ocfs2: remove mostly unused field from insert structure
[linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130         int i;
131
132         BUG_ON(path_root_bh(dest) != path_root_bh(src));
133         BUG_ON(path_root_el(dest) != path_root_el(src));
134
135         ocfs2_reinit_path(dest, 1);
136
137         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138                 dest->p_node[i].bh = src->p_node[i].bh;
139                 dest->p_node[i].el = src->p_node[i].el;
140
141                 if (dest->p_node[i].bh)
142                         get_bh(dest->p_node[i].bh);
143         }
144 }
145
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152         int i;
153
154         BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157                 brelse(dest->p_node[i].bh);
158
159                 dest->p_node[i].bh = src->p_node[i].bh;
160                 dest->p_node[i].el = src->p_node[i].el;
161
162                 src->p_node[i].bh = NULL;
163                 src->p_node[i].el = NULL;
164         }
165 }
166
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173                                         struct buffer_head *eb_bh)
174 {
175         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177         /*
178          * Right now, no root bh is an extent block, so this helps
179          * catch code errors with dinode trees. The assertion can be
180          * safely removed if we ever need to insert extent block
181          * structures at the root.
182          */
183         BUG_ON(index == 0);
184
185         path->p_node[index].bh = eb_bh;
186         path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190                                          struct ocfs2_extent_list *root_el)
191 {
192         struct ocfs2_path *path;
193
194         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196         path = kzalloc(sizeof(*path), GFP_NOFS);
197         if (path) {
198                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199                 get_bh(root_bh);
200                 path_root_bh(path) = root_bh;
201                 path_root_el(path) = root_el;
202         }
203
204         return path;
205 }
206
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213         struct ocfs2_extent_list *el = &di->id2.i_list;
214
215         return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222                                      struct ocfs2_path *path)
223 {
224         int i, ret = 0;
225
226         if (!path)
227                 goto out;
228
229         for(i = 0; i < path_num_items(path); i++) {
230                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231                                            OCFS2_JOURNAL_ACCESS_WRITE);
232                 if (ret < 0) {
233                         mlog_errno(ret);
234                         goto out;
235                 }
236         }
237
238 out:
239         return ret;
240 }
241
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250         int ret = -1;
251         int i;
252         struct ocfs2_extent_rec *rec;
253         u32 rec_end, rec_start, clusters;
254
255         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256                 rec = &el->l_recs[i];
257
258                 rec_start = le32_to_cpu(rec->e_cpos);
259                 clusters = ocfs2_rec_clusters(el, rec);
260
261                 rec_end = rec_start + clusters;
262
263                 if (v_cluster >= rec_start && v_cluster < rec_end) {
264                         ret = i;
265                         break;
266                 }
267         }
268
269         return ret;
270 }
271
272 enum ocfs2_contig_type {
273         CONTIG_NONE = 0,
274         CONTIG_LEFT,
275         CONTIG_RIGHT,
276         CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285                                      struct ocfs2_extent_rec *ext,
286                                      u64 blkno)
287 {
288         u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290         blk_end += ocfs2_clusters_to_blocks(sb,
291                                     le16_to_cpu(ext->e_leaf_clusters));
292
293         return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297                                   struct ocfs2_extent_rec *right)
298 {
299         u32 left_range;
300
301         left_range = le32_to_cpu(left->e_cpos) +
302                 le16_to_cpu(left->e_leaf_clusters);
303
304         return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308         ocfs2_extent_contig(struct inode *inode,
309                             struct ocfs2_extent_rec *ext,
310                             struct ocfs2_extent_rec *insert_rec)
311 {
312         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314         /*
315          * Refuse to coalesce extent records with different flag
316          * fields - we don't want to mix unwritten extents with user
317          * data.
318          */
319         if (ext->e_flags != insert_rec->e_flags)
320                 return CONTIG_NONE;
321
322         if (ocfs2_extents_adjacent(ext, insert_rec) &&
323             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324                         return CONTIG_RIGHT;
325
326         blkno = le64_to_cpu(ext->e_blkno);
327         if (ocfs2_extents_adjacent(insert_rec, ext) &&
328             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329                 return CONTIG_LEFT;
330
331         return CONTIG_NONE;
332 }
333
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342         APPEND_NONE = 0,
343         APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347         SPLIT_NONE = 0,
348         SPLIT_LEFT,
349         SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353         enum ocfs2_split_type   ins_split;
354         enum ocfs2_append_type  ins_appending;
355         enum ocfs2_contig_type  ins_contig;
356         int                     ins_contig_index;
357         int                     ins_tree_depth;
358 };
359
360 struct ocfs2_merge_ctxt {
361         enum ocfs2_contig_type  c_contig_type;
362         int                     c_has_empty_extent;
363         int                     c_split_covers_rec;
364         int                     c_used_tail_recs;
365 };
366
367 /*
368  * How many free extents have we got before we need more meta data?
369  */
370 int ocfs2_num_free_extents(struct ocfs2_super *osb,
371                            struct inode *inode,
372                            struct ocfs2_dinode *fe)
373 {
374         int retval;
375         struct ocfs2_extent_list *el;
376         struct ocfs2_extent_block *eb;
377         struct buffer_head *eb_bh = NULL;
378
379         mlog_entry_void();
380
381         if (!OCFS2_IS_VALID_DINODE(fe)) {
382                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
383                 retval = -EIO;
384                 goto bail;
385         }
386
387         if (fe->i_last_eb_blk) {
388                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
389                                           &eb_bh, OCFS2_BH_CACHED, inode);
390                 if (retval < 0) {
391                         mlog_errno(retval);
392                         goto bail;
393                 }
394                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
395                 el = &eb->h_list;
396         } else
397                 el = &fe->id2.i_list;
398
399         BUG_ON(el->l_tree_depth != 0);
400
401         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
402 bail:
403         if (eb_bh)
404                 brelse(eb_bh);
405
406         mlog_exit(retval);
407         return retval;
408 }
409
410 /* expects array to already be allocated
411  *
412  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
413  * l_count for you
414  */
415 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
416                                      handle_t *handle,
417                                      struct inode *inode,
418                                      int wanted,
419                                      struct ocfs2_alloc_context *meta_ac,
420                                      struct buffer_head *bhs[])
421 {
422         int count, status, i;
423         u16 suballoc_bit_start;
424         u32 num_got;
425         u64 first_blkno;
426         struct ocfs2_extent_block *eb;
427
428         mlog_entry_void();
429
430         count = 0;
431         while (count < wanted) {
432                 status = ocfs2_claim_metadata(osb,
433                                               handle,
434                                               meta_ac,
435                                               wanted - count,
436                                               &suballoc_bit_start,
437                                               &num_got,
438                                               &first_blkno);
439                 if (status < 0) {
440                         mlog_errno(status);
441                         goto bail;
442                 }
443
444                 for(i = count;  i < (num_got + count); i++) {
445                         bhs[i] = sb_getblk(osb->sb, first_blkno);
446                         if (bhs[i] == NULL) {
447                                 status = -EIO;
448                                 mlog_errno(status);
449                                 goto bail;
450                         }
451                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
452
453                         status = ocfs2_journal_access(handle, inode, bhs[i],
454                                                       OCFS2_JOURNAL_ACCESS_CREATE);
455                         if (status < 0) {
456                                 mlog_errno(status);
457                                 goto bail;
458                         }
459
460                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
461                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
462                         /* Ok, setup the minimal stuff here. */
463                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
464                         eb->h_blkno = cpu_to_le64(first_blkno);
465                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
466                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
467                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
468                         eb->h_list.l_count =
469                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
470
471                         suballoc_bit_start++;
472                         first_blkno++;
473
474                         /* We'll also be dirtied by the caller, so
475                          * this isn't absolutely necessary. */
476                         status = ocfs2_journal_dirty(handle, bhs[i]);
477                         if (status < 0) {
478                                 mlog_errno(status);
479                                 goto bail;
480                         }
481                 }
482
483                 count += num_got;
484         }
485
486         status = 0;
487 bail:
488         if (status < 0) {
489                 for(i = 0; i < wanted; i++) {
490                         if (bhs[i])
491                                 brelse(bhs[i]);
492                         bhs[i] = NULL;
493                 }
494         }
495         mlog_exit(status);
496         return status;
497 }
498
499 /*
500  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501  *
502  * Returns the sum of the rightmost extent rec logical offset and
503  * cluster count.
504  *
505  * ocfs2_add_branch() uses this to determine what logical cluster
506  * value should be populated into the leftmost new branch records.
507  *
508  * ocfs2_shift_tree_depth() uses this to determine the # clusters
509  * value for the new topmost tree record.
510  */
511 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
512 {
513         int i;
514
515         i = le16_to_cpu(el->l_next_free_rec) - 1;
516
517         return le32_to_cpu(el->l_recs[i].e_cpos) +
518                 ocfs2_rec_clusters(el, &el->l_recs[i]);
519 }
520
521 /*
522  * Add an entire tree branch to our inode. eb_bh is the extent block
523  * to start at, if we don't want to start the branch at the dinode
524  * structure.
525  *
526  * last_eb_bh is required as we have to update it's next_leaf pointer
527  * for the new last extent block.
528  *
529  * the new branch will be 'empty' in the sense that every block will
530  * contain a single record with cluster count == 0.
531  */
532 static int ocfs2_add_branch(struct ocfs2_super *osb,
533                             handle_t *handle,
534                             struct inode *inode,
535                             struct buffer_head *fe_bh,
536                             struct buffer_head *eb_bh,
537                             struct buffer_head **last_eb_bh,
538                             struct ocfs2_alloc_context *meta_ac)
539 {
540         int status, new_blocks, i;
541         u64 next_blkno, new_last_eb_blk;
542         struct buffer_head *bh;
543         struct buffer_head **new_eb_bhs = NULL;
544         struct ocfs2_dinode *fe;
545         struct ocfs2_extent_block *eb;
546         struct ocfs2_extent_list  *eb_el;
547         struct ocfs2_extent_list  *el;
548         u32 new_cpos;
549
550         mlog_entry_void();
551
552         BUG_ON(!last_eb_bh || !*last_eb_bh);
553
554         fe = (struct ocfs2_dinode *) fe_bh->b_data;
555
556         if (eb_bh) {
557                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
558                 el = &eb->h_list;
559         } else
560                 el = &fe->id2.i_list;
561
562         /* we never add a branch to a leaf. */
563         BUG_ON(!el->l_tree_depth);
564
565         new_blocks = le16_to_cpu(el->l_tree_depth);
566
567         /* allocate the number of new eb blocks we need */
568         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
569                              GFP_KERNEL);
570         if (!new_eb_bhs) {
571                 status = -ENOMEM;
572                 mlog_errno(status);
573                 goto bail;
574         }
575
576         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
577                                            meta_ac, new_eb_bhs);
578         if (status < 0) {
579                 mlog_errno(status);
580                 goto bail;
581         }
582
583         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
584         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
585
586         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
587          * linked with the rest of the tree.
588          * conversly, new_eb_bhs[0] is the new bottommost leaf.
589          *
590          * when we leave the loop, new_last_eb_blk will point to the
591          * newest leaf, and next_blkno will point to the topmost extent
592          * block. */
593         next_blkno = new_last_eb_blk = 0;
594         for(i = 0; i < new_blocks; i++) {
595                 bh = new_eb_bhs[i];
596                 eb = (struct ocfs2_extent_block *) bh->b_data;
597                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
598                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
599                         status = -EIO;
600                         goto bail;
601                 }
602                 eb_el = &eb->h_list;
603
604                 status = ocfs2_journal_access(handle, inode, bh,
605                                               OCFS2_JOURNAL_ACCESS_CREATE);
606                 if (status < 0) {
607                         mlog_errno(status);
608                         goto bail;
609                 }
610
611                 eb->h_next_leaf_blk = 0;
612                 eb_el->l_tree_depth = cpu_to_le16(i);
613                 eb_el->l_next_free_rec = cpu_to_le16(1);
614                 /*
615                  * This actually counts as an empty extent as
616                  * c_clusters == 0
617                  */
618                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
619                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
620                 /*
621                  * eb_el isn't always an interior node, but even leaf
622                  * nodes want a zero'd flags and reserved field so
623                  * this gets the whole 32 bits regardless of use.
624                  */
625                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
626                 if (!eb_el->l_tree_depth)
627                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
628
629                 status = ocfs2_journal_dirty(handle, bh);
630                 if (status < 0) {
631                         mlog_errno(status);
632                         goto bail;
633                 }
634
635                 next_blkno = le64_to_cpu(eb->h_blkno);
636         }
637
638         /* This is a bit hairy. We want to update up to three blocks
639          * here without leaving any of them in an inconsistent state
640          * in case of error. We don't have to worry about
641          * journal_dirty erroring as it won't unless we've aborted the
642          * handle (in which case we would never be here) so reserving
643          * the write with journal_access is all we need to do. */
644         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
645                                       OCFS2_JOURNAL_ACCESS_WRITE);
646         if (status < 0) {
647                 mlog_errno(status);
648                 goto bail;
649         }
650         status = ocfs2_journal_access(handle, inode, fe_bh,
651                                       OCFS2_JOURNAL_ACCESS_WRITE);
652         if (status < 0) {
653                 mlog_errno(status);
654                 goto bail;
655         }
656         if (eb_bh) {
657                 status = ocfs2_journal_access(handle, inode, eb_bh,
658                                               OCFS2_JOURNAL_ACCESS_WRITE);
659                 if (status < 0) {
660                         mlog_errno(status);
661                         goto bail;
662                 }
663         }
664
665         /* Link the new branch into the rest of the tree (el will
666          * either be on the fe, or the extent block passed in. */
667         i = le16_to_cpu(el->l_next_free_rec);
668         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
669         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
670         el->l_recs[i].e_int_clusters = 0;
671         le16_add_cpu(&el->l_next_free_rec, 1);
672
673         /* fe needs a new last extent block pointer, as does the
674          * next_leaf on the previously last-extent-block. */
675         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
676
677         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
678         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
679
680         status = ocfs2_journal_dirty(handle, *last_eb_bh);
681         if (status < 0)
682                 mlog_errno(status);
683         status = ocfs2_journal_dirty(handle, fe_bh);
684         if (status < 0)
685                 mlog_errno(status);
686         if (eb_bh) {
687                 status = ocfs2_journal_dirty(handle, eb_bh);
688                 if (status < 0)
689                         mlog_errno(status);
690         }
691
692         /*
693          * Some callers want to track the rightmost leaf so pass it
694          * back here.
695          */
696         brelse(*last_eb_bh);
697         get_bh(new_eb_bhs[0]);
698         *last_eb_bh = new_eb_bhs[0];
699
700         status = 0;
701 bail:
702         if (new_eb_bhs) {
703                 for (i = 0; i < new_blocks; i++)
704                         if (new_eb_bhs[i])
705                                 brelse(new_eb_bhs[i]);
706                 kfree(new_eb_bhs);
707         }
708
709         mlog_exit(status);
710         return status;
711 }
712
713 /*
714  * adds another level to the allocation tree.
