size_t align, unsigned long flags)
1997 unsigned long offslab_limit;
1998 size_t left_over = 0;
2001 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2005 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2009 if (flags & CFLGS_OFF_SLAB) {
2011 * Max number of objs-per-slab for caches which
2012 * use off-slab slabs. Needed to avoid a possible
2013 * looping condition in cache_grow().
2015 offslab_limit = size - sizeof(struct slab);
2016 offslab_limit /= sizeof(kmem_bufctl_t);
2018 if (num > offslab_limit)
2022 /* Found something acceptable - save it away */
2024 cachep->gfporder = gfporder;
2025 left_over = remainder;
2028 * A VFS-reclaimable slab tends to have most allocations
2029 * as GFP_NOFS and we really don't want to have to be allocating
2030 * higher-order pages when we are unable to shrink dcache.
2032 if (flags & SLAB_RECLAIM_ACCOUNT)
2036 * Large number of objects is good, but very large slabs are
2037 * currently bad for the gfp()s.
2039 if (gfporder >= slab_break_gfp_order)
2043 * Acceptable internal fragmentation?
2045 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2051 static int setup_cpu_cache(struct kmem_cache *cachep)
2053 if (g_cpucache_up == FULL)
2054 return enable_cpucache(cachep);
2056 if (g_cpucache_up == NONE) {
2058 * Note: the first kmem_cache_create must create the cache
2059 * that's used by kmalloc(24), otherwise the creation of
2060 * further caches will BUG().
2062 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2065 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2066 * the first cache, then we need to set up all its list3s,
2067 * otherwise the creation of further caches will BUG().
2069 set_up_list3s(cachep, SIZE_AC);
2070 if (INDEX_AC == INDEX_L3)
2071 g_cpucache_up = PARTIAL_L3;
2073 g_cpucache_up = PARTIAL_AC;
2075 cachep->array[smp_processor_id()] =
2076 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2078 if (g_cpucache_up == PARTIAL_AC) {
2079 set_up_list3s(cachep, SIZE_L3);
2080 g_cpucache_up = PARTIAL_L3;
2083 for_each_online_node(node) {
2084 cachep->nodelists[node] =
2085 kmalloc_node(sizeof(struct kmem_list3),
2087 BUG_ON(!cachep->nodelists[node]);
2088 kmem_list3_init(cachep->nodelists[node]);
2092 cachep->nodelists[numa_node_id()]->next_reap =
2093 jiffies + REAPTIMEOUT_LIST3 +
2094 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2096 cpu_cache_get(cachep)->avail = 0;
2097 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2098 cpu_cache_get(cachep)->batchcount = 1;
2099 cpu_cache_get(cachep)->touched = 0;
2100 cachep->batchcount = 1;
2101 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2106 * kmem_cache_create - Create a cache.
2107 * @name: A string which is used in /proc/slabinfo to identify this cache.
2108 * @size: The size of objects to be created in this cache.
2109 * @align: The required alignment for the objects.
2110 * @flags: SLAB flags
2111 * @ctor: A constructor for the objects.
2112 * @dtor: A destructor for the objects.
2114 * Returns a ptr to the cache on success, NULL on failure.
2115 * Cannot be called within a int, but can be interrupted.
2116 * The @ctor is run when new pages are allocated by the cache
2117 * and the @dtor is run before the pages are handed back.
2119 * @name must be valid until the cache is destroyed. This implies that
2120 * the module calling this has to destroy the cache before getting unloaded.
2124 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2125 * to catch references to uninitialised memory.
2127 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2128 * for buffer overruns.
2130 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2131 * cacheline. This can be beneficial if you're counting cycles as closely
2135 kmem_cache_create (const char *name, size_t size, size_t align,
2136 unsigned long flags,
2137 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2138 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2140 size_t left_over, slab_size, ralign;
2141 struct kmem_cache *cachep = NULL, *pc;
2144 * Sanity checks... these are all serious usage bugs.
2146 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2147 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2148 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2154 * We use cache_chain_mutex to ensure a consistent view of
2155 * cpu_online_map as well. Please see cpuup_callback
2157 mutex_lock(&cache_chain_mutex);
2159 list_for_each_entry(pc, &cache_chain, next) {
2164 * This happens when the module gets unloaded and doesn't
2165 * destroy its slab cache and no-one else reuses the vmalloc
2166 * area of the module. Print a warning.
2168 res = probe_kernel_address(pc->name, tmp);
2171 "SLAB: cache with size %d has lost its name\n",
2176 if (!strcmp(pc->name, name)) {
2178 "kmem_cache_create: duplicate cache %s\n", name);
2185 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2188 * Enable redzoning and last user accounting, except for caches with
2189 * large objects, if the increased size would increase the object size
2190 * above the next power of two: caches with object sizes just above a
2191 * power of two have a significant amount of internal fragmentation.
2193 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2194 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2195 if (!(flags & SLAB_DESTROY_BY_RCU))
2196 flags |= SLAB_POISON;
2198 if (flags & SLAB_DESTROY_BY_RCU)
2199 BUG_ON(flags & SLAB_POISON);
2201 if (flags & SLAB_DESTROY_BY_RCU)
2205 * Always checks flags, a caller might be expecting debug support which
2208 BUG_ON(flags & ~CREATE_MASK);
2211 * Check that size is in terms of words. This is needed to avoid
2212 * unaligned accesses for some archs when redzoning is used, and makes
2213 * sure any on-slab bufctl's are also correctly aligned.
2215 if (size & (BYTES_PER_WORD - 1)) {
2216 size += (BYTES_PER_WORD - 1);
2217 size &= ~(BYTES_PER_WORD - 1);
2220 /* calculate the final buffer alignment: */
2222 /* 1) arch recommendation: can be overridden for debug */
2223 if (flags & SLAB_HWCACHE_ALIGN) {
2225 * Default alignment: as specified by the arch code. Except if
2226 * an object is really small, then squeeze multiple objects into
2229 ralign = cache_line_size();
2230 while (size <= ralign / 2)
2233 ralign = BYTES_PER_WORD;
2237 * Redzoning and user store require word alignment. Note this will be
2238 * overridden by architecture or caller mandated alignment if either
2239 * is greater than BYTES_PER_WORD.
2241 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2242 ralign = BYTES_PER_WORD;
2244 /* 2) arch mandated alignment */
2245 if (ralign < ARCH_SLAB_MINALIGN) {
2246 ralign = ARCH_SLAB_MINALIGN;
2248 /* 3) caller mandated alignment */
2249 if (ralign < align) {
2252 /* disable debug if necessary */
2253 if (ralign > BYTES_PER_WORD)
2254 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2260 /* Get cache's description obj. */
2261 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2266 cachep->obj_size = size;
2269 * Both debugging options require word-alignment which is calculated
2272 if (flags & SLAB_RED_ZONE) {
2273 /* add space for red zone words */
2274 cachep->obj_offset += BYTES_PER_WORD;
2275 size += 2 * BYTES_PER_WORD;
2277 if (flags & SLAB_STORE_USER) {
2278 /* user store requires one word storage behind the end of
2281 size += BYTES_PER_WORD;
2283 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2284 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2285 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2286 cachep->obj_offset += PAGE_SIZE - size;
2293 * Determine if the slab management is 'on' or 'off' slab.
2294 * (bootstrapping cannot cope with offslab caches so don't do
2297 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2299 * Size is large, assume best to place the slab management obj
2300 * off-slab (should allow better packing of objs).
2302 flags |= CFLGS_OFF_SLAB;
2304 size = ALIGN(size, align);
2306 left_over = calculate_slab_order(cachep, size, align, flags);
2310 "kmem_cache_create: couldn't create cache %s.\n", name);
2311 kmem_cache_free(&cache_cache, cachep);
2315 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2316 + sizeof(struct slab), align);
2319 * If the slab has been placed off-slab, and we have enough space then
2320 * move it on-slab. This is at the expense of any extra colouring.
2322 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2323 flags &= ~CFLGS_OFF_SLAB;
2324 left_over -= slab_size;
2327 if (flags & CFLGS_OFF_SLAB) {
2328 /* really off slab. No need for manual alignment */
2330 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2333 cachep->colour_off = cache_line_size();
2334 /* Offset must be a multiple of the alignment. */
2335 if (cachep->colour_off < align)
2336 cachep->colour_off = align;
2337 cachep->colour = left_over / cachep->colour_off;
2338 cachep->slab_size = slab_size;
2339 cachep->flags = flags;
2340 cachep->gfpflags = 0;
2341 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2342 cachep->gfpflags |= GFP_DMA;
2343 cachep->buffer_size = size;
2344 cachep->reciprocal_buffer_size = reciprocal_value(size);
2346 if (flags & CFLGS_OFF_SLAB) {
2347 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2349 * This is a possibility for one of the malloc_sizes caches.
2350 * But since we go off slab only for object size greater than
2351 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2352 * this should not happen at all.
2353 * But leave a BUG_ON for some lucky dude.
2355 BUG_ON(!cachep->slabp_cache);
2357 cachep->ctor = ctor;
2358 cachep->dtor = dtor;
2359 cachep->name = name;
2361 if (setup_cpu_cache(cachep)) {
2362 __kmem_cache_destroy(cachep);
2367 /* cache setup completed, link it into the list */
2368 list_add(&cachep->next, &cache_chain);
2370 if (!cachep && (flags & SLAB_PANIC))
2371 panic("kmem_cache_create(): failed to create slab `%s'\n",
2373 mutex_unlock(&cache_chain_mutex);
2376 EXPORT_SYMBOL(kmem_cache_create);
2379 static void check_irq_off(void)
2381 BUG_ON(!irqs_disabled());
2384 static void check_irq_on(void)
2386 BUG_ON(irqs_disabled());
2389 static void check_spinlock_acquired(struct kmem_cache *cachep)
2393 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2397 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2401 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2406 #define check_irq_off() do { } while(0)
2407 #define check_irq_on() do { } while(0)
2408 #define check_spinlock_acquired(x) do { } while(0)
2409 #define check_spinlock_acquired_node(x, y) do { } while(0)
2412 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2413 struct array_cache *ac,
2414 int force, int node);
2416 static void do_drain(void *arg)
2418 struct kmem_cache *cachep = arg;
2419 struct array_cache *ac;
2420 int node = numa_node_id();
2423 ac = cpu_cache_get(cachep);
2424 spin_lock(&cachep->nodelists[node]->list_lock);
2425 free_block(cachep, ac->entry, ac->avail, node);
2426 spin_unlock(&cachep->nodelists[node]->list_lock);
2430 static void drain_cpu_caches(struct kmem_cache *cachep)
2432 struct kmem_list3 *l3;
2435 on_each_cpu(do_drain, cachep, 1, 1);
2437 for_each_online_node(node) {
2438 l3 = cachep->nodelists[node];
2439 if (l3 && l3->alien)
2440 drain_alien_cache(cachep, l3->alien);
2443 for_each_online_node(node) {
2444 l3 = cachep->nodelists[node];
2446 drain_array(cachep, l3, l3->shared, 1, node);
2451 * Remove slabs from the list of free slabs.
2452 * Specify the number of slabs to drain in tofree.
2454 * Returns the actual number of slabs released.
2456 static int drain_freelist(struct kmem_cache *cache,
2457 struct kmem_list3 *l3, int tofree)
2459 struct list_head *p;
2464 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2466 spin_lock_irq(&l3->list_lock);
2467 p = l3->slabs_free.prev;
2468 if (p == &l3->slabs_free) {
2469 spin_unlock_irq(&l3->list_lock);
2473 slabp = list_entry(p, struct slab, list);
2475 BUG_ON(slabp->inuse);
2477 list_del(&slabp->list);
2479 * Safe to drop the lock. The slab is no longer linked
2482 l3->free_objects -= cache->num;
2483 spin_unlock_irq(&l3->list_lock);
2484 slab_destroy(cache, slabp);
2491 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2492 static int __cache_shrink(struct kmem_cache *cachep)
2495 struct kmem_list3 *l3;
2497 drain_cpu_caches(cachep);
2500 for_each_online_node(i) {
2501 l3 = cachep->nodelists[i];
2505 drain_freelist(cachep, l3, l3->free_objects);
2507 ret += !list_empty(&l3->slabs_full) ||
2508 !list_empty(&l3->slabs_partial);
2510 return (ret ? 1 : 0);
2514 * kmem_cache_shrink - Shrink a cache.
2515 * @cachep: The cache to shrink.
2517 * Releases as many slabs as possible for a cache.
2518 * To help debugging, a zero exit status indicates all slabs were released.
2520 int kmem_cache_shrink(struct kmem_cache *cachep)
2523 BUG_ON(!cachep || in_interrupt());
2525 mutex_lock(&cache_chain_mutex);
2526 ret = __cache_shrink(cachep);
2527 mutex_unlock(&cache_chain_mutex);
2530 EXPORT_SYMBOL(kmem_cache_shrink);
2533 * kmem_cache_destroy - delete a cache
2534 * @cachep: the cache to destroy
2536 * Remove a &struct kmem_cache object from the slab cache.
2538 * It is expected this function will be called by a module when it is
2539 * unloaded. This will remove the cache completely, and avoid a duplicate
2540 * cache being allocated each time a module is loaded and unloaded, if the
2541 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 * The cache must be empty before calling this function.