715  * returns back the new extent block so you can add a branch to it
716  * after this call.
717  */
718 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
719                                   handle_t *handle,
720                                   struct inode *inode,
721                                   struct buffer_head *fe_bh,
722                                   struct ocfs2_alloc_context *meta_ac,
723                                   struct buffer_head **ret_new_eb_bh)
724 {
725         int status, i;
726         u32 new_clusters;
727         struct buffer_head *new_eb_bh = NULL;
728         struct ocfs2_dinode *fe;
729         struct ocfs2_extent_block *eb;
730         struct ocfs2_extent_list  *fe_el;
731         struct ocfs2_extent_list  *eb_el;
732
733         mlog_entry_void();
734
735         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
736                                            &new_eb_bh);
737         if (status < 0) {
738                 mlog_errno(status);
739                 goto bail;
740         }
741
742         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
743         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
744                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
745                 status = -EIO;
746                 goto bail;
747         }
748
749         eb_el = &eb->h_list;
750         fe = (struct ocfs2_dinode *) fe_bh->b_data;
751         fe_el = &fe->id2.i_list;
752
753         status = ocfs2_journal_access(handle, inode, new_eb_bh,
754                                       OCFS2_JOURNAL_ACCESS_CREATE);
755         if (status < 0) {
756                 mlog_errno(status);
757                 goto bail;
758         }
759
760         /* copy the fe data into the new extent block */
761         eb_el->l_tree_depth = fe_el->l_tree_depth;
762         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
763         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
764                 eb_el->l_recs[i] = fe_el->l_recs[i];
765
766         status = ocfs2_journal_dirty(handle, new_eb_bh);
767         if (status < 0) {
768                 mlog_errno(status);
769                 goto bail;
770         }
771
772         status = ocfs2_journal_access(handle, inode, fe_bh,
773                                       OCFS2_JOURNAL_ACCESS_WRITE);
774         if (status < 0) {
775                 mlog_errno(status);
776                 goto bail;
777         }
778
779         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
780
781         /* update fe now */
782         le16_add_cpu(&fe_el->l_tree_depth, 1);
783         fe_el->l_recs[0].e_cpos = 0;
784         fe_el->l_recs[0].e_blkno = eb->h_blkno;
785         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
786         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
787                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
788         fe_el->l_next_free_rec = cpu_to_le16(1);
789
790         /* If this is our 1st tree depth shift, then last_eb_blk
791          * becomes the allocated extent block */
792         if (fe_el->l_tree_depth == cpu_to_le16(1))
793                 fe->i_last_eb_blk = eb->h_blkno;
794
795         status = ocfs2_journal_dirty(handle, fe_bh);
796         if (status < 0) {
797                 mlog_errno(status);
798                 goto bail;
799         }
800
801         *ret_new_eb_bh = new_eb_bh;
802         new_eb_bh = NULL;
803         status = 0;
804 bail:
805         if (new_eb_bh)
806                 brelse(new_eb_bh);
807
808         mlog_exit(status);
809         return status;
810 }
811
812 /*
813  * Should only be called when there is no space left in any of the
814  * leaf nodes. What we want to do is find the lowest tree depth
815  * non-leaf extent block with room for new records. There are three
816  * valid results of this search:
817  *
818  * 1) a lowest extent block is found, then we pass it back in
819  *    *lowest_eb_bh and return '0'
820  *
821  * 2) the search fails to find anything, but the dinode has room. We
822  *    pass NULL back in *lowest_eb_bh, but still return '0'
823  *
824  * 3) the search fails to find anything AND the dinode is full, in
825  *    which case we return > 0
826  *
827  * return status < 0 indicates an error.
828  */
829 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
830                                     struct inode *inode,
831                                     struct buffer_head *fe_bh,
832                                     struct buffer_head **target_bh)
833 {
834         int status = 0, i;
835         u64 blkno;
836         struct ocfs2_dinode *fe;
837         struct ocfs2_extent_block *eb;
838         struct ocfs2_extent_list  *el;
839         struct buffer_head *bh = NULL;
840         struct buffer_head *lowest_bh = NULL;
841
842         mlog_entry_void();
843
844         *target_bh = NULL;
845
846         fe = (struct ocfs2_dinode *) fe_bh->b_data;
847         el = &fe->id2.i_list;
848
849         while(le16_to_cpu(el->l_tree_depth) > 1) {
850                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
851                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
852                                     "extent list (next_free_rec == 0)",
853                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
854                         status = -EIO;
855                         goto bail;
856                 }
857                 i = le16_to_cpu(el->l_next_free_rec) - 1;
858                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
859                 if (!blkno) {
860                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
861                                     "list where extent # %d has no physical "
862                                     "block start",
863                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
864                         status = -EIO;
865                         goto bail;
866                 }
867
868                 if (bh) {
869                         brelse(bh);
870                         bh = NULL;
871                 }
872
873                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
874                                           inode);
875                 if (status < 0) {
876                         mlog_errno(status);
877                         goto bail;
878                 }
879
880                 eb = (struct ocfs2_extent_block *) bh->b_data;
881                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
882                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
883                         status = -EIO;
884                         goto bail;
885                 }
886                 el = &eb->h_list;
887
888                 if (le16_to_cpu(el->l_next_free_rec) <
889                     le16_to_cpu(el->l_count)) {
890                         if (lowest_bh)
891                                 brelse(lowest_bh);
892                         lowest_bh = bh;
893                         get_bh(lowest_bh);
894                 }
895         }
896
897         /* If we didn't find one and the fe doesn't have any room,
898          * then return '1' */
899         if (!lowest_bh
900             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
901                 status = 1;
902
903         *target_bh = lowest_bh;
904 bail:
905         if (bh)
906                 brelse(bh);
907
908         mlog_exit(status);
909         return status;
910 }
911
912 /*
913  * Grow a b-tree so that it has more records.
914  *
915  * We might shift the tree depth in which case existing paths should
916  * be considered invalid.
917  *
918  * Tree depth after the grow is returned via *final_depth.
919  *
920  * *last_eb_bh will be updated by ocfs2_add_branch().
921  */
922 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
923                            struct buffer_head *di_bh, int *final_depth,
924                            struct buffer_head **last_eb_bh,
925                            struct ocfs2_alloc_context *meta_ac)
926 {
927         int ret, shift;
928         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
929         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
930         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
931         struct buffer_head *bh = NULL;
932
933         BUG_ON(meta_ac == NULL);
934
935         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
936         if (shift < 0) {
937                 ret = shift;
938                 mlog_errno(ret);
939                 goto out;
940         }
941
942         /* We traveled all the way to the bottom of the allocation tree
943          * and didn't find room for any more extents - we need to add
944          * another tree level */
945         if (shift) {
946                 BUG_ON(bh);
947                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
948
949                 /* ocfs2_shift_tree_depth will return us a buffer with
950                  * the new extent block (so we can pass that to
951                  * ocfs2_add_branch). */
952                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
953                                              meta_ac, &bh);
954                 if (ret < 0) {
955                         mlog_errno(ret);
956                         goto out;
957                 }
958                 depth++;
959                 if (depth == 1) {
960                         /*
961                          * Special case: we have room now if we shifted from
962                          * tree_depth 0, so no more work needs to be done.
963                          *
964                          * We won't be calling add_branch, so pass
965                          * back *last_eb_bh as the new leaf. At depth
966                          * zero, it should always be null so there's
967                          * no reason to brelse.
968                          */
969                         BUG_ON(*last_eb_bh);
970                         get_bh(bh);
971                         *last_eb_bh = bh;
972                         goto out;
973                 }
974         }
975
976         /* call ocfs2_add_branch to add the final part of the tree with
977          * the new data. */
978         mlog(0, "add branch. bh = %p\n", bh);
979         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
980                                meta_ac);
981         if (ret < 0) {
982                 mlog_errno(ret);
983                 goto out;
984         }
985
986 out:
987         if (final_depth)
988                 *final_depth = depth;
989         brelse(bh);
990         return ret;
991 }
992
993 /*
994  * This is only valid for leaf nodes, which are the only ones that can
995  * have empty extents anyway.
996  */
997 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
998 {
999         return !rec->e_leaf_clusters;
1000 }
1001
1002 /*
1003  * This function will discard the rightmost extent record.
1004  */
1005 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1006 {
1007         int next_free = le16_to_cpu(el->l_next_free_rec);
1008         int count = le16_to_cpu(el->l_count);
1009         unsigned int num_bytes;
1010
1011         BUG_ON(!next_free);
1012         /* This will cause us to go off the end of our extent list. */
1013         BUG_ON(next_free >= count);
1014
1015         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1016
1017         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1018 }
1019
1020 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1021                               struct ocfs2_extent_rec *insert_rec)
1022 {
1023         int i, insert_index, next_free, has_empty, num_bytes;
1024         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1025         struct ocfs2_extent_rec *rec;
1026
1027         next_free = le16_to_cpu(el->l_next_free_rec);
1028         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1029
1030         BUG_ON(!next_free);
1031
1032         /* The tree code before us didn't allow enough room in the leaf. */
1033         if (el->l_next_free_rec == el->l_count && !has_empty)
1034                 BUG();
1035
1036         /*
1037          * The easiest way to approach this is to just remove the
1038          * empty extent and temporarily decrement next_free.
1039          */
1040         if (has_empty) {
1041                 /*
1042                  * If next_free was 1 (only an empty extent), this
1043                  * loop won't execute, which is fine. We still want
1044                  * the decrement above to happen.
1045                  */
1046                 for(i = 0; i < (next_free - 1); i++)
1047                         el->l_recs[i] = el->l_recs[i+1];
1048
1049                 next_free--;
1050         }
1051
1052         /*
1053          * Figure out what the new record index should be.
1054          */
1055         for(i = 0; i < next_free; i++) {
1056                 rec = &el->l_recs[i];
1057
1058                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1059                         break;
1060         }
1061         insert_index = i;
1062
1063         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1064              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1065
1066         BUG_ON(insert_index < 0);
1067         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1068         BUG_ON(insert_index > next_free);
1069
1070         /*
1071          * No need to memmove if we're just adding to the tail.
1072          */
1073         if (insert_index != next_free) {
1074                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1075
1076                 num_bytes = next_free - insert_index;
1077                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1078                 memmove(&el->l_recs[insert_index + 1],
1079                         &el->l_recs[insert_index],
1080                         num_bytes);
1081         }
1082
1083         /*
1084          * Either we had an empty extent, and need to re-increment or
1085          * there was no empty extent on a non full rightmost leaf node,
1086          * in which case we still need to increment.
1087          */
1088         next_free++;
1089         el->l_next_free_rec = cpu_to_le16(next_free);
1090         /*
1091          * Make sure none of the math above just messed up our tree.
1092          */
1093         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1094
1095         el->l_recs[insert_index] = *insert_rec;
1096
1097 }
1098
1099 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1100 {
1101         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1102
1103         BUG_ON(num_recs == 0);
1104
1105         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1106                 num_recs--;
1107                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1108                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1109                 memset(&el->l_recs[num_recs], 0,
1110                        sizeof(struct ocfs2_extent_rec));
1111                 el->l_next_free_rec = cpu_to_le16(num_recs);
1112         }
1113 }
1114
1115 /*
1116  * Create an empty extent record .
1117  *
1118  * l_next_free_rec may be updated.
1119  *
1120  * If an empty extent already exists do nothing.
1121  */
1122 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1123 {
1124         int next_free = le16_to_cpu(el->l_next_free_rec);
1125
1126         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1127
1128         if (next_free == 0)
1129                 goto set_and_inc;
1130
1131         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1132                 return;
1133
1134         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1135                         "Asked to create an empty extent in a full list:\n"
1136                         "count = %u, tree depth = %u",
1137                         le16_to_cpu(el->l_count),
1138                         le16_to_cpu(el->l_tree_depth));
1139
1140         ocfs2_shift_records_right(el);
1141
1142 set_and_inc:
1143         le16_add_cpu(&el->l_next_free_rec, 1);
1144         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1145 }
1146
1147 /*
1148  * For a rotation which involves two leaf nodes, the "root node" is
1149  * the lowest level tree node which contains a path to both leafs. This
1150  * resulting set of information can be used to form a complete "subtree"
1151  *
1152  * This function is passed two full paths from the dinode down to a
1153  * pair of adjacent leaves. It's task is to figure out which path
1154  * index contains the subtree root - this can be the root index itself
1155  * in a worst-case rotation.
1156  *
1157  * The array index of the subtree root is passed back.
1158  */
1159 static int ocfs2_find_subtree_root(struct inode *inode,
1160                                    struct ocfs2_path *left,
1161                                    struct ocfs2_path *right)
1162 {
1163         int i = 0;
1164
1165         /*
1166          * Check that the caller passed in two paths from the same tree.
1167          */
1168         BUG_ON(path_root_bh(left) != path_root_bh(right));
1169
1170         do {
1171                 i++;
1172
1173                 /*
1174                  * The caller didn't pass two adjacent paths.
1175                  */
1176                 mlog_bug_on_msg(i > left->p_tree_depth,
1177                                 "Inode %lu, left depth %u, right depth %u\n"
1178                                 "left leaf blk %llu, right leaf blk %llu\n",
1179                                 inode->i_ino, left->p_tree_depth,
1180                                 right->p_tree_depth,
1181                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1182                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1183         } while (left->p_node[i].bh->b_blocknr ==
1184                  right->p_node[i].bh->b_blocknr);
1185
1186         return i - 1;
1187 }
1188
1189 typedef void (path_insert_t)(void *, struct buffer_head *);
1190
1191 /*
1192  * Traverse a btree path in search of cpos, starting at root_el.
1193  *
1194  * This code can be called with a cpos larger than the tree, in which
1195  * case it will return the rightmost path.
1196  */
1197 static int __ocfs2_find_path(struct inode *inode,
1198                              struct ocfs2_extent_list *root_el, u32 cpos,
1199                              path_insert_t *func, void *data)
1200 {
1201         int i, ret = 0;
1202         u32 range;
1203         u64 blkno;
1204         struct buffer_head *bh = NULL;
1205         struct ocfs2_extent_block *eb;
1206         struct ocfs2_extent_list *el;
1207         struct ocfs2_extent_rec *rec;
1208         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1209
1210         el = root_el;
1211         while (el->l_tree_depth) {
1212                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1213                         ocfs2_error(inode->i_sb,
1214                                     "Inode %llu has empty extent list at "
1215                                     "depth %u\n",
1216                                     (unsigned long long)oi->ip_blkno,
1217                                     le16_to_cpu(el->l_tree_depth));
1218                         ret = -EROFS;
1219                         goto out;
1220
1221                 }
1222
1223                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1224                         rec = &el->l_recs[i];
1225
1226                         /*
1227                          * In the case that cpos is off the allocation
1228                          * tree, this should just wind up returning the
1229                          * rightmost record.