2545 * The caller must guarantee that noone will allocate memory from the cache
2546 * during the kmem_cache_destroy().
2548 void kmem_cache_destroy(struct kmem_cache *cachep)
2550 BUG_ON(!cachep || in_interrupt());
2552 /* Find the cache in the chain of caches. */
2553 mutex_lock(&cache_chain_mutex);
2555 * the chain is never empty, cache_cache is never destroyed
2557 list_del(&cachep->next);
2558 if (__cache_shrink(cachep)) {
2559 slab_error(cachep, "Can't free all objects");
2560 list_add(&cachep->next, &cache_chain);
2561 mutex_unlock(&cache_chain_mutex);
2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2568 __kmem_cache_destroy(cachep);
2569 mutex_unlock(&cache_chain_mutex);
2571 EXPORT_SYMBOL(kmem_cache_destroy);
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2584 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2585 int colour_off, gfp_t local_flags,
2590 if (OFF_SLAB(cachep)) {
2591 /* Slab management obj is off-slab. */
2592 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2593 local_flags & ~GFP_THISNODE, nodeid);
2597 slabp = objp + colour_off;
2598 colour_off += cachep->slab_size;
2601 slabp->colouroff = colour_off;
2602 slabp->s_mem = objp + colour_off;
2603 slabp->nodeid = nodeid;
2607 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2609 return (kmem_bufctl_t *) (slabp + 1);
2612 static void cache_init_objs(struct kmem_cache *cachep,
2613 struct slab *slabp, unsigned long ctor_flags)
2617 for (i = 0; i < cachep->num; i++) {
2618 void *objp = index_to_obj(cachep, slabp, i);
2620 /* need to poison the objs? */
2621 if (cachep->flags & SLAB_POISON)
2622 poison_obj(cachep, objp, POISON_FREE);
2623 if (cachep->flags & SLAB_STORE_USER)
2624 *dbg_userword(cachep, objp) = NULL;
2626 if (cachep->flags & SLAB_RED_ZONE) {
2627 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2628 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2631 * Constructors are not allowed to allocate memory from the same
2632 * cache which they are a constructor for. Otherwise, deadlock.
2633 * They must also be threaded.
2635 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2636 cachep->ctor(objp + obj_offset(cachep), cachep,
2639 if (cachep->flags & SLAB_RED_ZONE) {
2640 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2641 slab_error(cachep, "constructor overwrote the"
2642 " end of an object");
2643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2644 slab_error(cachep, "constructor overwrote the"
2645 " start of an object");
2647 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2648 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2649 kernel_map_pages(virt_to_page(objp),
2650 cachep->buffer_size / PAGE_SIZE, 0);
2653 cachep->ctor(objp, cachep, ctor_flags);
2655 slab_bufctl(slabp)[i] = i + 1;
2657 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2661 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2663 if (CONFIG_ZONE_DMA_FLAG) {
2664 if (flags & GFP_DMA)
2665 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2667 BUG_ON(cachep->gfpflags & GFP_DMA);
2671 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2674 void *objp = index_to_obj(cachep, slabp, slabp->free);
2678 next = slab_bufctl(slabp)[slabp->free];
2680 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2681 WARN_ON(slabp->nodeid != nodeid);
2688 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 void *objp, int nodeid)
2691 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp->nodeid != nodeid);
2697 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2698 printk(KERN_ERR "slab: double free detected in cache "
2699 "'%s', objp %p\n", cachep->name, objp);
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2719 page = virt_to_page(addr);
2722 if (likely(!PageCompound(page)))
2723 nr_pages <<= cache->gfporder;
2726 page_set_cache(page, cache);
2727 page_set_slab(page, slab);
2729 } while (--nr_pages);
2733 * Grow (by 1) the number of slabs within a cache. This is called by
2734 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 static int cache_grow(struct kmem_cache *cachep,
2737 gfp_t flags, int nodeid, void *objp)
2742 unsigned long ctor_flags;
2743 struct kmem_list3 *l3;
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
2749 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2751 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2752 local_flags = (flags & GFP_LEVEL_MASK);
2753 /* Take the l3 list lock to change the colour_next on this node */
2755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset = l3->colour_next;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
2765 offset *= cachep->colour_off;
2767 if (local_flags & __GFP_WAIT)
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep, flags);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2783 objp = kmem_getpages(cachep, flags, nodeid);
2787 /* Get slab management. */
2788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_THISNODE, nodeid);
2793 slabp->nodeid = nodeid;
2794 slab_map_pages(cachep, slabp, objp);
2796 cache_init_objs(cachep, slabp, ctor_flags);
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2801 spin_lock(&l3->list_lock);
2803 /* Make slab active. */
2804 list_add_tail(&slabp->list, &(l3->slabs_free));
2805 STATS_INC_GROWN(cachep);
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
2810 kmem_freepages(cachep, objp);
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2823 * - destructor calls, for caches with POISON+dtor
2825 static void kfree_debugcheck(const void *objp)
2827 if (!virt_addr_valid(objp)) {
2828 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2829 (unsigned long)objp);
2834 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2836 unsigned long redzone1, redzone2;
2838 redzone1 = *dbg_redzone1(cache, obj);
2839 redzone2 = *dbg_redzone2(cache, obj);
2844 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2847 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2848 slab_error(cache, "double free detected");
2850 slab_error(cache, "memory outside object was overwritten");
2852 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2853 obj, redzone1, redzone2);
2856 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2863 objp -= obj_offset(cachep);
2864 kfree_debugcheck(objp);
2865 page = virt_to_head_page(objp);
2867 slabp = page_get_slab(page);
2869 if (cachep->flags & SLAB_RED_ZONE) {
2870 verify_redzone_free(cachep, objp);
2871 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2872 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2874 if (cachep->flags & SLAB_STORE_USER)
2875 *dbg_userword(cachep, objp) = caller;
2877 objnr = obj_to_index(cachep, slabp, objp);
2879 BUG_ON(objnr >= cachep->num);
2880 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2882 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2883 /* we want to cache poison the object,
2884 * call the destruction callback
2886 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2888 #ifdef CONFIG_DEBUG_SLAB_LEAK
2889 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2891 if (cachep->flags & SLAB_POISON) {
2892 #ifdef CONFIG_DEBUG_PAGEALLOC
2893 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2894 store_stackinfo(cachep, objp, (unsigned long)caller);
2895 kernel_map_pages(virt_to_page(objp),
2896 cachep->buffer_size / PAGE_SIZE, 0);
2898 poison_obj(cachep, objp, POISON_FREE);
2901 poison_obj(cachep, objp, POISON_FREE);
2907 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2912 /* Check slab's freelist to see if this obj is there. */
2913 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2915 if (entries > cachep->num || i >= cachep->num)
2918 if (entries != cachep->num - slabp->inuse) {
2920 printk(KERN_ERR "slab: Internal list corruption detected in "
2921 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2922 cachep->name, cachep->num, slabp, slabp->inuse);
2924 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2927 printk("\n%03x:", i);
2928 printk(" %02x", ((unsigned char *)slabp)[i]);
2935 #define kfree_debugcheck(x) do { } while(0)
2936 #define cache_free_debugcheck(x,objp,z) (objp)
2937 #define check_slabp(x,y) do { } while(0)
2940 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2943 struct kmem_list3 *l3;
2944 struct array_cache *ac;
2947 node = numa_node_id();
2950 ac = cpu_cache_get(cachep);
2952 batchcount = ac->batchcount;
2953 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2955 * If there was little recent activity on this cache, then
2956 * perform only a partial refill. Otherwise we could generate
2959 batchcount = BATCHREFILL_LIMIT;
2961 l3 = cachep->nodelists[node];
2963 BUG_ON(ac->avail > 0 || !l3);
2964 spin_lock(&l3->list_lock);
2966 /* See if we can refill from the shared array */
2967 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2970 while (batchcount > 0) {
2971 struct list_head *entry;
2973 /* Get slab alloc is to come from. */
2974 entry = l3->slabs_partial.next;
2975 if (entry == &l3->slabs_partial) {
2976 l3->free_touched = 1;
2977 entry = l3->slabs_free.next;
2978 if (entry == &l3->slabs_free)
2982 slabp = list_entry(entry, struct slab, list);
2983 check_slabp(cachep, slabp);
2984 check_spinlock_acquired(cachep);
2987 * The slab was either on partial or free list so
2988 * there must be at least one object available for
2991 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2993 while (slabp->inuse < cachep->num && batchcount--) {
2994 STATS_INC_ALLOCED(cachep);
2995 STATS_INC_ACTIVE(cachep);
2996 STATS_SET_HIGH(cachep);
2998 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3001 check_slabp(cachep, slabp);
3003 /* move slabp to correct slabp list: */
3004 list_del(&slabp->list);
3005 if (slabp->free == BUFCTL_END)
3006 list_add(&slabp->list, &l3->slabs_full);
3008 list_add(&slabp->list, &l3->slabs_partial);
3012 l3->free_objects -= ac->avail;
3014 spin_unlock(&l3->list_lock);
3016 if (unlikely(!ac->avail)) {
3018 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3020 /* cache_grow can reenable interrupts, then ac could change. */
3021 ac = cpu_cache_get(cachep);
3022 if (!x && ac->avail == 0) /* no objects in sight? abort */
3025 if (!ac->avail) /* objects refilled by interrupt? */
3029 return ac->entry[--ac->avail];
3032 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3035 might_sleep_if(flags & __GFP_WAIT);
3037 kmem_flagcheck(cachep, flags);
3042 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3043 gfp_t flags, void *objp, void *caller)
3047 if (cachep->flags & SLAB_POISON) {
3048 #ifdef CONFIG_DEBUG_PAGEALLOC
3049 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3050 kernel_map_pages(virt_to_page(objp),
3051 cachep->buffer_size / PAGE_SIZE, 1);
3053 check_poison_obj(cachep, objp);
3055 check_poison_obj(cachep, objp);
3057 poison_obj(cachep, objp, POISON_INUSE);
3059 if (cachep->flags & SLAB_STORE_USER)
3060 *dbg_userword(cachep, objp) = caller;
3062 if (cachep->flags & SLAB_RED_ZONE) {
3063 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3064 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3065 slab_error(cachep, "double free, or memory outside"
3066 " object was overwritten");
3068 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3069 objp, *dbg_redzone1(cachep, objp),
3070 *dbg_redzone2(cachep, objp));
3072 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3073 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3075 #ifdef CONFIG_DEBUG_SLAB_LEAK
3080 slabp = page_get_slab(virt_to_head_page(objp));
3081 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3082 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3085 objp += obj_offset(cachep);
3086 if (cachep->ctor && cachep->flags & SLAB_POISON)
3087 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3088 #if ARCH_SLAB_MINALIGN
3089 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3090 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3091 objp, ARCH_SLAB_MINALIGN);
3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3100 #ifdef CONFIG_FAILSLAB
3102 static struct failslab_attr {
3104 struct fault_attr attr;
3106 u32 ignore_gfp_wait;
3107 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3108 struct dentry *ignore_gfp_wait_file;
3112 .attr = FAULT_ATTR_INITIALIZER,
3113 .ignore_gfp_wait = 1,
3116 static int __init setup_failslab(char *str)
3118 return setup_fault_attr(&failslab.attr, str);
3120 __setup("failslab=", setup_failslab);
3122 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3124 if (cachep == &cache_cache)
3126 if (flags & __GFP_NOFAIL)
3128 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3131 return should_fail(&failslab.attr, obj_size(cachep));
3134 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3136 static int __init failslab_debugfs(void)
3138 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3142 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3145 dir = failslab.attr.dentries.dir;
3147 failslab.ignore_gfp_wait_file =
3148 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3149 &failslab.ignore_gfp_wait);
3151 if (!failslab.ignore_gfp_wait_file) {
3153 debugfs_remove(failslab.ignore_gfp_wait_file);
3154 cleanup_fault_attr_dentries(&failslab.attr);
3160 late_initcall(failslab_debugfs);
3162 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3164 #else /* CONFIG_FAILSLAB */
3166 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3171 #endif /* CONFIG_FAILSLAB */
3173 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3176 struct array_cache *ac;
3180 ac = cpu_cache_get(cachep);
3181 if (likely(ac->avail)) {
3182 STATS_INC_ALLOCHIT(cachep);
3184 objp = ac->entry[--ac->avail];
3186 STATS_INC_ALLOCMISS(cachep);
3187 objp = cache_alloc_refill(cachep, flags);
3194 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3196 * If we are in_interrupt, then process context, including cpusets and
3197 * mempolicy, may not apply and should not be used for allocation policy.
3199 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3201 int nid_alloc, nid_here;
3203 if (in_interrupt() || (flags & __GFP_THISNODE))
3205 nid_alloc = nid_here = numa_node_id();
3206 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3207 nid_alloc = cpuset_mem_spread_node();
3208 else if (current->mempolicy)
3209 nid_alloc = slab_node(current->mempolicy);
3210 if (nid_alloc != nid_here)
3211 return ____cache_alloc_node(cachep, flags, nid_alloc);
3216 * Fallback function if there was no memory available and no objects on a
3217 * certain node and fall back is permitted. First we scan all the
3218 * available nodelists for available objects. If that fails then we
3219 * perform an allocation without specifying a node. This allows the page
3220 * allocator to do its reclaim / fallback magic. We then insert the
3221 * slab into the proper nodelist and then allocate from it.