1230                          */
1231                         range = le32_to_cpu(rec->e_cpos) +
1232                                 ocfs2_rec_clusters(el, rec);
1233                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1234                             break;
1235                 }
1236
1237                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1238                 if (blkno == 0) {
1239                         ocfs2_error(inode->i_sb,
1240                                     "Inode %llu has bad blkno in extent list "
1241                                     "at depth %u (index %d)\n",
1242                                     (unsigned long long)oi->ip_blkno,
1243                                     le16_to_cpu(el->l_tree_depth), i);
1244                         ret = -EROFS;
1245                         goto out;
1246                 }
1247
1248                 brelse(bh);
1249                 bh = NULL;
1250                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1251                                        &bh, OCFS2_BH_CACHED, inode);
1252                 if (ret) {
1253                         mlog_errno(ret);
1254                         goto out;
1255                 }
1256
1257                 eb = (struct ocfs2_extent_block *) bh->b_data;
1258                 el = &eb->h_list;
1259                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1260                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1261                         ret = -EIO;
1262                         goto out;
1263                 }
1264
1265                 if (le16_to_cpu(el->l_next_free_rec) >
1266                     le16_to_cpu(el->l_count)) {
1267                         ocfs2_error(inode->i_sb,
1268                                     "Inode %llu has bad count in extent list "
1269                                     "at block %llu (next free=%u, count=%u)\n",
1270                                     (unsigned long long)oi->ip_blkno,
1271                                     (unsigned long long)bh->b_blocknr,
1272                                     le16_to_cpu(el->l_next_free_rec),
1273                                     le16_to_cpu(el->l_count));
1274                         ret = -EROFS;
1275                         goto out;
1276                 }
1277
1278                 if (func)
1279                         func(data, bh);
1280         }
1281
1282 out:
1283         /*
1284          * Catch any trailing bh that the loop didn't handle.
1285          */
1286         brelse(bh);
1287
1288         return ret;
1289 }
1290
1291 /*
1292  * Given an initialized path (that is, it has a valid root extent
1293  * list), this function will traverse the btree in search of the path
1294  * which would contain cpos.
1295  *
1296  * The path traveled is recorded in the path structure.
1297  *
1298  * Note that this will not do any comparisons on leaf node extent
1299  * records, so it will work fine in the case that we just added a tree
1300  * branch.
1301  */
1302 struct find_path_data {
1303         int index;
1304         struct ocfs2_path *path;
1305 };
1306 static void find_path_ins(void *data, struct buffer_head *bh)
1307 {
1308         struct find_path_data *fp = data;
1309
1310         get_bh(bh);
1311         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1312         fp->index++;
1313 }
1314 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1315                            u32 cpos)
1316 {
1317         struct find_path_data data;
1318
1319         data.index = 1;
1320         data.path = path;
1321         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1322                                  find_path_ins, &data);
1323 }
1324
1325 static void find_leaf_ins(void *data, struct buffer_head *bh)
1326 {
1327         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1328         struct ocfs2_extent_list *el = &eb->h_list;
1329         struct buffer_head **ret = data;
1330
1331         /* We want to retain only the leaf block. */
1332         if (le16_to_cpu(el->l_tree_depth) == 0) {
1333                 get_bh(bh);
1334                 *ret = bh;
1335         }
1336 }
1337 /*
1338  * Find the leaf block in the tree which would contain cpos. No
1339  * checking of the actual leaf is done.
1340  *
1341  * Some paths want to call this instead of allocating a path structure
1342  * and calling ocfs2_find_path().
1343  *
1344  * This function doesn't handle non btree extent lists.
1345  */
1346 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1347                     u32 cpos, struct buffer_head **leaf_bh)
1348 {
1349         int ret;
1350         struct buffer_head *bh = NULL;
1351
1352         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1353         if (ret) {
1354                 mlog_errno(ret);
1355                 goto out;
1356         }
1357
1358         *leaf_bh = bh;
1359 out:
1360         return ret;
1361 }
1362
1363 /*
1364  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1365  *
1366  * Basically, we've moved stuff around at the bottom of the tree and
1367  * we need to fix up the extent records above the changes to reflect
1368  * the new changes.
1369  *
1370  * left_rec: the record on the left.
1371  * left_child_el: is the child list pointed to by left_rec
1372  * right_rec: the record to the right of left_rec
1373  * right_child_el: is the child list pointed to by right_rec
1374  *
1375  * By definition, this only works on interior nodes.
1376  */
1377 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1378                                   struct ocfs2_extent_list *left_child_el,
1379                                   struct ocfs2_extent_rec *right_rec,
1380                                   struct ocfs2_extent_list *right_child_el)
1381 {
1382         u32 left_clusters, right_end;
1383
1384         /*
1385          * Interior nodes never have holes. Their cpos is the cpos of
1386          * the leftmost record in their child list. Their cluster
1387          * count covers the full theoretical range of their child list
1388          * - the range between their cpos and the cpos of the record
1389          * immediately to their right.
1390          */
1391         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1392         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1393                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1394                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1395         }
1396         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1397         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1398
1399         /*
1400          * Calculate the rightmost cluster count boundary before
1401          * moving cpos - we will need to adjust clusters after
1402          * updating e_cpos to keep the same highest cluster count.
1403          */
1404         right_end = le32_to_cpu(right_rec->e_cpos);
1405         right_end += le32_to_cpu(right_rec->e_int_clusters);
1406
1407         right_rec->e_cpos = left_rec->e_cpos;
1408         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1409
1410         right_end -= le32_to_cpu(right_rec->e_cpos);
1411         right_rec->e_int_clusters = cpu_to_le32(right_end);
1412 }
1413
1414 /*
1415  * Adjust the adjacent root node records involved in a
1416  * rotation. left_el_blkno is passed in as a key so that we can easily
1417  * find it's index in the root list.
1418  */
1419 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1420                                       struct ocfs2_extent_list *left_el,
1421                                       struct ocfs2_extent_list *right_el,
1422                                       u64 left_el_blkno)
1423 {
1424         int i;
1425
1426         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1427                le16_to_cpu(left_el->l_tree_depth));
1428
1429         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1430                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1431                         break;
1432         }
1433
1434         /*
1435          * The path walking code should have never returned a root and
1436          * two paths which are not adjacent.
1437          */
1438         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1439
1440         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1441                                       &root_el->l_recs[i + 1], right_el);
1442 }
1443
1444 /*
1445  * We've changed a leaf block (in right_path) and need to reflect that
1446  * change back up the subtree.
1447  *
1448  * This happens in multiple places:
1449  *   - When we've moved an extent record from the left path leaf to the right
1450  *     path leaf to make room for an empty extent in the left path leaf.
1451  *   - When our insert into the right path leaf is at the leftmost edge
1452  *     and requires an update of the path immediately to it's left. This
1453  *     can occur at the end of some types of rotation and appending inserts.
1454  */
1455 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1456                                        struct ocfs2_path *left_path,
1457                                        struct ocfs2_path *right_path,
1458                                        int subtree_index)
1459 {
1460         int ret, i, idx;
1461         struct ocfs2_extent_list *el, *left_el, *right_el;
1462         struct ocfs2_extent_rec *left_rec, *right_rec;
1463         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1464
1465         /*
1466          * Update the counts and position values within all the
1467          * interior nodes to reflect the leaf rotation we just did.
1468          *
1469          * The root node is handled below the loop.
1470          *
1471          * We begin the loop with right_el and left_el pointing to the
1472          * leaf lists and work our way up.
1473          *
1474          * NOTE: within this loop, left_el and right_el always refer
1475          * to the *child* lists.
1476          */
1477         left_el = path_leaf_el(left_path);
1478         right_el = path_leaf_el(right_path);
1479         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1480                 mlog(0, "Adjust records at index %u\n", i);
1481
1482                 /*
1483                  * One nice property of knowing that all of these
1484                  * nodes are below the root is that we only deal with
1485                  * the leftmost right node record and the rightmost
1486                  * left node record.
1487                  */
1488                 el = left_path->p_node[i].el;
1489                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1490                 left_rec = &el->l_recs[idx];
1491
1492                 el = right_path->p_node[i].el;
1493                 right_rec = &el->l_recs[0];
1494
1495                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1496                                               right_el);
1497
1498                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1499                 if (ret)
1500                         mlog_errno(ret);
1501
1502                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1503                 if (ret)
1504                         mlog_errno(ret);
1505
1506                 /*
1507                  * Setup our list pointers now so that the current
1508                  * parents become children in the next iteration.
1509                  */
1510                 left_el = left_path->p_node[i].el;
1511                 right_el = right_path->p_node[i].el;
1512         }
1513
1514         /*
1515          * At the root node, adjust the two adjacent records which
1516          * begin our path to the leaves.
1517          */
1518
1519         el = left_path->p_node[subtree_index].el;
1520         left_el = left_path->p_node[subtree_index + 1].el;
1521         right_el = right_path->p_node[subtree_index + 1].el;
1522
1523         ocfs2_adjust_root_records(el, left_el, right_el,
1524                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1525
1526         root_bh = left_path->p_node[subtree_index].bh;
1527
1528         ret = ocfs2_journal_dirty(handle, root_bh);
1529         if (ret)
1530                 mlog_errno(ret);
1531 }
1532
1533 static int ocfs2_rotate_subtree_right(struct inode *inode,
1534                                       handle_t *handle,
1535                                       struct ocfs2_path *left_path,
1536                                       struct ocfs2_path *right_path,
1537                                       int subtree_index)
1538 {
1539         int ret, i;
1540         struct buffer_head *right_leaf_bh;
1541         struct buffer_head *left_leaf_bh = NULL;
1542         struct buffer_head *root_bh;
1543         struct ocfs2_extent_list *right_el, *left_el;
1544         struct ocfs2_extent_rec move_rec;
1545
1546         left_leaf_bh = path_leaf_bh(left_path);
1547         left_el = path_leaf_el(left_path);
1548
1549         if (left_el->l_next_free_rec != left_el->l_count) {
1550                 ocfs2_error(inode->i_sb,
1551                             "Inode %llu has non-full interior leaf node %llu"
1552                             "(next free = %u)",
1553                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1554                             (unsigned long long)left_leaf_bh->b_blocknr,
1555                             le16_to_cpu(left_el->l_next_free_rec));
1556                 return -EROFS;
1557         }
1558
1559         /*
1560          * This extent block may already have an empty record, so we
1561          * return early if so.
1562          */
1563         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1564                 return 0;
1565
1566         root_bh = left_path->p_node[subtree_index].bh;
1567         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1568
1569         ret = ocfs2_journal_access(handle, inode, root_bh,
1570                                    OCFS2_JOURNAL_ACCESS_WRITE);
1571         if (ret) {
1572                 mlog_errno(ret);
1573                 goto out;
1574         }
1575
1576         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1577                 ret = ocfs2_journal_access(handle, inode,
1578                                            right_path->p_node[i].bh,
1579                                            OCFS2_JOURNAL_ACCESS_WRITE);
1580                 if (ret) {
1581                         mlog_errno(ret);
1582                         goto out;
1583                 }
1584
1585                 ret = ocfs2_journal_access(handle, inode,
1586                                            left_path->p_node[i].bh,
1587                                            OCFS2_JOURNAL_ACCESS_WRITE);
1588                 if (ret) {
1589                         mlog_errno(ret);
1590                         goto out;
1591                 }
1592         }
1593
1594         right_leaf_bh = path_leaf_bh(right_path);
1595         right_el = path_leaf_el(right_path);
1596
1597         /* This is a code error, not a disk corruption. */
1598         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1599                         "because rightmost leaf block %llu is empty\n",
1600                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1601                         (unsigned long long)right_leaf_bh->b_blocknr);
1602
1603         ocfs2_create_empty_extent(right_el);
1604
1605         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1606         if (ret) {
1607                 mlog_errno(ret);
1608                 goto out;
1609         }
1610
1611         /* Do the copy now. */
1612         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1613         move_rec = left_el->l_recs[i];
1614         right_el->l_recs[0] = move_rec;
1615
1616         /*
1617          * Clear out the record we just copied and shift everything
1618          * over, leaving an empty extent in the left leaf.
1619          *
1620          * We temporarily subtract from next_free_rec so that the
1621          * shift will lose the tail record (which is now defunct).
1622          */
1623         le16_add_cpu(&left_el->l_next_free_rec, -1);
1624         ocfs2_shift_records_right(left_el);
1625         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1626         le16_add_cpu(&left_el->l_next_free_rec, 1);
1627
1628         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1629         if (ret) {
1630                 mlog_errno(ret);
1631                 goto out;
1632         }
1633
1634         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1635                                 subtree_index);
1636
1637 out:
1638         return ret;
1639 }
1640
1641 /*
1642  * Given a full path, determine what cpos value would return us a path
1643  * containing the leaf immediately to the left of the current one.
1644  *
1645  * Will return zero if the path passed in is already the leftmost path.
1646  */
1647 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1648                                          struct ocfs2_path *path, u32 *cpos)
1649 {
1650         int i, j, ret = 0;
1651         u64 blkno;
1652         struct ocfs2_extent_list *el;
1653
1654         BUG_ON(path->p_tree_depth == 0);
1655
1656         *cpos = 0;
1657
1658         blkno = path_leaf_bh(path)->b_blocknr;
1659
1660         /* Start at the tree node just above the leaf and work our way up. */
1661         i = path->p_tree_depth - 1;
1662         while (i >= 0) {
1663                 el = path->p_node[i].el;
1664
1665                 /*
1666                  * Find the extent record just before the one in our
1667                  * path.
1668                  */
1669                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1670                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1671                                 if (j == 0) {
1672                                         if (i == 0) {
1673                                                 /*
1674                                                  * We've determined that the
1675                                                  * path specified is already
1676                                                  * the leftmost one - return a
1677                                                  * cpos of zero.
1678                                                  */
1679                                                 goto out;
1680                                         }
1681                                         /*
1682                                          * The leftmost record points to our
1683                                          * leaf - we need to travel up the
1684                                          * tree one level.
1685                                          */
1686                                         goto next_node;
1687                                 }
1688
1689                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1690                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1691                                                            &el->l_recs[j - 1]);
1692                                 *cpos = *cpos - 1;
1693                                 goto out;
1694                         }
1695                 }
1696
1697                 /*
1698                  * If we got here, we never found a valid node where
1699                  * the tree indicated one should be.
1700                  */
1701                 ocfs2_error(sb,
1702                             "Invalid extent tree at extent block %llu\n",
1703                             (unsigned long long)blkno);
1704                 ret = -EROFS;
1705                 goto out;
1706
1707 next_node:
1708                 blkno = path->p_node[i].bh->b_blocknr;
1709                 i--;
1710         }
1711
1712 out:
1713         return ret;
1714 }
1715
1716 /*
1717  * Extend the transaction by enough credits to complete the rotation,
1718  * and still leave at least the original number of credits allocated
1719  * to this transaction.
1720  */
1721 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1722                                            int op_credits,
1723                                            struct ocfs2_path *path)
1724 {
1725         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1726
1727         if (handle->h_buffer_credits < credits)
1728                 return ocfs2_extend_trans(handle, credits);
1729
1730         return 0;
1731 }
1732
1733 /*
1734  * Trap the case where we're inserting into the theoretical range past
1735  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1736  * whose cpos is less than ours into the right leaf.