3223 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3225 struct zonelist *zonelist;
3231 if (flags & __GFP_THISNODE)
3234 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3235 ->node_zonelists[gfp_zone(flags)];
3236 local_flags = (flags & GFP_LEVEL_MASK);
3240 * Look through allowed nodes for objects available
3241 * from existing per node queues.
3243 for (z = zonelist->zones; *z && !obj; z++) {
3244 nid = zone_to_nid(*z);
3246 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3247 cache->nodelists[nid] &&
3248 cache->nodelists[nid]->free_objects)
3249 obj = ____cache_alloc_node(cache,
3250 flags | GFP_THISNODE, nid);
3255 * This allocation will be performed within the constraints
3256 * of the current cpuset / memory policy requirements.
3257 * We may trigger various forms of reclaim on the allowed
3258 * set and go into memory reserves if necessary.
3260 if (local_flags & __GFP_WAIT)
3262 kmem_flagcheck(cache, flags);
3263 obj = kmem_getpages(cache, flags, -1);
3264 if (local_flags & __GFP_WAIT)
3265 local_irq_disable();
3268 * Insert into the appropriate per node queues
3270 nid = page_to_nid(virt_to_page(obj));
3271 if (cache_grow(cache, flags, nid, obj)) {
3272 obj = ____cache_alloc_node(cache,
3273 flags | GFP_THISNODE, nid);
3276 * Another processor may allocate the
3277 * objects in the slab since we are
3278 * not holding any locks.
3282 /* cache_grow already freed obj */
3291 * A interface to enable slab creation on nodeid
3293 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3296 struct list_head *entry;
3298 struct kmem_list3 *l3;
3302 l3 = cachep->nodelists[nodeid];
3307 spin_lock(&l3->list_lock);
3308 entry = l3->slabs_partial.next;
3309 if (entry == &l3->slabs_partial) {
3310 l3->free_touched = 1;
3311 entry = l3->slabs_free.next;
3312 if (entry == &l3->slabs_free)
3316 slabp = list_entry(entry, struct slab, list);
3317 check_spinlock_acquired_node(cachep, nodeid);
3318 check_slabp(cachep, slabp);
3320 STATS_INC_NODEALLOCS(cachep);
3321 STATS_INC_ACTIVE(cachep);
3322 STATS_SET_HIGH(cachep);
3324 BUG_ON(slabp->inuse == cachep->num);
3326 obj = slab_get_obj(cachep, slabp, nodeid);
3327 check_slabp(cachep, slabp);
3329 /* move slabp to correct slabp list: */
3330 list_del(&slabp->list);
3332 if (slabp->free == BUFCTL_END)
3333 list_add(&slabp->list, &l3->slabs_full);
3335 list_add(&slabp->list, &l3->slabs_partial);
3337 spin_unlock(&l3->list_lock);
3341 spin_unlock(&l3->list_lock);
3342 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3346 return fallback_alloc(cachep, flags);
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 * @caller: return address of caller, used for debug information
3359 * Identical to kmem_cache_alloc but it will allocate memory on the given
3360 * node, which can improve the performance for cpu bound structures.
3362 * Fallback to other node is possible if __GFP_THISNODE is not set.
3364 static __always_inline void *
3365 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3368 unsigned long save_flags;
3371 if (should_failslab(cachep, flags))
3374 cache_alloc_debugcheck_before(cachep, flags);
3375 local_irq_save(save_flags);
3377 if (unlikely(nodeid == -1))
3378 nodeid = numa_node_id();
3380 if (unlikely(!cachep->nodelists[nodeid])) {
3381 /* Node not bootstrapped yet */
3382 ptr = fallback_alloc(cachep, flags);
3386 if (nodeid == numa_node_id()) {
3388 * Use the locally cached objects if possible.
3389 * However ____cache_alloc does not allow fallback
3390 * to other nodes. It may fail while we still have
3391 * objects on other nodes available.
3393 ptr = ____cache_alloc(cachep, flags);
3397 /* ___cache_alloc_node can fall back to other nodes */
3398 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3400 local_irq_restore(save_flags);
3401 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3406 static __always_inline void *
3407 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3411 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3412 objp = alternate_node_alloc(cache, flags);
3416 objp = ____cache_alloc(cache, flags);
3419 * We may just have run out of memory on the local node.
3420 * ____cache_alloc_node() knows how to locate memory on other nodes
3423 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3430 static __always_inline void *
3431 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3433 return ____cache_alloc(cachep, flags);
3436 #endif /* CONFIG_NUMA */
3438 static __always_inline void *
3439 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3441 unsigned long save_flags;
3444 if (should_failslab(cachep, flags))
3447 cache_alloc_debugcheck_before(cachep, flags);
3448 local_irq_save(save_flags);
3449 objp = __do_cache_alloc(cachep, flags);
3450 local_irq_restore(save_flags);
3451 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3464 struct kmem_list3 *l3;
3466 for (i = 0; i < nr_objects; i++) {
3467 void *objp = objpp[i];
3470 slabp = virt_to_slab(objp);
3471 l3 = cachep->nodelists[node];
3472 list_del(&slabp->list);
3473 check_spinlock_acquired_node(cachep, node);
3474 check_slabp(cachep, slabp);
3475 slab_put_obj(cachep, slabp, objp, node);
3476 STATS_DEC_ACTIVE(cachep);
3478 check_slabp(cachep, slabp);
3480 /* fixup slab chains */
3481 if (slabp->inuse == 0) {
3482 if (l3->free_objects > l3->free_limit) {
3483 l3->free_objects -= cachep->num;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3490 slab_destroy(cachep, slabp);
3492 list_add(&slabp->list, &l3->slabs_free);
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp->list, &l3->slabs_partial);
3504 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3507 struct kmem_list3 *l3;
3508 int node = numa_node_id();
3510 batchcount = ac->batchcount;
3512 BUG_ON(!batchcount || batchcount > ac->avail);
3515 l3 = cachep->nodelists[node];
3516 spin_lock(&l3->list_lock);
3518 struct array_cache *shared_array = l3->shared;
3519 int max = shared_array->limit - shared_array->avail;
3521 if (batchcount > max)
3523 memcpy(&(shared_array->entry[shared_array->avail]),
3524 ac->entry, sizeof(void *) * batchcount);
3525 shared_array->avail += batchcount;
3530 free_block(cachep, ac->entry, batchcount, node);
3535 struct list_head *p;
3537 p = l3->slabs_free.next;
3538 while (p != &(l3->slabs_free)) {
3541 slabp = list_entry(p, struct slab, list);
3542 BUG_ON(slabp->inuse);
3547 STATS_SET_FREEABLE(cachep, i);
3550 spin_unlock(&l3->list_lock);
3551 ac->avail -= batchcount;
3552 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3561 struct array_cache *ac = cpu_cache_get(cachep);
3564 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3566 if (use_alien_caches && cache_free_alien(cachep, objp))
3569 if (likely(ac->avail < ac->limit)) {
3570 STATS_INC_FREEHIT(cachep);
3571 ac->entry[ac->avail++] = objp;
3574 STATS_INC_FREEMISS(cachep);
3575 cache_flusharray(cachep, ac);
3576 ac->entry[ac->avail++] = objp;
3581 * kmem_cache_alloc - Allocate an object
3582 * @cachep: The cache to allocate from.