1737  *
1738  * It's only necessary to look at the rightmost record of the left
1739  * leaf because the logic that calls us should ensure that the
1740  * theoretical ranges in the path components above the leaves are
1741  * correct.
1742  */
1743 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1744                                                  u32 insert_cpos)
1745 {
1746         struct ocfs2_extent_list *left_el;
1747         struct ocfs2_extent_rec *rec;
1748         int next_free;
1749
1750         left_el = path_leaf_el(left_path);
1751         next_free = le16_to_cpu(left_el->l_next_free_rec);
1752         rec = &left_el->l_recs[next_free - 1];
1753
1754         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1755                 return 1;
1756         return 0;
1757 }
1758
1759 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1760 {
1761         int next_free = le16_to_cpu(el->l_next_free_rec);
1762         unsigned int range;
1763         struct ocfs2_extent_rec *rec;
1764
1765         if (next_free == 0)
1766                 return 0;
1767
1768         rec = &el->l_recs[0];
1769         if (ocfs2_is_empty_extent(rec)) {
1770                 /* Empty list. */
1771                 if (next_free == 1)
1772                         return 0;
1773                 rec = &el->l_recs[1];
1774         }
1775
1776         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1777         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1778                 return 1;
1779         return 0;
1780 }
1781
1782 /*
1783  * Rotate all the records in a btree right one record, starting at insert_cpos.
1784  *
1785  * The path to the rightmost leaf should be passed in.
1786  *
1787  * The array is assumed to be large enough to hold an entire path (tree depth).
1788  *
1789  * Upon succesful return from this function:
1790  *
1791  * - The 'right_path' array will contain a path to the leaf block
1792  *   whose range contains e_cpos.
1793  * - That leaf block will have a single empty extent in list index 0.
1794  * - In the case that the rotation requires a post-insert update,
1795  *   *ret_left_path will contain a valid path which can be passed to
1796  *   ocfs2_insert_path().
1797  */
1798 static int ocfs2_rotate_tree_right(struct inode *inode,
1799                                    handle_t *handle,
1800                                    enum ocfs2_split_type split,
1801                                    u32 insert_cpos,
1802                                    struct ocfs2_path *right_path,
1803                                    struct ocfs2_path **ret_left_path)
1804 {
1805         int ret, start, orig_credits = handle->h_buffer_credits;
1806         u32 cpos;
1807         struct ocfs2_path *left_path = NULL;
1808
1809         *ret_left_path = NULL;
1810
1811         left_path = ocfs2_new_path(path_root_bh(right_path),
1812                                    path_root_el(right_path));
1813         if (!left_path) {
1814                 ret = -ENOMEM;
1815                 mlog_errno(ret);
1816                 goto out;
1817         }
1818
1819         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 goto out;
1823         }
1824
1825         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1826
1827         /*
1828          * What we want to do here is:
1829          *
1830          * 1) Start with the rightmost path.
1831          *
1832          * 2) Determine a path to the leaf block directly to the left
1833          *    of that leaf.
1834          *
1835          * 3) Determine the 'subtree root' - the lowest level tree node
1836          *    which contains a path to both leaves.
1837          *
1838          * 4) Rotate the subtree.
1839          *
1840          * 5) Find the next subtree by considering the left path to be
1841          *    the new right path.
1842          *
1843          * The check at the top of this while loop also accepts
1844          * insert_cpos == cpos because cpos is only a _theoretical_
1845          * value to get us the left path - insert_cpos might very well
1846          * be filling that hole.
1847          *
1848          * Stop at a cpos of '0' because we either started at the
1849          * leftmost branch (i.e., a tree with one branch and a
1850          * rotation inside of it), or we've gone as far as we can in
1851          * rotating subtrees.
1852          */
1853         while (cpos && insert_cpos <= cpos) {
1854                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1855                      insert_cpos, cpos);
1856
1857                 ret = ocfs2_find_path(inode, left_path, cpos);
1858                 if (ret) {
1859                         mlog_errno(ret);
1860                         goto out;
1861                 }
1862
1863                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1864                                 path_leaf_bh(right_path),
1865                                 "Inode %lu: error during insert of %u "
1866                                 "(left path cpos %u) results in two identical "
1867                                 "paths ending at %llu\n",
1868                                 inode->i_ino, insert_cpos, cpos,
1869                                 (unsigned long long)
1870                                 path_leaf_bh(left_path)->b_blocknr);
1871
1872                 if (split == SPLIT_NONE &&
1873                     ocfs2_rotate_requires_path_adjustment(left_path,
1874                                                           insert_cpos)) {
1875
1876                         /*
1877                          * We've rotated the tree as much as we
1878                          * should. The rest is up to
1879                          * ocfs2_insert_path() to complete, after the
1880                          * record insertion. We indicate this
1881                          * situation by returning the left path.
1882                          *
1883                          * The reason we don't adjust the records here
1884                          * before the record insert is that an error
1885                          * later might break the rule where a parent
1886                          * record e_cpos will reflect the actual
1887                          * e_cpos of the 1st nonempty record of the
1888                          * child list.
1889                          */
1890                         *ret_left_path = left_path;
1891                         goto out_ret_path;
1892                 }
1893
1894                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1895
1896                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1897                      start,
1898                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1899                      right_path->p_tree_depth);
1900
1901                 ret = ocfs2_extend_rotate_transaction(handle, start,
1902                                                       orig_credits, right_path);
1903                 if (ret) {
1904                         mlog_errno(ret);
1905                         goto out;
1906                 }
1907
1908                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1909                                                  right_path, start);
1910                 if (ret) {
1911                         mlog_errno(ret);
1912                         goto out;
1913                 }
1914
1915                 if (split != SPLIT_NONE &&
1916                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1917                                                 insert_cpos)) {
1918                         /*
1919                          * A rotate moves the rightmost left leaf
1920                          * record over to the leftmost right leaf
1921                          * slot. If we're doing an extent split
1922                          * instead of a real insert, then we have to
1923                          * check that the extent to be split wasn't
1924                          * just moved over. If it was, then we can
1925                          * exit here, passing left_path back -
1926                          * ocfs2_split_extent() is smart enough to
1927                          * search both leaves.
1928                          */
1929                         *ret_left_path = left_path;
1930                         goto out_ret_path;
1931                 }
1932
1933                 /*
1934                  * There is no need to re-read the next right path
1935                  * as we know that it'll be our current left
1936                  * path. Optimize by copying values instead.
1937                  */
1938                 ocfs2_mv_path(right_path, left_path);
1939
1940                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1941                                                     &cpos);
1942                 if (ret) {
1943                         mlog_errno(ret);
1944                         goto out;
1945                 }
1946         }
1947
1948 out:
1949         ocfs2_free_path(left_path);
1950
1951 out_ret_path:
1952         return ret;
1953 }
1954
1955 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1956                                       struct ocfs2_path *path)
1957 {
1958         int i, idx;
1959         struct ocfs2_extent_rec *rec;
1960         struct ocfs2_extent_list *el;
1961         struct ocfs2_extent_block *eb;
1962         u32 range;
1963
1964         /* Path should always be rightmost. */
1965         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1966         BUG_ON(eb->h_next_leaf_blk != 0ULL);
1967
1968         el = &eb->h_list;
1969         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1970         idx = le16_to_cpu(el->l_next_free_rec) - 1;
1971         rec = &el->l_recs[idx];
1972         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1973
1974         for (i = 0; i < path->p_tree_depth; i++) {
1975                 el = path->p_node[i].el;
1976                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1977                 rec = &el->l_recs[idx];
1978
1979                 rec->e_int_clusters = cpu_to_le32(range);
1980                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1981
1982                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1983         }
1984 }
1985
1986 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1987                               struct ocfs2_cached_dealloc_ctxt *dealloc,
1988                               struct ocfs2_path *path, int unlink_start)
1989 {
1990         int ret, i;
1991         struct ocfs2_extent_block *eb;
1992         struct ocfs2_extent_list *el;
1993         struct buffer_head *bh;
1994
1995         for(i = unlink_start; i < path_num_items(path); i++) {
1996                 bh = path->p_node[i].bh;
1997
1998                 eb = (struct ocfs2_extent_block *)bh->b_data;
1999                 /*
2000                  * Not all nodes might have had their final count
2001                  * decremented by the caller - handle this here.
2002                  */
2003                 el = &eb->h_list;
2004                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2005                         mlog(ML_ERROR,
2006                              "Inode %llu, attempted to remove extent block "
2007                              "%llu with %u records\n",
2008                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2009                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2010                              le16_to_cpu(el->l_next_free_rec));
2011
2012                         ocfs2_journal_dirty(handle, bh);
2013                         ocfs2_remove_from_cache(inode, bh);
2014                         continue;
2015                 }
2016
2017                 el->l_next_free_rec = 0;
2018                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2019
2020                 ocfs2_journal_dirty(handle, bh);
2021
2022                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2023                 if (ret)
2024                         mlog_errno(ret);
2025
2026                 ocfs2_remove_from_cache(inode, bh);
2027         }
2028 }
2029
2030 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2031                                  struct ocfs2_path *left_path,
2032                                  struct ocfs2_path *right_path,
2033                                  int subtree_index,
2034                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2035 {
2036         int i;
2037         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2038         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2039         struct ocfs2_extent_list *el;
2040         struct ocfs2_extent_block *eb;
2041
2042         el = path_leaf_el(left_path);
2043
2044         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2045
2046         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2047                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2048                         break;
2049
2050         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2051
2052         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2053         le16_add_cpu(&root_el->l_next_free_rec, -1);
2054
2055         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2056         eb->h_next_leaf_blk = 0;
2057
2058         ocfs2_journal_dirty(handle, root_bh);
2059         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2060
2061         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2062                           subtree_index + 1);
2063 }
2064
2065 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2066                                      struct ocfs2_path *left_path,
2067                                      struct ocfs2_path *right_path,
2068                                      int subtree_index,
2069                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2070                                      int *deleted)
2071 {
2072         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2073         struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2074         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2075         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2076         struct ocfs2_extent_block *eb;
2077
2078         *deleted = 0;
2079
2080         right_leaf_el = path_leaf_el(right_path);
2081         left_leaf_el = path_leaf_el(left_path);
2082         root_bh = left_path->p_node[subtree_index].bh;
2083         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2084
2085         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2086                 return 0;
2087
2088         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2089         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2090                 /*
2091                  * It's legal for us to proceed if the right leaf is
2092                  * the rightmost one and it has an empty extent. There
2093                  * are two cases to handle - whether the leaf will be
2094                  * empty after removal or not. If the leaf isn't empty
2095                  * then just remove the empty extent up front. The
2096                  * next block will handle empty leaves by flagging
2097                  * them for unlink.
2098                  *
2099                  * Non rightmost leaves will throw -EAGAIN and the
2100                  * caller can manually move the subtree and retry.
2101                  */
2102
2103                 if (eb->h_next_leaf_blk != 0ULL)
2104                         return -EAGAIN;
2105
2106                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2107                         ret = ocfs2_journal_access(handle, inode,
2108                                                    path_leaf_bh(right_path),
2109                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2110                         if (ret) {
2111                                 mlog_errno(ret);
2112                                 goto out;
2113                         }
2114
2115                         ocfs2_remove_empty_extent(right_leaf_el);
2116                 } else
2117                         right_has_empty = 1;
2118         }
2119
2120         if (eb->h_next_leaf_blk == 0ULL &&
2121             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2122                 /*
2123                  * We have to update i_last_eb_blk during the meta
2124                  * data delete.
2125                  */
2126                 ret = ocfs2_journal_access(handle, inode, di_bh,
2127                                            OCFS2_JOURNAL_ACCESS_WRITE);
2128                 if (ret) {
2129                         mlog_errno(ret);
2130                         goto out;
2131                 }
2132
2133                 del_right_subtree = 1;
2134         }
2135
2136         /*
2137          * Getting here with an empty extent in the right path implies
2138          * that it's the rightmost path and will be deleted.
2139          */
2140         BUG_ON(right_has_empty && !del_right_subtree);
2141
2142         ret = ocfs2_journal_access(handle, inode, root_bh,
2143                                    OCFS2_JOURNAL_ACCESS_WRITE);
2144         if (ret) {
2145                 mlog_errno(ret);
2146                 goto out;
2147         }
2148
2149         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2150                 ret = ocfs2_journal_access(handle, inode,
2151                                            right_path->p_node[i].bh,
2152                                            OCFS2_JOURNAL_ACCESS_WRITE);
2153                 if (ret) {
2154                         mlog_errno(ret);
2155                         goto out;
2156                 }
2157
2158                 ret = ocfs2_journal_access(handle, inode,
2159                                            left_path->p_node[i].bh,
2160                                            OCFS2_JOURNAL_ACCESS_WRITE);
2161                 if (ret) {
2162                         mlog_errno(ret);
2163                         goto out;
2164                 }
2165         }
2166
2167         if (!right_has_empty) {
2168                 /*
2169                  * Only do this if we're moving a real
2170                  * record. Otherwise, the action is delayed until
2171                  * after removal of the right path in which case we
2172                  * can do a simple shift to remove the empty extent.
2173                  */
2174                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2175                 memset(&right_leaf_el->l_recs[0], 0,
2176                        sizeof(struct ocfs2_extent_rec));
2177         }
2178         if (eb->h_next_leaf_blk == 0ULL) {
2179                 /*
2180                  * Move recs over to get rid of empty extent, decrease
2181                  * next_free. This is allowed to remove the last
2182                  * extent in our leaf (setting l_next_free_rec to
2183                  * zero) - the delete code below won't care.
2184                  */
2185                 ocfs2_remove_empty_extent(right_leaf_el);
2186         }
2187
2188         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2189         if (ret)
2190                 mlog_errno(ret);
2191         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2192         if (ret)
2193                 mlog_errno(ret);
2194
2195         if (del_right_subtree) {
2196                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2197                                      subtree_index, dealloc);
2198                 ocfs2_update_edge_lengths(inode, handle, left_path);
2199
2200                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2201                 di->i_last_eb_blk = eb->h_blkno;
2202
2203                 /*
2204                  * Removal of the extent in the left leaf was skipped
2205                  * above so we could delete the right path
2206                  * 1st.
2207                  */
2208                 if (right_has_empty)
2209                         ocfs2_remove_empty_extent(left_leaf_el);
2210
2211                 ret = ocfs2_journal_dirty(handle, di_bh);
2212                 if (ret)
2213                         mlog_errno(ret);
2214
2215                 *deleted = 1;
2216         } else
2217                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2218                                            subtree_index);
2219
2220 out:
2221         return ret;
2222 }
2223
2224 /*
2225  * Given a full path, determine what cpos value would return us a path
2226  * containing the leaf immediately to the right of the current one.
2227  *
2228  * Will return zero if the path passed in is already the rightmost path.
2229  *
2230  * This looks similar, but is subtly different to
2231  * ocfs2_find_cpos_for_left_leaf().