3583 * @flags: See kmalloc().
3585 * Allocate an object from this cache. The flags are only relevant
3586 * if the cache has no available objects.
3588 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3590 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3592 EXPORT_SYMBOL(kmem_cache_alloc);
3595 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3596 * @cache: The cache to allocate from.
3597 * @flags: See kmalloc().
3599 * Allocate an object from this cache and set the allocated memory to zero.
3600 * The flags are only relevant if the cache has no available objects.
3602 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3604 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3606 memset(ret, 0, obj_size(cache));
3609 EXPORT_SYMBOL(kmem_cache_zalloc);
3612 * kmem_ptr_validate - check if an untrusted pointer might
3614 * @cachep: the cache we're checking against
3615 * @ptr: pointer to validate
3617 * This verifies that the untrusted pointer looks sane:
3618 * it is _not_ a guarantee that the pointer is actually
3619 * part of the slab cache in question, but it at least
3620 * validates that the pointer can be dereferenced and
3621 * looks half-way sane.
3623 * Currently only used for dentry validation.
3625 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3627 unsigned long addr = (unsigned long)ptr;
3628 unsigned long min_addr = PAGE_OFFSET;
3629 unsigned long align_mask = BYTES_PER_WORD - 1;
3630 unsigned long size = cachep->buffer_size;
3633 if (unlikely(addr < min_addr))
3635 if (unlikely(addr > (unsigned long)high_memory - size))
3637 if (unlikely(addr & align_mask))
3639 if (unlikely(!kern_addr_valid(addr)))
3641 if (unlikely(!kern_addr_valid(addr + size - 1)))
3643 page = virt_to_page(ptr);
3644 if (unlikely(!PageSlab(page)))
3646 if (unlikely(page_get_cache(page) != cachep))
3654 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3656 return __cache_alloc_node(cachep, flags, nodeid,
3657 __builtin_return_address(0));
3659 EXPORT_SYMBOL(kmem_cache_alloc_node);
3661 static __always_inline void *
3662 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3664 struct kmem_cache *cachep;
3666 cachep = kmem_find_general_cachep(size, flags);
3667 if (unlikely(cachep == NULL))
3669 return kmem_cache_alloc_node(cachep, flags, node);
3672 #ifdef CONFIG_DEBUG_SLAB
3673 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3675 return __do_kmalloc_node(size, flags, node,
3676 __builtin_return_address(0));
3678 EXPORT_SYMBOL(__kmalloc_node);
3680 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3681 int node, void *caller)
3683 return __do_kmalloc_node(size, flags, node, caller);
3685 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3687 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689 return __do_kmalloc_node(size, flags, node, NULL);
3691 EXPORT_SYMBOL(__kmalloc_node);
3692 #endif /* CONFIG_DEBUG_SLAB */
3693 #endif /* CONFIG_NUMA */
3696 * __do_kmalloc - allocate memory
3697 * @size: how many bytes of memory are required.
3698 * @flags: the type of memory to allocate (see kmalloc).
3699 * @caller: function caller for debug tracking of the caller
3701 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3704 struct kmem_cache *cachep;
3706 /* If you want to save a few bytes .text space: replace
3708 * Then kmalloc uses the uninlined functions instead of the inline
3711 cachep = __find_general_cachep(size, flags);
3712 if (unlikely(cachep == NULL))
3714 return __cache_alloc(cachep, flags, caller);
3718 #ifdef CONFIG_DEBUG_SLAB
3719 void *__kmalloc(size_t size, gfp_t flags)
3721 return __do_kmalloc(size, flags, __builtin_return_address(0));
3723 EXPORT_SYMBOL(__kmalloc);
3725 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3727 return __do_kmalloc(size, flags, caller);
3729 EXPORT_SYMBOL(__kmalloc_track_caller);
3732 void *__kmalloc(size_t size, gfp_t flags)
3734 return __do_kmalloc(size, flags, NULL);
3736 EXPORT_SYMBOL(__kmalloc);
3740 * krealloc - reallocate memory. The contents will remain unchanged.
3742 * @p: object to reallocate memory for.
3743 * @new_size: how many bytes of memory are required.
3744 * @flags: the type of memory to allocate.
3746 * The contents of the object pointed to are preserved up to the
3747 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3748 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3749 * %NULL pointer, the object pointed to is freed.
3751 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3753 struct kmem_cache *cache, *new_cache;
3757 return kmalloc_track_caller(new_size, flags);
3759 if (unlikely(!new_size)) {
3764 cache = virt_to_cache(p);
3765 new_cache = __find_general_cachep(new_size, flags);
3768 * If new size fits in the current cache, bail out.
3770 if (likely(cache == new_cache))
3774 * We are on the slow-path here so do not use __cache_alloc
3775 * because it bloats kernel text.
3777 ret = kmalloc_track_caller(new_size, flags);
3779 memcpy(ret, p, min(new_size, ksize(p)));
3784 EXPORT_SYMBOL(krealloc);
3787 * kmem_cache_free - Deallocate an object
3788 * @cachep: The cache the allocation was from.
3789 * @objp: The previously allocated object.
3791 * Free an object which was previously allocated from this
3794 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3796 unsigned long flags;
3798 BUG_ON(virt_to_cache(objp) != cachep);
3800 local_irq_save(flags);
3801 debug_check_no_locks_freed(objp, obj_size(cachep));
3802 __cache_free(cachep, objp);
3803 local_irq_restore(flags);
3805 EXPORT_SYMBOL(kmem_cache_free);
3808 * kfree - free previously allocated memory
3809 * @objp: pointer returned by kmalloc.
3811 * If @objp is NULL, no operation is performed.
3813 * Don't free memory not originally allocated by kmalloc()
3814 * or you will run into trouble.
3816 void kfree(const void *objp)
3818 struct kmem_cache *c;
3819 unsigned long flags;
3821 if (unlikely(!objp))
3823 local_irq_save(flags);
3824 kfree_debugcheck(objp);
3825 c = virt_to_cache(objp);
3826 debug_check_no_locks_freed(objp, obj_size(c));
3827 __cache_free(c, (void *)objp);
3828 local_irq_restore(flags);
3830 EXPORT_SYMBOL(kfree);
3832 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3834 return obj_size(cachep);
3836 EXPORT_SYMBOL(kmem_cache_size);
3838 const char *kmem_cache_name(struct kmem_cache *cachep)
3840 return cachep->name;
3842 EXPORT_SYMBOL_GPL(kmem_cache_name);
3845 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3847 static int alloc_kmemlist(struct kmem_cache *cachep)
3850 struct kmem_list3 *l3;
3851 struct array_cache *new_shared;
3852 struct array_cache **new_alien = NULL;
3854 for_each_online_node(node) {
3856 if (use_alien_caches) {
3857 new_alien = alloc_alien_cache(node, cachep->limit);
3863 if (cachep->shared) {
3864 new_shared = alloc_arraycache(node,
3865 cachep->shared*cachep->batchcount,
3868 free_alien_cache(new_alien);
3873 l3 = cachep->nodelists[node];
3875 struct array_cache *shared = l3->shared;
3877 spin_lock_irq(&l3->list_lock);
3880 free_block(cachep, shared->entry,
3881 shared->avail, node);
3883 l3->shared = new_shared;
3885 l3->alien = new_alien;
3888 l3->free_limit = (1 + nr_cpus_node(node)) *
3889 cachep->batchcount + cachep->num;
3890 spin_unlock_irq(&l3->list_lock);
3892 free_alien_cache(new_alien);
3895 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3897 free_alien_cache(new_alien);
3902 kmem_list3_init(l3);
3903 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3904 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3905 l3->shared = new_shared;
3906 l3->alien = new_alien;
3907 l3->free_limit = (1 + nr_cpus_node(node)) *
3908 cachep->batchcount + cachep->num;
3909 cachep->nodelists[node] = l3;
3914 if (!cachep->next.next) {
3915 /* Cache is not active yet. Roll back what we did */
3918 if (cachep->nodelists[node]) {
3919 l3 = cachep->nodelists[node];
3922 free_alien_cache(l3->alien);
3924 cachep->nodelists[node] = NULL;
3932 struct ccupdate_struct {
3933 struct kmem_cache *cachep;
3934 struct array_cache *new[NR_CPUS];
3937 static void do_ccupdate_local(void *info)
3939 struct ccupdate_struct *new = info;
3940 struct array_cache *old;
3943 old = cpu_cache_get(new->cachep);
3945 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old;
3949 /* Always called with the cache_chain_mutex held */
3950 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951 int batchcount, int shared)
3953 struct ccupdate_struct *new;
3956 new = kzalloc(sizeof(*new), GFP_KERNEL);
3960 for_each_online_cpu(i) {
3961 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3964 for (i--; i >= 0; i--)
3970 new->cachep = cachep;
3972 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3975 cachep->batchcount = batchcount;
3976 cachep->limit = limit;
3977 cachep->shared = shared;
3979 for_each_online_cpu(i) {
3980 struct array_cache *ccold = new->new[i];
3983 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3984 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3985 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3989 return alloc_kmemlist(cachep);
3992 /* Called with cache_chain_mutex held always */
3993 static int enable_cpucache(struct kmem_cache *cachep)
3999 * The head array serves three purposes:
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
4002 * - reduce the number of linked list operations on the slab and
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4007 if (cachep->buffer_size > 131072)
4009 else if (cachep->buffer_size > PAGE_SIZE)
4011 else if (cachep->buffer_size > 1024)
4013 else if (cachep->buffer_size > 256)
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4028 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
4039 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4041 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4042 cachep->name, -err);
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4051 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052 struct array_cache *ac, int force, int node)
4056 if (!ac || !ac->avail)
4058 if (ac->touched && !force) {
4061 spin_lock_irq(&l3->list_lock);
4063 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4064 if (tofree > ac->avail)
4065 tofree = (ac->avail + 1) / 2;
4066 free_block(cachep, ac->entry, tofree, node);
4067 ac->avail -= tofree;
4068 memmove(ac->entry, &(ac->entry[tofree]),
4069 sizeof(void *) * ac->avail);
4071 spin_unlock_irq(&l3->list_lock);
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4079 * Called from workqueue/eventd every few seconds.
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4087 static void cache_reap(struct work_struct *w)
4089 struct kmem_cache *searchp;
4090 struct kmem_list3 *l3;
4091 int node = numa_node_id();
4092 struct delayed_work *work =
4093 container_of(w, struct delayed_work, work);
4095 if (!mutex_trylock(&cache_chain_mutex))
4096 /* Give up. Setup the next iteration. */
4099 list_for_each_entry(searchp, &cache_chain, next) {
4103 * We only take the l3 lock if absolutely necessary and we
4104 * have established with reasonable certainty that
4105 * we can do some work if the lock was obtained.
4107 l3 = searchp->nodelists[node];
4109 reap_alien(searchp, l3);
4111 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4114 * These are racy checks but it does not matter
4115 * if we skip one check or scan twice.
4117 if (time_after(l3->next_reap, jiffies))
4120 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4122 drain_array(searchp, l3, l3->shared, 0, node);
4124 if (l3->free_touched)
4125 l3->free_touched = 0;
4129 freed = drain_freelist(searchp, l3, (l3->free_limit +
4130 5 * searchp->num - 1) / (5 * searchp->num));
4131 STATS_ADD_REAPED(searchp, freed);
4137 mutex_unlock(&cache_chain_mutex);
4139 refresh_cpu_vm_stats(smp_processor_id());
4141 /* Set up the next iteration */
4142 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4145 #ifdef CONFIG_PROC_FS
4147 static void print_slabinfo_header(struct seq_file *m)
4150 * Output format version, so at least we can change it
4151 * without _too_ many complaints.
4154 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4156 seq_puts(m, "slabinfo - version: 2.1\n");
4158 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4159 "<objperslab> <pagesperslab>");
4160 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4161 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4163 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4164 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4165 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4170 static void *s_start(struct seq_file *m, loff_t *pos)
4173 struct list_head *p;
4175 mutex_lock(&cache_chain_mutex);
4177 print_slabinfo_header(m);
4178 p = cache_chain.next;
4181 if (p == &cache_chain)
4184 return list_entry(p, struct kmem_cache, next);
4187 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4189 struct kmem_cache *cachep = p;
4191 return cachep->next.next == &cache_chain ?