2232  */
2233 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2234                                           struct ocfs2_path *path, u32 *cpos)
2235 {
2236         int i, j, ret = 0;
2237         u64 blkno;
2238         struct ocfs2_extent_list *el;
2239
2240         *cpos = 0;
2241
2242         if (path->p_tree_depth == 0)
2243                 return 0;
2244
2245         blkno = path_leaf_bh(path)->b_blocknr;
2246
2247         /* Start at the tree node just above the leaf and work our way up. */
2248         i = path->p_tree_depth - 1;
2249         while (i >= 0) {
2250                 int next_free;
2251
2252                 el = path->p_node[i].el;
2253
2254                 /*
2255                  * Find the extent record just after the one in our
2256                  * path.
2257                  */
2258                 next_free = le16_to_cpu(el->l_next_free_rec);
2259                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2260                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2261                                 if (j == (next_free - 1)) {
2262                                         if (i == 0) {
2263                                                 /*
2264                                                  * We've determined that the
2265                                                  * path specified is already
2266                                                  * the rightmost one - return a
2267                                                  * cpos of zero.
2268                                                  */
2269                                                 goto out;
2270                                         }
2271                                         /*
2272                                          * The rightmost record points to our
2273                                          * leaf - we need to travel up the
2274                                          * tree one level.
2275                                          */
2276                                         goto next_node;
2277                                 }
2278
2279                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2280                                 goto out;
2281                         }
2282                 }
2283
2284                 /*
2285                  * If we got here, we never found a valid node where
2286                  * the tree indicated one should be.
2287                  */
2288                 ocfs2_error(sb,
2289                             "Invalid extent tree at extent block %llu\n",
2290                             (unsigned long long)blkno);
2291                 ret = -EROFS;
2292                 goto out;
2293
2294 next_node:
2295                 blkno = path->p_node[i].bh->b_blocknr;
2296                 i--;
2297         }
2298
2299 out:
2300         return ret;
2301 }
2302
2303 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2304                                             handle_t *handle,
2305                                             struct buffer_head *bh,
2306                                             struct ocfs2_extent_list *el)
2307 {
2308         int ret;
2309
2310         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2311                 return 0;
2312
2313         ret = ocfs2_journal_access(handle, inode, bh,
2314                                    OCFS2_JOURNAL_ACCESS_WRITE);
2315         if (ret) {
2316                 mlog_errno(ret);
2317                 goto out;
2318         }
2319
2320         ocfs2_remove_empty_extent(el);
2321
2322         ret = ocfs2_journal_dirty(handle, bh);
2323         if (ret)
2324                 mlog_errno(ret);
2325
2326 out:
2327         return ret;
2328 }
2329
2330 static int __ocfs2_rotate_tree_left(struct inode *inode,
2331                                     handle_t *handle, int orig_credits,
2332                                     struct ocfs2_path *path,
2333                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2334                                     struct ocfs2_path **empty_extent_path)
2335 {
2336         int ret, subtree_root, deleted;
2337         u32 right_cpos;
2338         struct ocfs2_path *left_path = NULL;
2339         struct ocfs2_path *right_path = NULL;
2340
2341         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2342
2343         *empty_extent_path = NULL;
2344
2345         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2346                                              &right_cpos);
2347         if (ret) {
2348                 mlog_errno(ret);
2349                 goto out;
2350         }
2351
2352         left_path = ocfs2_new_path(path_root_bh(path),
2353                                    path_root_el(path));
2354         if (!left_path) {
2355                 ret = -ENOMEM;
2356                 mlog_errno(ret);
2357                 goto out;
2358         }
2359
2360         ocfs2_cp_path(left_path, path);
2361
2362         right_path = ocfs2_new_path(path_root_bh(path),
2363                                     path_root_el(path));
2364         if (!right_path) {
2365                 ret = -ENOMEM;
2366                 mlog_errno(ret);
2367                 goto out;
2368         }
2369
2370         while (right_cpos) {
2371                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2372                 if (ret) {
2373                         mlog_errno(ret);
2374                         goto out;
2375                 }
2376
2377                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2378                                                        right_path);
2379
2380                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2381                      subtree_root,
2382                      (unsigned long long)
2383                      right_path->p_node[subtree_root].bh->b_blocknr,
2384                      right_path->p_tree_depth);
2385
2386                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2387                                                       orig_credits, left_path);
2388                 if (ret) {
2389                         mlog_errno(ret);
2390                         goto out;
2391                 }
2392
2393                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2394                                                 right_path, subtree_root,
2395                                                 dealloc, &deleted);
2396                 if (ret == -EAGAIN) {
2397                         /*
2398                          * The rotation has to temporarily stop due to
2399                          * the right subtree having an empty
2400                          * extent. Pass it back to the caller for a
2401                          * fixup.
2402                          */
2403                         *empty_extent_path = right_path;
2404                         right_path = NULL;
2405                         goto out;
2406                 }
2407                 if (ret) {
2408                         mlog_errno(ret);
2409                         goto out;
2410                 }
2411
2412                 /*
2413                  * The subtree rotate might have removed records on
2414                  * the rightmost edge. If so, then rotation is
2415                  * complete.
2416                  */
2417                 if (deleted)
2418                         break;
2419
2420                 ocfs2_mv_path(left_path, right_path);
2421
2422                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2423                                                      &right_cpos);
2424                 if (ret) {
2425                         mlog_errno(ret);
2426                         goto out;
2427                 }
2428         }
2429
2430 out:
2431         ocfs2_free_path(right_path);
2432         ocfs2_free_path(left_path);
2433
2434         return ret;
2435 }
2436
2437 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2438                                        struct ocfs2_path *path,
2439                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
2440 {
2441         int ret, subtree_index;
2442         u32 cpos;
2443         struct ocfs2_path *left_path = NULL;
2444         struct ocfs2_dinode *di;
2445         struct ocfs2_extent_block *eb;
2446         struct ocfs2_extent_list *el;
2447
2448         /*
2449          * XXX: This code assumes that the root is an inode, which is
2450          * true for now but may change as tree code gets generic.
2451          */
2452         di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2453         if (!OCFS2_IS_VALID_DINODE(di)) {
2454                 ret = -EIO;
2455                 ocfs2_error(inode->i_sb,
2456                             "Inode %llu has invalid path root",
2457                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
2458                 goto out;
2459         }
2460
2461         /*
2462          * There's two ways we handle this depending on
2463          * whether path is the only existing one.
2464          */
2465         ret = ocfs2_extend_rotate_transaction(handle, 0,
2466                                               handle->h_buffer_credits,
2467                                               path);
2468         if (ret) {
2469                 mlog_errno(ret);
2470                 goto out;
2471         }
2472
2473         ret = ocfs2_journal_access_path(inode, handle, path);
2474         if (ret) {
2475                 mlog_errno(ret);
2476                 goto out;
2477         }
2478
2479         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2480         if (ret) {
2481                 mlog_errno(ret);
2482                 goto out;
2483         }
2484
2485         if (cpos) {
2486                 /*
2487                  * We have a path to the left of this one - it needs
2488                  * an update too.
2489                  */
2490                 left_path = ocfs2_new_path(path_root_bh(path),
2491                                            path_root_el(path));
2492                 if (!left_path) {
2493                         ret = -ENOMEM;
2494                         mlog_errno(ret);
2495                         goto out;
2496                 }
2497
2498                 ret = ocfs2_find_path(inode, left_path, cpos);
2499                 if (ret) {
2500                         mlog_errno(ret);
2501                         goto out;
2502                 }
2503
2504                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2505                 if (ret) {
2506                         mlog_errno(ret);
2507                         goto out;
2508                 }
2509
2510                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2511
2512                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2513                                      subtree_index, dealloc);
2514                 ocfs2_update_edge_lengths(inode, handle, left_path);
2515
2516                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2517                 di->i_last_eb_blk = eb->h_blkno;
2518         } else {
2519                 /*
2520                  * 'path' is also the leftmost path which
2521                  * means it must be the only one. This gets
2522                  * handled differently because we want to
2523                  * revert the inode back to having extents
2524                  * in-line.
2525                  */
2526                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2527
2528                 el = &di->id2.i_list;
2529                 el->l_tree_depth = 0;
2530                 el->l_next_free_rec = 0;
2531                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2532
2533                 di->i_last_eb_blk = 0;
2534         }
2535
2536         ocfs2_journal_dirty(handle, path_root_bh(path));
2537
2538 out:
2539         ocfs2_free_path(left_path);
2540         return ret;
2541 }
2542
2543 /*
2544  * Left rotation of btree records.
2545  *
2546  * In many ways, this is (unsurprisingly) the opposite of right
2547  * rotation. We start at some non-rightmost path containing an empty
2548  * extent in the leaf block. The code works its way to the rightmost
2549  * path by rotating records to the left in every subtree.
2550  *
2551  * This is used by any code which reduces the number of extent records
2552  * in a leaf. After removal, an empty record should be placed in the
2553  * leftmost list position.
2554  *
2555  * This won't handle a length update of the rightmost path records if
2556  * the rightmost tree leaf record is removed so the caller is
2557  * responsible for detecting and correcting that.
2558  */
2559 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2560                                   struct ocfs2_path *path,
2561                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
2562 {
2563         int ret, orig_credits = handle->h_buffer_credits;
2564         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2565         struct ocfs2_extent_block *eb;
2566         struct ocfs2_extent_list *el;
2567
2568         el = path_leaf_el(path);
2569         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2570                 return 0;
2571
2572         if (path->p_tree_depth == 0) {
2573 rightmost_no_delete:
2574                 /*
2575                  * In-inode extents. This is trivially handled, so do
2576                  * it up front.
2577                  */
2578                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2579                                                        path_leaf_bh(path),
2580                                                        path_leaf_el(path));
2581                 if (ret)
2582                         mlog_errno(ret);
2583                 goto out;
2584         }
2585
2586         /*
2587          * Handle rightmost branch now. There's several cases:
2588          *  1) simple rotation leaving records in there. That's trivial.
2589          *  2) rotation requiring a branch delete - there's no more
2590          *     records left. Two cases of this:
2591          *     a) There are branches to the left.
2592          *     b) This is also the leftmost (the only) branch.
2593          *
2594          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2595          *  2a) we need the left branch so that we can update it with the unlink
2596          *  2b) we need to bring the inode back to inline extents.
2597          */
2598
2599         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2600         el = &eb->h_list;
2601         if (eb->h_next_leaf_blk == 0) {
2602                 /*
2603                  * This gets a bit tricky if we're going to delete the
2604                  * rightmost path. Get the other cases out of the way
2605                  * 1st.
2606                  */
2607                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2608                         goto rightmost_no_delete;
2609
2610                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2611                         ret = -EIO;
2612                         ocfs2_error(inode->i_sb,
2613                                     "Inode %llu has empty extent block at %llu",
2614                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2615                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2616                         goto out;
2617                 }
2618
2619                 /*
2620                  * XXX: The caller can not trust "path" any more after
2621                  * this as it will have been deleted. What do we do?
2622                  *
2623                  * In theory the rotate-for-merge code will never get
2624                  * here because it'll always ask for a rotate in a
2625                  * nonempty list.
2626                  */
2627
2628                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2629                                                   dealloc);
2630                 if (ret)
2631                         mlog_errno(ret);
2632                 goto out;
2633         }
2634
2635         /*
2636          * Now we can loop, remembering the path we get from -EAGAIN
2637          * and restarting from there.
2638          */
2639 try_rotate:
2640         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2641                                        dealloc, &restart_path);
2642         if (ret && ret != -EAGAIN) {
2643                 mlog_errno(ret);
2644                 goto out;
2645         }
2646
2647         while (ret == -EAGAIN) {
2648                 tmp_path = restart_path;
2649                 restart_path = NULL;
2650
2651                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2652                                                tmp_path, dealloc,
2653                                                &restart_path);
2654                 if (ret && ret != -EAGAIN) {
2655                         mlog_errno(ret);
2656                         goto out;
2657                 }
2658
2659                 ocfs2_free_path(tmp_path);
2660                 tmp_path = NULL;
2661
2662                 if (ret == 0)
2663                         goto try_rotate;
2664         }
2665
2666 out:
2667         ocfs2_free_path(tmp_path);
2668         ocfs2_free_path(restart_path);
2669         return ret;
2670 }
2671
2672 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2673                                 int index)
2674 {
2675         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2676         unsigned int size;
2677
2678         if (rec->e_leaf_clusters == 0) {
2679                 /*
2680                  * We consumed all of the merged-from record. An empty
2681                  * extent cannot exist anywhere but the 1st array
2682                  * position, so move things over if the merged-from
2683                  * record doesn't occupy that position.
2684                  *
2685                  * This creates a new empty extent so the caller
2686                  * should be smart enough to have removed any existing
2687                  * ones.
2688                  */
2689                 if (index > 0) {
2690                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2691                         size = index * sizeof(struct ocfs2_extent_rec);
2692                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2693                 }
2694
2695                 /*
2696                  * Always memset - the caller doesn't check whether it
2697                  * created an empty extent, so there could be junk in
2698                  * the other fields.
2699                  */
2700                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2701         }
2702 }
2703
2704 /*
2705  * Remove split_rec clusters from the record at index and merge them
2706  * onto the beginning of the record at index + 1.
2707  */
2708 static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2709                                 handle_t *handle,
2710                                 struct ocfs2_extent_rec *split_rec,
2711                                 struct ocfs2_extent_list *el, int index)
2712 {
2713         int ret;
2714         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2715         struct ocfs2_extent_rec *left_rec;
2716         struct ocfs2_extent_rec *right_rec;
2717
2718         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2719
2720         left_rec = &el->l_recs[index];
2721         right_rec = &el->l_recs[index + 1];
2722
2723         ret = ocfs2_journal_access(handle, inode, bh,
2724                                    OCFS2_JOURNAL_ACCESS_WRITE);
2725         if (ret) {
2726                 mlog_errno(ret);
2727                 goto out;
2728         }
2729
2730         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2731
2732         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2733         le64_add_cpu(&right_rec->e_blkno,
2734                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2735         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2736
2737         ocfs2_cleanup_merge(el, index);
2738
2739         ret = ocfs2_journal_dirty(handle, bh);
2740         if (ret)
2741                 mlog_errno(ret);
2742
2743 out:
2744         return ret;
2745 }
2746
2747 /*
2748  * Remove split_rec clusters from the record at index and merge them
2749  * onto the tail of the record at index - 1.
2750  */
2751 static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2752                                 handle_t *handle,
2753                                 struct ocfs2_extent_rec *split_rec,
2754                                 struct ocfs2_extent_list *el, int index)
2755 {
2756         int ret, has_empty_extent = 0;
2757         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2758         struct ocfs2_extent_rec *left_rec;
2759         struct ocfs2_extent_rec *right_rec;
2760
2761         BUG_ON(index <= 0);
2762
2763         left_rec = &el->l_recs[index - 1];
2764         right_rec = &el->l_recs[index];
2765         if (ocfs2_is_empty_extent(&el->l_recs[0]))
2766                 has_empty_extent = 1;
2767
2768         ret = ocfs2_journal_access(handle, inode, bh,
2769                                    OCFS2_JOURNAL_ACCESS_WRITE);
2770         if (ret) {
2771                 mlog_errno(ret);
2772                 goto out;
2773         }
2774
2775         if (has_empty_extent && index == 1) {
2776                 /*
2777                  * The easy case - we can just plop the record right in.