4192 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4195 static void s_stop(struct seq_file *m, void *p)
4197 mutex_unlock(&cache_chain_mutex);
4200 static int s_show(struct seq_file *m, void *p)
4202 struct kmem_cache *cachep = p;
4204 unsigned long active_objs;
4205 unsigned long num_objs;
4206 unsigned long active_slabs = 0;
4207 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4211 struct kmem_list3 *l3;
4215 for_each_online_node(node) {
4216 l3 = cachep->nodelists[node];
4221 spin_lock_irq(&l3->list_lock);
4223 list_for_each_entry(slabp, &l3->slabs_full, list) {
4224 if (slabp->inuse != cachep->num && !error)
4225 error = "slabs_full accounting error";
4226 active_objs += cachep->num;
4229 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4230 if (slabp->inuse == cachep->num && !error)
4231 error = "slabs_partial inuse accounting error";
4232 if (!slabp->inuse && !error)
4233 error = "slabs_partial/inuse accounting error";
4234 active_objs += slabp->inuse;
4237 list_for_each_entry(slabp, &l3->slabs_free, list) {
4238 if (slabp->inuse && !error)
4239 error = "slabs_free/inuse accounting error";
4242 free_objects += l3->free_objects;
4244 shared_avail += l3->shared->avail;
4246 spin_unlock_irq(&l3->list_lock);
4248 num_slabs += active_slabs;
4249 num_objs = num_slabs * cachep->num;
4250 if (num_objs - active_objs != free_objects && !error)
4251 error = "free_objects accounting error";
4253 name = cachep->name;
4255 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4257 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4258 name, active_objs, num_objs, cachep->buffer_size,
4259 cachep->num, (1 << cachep->gfporder));
4260 seq_printf(m, " : tunables %4u %4u %4u",
4261 cachep->limit, cachep->batchcount, cachep->shared);
4262 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4263 active_slabs, num_slabs, shared_avail);
4266 unsigned long high = cachep->high_mark;
4267 unsigned long allocs = cachep->num_allocations;
4268 unsigned long grown = cachep->grown;
4269 unsigned long reaped = cachep->reaped;
4270 unsigned long errors = cachep->errors;
4271 unsigned long max_freeable = cachep->max_freeable;
4272 unsigned long node_allocs = cachep->node_allocs;
4273 unsigned long node_frees = cachep->node_frees;
4274 unsigned long overflows = cachep->node_overflow;
4276 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4277 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4278 reaped, errors, max_freeable, node_allocs,
4279 node_frees, overflows);
4283 unsigned long allochit = atomic_read(&cachep->allochit);
4284 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4285 unsigned long freehit = atomic_read(&cachep->freehit);
4286 unsigned long freemiss = atomic_read(&cachep->freemiss);
4288 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4289 allochit, allocmiss, freehit, freemiss);
4297 * slabinfo_op - iterator that generates /proc/slabinfo
4306 * num-pages-per-slab
4307 * + further values on SMP and with statistics enabled
4310 const struct seq_operations slabinfo_op = {
4317 #define MAX_SLABINFO_WRITE 128
4319 * slabinfo_write - Tuning for the slab allocator
4321 * @buffer: user buffer
4322 * @count: data length
4325 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4326 size_t count, loff_t *ppos)
4328 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4329 int limit, batchcount, shared, res;
4330 struct kmem_cache *cachep;
4332 if (count > MAX_SLABINFO_WRITE)
4334 if (copy_from_user(&kbuf, buffer, count))
4336 kbuf[MAX_SLABINFO_WRITE] = '\0';
4338 tmp = strchr(kbuf, ' ');
4343 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4346 /* Find the cache in the chain of caches. */
4347 mutex_lock(&cache_chain_mutex);
4349 list_for_each_entry(cachep, &cache_chain, next) {
4350 if (!strcmp(cachep->name, kbuf)) {
4351 if (limit < 1 || batchcount < 1 ||
4352 batchcount > limit || shared < 0) {
4355 res = do_tune_cpucache(cachep, limit,
4356 batchcount, shared);
4361 mutex_unlock(&cache_chain_mutex);
4367 #ifdef CONFIG_DEBUG_SLAB_LEAK
4369 static void *leaks_start(struct seq_file *m, loff_t *pos)
4372 struct list_head *p;
4374 mutex_lock(&cache_chain_mutex);
4375 p = cache_chain.next;
4378 if (p == &cache_chain)
4381 return list_entry(p, struct kmem_cache, next);
4384 static inline int add_caller(unsigned long *n, unsigned long v)
4394 unsigned long *q = p + 2 * i;
4408 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4414 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4420 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4421 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4423 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4428 static void show_symbol(struct seq_file *m, unsigned long address)
4430 #ifdef CONFIG_KALLSYMS
4433 unsigned long offset, size;
4434 char namebuf[KSYM_NAME_LEN+1];
4436 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4439 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4441 seq_printf(m, " [%s]", modname);
4445 seq_printf(m, "%p", (void *)address);
4448 static int leaks_show(struct seq_file *m, void *p)
4450 struct kmem_cache *cachep = p;
4452 struct kmem_list3 *l3;
4454 unsigned long *n = m->private;
4458 if (!(cachep->flags & SLAB_STORE_USER))
4460 if (!(cachep->flags & SLAB_RED_ZONE))
4463 /* OK, we can do it */
4467 for_each_online_node(node) {
4468 l3 = cachep->nodelists[node];
4473 spin_lock_irq(&l3->list_lock);
4475 list_for_each_entry(slabp, &l3->slabs_full, list)
4476 handle_slab(n, cachep, slabp);
4477 list_for_each_entry(slabp, &l3->slabs_partial, list)
4478 handle_slab(n, cachep, slabp);
4479 spin_unlock_irq(&l3->list_lock);
4481 name = cachep->name;
4483 /* Increase the buffer size */
4484 mutex_unlock(&cache_chain_mutex);
4485 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4487 /* Too bad, we are really out */
4489 mutex_lock(&cache_chain_mutex);
4492 *(unsigned long *)m->private = n[0] * 2;
4494 mutex_lock(&cache_chain_mutex);
4495 /* Now make sure this entry will be retried */
4499 for (i = 0; i < n[1]; i++) {
4500 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4501 show_symbol(m, n[2*i+2]);
4508 const struct seq_operations slabstats_op = {
4509 .start = leaks_start,
4518 * ksize - get the actual amount of memory allocated for a given object
4519 * @objp: Pointer to the object
4521 * kmalloc may internally round up allocations and return more memory
4522 * than requested. ksize() can be used to determine the actual amount of
4523 * memory allocated. The caller may use this additional memory, even though
4524 * a smaller amount of memory was initially specified with the kmalloc call.
4525 * The caller must guarantee that objp points to a valid object previously
4526 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4527 * must not be freed during the duration of the call.
4529 size_t ksize(const void *objp)
4531 if (unlikely(objp == NULL))
4534 return obj_size(virt_to_cache(objp));