2778                  */
2779                 *left_rec = *split_rec;
2780
2781                 has_empty_extent = 0;
2782         } else {
2783                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2784         }
2785
2786         le32_add_cpu(&right_rec->e_cpos, split_clusters);
2787         le64_add_cpu(&right_rec->e_blkno,
2788                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2789         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2790
2791         ocfs2_cleanup_merge(el, index);
2792
2793         ret = ocfs2_journal_dirty(handle, bh);
2794         if (ret)
2795                 mlog_errno(ret);
2796
2797 out:
2798         return ret;
2799 }
2800
2801 static int ocfs2_try_to_merge_extent(struct inode *inode,
2802                                      handle_t *handle,
2803                                      struct ocfs2_path *left_path,
2804                                      int split_index,
2805                                      struct ocfs2_extent_rec *split_rec,
2806                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2807                                      struct ocfs2_merge_ctxt *ctxt)
2808
2809 {
2810         int ret = 0, delete_tail_recs = 0;
2811         struct ocfs2_extent_list *el = path_leaf_el(left_path);
2812         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2813
2814         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2815
2816         if (ctxt->c_split_covers_rec) {
2817                 delete_tail_recs++;
2818
2819                 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT ||
2820                     ctxt->c_has_empty_extent)
2821                         delete_tail_recs++;
2822
2823                 if (ctxt->c_has_empty_extent) {
2824                         /*
2825                          * The merge code will need to create an empty
2826                          * extent to take the place of the newly
2827                          * emptied slot. Remove any pre-existing empty
2828                          * extents - having more than one in a leaf is
2829                          * illegal.
2830                          */
2831                         ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2832                                                      dealloc);
2833                         if (ret) {
2834                                 mlog_errno(ret);
2835                                 goto out;
2836                         }
2837                         split_index--;
2838                         rec = &el->l_recs[split_index];
2839                 }
2840         }
2841
2842         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2843                 /*
2844                  * Left-right contig implies this.
2845                  */
2846                 BUG_ON(!ctxt->c_split_covers_rec);
2847                 BUG_ON(split_index == 0);
2848
2849                 /*
2850                  * Since the leftright insert always covers the entire
2851                  * extent, this call will delete the insert record
2852                  * entirely, resulting in an empty extent record added to
2853                  * the extent block.
2854                  *
2855                  * Since the adding of an empty extent shifts
2856                  * everything back to the right, there's no need to
2857                  * update split_index here.
2858                  */
2859                 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2860                                            handle, split_rec, el, split_index);
2861                 if (ret) {
2862                         mlog_errno(ret);
2863                         goto out;
2864                 }
2865
2866                 /*
2867                  * We can only get this from logic error above.
2868                  */
2869                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2870
2871                 /*
2872                  * The left merge left us with an empty extent, remove
2873                  * it.
2874                  */
2875                 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2876                 if (ret) {
2877                         mlog_errno(ret);
2878                         goto out;
2879                 }
2880                 split_index--;
2881                 rec = &el->l_recs[split_index];
2882
2883                 /*
2884                  * Note that we don't pass split_rec here on purpose -
2885                  * we've merged it into the left side.
2886                  */
2887                 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2888                                             handle, rec, el, split_index);
2889                 if (ret) {
2890                         mlog_errno(ret);
2891                         goto out;
2892                 }
2893
2894                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2895
2896                 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2897                                              dealloc);
2898                 /*
2899                  * Error from this last rotate is not critical, so
2900                  * print but don't bubble it up.
2901                  */
2902                 if (ret)
2903                         mlog_errno(ret);
2904                 ret = 0;
2905         } else {
2906                 /*
2907                  * Merge a record to the left or right.
2908                  *
2909                  * 'contig_type' is relative to the existing record,
2910                  * so for example, if we're "right contig", it's to
2911                  * the record on the left (hence the left merge).
2912                  */
2913                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
2914                         ret = ocfs2_merge_rec_left(inode,
2915                                                    path_leaf_bh(left_path),
2916                                                    handle, split_rec, el,
2917                                                    split_index);
2918                         if (ret) {
2919                                 mlog_errno(ret);
2920                                 goto out;
2921                         }
2922                 } else {
2923                         ret = ocfs2_merge_rec_right(inode,
2924                                                     path_leaf_bh(left_path),
2925                                                     handle, split_rec, el,
2926                                                     split_index);
2927                         if (ret) {
2928                                 mlog_errno(ret);
2929                                 goto out;
2930                         }
2931                 }
2932
2933                 if (ctxt->c_split_covers_rec) {
2934                         /*
2935                          * The merge may have left an empty extent in
2936                          * our leaf. Try to rotate it away.
2937                          */
2938                         ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2939                                                      dealloc);
2940                         if (ret)
2941                                 mlog_errno(ret);
2942                         ret = 0;
2943                 }
2944         }
2945
2946 out:
2947         return ret;
2948 }
2949
2950 static void ocfs2_subtract_from_rec(struct super_block *sb,
2951                                     enum ocfs2_split_type split,
2952                                     struct ocfs2_extent_rec *rec,
2953                                     struct ocfs2_extent_rec *split_rec)
2954 {
2955         u64 len_blocks;
2956
2957         len_blocks = ocfs2_clusters_to_blocks(sb,
2958                                 le16_to_cpu(split_rec->e_leaf_clusters));
2959
2960         if (split == SPLIT_LEFT) {
2961                 /*
2962                  * Region is on the left edge of the existing
2963                  * record.
2964                  */
2965                 le32_add_cpu(&rec->e_cpos,
2966                              le16_to_cpu(split_rec->e_leaf_clusters));
2967                 le64_add_cpu(&rec->e_blkno, len_blocks);
2968                 le16_add_cpu(&rec->e_leaf_clusters,
2969                              -le16_to_cpu(split_rec->e_leaf_clusters));
2970         } else {
2971                 /*
2972                  * Region is on the right edge of the existing
2973                  * record.
2974                  */
2975                 le16_add_cpu(&rec->e_leaf_clusters,
2976                              -le16_to_cpu(split_rec->e_leaf_clusters));
2977         }
2978 }
2979
2980 /*
2981  * Do the final bits of extent record insertion at the target leaf
2982  * list. If this leaf is part of an allocation tree, it is assumed
2983  * that the tree above has been prepared.
2984  */
2985 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2986                                  struct ocfs2_extent_list *el,
2987                                  struct ocfs2_insert_type *insert,
2988                                  struct inode *inode)
2989 {
2990         int i = insert->ins_contig_index;
2991         unsigned int range;
2992         struct ocfs2_extent_rec *rec;
2993
2994         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2995
2996         if (insert->ins_split != SPLIT_NONE) {
2997                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
2998                 BUG_ON(i == -1);
2999                 rec = &el->l_recs[i];
3000                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3001                                         insert_rec);
3002                 goto rotate;
3003         }
3004
3005         /*
3006          * Contiguous insert - either left or right.
3007          */
3008         if (insert->ins_contig != CONTIG_NONE) {
3009                 rec = &el->l_recs[i];
3010                 if (insert->ins_contig == CONTIG_LEFT) {
3011                         rec->e_blkno = insert_rec->e_blkno;
3012                         rec->e_cpos = insert_rec->e_cpos;
3013                 }
3014                 le16_add_cpu(&rec->e_leaf_clusters,
3015                              le16_to_cpu(insert_rec->e_leaf_clusters));
3016                 return;
3017         }
3018
3019         /*
3020          * Handle insert into an empty leaf.
3021          */
3022         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3023             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3024              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3025                 el->l_recs[0] = *insert_rec;
3026                 el->l_next_free_rec = cpu_to_le16(1);
3027                 return;
3028         }
3029
3030         /*
3031          * Appending insert.
3032          */
3033         if (insert->ins_appending == APPEND_TAIL) {
3034                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3035                 rec = &el->l_recs[i];
3036                 range = le32_to_cpu(rec->e_cpos)
3037                         + le16_to_cpu(rec->e_leaf_clusters);
3038                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3039
3040                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3041                                 le16_to_cpu(el->l_count),
3042                                 "inode %lu, depth %u, count %u, next free %u, "
3043                                 "rec.cpos %u, rec.clusters %u, "
3044                                 "insert.cpos %u, insert.clusters %u\n",
3045                                 inode->i_ino,
3046                                 le16_to_cpu(el->l_tree_depth),
3047                                 le16_to_cpu(el->l_count),
3048                                 le16_to_cpu(el->l_next_free_rec),
3049                                 le32_to_cpu(el->l_recs[i].e_cpos),
3050                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3051                                 le32_to_cpu(insert_rec->e_cpos),
3052                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3053                 i++;
3054                 el->l_recs[i] = *insert_rec;
3055                 le16_add_cpu(&el->l_next_free_rec, 1);
3056                 return;
3057         }
3058
3059 rotate:
3060         /*
3061          * Ok, we have to rotate.
3062          *
3063          * At this point, it is safe to assume that inserting into an
3064          * empty leaf and appending to a leaf have both been handled
3065          * above.
3066          *
3067          * This leaf needs to have space, either by the empty 1st
3068          * extent record, or by virtue of an l_next_rec < l_count.
3069          */
3070         ocfs2_rotate_leaf(el, insert_rec);
3071 }
3072
3073 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3074                                                 struct ocfs2_dinode *di,
3075                                                 u32 clusters)
3076 {
3077         le32_add_cpu(&di->i_clusters, clusters);
3078         spin_lock(&OCFS2_I(inode)->ip_lock);
3079         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3080         spin_unlock(&OCFS2_I(inode)->ip_lock);
3081 }
3082
3083 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3084                                            handle_t *handle,
3085                                            struct ocfs2_path *path,
3086                                            struct ocfs2_extent_rec *insert_rec)
3087 {
3088         int ret, i, next_free;
3089         struct buffer_head *bh;
3090         struct ocfs2_extent_list *el;
3091         struct ocfs2_extent_rec *rec;
3092
3093         /*
3094          * Update everything except the leaf block.
3095          */
3096         for (i = 0; i < path->p_tree_depth; i++) {
3097                 bh = path->p_node[i].bh;
3098                 el = path->p_node[i].el;
3099
3100                 next_free = le16_to_cpu(el->l_next_free_rec);
3101                 if (next_free == 0) {
3102                         ocfs2_error(inode->i_sb,
3103                                     "Dinode %llu has a bad extent list",
3104                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3105                         ret = -EIO;
3106                         return;
3107                 }
3108
3109                 rec = &el->l_recs[next_free - 1];
3110
3111                 rec->e_int_clusters = insert_rec->e_cpos;
3112                 le32_add_cpu(&rec->e_int_clusters,
3113                              le16_to_cpu(insert_rec->e_leaf_clusters));
3114                 le32_add_cpu(&rec->e_int_clusters,
3115                              -le32_to_cpu(rec->e_cpos));
3116
3117                 ret = ocfs2_journal_dirty(handle, bh);
3118                 if (ret)
3119                         mlog_errno(ret);
3120
3121         }
3122 }
3123
3124 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3125                                     struct ocfs2_extent_rec *insert_rec,
3126                                     struct ocfs2_path *right_path,
3127                                     struct ocfs2_path **ret_left_path)
3128 {
3129         int ret, next_free;
3130         struct ocfs2_extent_list *el;
3131         struct ocfs2_path *left_path = NULL;
3132
3133         *ret_left_path = NULL;
3134
3135         /*
3136          * This shouldn't happen for non-trees. The extent rec cluster
3137          * count manipulation below only works for interior nodes.
3138          */
3139         BUG_ON(right_path->p_tree_depth == 0);
3140
3141         /*
3142          * If our appending insert is at the leftmost edge of a leaf,
3143          * then we might need to update the rightmost records of the
3144          * neighboring path.
3145          */
3146         el = path_leaf_el(right_path);
3147         next_free = le16_to_cpu(el->l_next_free_rec);
3148         if (next_free == 0 ||
3149             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3150                 u32 left_cpos;
3151
3152                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3153                                                     &left_cpos);
3154                 if (ret) {
3155                         mlog_errno(ret);
3156                         goto out;
3157                 }
3158
3159                 mlog(0, "Append may need a left path update. cpos: %u, "
3160                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3161                      left_cpos);
3162
3163                 /*
3164                  * No need to worry if the append is already in the
3165                  * leftmost leaf.
3166                  */
3167                 if (left_cpos) {
3168                         left_path = ocfs2_new_path(path_root_bh(right_path),
3169                                                    path_root_el(right_path));
3170                         if (!left_path) {
3171                                 ret = -ENOMEM;
3172                                 mlog_errno(ret);
3173                                 goto out;
3174                         }
3175
3176                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3177                         if (ret) {
3178                                 mlog_errno(ret);
3179                                 goto out;
3180                         }
3181
3182                         /*
3183                          * ocfs2_insert_path() will pass the left_path to the
3184                          * journal for us.
3185                          */
3186                 }
3187         }
3188
3189         ret = ocfs2_journal_access_path(inode, handle, right_path);
3190         if (ret) {
3191                 mlog_errno(ret);
3192                 goto out;
3193         }
3194
3195         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3196
3197         *ret_left_path = left_path;
3198         ret = 0;
3199 out:
3200         if (ret != 0)
3201                 ocfs2_free_path(left_path);
3202
3203         return ret;
3204 }
3205
3206 static void ocfs2_split_record(struct inode *inode,
3207                                struct ocfs2_path *left_path,
3208                                struct ocfs2_path *right_path,
3209                                struct ocfs2_extent_rec *split_rec,
3210                                enum ocfs2_split_type split)
3211 {
3212         int index;
3213         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3214         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3215         struct ocfs2_extent_rec *rec, *tmprec;
3216
3217         right_el = path_leaf_el(right_path);;
3218         if (left_path)
3219                 left_el = path_leaf_el(left_path);
3220
3221         el = right_el;
3222         insert_el = right_el;
3223         index = ocfs2_search_extent_list(el, cpos);
3224         if (index != -1) {
3225                 if (index == 0 && left_path) {
3226                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3227
3228                         /*
3229                          * This typically means that the record
3230                          * started in the left path but moved to the
3231                          * right as a result of rotation. We either
3232                          * move the existing record to the left, or we
3233                          * do the later insert there.
3234                          *
3235                          * In this case, the left path should always
3236                          * exist as the rotate code will have passed
3237                          * it back for a post-insert update.
3238                          */
3239
3240                         if (split == SPLIT_LEFT) {
3241                                 /*
3242                                  * It's a left split. Since we know
3243                                  * that the rotate code gave us an
3244                                  * empty extent in the left path, we
3245                                  * can just do the insert there.
3246                                  */
3247                                 insert_el = left_el;
3248                         } else {
3249                                 /*
3250                                  * Right split - we have to move the
3251                                  * existing record over to the left
3252                                  * leaf. The insert will be into the
3253                                  * newly created empty extent in the
3254                                  * right leaf.
3255                                  */
3256                                 tmprec = &right_el->l_recs[index];
3257                                 ocfs2_rotate_leaf(left_el, tmprec);
3258                                 el = left_el;
3259
3260                                 memset(tmprec, 0, sizeof(*tmprec));
3261                                 index = ocfs2_search_extent_list(left_el, cpos);
3262                                 BUG_ON(index == -1);
3263                         }
3264                 }
3265         } else {
3266                 BUG_ON(!left_path);
3267                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3268                 /*
3269                  * Left path is easy - we can just allow the insert to
3270                  * happen.
3271                  */
3272                 el = left_el;
3273                 insert_el = left_el;
3274                 index = ocfs2_search_extent_list(el, cpos);
3275                 BUG_ON(index == -1);
3276         }
3277
3278         rec = &el->l_recs[index];
3279         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3280         ocfs2_rotate_leaf(insert_el, split_rec);
3281 }
3282
3283 /*
3284  * This function only does inserts on an allocation b-tree. For dinode
3285  * lists, ocfs2_insert_at_leaf() is called directly.
3286  *
3287  * right_path is the path we want to do the actual insert
3288  * in. left_path should only be passed in if we need to update that
3289  * portion of the tree after an edge insert.
3290  */
3291 static int ocfs2_insert_path(struct inode *inode,
3292                              handle_t *handle,
3293                              struct ocfs2_path *left_path,
3294                              struct ocfs2_path *right_path,
3295                              struct ocfs2_extent_rec *insert_rec,
3296                              struct ocfs2_insert_type *insert)
3297 {
3298         int ret, subtree_index;
3299         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3300
3301         /*
3302          * Pass both paths to the journal. The majority of inserts
3303          * will be touching all components anyway.
3304          */
3305         ret = ocfs2_journal_access_path(inode, handle, right_path);
3306         if (ret < 0) {
3307                 mlog_errno(ret);
3308                 goto out;
3309         }
3310
3311         if (left_path) {
3312                 int credits = handle->h_buffer_credits;
3313
3314                 /*
3315                  * There's a chance that left_path got passed back to
3316                  * us without being accounted for in the
3317                  * journal. Extend our transaction here to be sure we
3318                  * can change those blocks.
3319                  */
3320                 credits += left_path->p_tree_depth;
3321
3322                 ret = ocfs2_extend_trans(handle, credits);
3323                 if (ret < 0) {
3324                         mlog_errno(ret);
3325                         goto out;
3326                 }
3327
3328                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3329                 if (ret < 0) {
3330                         mlog_errno(ret);
3331                         goto out;
3332                 }
3333         }
3334
3335         if (insert->ins_split != SPLIT_NONE) {
3336                 /*
3337                  * We could call ocfs2_insert_at_leaf() for some types
3338                  * of splits, but it's easier to just let one seperate
3339                  * function sort it all out.
3340                  */
3341                 ocfs2_split_record(inode, left_path, right_path,
3342                                    insert_rec, insert->ins_split);
3343         } else
3344                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3345                                      insert, inode);
3346
3347         ret = ocfs2_journal_dirty(handle, leaf_bh);
3348         if (ret)
3349                 mlog_errno(ret);
3350
3351         if (left_path) {
3352                 /*
3353                  * The rotate code has indicated that we need to fix
3354                  * up portions of the tree after the insert.
3355                  *
3356                  * XXX: Should we extend the transaction here?
3357                  */
3358                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3359                                                         right_path);
3360                 ocfs2_complete_edge_insert(inode, handle, left_path,
3361                                            right_path, subtree_index);
3362         }
3363
3364         ret = 0;
3365 out:
3366         return ret;
3367 }
3368
3369 static int ocfs2_do_insert_extent(struct inode *inode,
3370                                   handle_t *handle,
3371                                   struct buffer_head *di_bh,
3372                                   struct ocfs2_extent_rec *insert_rec,
3373                                   struct ocfs2_insert_type *type)
3374 {
3375         int ret, rotate = 0;
3376         u32 cpos;
3377         struct ocfs2_path *right_path = NULL;
3378         struct ocfs2_path *left_path = NULL;
3379         struct ocfs2_dinode *di;
3380         struct ocfs2_extent_list *el;
3381
3382         di = (struct ocfs2_dinode *) di_bh->b_data;
3383         el = &di->id2.i_list;
3384
3385         ret = ocfs2_journal_access(handle, inode, di_bh,
3386                                    OCFS2_JOURNAL_ACCESS_WRITE);
3387         if (ret) {
3388                 mlog_errno(ret);
3389                 goto out;
3390         }
3391
3392         if (le16_to_cpu(el->l_tree_depth) == 0) {
3393                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3394                 goto out_update_clusters;
3395         }
3396
3397         right_path = ocfs2_new_inode_path(di_bh);
3398         if (!right_path) {
3399                 ret = -ENOMEM;
3400                 mlog_errno(ret);
3401                 goto out;
3402         }
3403
3404         /*
3405          * Determine the path to start with. Rotations need the
3406          * rightmost path, everything else can go directly to the
3407          * target leaf.
3408          */
3409         cpos = le32_to_cpu(insert_rec->e_cpos);
3410         if (type->ins_appending == APPEND_NONE &&
3411             type->ins_contig == CONTIG_NONE) {
3412                 rotate = 1;
3413                 cpos = UINT_MAX;
3414         }
3415
3416         ret = ocfs2_find_path(inode, right_path, cpos);
3417         if (ret) {
3418                 mlog_errno(ret);
3419                 goto out;
3420         }
3421
3422         /*
3423          * Rotations and appends need special treatment - they modify
3424          * parts of the tree's above them.
3425          *
3426          * Both might pass back a path immediate to the left of the
3427          * one being inserted to. This will be cause
3428          * ocfs2_insert_path() to modify the rightmost records of
3429          * left_path to account for an edge insert.
3430          *
3431          * XXX: When modifying this code, keep in mind that an insert
3432          * can wind up skipping both of these two special cases...
3433          */
3434         if (rotate) {
3435                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3436                                               le32_to_cpu(insert_rec->e_cpos),
3437                                               right_path, &left_path);
3438                 if (ret) {
3439                         mlog_errno(ret);
3440                         goto out;
3441                 }
3442         } else if (type->ins_appending == APPEND_TAIL
3443                    && type->ins_contig != CONTIG_LEFT) {
3444                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3445                                                right_path, &left_path);
3446                 if (ret) {
3447                         mlog_errno(ret);
3448                         goto out;
3449                 }
3450         }
3451
3452         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3453                                 insert_rec, type);
3454         if (ret) {
3455                 mlog_errno(ret);
3456                 goto out;
3457         }
3458
3459 out_update_clusters:
3460         if (type->ins_split == SPLIT_NONE)
3461                 ocfs2_update_dinode_clusters(inode, di,
3462                                              le16_to_cpu(insert_rec->e_leaf_clusters));
3463
3464         ret = ocfs2_journal_dirty(handle, di_bh);
3465         if (ret)
3466                 mlog_errno(ret);
3467
3468 out:
3469         ocfs2_free_path(left_path);
3470         ocfs2_free_path(right_path);
3471
3472         return ret;
3473 }
3474
3475 static enum ocfs2_contig_type
3476 ocfs2_figure_merge_contig_type(struct inode *inode,
3477                                struct ocfs2_extent_list *el, int index,
3478                                struct ocfs2_extent_rec *split_rec)
3479 {
3480         struct ocfs2_extent_rec *rec;
3481         enum ocfs2_contig_type ret = CONTIG_NONE;
3482
3483         /*
3484          * We're careful to check for an empty extent record here -
3485          * the merge code will know what to do if it sees one.
3486          */
3487
3488         if (index > 0) {
3489                 rec = &el->l_recs[index - 1];
3490                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3491                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3492                                 ret = CONTIG_RIGHT;
3493                 } else {
3494                         ret = ocfs2_extent_contig(inode, rec, split_rec);
3495                 }
3496         }
3497
3498         if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3499                 enum ocfs2_contig_type contig_type;
3500
3501                 rec = &el->l_recs[index + 1];
3502                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3503
3504                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3505                         ret = CONTIG_LEFTRIGHT;
3506                 else if (ret == CONTIG_NONE)
3507                         ret = contig_type;
3508         }
3509
3510         return ret;
3511 }
3512
3513 static void ocfs2_figure_contig_type(struct inode *inode,
3514                                      struct ocfs2_insert_type *insert,
3515                                      struct ocfs2_extent_list *el,
3516                                      struct ocfs2_extent_rec *insert_rec)
3517 {
3518         int i;
3519         enum ocfs2_contig_type contig_type = CONTIG_NONE;
3520
3521         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3522
3523         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3524                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3525                                                   insert_rec);
3526                 if (contig_type != CONTIG_NONE) {
3527                         insert->ins_contig_index = i;
3528                         break;
3529                 }
3530         }
3531         insert->ins_contig = contig_type;
3532 }
3533
3534 /*
3535  * This should only be called against the righmost leaf extent list.
3536  *
3537  * ocfs2_figure_appending_type() will figure out whether we'll have to
3538  * insert at the tail of the rightmost leaf.
3539  *
3540  * This should also work against the dinode list for tree's with 0
3541  * depth. If we consider the dinode list to be the rightmost leaf node
3542  * then the logic here makes sense.
3543  */
3544 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3545                                         struct ocfs2_extent_list *el,
3546                                         struct ocfs2_extent_rec *insert_rec)
3547 {
3548         int i;
3549         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3550         struct ocfs2_extent_rec *rec;
3551
3552         insert->ins_appending = APPEND_NONE;
3553
3554         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3555
3556         if (!el->l_next_free_rec)
3557                 goto set_tail_append;
3558
3559         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3560                 /* Were all records empty? */
3561                 if (le16_to_cpu(el->l_next_free_rec) == 1)
3562                         goto set_tail_append;
3563         }
3564
3565         i = le16_to_cpu(el->l_next_free_rec) - 1;
3566         rec = &el->l_recs[i];
3567
3568         if (cpos >=
3569             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3570                 goto set_tail_append;
3571
3572         return;
3573
3574 set_tail_append:
3575         insert->ins_appending = APPEND_TAIL;
3576 }
3577
3578 /*
3579  * Helper function called at the begining of an insert.
3580  *
3581  * This computes a few things that are commonly used in the process of
3582  * inserting into the btree:
3583  *   - Whether the new extent is contiguous with an existing one.
3584  *   - The current tree depth.
3585  *   - Whether the insert is an appending one.
3586  *   - The total # of free records in the tree.
3587  *
3588  * All of the information is stored on the ocfs2_insert_type
3589  * structure.
3590  */
3591 static int ocfs2_figure_insert_type(struct inode *inode,
3592                                     struct buffer_head *di_bh,
3593                                     struct buffer_head **last_eb_bh,
3594                                     struct ocfs2_extent_rec *insert_rec,
3595                                     int *free_records,
3596                                     struct ocfs2_insert_type *insert)
3597 {
3598         int ret;
3599         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3600         struct ocfs2_extent_block *eb;
3601         struct ocfs2_extent_list *el;
3602         struct ocfs2_path *path = NULL;
3603         struct buffer_head *bh = NULL;
3604
3605         insert->ins_split = SPLIT_NONE;
3606
3607         el = &di->id2.i_list;
3608         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3609
3610         if (el->l_tree_depth) {
3611                 /*
3612                  * If we have tree depth, we read in the
3613                  * rightmost extent block ahead of time as
3614                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
3615                  * may want it later.
3616                  */
3617                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3618                                        le64_to_cpu(di->i_last_eb_blk), &bh,
3619                                        OCFS2_BH_CACHED, inode);
3620                 if (ret) {
3621                         mlog_exit(ret);
3622                         goto out;
3623                 }
3624                 eb = (struct ocfs2_extent_block *) bh->b_data;
3625                 el = &eb->h_list;
3626         }
3627
3628         /*
3629          * Unless we have a contiguous insert, we'll need to know if
3630          * there is room left in our allocation tree for another
3631          * extent record.
3632          *
3633          * XXX: This test is simplistic, we can search for empty
3634          * extent records too.
3635          */
3636         *free_records = le16_to_cpu(el->l_count) -
3637                 le16_to_cpu(el->l_next_free_rec);
3638
3639         if (!insert->ins_tree_depth) {
3640                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3641                 ocfs2_figure_appending_type(insert, el, insert_rec);
3642                 return 0;
3643         }
3644
3645         path = ocfs2_new_inode_path(di_bh);
3646         if (!path) {
3647                 ret = -ENOMEM;
3648                 mlog_errno(ret);
3649                 goto out;
3650         }
3651
3652         /*
3653          * In the case that we're inserting past what the tree
3654          * currently accounts for, ocfs2_find_path() will return for
3655          * us the rightmost tree path. This is accounted for below in
3656          * the appending code.
3657          */
3658         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3659         if (ret) {
3660                 mlog_errno(ret);
3661                 goto out;
3662         }
3663
3664         el = path_leaf_el(path);
3665
3666         /*
3667          * Now that we have the path, there's two things we want to determine:
3668          * 1) Contiguousness (also set contig_index if this is so)
3669          *
3670          * 2) Are we doing an append? We can trivially break this up
3671          *     into two types of appends: simple record append, or a
3672          *     rotate inside the tail leaf.
3673          */
3674         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3675
3676         /*
3677          * The insert code isn't quite ready to deal with all cases of
3678          * left contiguousness. Specifically, if it's an insert into
3679          * the 1st record in a leaf, it will require the adjustment of
3680          * cluster count on the last record of the path directly to it's
3681          * left. For now, just catch that case and fool the layers
3682          * above us. This works just fine for tree_depth == 0, which
3683          * is why we allow that above.
3684          */
3685         if (insert->ins_contig == CONTIG_LEFT &&
3686             insert->ins_contig_index == 0)
3687                 insert->ins_contig = CONTIG_NONE;
3688
3689         /*
3690          * Ok, so we can simply compare against last_eb to figure out
3691          * whether the path doesn't exist. This will only happen in
3692          * the case that we're doing a tail append, so maybe we can
3693          * take advantage of that information somehow.
3694          */
3695         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3696                 /*
3697                  * Ok, ocfs2_find_path() returned us the rightmost
3698                  * tree path. This might be an appending insert. There are
3699                  * two cases:
3700                  *    1) We're doing a true append at the tail:
3701                  *      -This might even be off the end of the leaf
3702                  *    2) We're "appending" by rotating in the tail
3703                  */
3704                 ocfs2_figure_appending_type(insert, el, insert_rec);
3705         }
3706
3707 out:
3708         ocfs2_free_path(path);
3709
3710         if (ret == 0)
3711                 *last_eb_bh = bh;
3712         else
3713                 brelse(bh);
3714         return ret;
3715 }
3716
3717 /*
3718  * Insert an extent into an inode btree.
3719  *
3720  * The caller needs to update fe->i_clusters
3721  */
3722 int ocfs2_insert_extent(struct ocfs2_super *osb,
3723                         handle_t *handle,
3724                         struct inode *inode,
3725                         struct buffer_head *fe_bh,
3726                         u32 cpos,
3727                         u64 start_blk,
3728                         u32 new_clusters,
3729                         u8 flags,
3730                         struct ocfs2_alloc_context *meta_ac)
3731 {
3732         int status;
3733         int uninitialized_var(free_records);
3734         struct buffer_head *last_eb_bh = NULL;
3735         struct ocfs2_insert_type insert = {0, };
3736         struct ocfs2_extent_rec rec;
3737
3738         mlog(0, "add %u clusters at position %u to inode %llu\n",
3739              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3740
3741         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3742                         (OCFS2_I(inode)->ip_clusters != cpos),
3743                         "Device %s, asking for sparse allocation: inode %llu, "
3744                         "cpos %u, clusters %u\n",
3745                         osb->dev_str,
3746                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3747                         OCFS2_I(inode)->ip_clusters);
3748
3749         memset(&rec, 0, sizeof(rec));
3750         rec.e_cpos = cpu_to_le32(cpos);
3751         rec.e_blkno = cpu_to_le64(start_blk);
3752         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
3753         rec.e_flags = flags;
3754
3755         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3756                                           &free_records, &insert);
3757         if (status < 0) {
3758                 mlog_errno(status);
3759                 goto bail;
3760         }
3761
3762         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3763              "Insert.contig_index: %d, Insert.free_records: %d, "
3764              "Insert.tree_depth: %d\n",
3765              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3766              free_records, insert.ins_tree_depth);
3767
3768         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
3769                 status = ocfs2_grow_tree(inode, handle, fe_bh,
3770                                          &insert.ins_tree_depth, &last_eb_bh,
3771                                          meta_ac);
3772                 if (status) {
3773                         mlog_errno(status);
3774                         goto bail;
3775                 }
3776         }
3777
3778         /* Finally, we can add clusters. This might rotate the tree for us. */
3779         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
3780         if (status < 0)
3781                 mlog_errno(status);
3782         else
3783                 ocfs2_extent_map_insert_rec(inode, &rec);
3784
3785 bail:
3786         if (last_eb_bh)
3787                 brelse(last_eb_bh);
3788
3789         mlog_exit(status);
3790         return status;
3791 }
3792
3793 static void ocfs2_make_right_split_rec(struct super_block *sb,
3794                                        struct ocfs2_extent_rec *split_rec,
3795                                        u32 cpos,
3796                                        struct ocfs2_extent_rec *rec)
3797 {
3798         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3799         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3800
3801         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3802
3803         split_rec->e_cpos = cpu_to_le32(cpos);
3804         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3805
3806         split_rec->e_blkno = rec->e_blkno;
3807         le64_add_cpu(&split_rec->e_blkno,
3808                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3809
3810         split_rec->e_flags = rec->e_flags;
3811 }
3812
3813 static int ocfs2_split_and_insert(struct inode *inode,
3814                                   handle_t *handle,
3815                                   struct ocfs2_path *path,
3816                                   struct buffer_head *di_bh,
3817                                   struct buffer_head **last_eb_bh,
3818                                   int split_index,
3819                                   struct ocfs2_extent_rec *orig_split_rec,
3820                                   struct ocfs2_alloc_context *meta_ac)
3821 {
3822         int ret = 0, depth;
3823         unsigned int insert_range, rec_range, do_leftright = 0;
3824         struct ocfs2_extent_rec tmprec;
3825         struct ocfs2_extent_list *rightmost_el;
3826         struct ocfs2_extent_rec rec;
3827         struct ocfs2_extent_rec split_rec = *orig_split_rec;
3828         struct ocfs2_insert_type insert;
3829         struct ocfs2_extent_block *eb;
3830         struct ocfs2_dinode *di;
3831
3832 leftright:
3833         /*
3834          * Store a copy of the record on the stack - it might move
3835          * around as the tree is manipulated below.
3836          */
3837         rec = path_leaf_el(path)->l_recs[split_index];
3838
3839         di = (struct ocfs2_dinode *)di_bh->b_data;
3840         rightmost_el = &di->id2.i_list;
3841
3842         depth = le16_to_cpu(rightmost_el->l_tree_depth);
3843         if (depth) {
3844                 BUG_ON(!(*last_eb_bh));
3845                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3846                 rightmost_el = &eb->h_list;
3847         }
3848
3849         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3850             le16_to_cpu(rightmost_el->l_count)) {
3851                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3852                                       meta_ac);
3853                 if (ret) {
3854                         mlog_errno(ret);
3855                         goto out;
3856                 }
3857         }
3858
3859         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3860         insert.ins_appending = APPEND_NONE;
3861         insert.ins_contig = CONTIG_NONE;
3862         insert.ins_tree_depth = depth;
3863
3864         insert_range = le32_to_cpu(split_rec.e_cpos) +
3865                 le16_to_cpu(split_rec.e_leaf_clusters);
3866         rec_range = le32_to_cpu(rec.e_cpos) +
3867                 le16_to_cpu(rec.e_leaf_clusters);
3868
3869         if (split_rec.e_cpos == rec.e_cpos) {
3870                 insert.ins_split = SPLIT_LEFT;
3871         } else if (insert_range == rec_range) {
3872                 insert.ins_split = SPLIT_RIGHT;
3873         } else {
3874                 /*
3875                  * Left/right split. We fake this as a right split
3876                  * first and then make a second pass as a left split.
3877                  */
3878                 insert.ins_split = SPLIT_RIGHT;
3879
3880                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3881                                            &rec);
3882
3883                 split_rec = tmprec;
3884
3885                 BUG_ON(do_leftright);
3886                 do_leftright = 1;
3887         }
3888
3889         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3890                                      &insert);
3891         if (ret) {
3892                 mlog_errno(ret);
3893                 goto out;
3894         }
3895
3896         if (do_leftright == 1) {
3897                 u32 cpos;
3898                 struct ocfs2_extent_list *el;
3899
3900                 do_leftright++;
3901                 split_rec = *orig_split_rec;
3902
3903                 ocfs2_reinit_path(path, 1);
3904
3905                 cpos = le32_to_cpu(split_rec.e_cpos);
3906                 ret = ocfs2_find_path(inode, path, cpos);
3907                 if (ret) {
3908                         mlog_errno(ret);
3909                         goto out;
3910                 }
3911
3912                 el = path_leaf_el(path);
3913                 split_index = ocfs2_search_extent_list(el, cpos);
3914                 goto leftright;
3915         }
3916 out:
3917
3918         return ret;
3919 }
3920
3921 /*
3922  * Mark part or all of the extent record at split_index in the leaf
3923  * pointed to by path as written. This removes the unwritten
3924  * extent flag.
3925  *
3926  * Care is taken to handle contiguousness so as to not grow the tree.
3927  *
3928  * meta_ac is not strictly necessary - we only truly need it if growth
3929  * of the tree is required. All other cases will degrade into a less
3930  * optimal tree layout.
3931  *
3932  * last_eb_bh should be the rightmost leaf block for any inode with a
3933  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3934  *
3935  * This code is optimized for readability - several passes might be
3936  * made over certain portions of the tree. All of those blocks will
3937  * have been brought into cache (and pinned via the journal), so the
3938  * extra overhead is not expressed in terms of disk reads.
3939  */
3940 static int __ocfs2_mark_extent_written(struct inode *inode,
3941                                        struct buffer_head *di_bh,
3942                                        handle_t *handle,
3943                                        struct ocfs2_path *path,
3944                                        int split_index,
3945                                        struct ocfs2_extent_rec *split_rec,
3946                                        struct ocfs2_alloc_context *meta_ac,
3947                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
3948 {
3949         int ret = 0;
3950         struct ocfs2_extent_list *el = path_leaf_el(path);
3951         struct buffer_head *eb_bh, *last_eb_bh = NULL;
3952         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3953         struct ocfs2_merge_ctxt ctxt;
3954         struct ocfs2_extent_list *rightmost_el;
3955
3956         if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3957                 ret = -EIO;
3958                 mlog_errno(ret);
3959                 goto out;
3960         }
3961
3962         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3963             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3964              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3965                 ret = -EIO;
3966                 mlog_errno(ret);
3967                 goto out;
3968         }
3969
3970         eb_bh = path_leaf_bh(path);
3971         ret = ocfs2_journal_access(handle, inode, eb_bh,
3972                                    OCFS2_JOURNAL_ACCESS_WRITE);
3973         if (ret) {
3974                 mlog_errno(ret);
3975                 goto out;
3976         }
3977
3978         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3979                                                             split_index,
3980                                                             split_rec);
3981
3982         /*
3983          * The core merge / split code wants to know how much room is
3984          * left in this inodes allocation tree, so we pass the
3985          * rightmost extent list.
3986          */
3987         if (path->p_tree_depth) {
3988                 struct ocfs2_extent_block *eb;
3989                 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3990
3991                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3992                                        le64_to_cpu(di->i_last_eb_blk),
3993                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
3994                 if (ret) {
3995                         mlog_exit(ret);
3996                         goto out;
3997                 }
3998
3999                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4000                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4001                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4002                         ret = -EROFS;
4003                         goto out;
4004                 }
4005
4006                 rightmost_el = &eb->h_list;
4007         } else
4008                 rightmost_el = path_root_el(path);
4009
4010         ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec);
4011         if (ctxt.c_used_tail_recs > 0 &&
4012             ocfs2_is_empty_extent(&rightmost_el->l_recs[0]))
4013                 ctxt.c_used_tail_recs--;
4014
4015         if (rec->e_cpos == split_rec->e_cpos &&
4016             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4017                 ctxt.c_split_covers_rec = 1;
4018         else
4019                 ctxt.c_split_covers_rec = 0;
4020
4021         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4022
4023         mlog(0, "index: %d, contig: %u, used_tail_recs: %u, "
4024              "has_empty: %u, split_covers: %u\n", split_index,
4025              ctxt.c_contig_type, ctxt.c_used_tail_recs,
4026              ctxt.c_has_empty_extent, ctxt.c_split_covers_rec);
4027
4028         if (ctxt.c_contig_type == CONTIG_NONE) {
4029                 if (ctxt.c_split_covers_rec)
4030                         el->l_recs[split_index] = *split_rec;
4031                 else
4032                         ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4033                                                      &last_eb_bh, split_index,
4034                                                      split_rec, meta_ac);
4035                 if (ret)
4036                         mlog_errno(ret);
4037         } else {
4038                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4039                                                 split_index, split_rec,
4040                                                 dealloc, &ctxt);
4041                 if (ret)
4042                         mlog_errno(ret);
4043         }
4044
4045         ocfs2_journal_dirty(handle, eb_bh);
4046
4047 out:
4048         brelse(last_eb_bh);
4049         return ret;
4050 }
4051
4052 /*
4053  * Mark the already-existing extent at cpos as written for len clusters.
4054  *
4055  * If the existing extent is larger than the request, initiate a
4056  * split. An attempt will be made at merging with adjacent extents.
4057  *
4058  * The caller is responsible for passing down meta_ac if we'll need it.
4059  */
4060 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4061                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4062                               struct ocfs2_alloc_context *meta_ac,
4063                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4064 {
4065         int ret, index;
4066         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4067         struct ocfs2_extent_rec split_rec;
4068         struct ocfs2_path *left_path = NULL;
4069         struct ocfs2_extent_list *el;
4070
4071         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4072              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4073
4074         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4075                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4076                             "that are being written to, but the feature bit "
4077                             "is not set in the super block.",
4078                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4079                 ret = -EROFS;
4080                 goto out;
4081         }
4082
4083         /*
4084          * XXX: This should be fixed up so that we just re-insert the
4085          * next extent records.
4086          */
4087         ocfs2_extent_map_trunc(inode, 0);
4088
4089         left_path = ocfs2_new_inode_path(di_bh);
4090         if (!left_path) {
4091                 ret = -ENOMEM;
4092                 mlog_errno(ret);
4093                 goto out;
4094         }
4095
4096         ret = ocfs2_find_path(inode, left_path, cpos);
4097         if (ret) {
4098                 mlog_errno(ret);
4099                 goto out;
4100         }
4101         el = path_leaf_el(left_path);
4102
4103         index = ocfs2_search_extent_list(el, cpos);
4104         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4105                 ocfs2_error(inode->i_sb,
4106                             "Inode %llu has an extent at cpos %u which can no "
4107                             "longer be found.\n",
4108                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4109                 ret = -EROFS;
4110                 goto out;
4111         }
4112
4113         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4114         split_rec.e_cpos = cpu_to_le32(cpos);
4115         split_rec.e_leaf_clusters = cpu_to_le16(len);
4116         split_rec.e_blkno = cpu_to_le64(start_blkno);
4117         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4118         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4119
4120         ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4121                                           index, &split_rec, meta_ac, dealloc);
4122         if (ret)
4123                 mlog_errno(ret);
4124
4125 out:
4126         ocfs2_free_path(left_path);
4127         return ret;
4128 }
4129
4130 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4131                             handle_t *handle, struct ocfs2_path *path,
4132                             int index, u32 new_range,
4133                             struct ocfs2_alloc_context *meta_ac)
4134 {
4135         int ret, depth, credits = handle->h_buffer_credits;
4136         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4137         struct buffer_head *last_eb_bh = NULL;
4138         struct ocfs2_extent_block *eb;
4139         struct ocfs2_extent_list *rightmost_el, *el;
4140         struct ocfs2_extent_rec split_rec;
4141         struct ocfs2_extent_rec *rec;
4142         struct ocfs2_insert_type insert;
4143
4144         /*
4145          * Setup the record to split before we grow the tree.
4146          */
4147         el = path_leaf_el(path);
4148         rec = &el->l_recs[index];
4149         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4150
4151         depth = path->p_tree_depth;
4152         if (depth > 0) {
4153                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4154                                        le64_to_cpu(di->i_last_eb_blk),
4155                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4156                 if (ret < 0) {
4157                         mlog_errno(ret);
4158                         goto out;
4159                 }
4160
4161                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4162                 rightmost_el = &eb->h_list;
4163         } else
4164                 rightmost_el = path_leaf_el(path);
4165
4166         credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4167         ret = ocfs2_extend_trans(handle, credits);
4168         if (ret) {
4169                 mlog_errno(ret);
4170                 goto out;
4171         }
4172
4173         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4174             le16_to_cpu(rightmost_el->l_count)) {
4175                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4176                                       meta_ac);
4177                 if (ret) {
4178                         mlog_errno(ret);
4179                         goto out;
4180                 }
4181         }
4182
4183         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4184         insert.ins_appending = APPEND_NONE;
4185         insert.ins_contig = CONTIG_NONE;
4186         insert.ins_split = SPLIT_RIGHT;
4187         insert.ins_tree_depth = depth;
4188
4189         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4190         if (ret)
4191                 mlog_errno(ret);
4192
4193 out:
4194         brelse(last_eb_bh);
4195         return ret;
4196 }
4197
4198 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4199                               struct ocfs2_path *path, int index,
4200                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4201                               u32 cpos, u32 len)
4202 {
4203         int ret;
4204         u32 left_cpos, rec_range, trunc_range;
4205         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4206         struct super_block *sb = inode->i_sb;
4207         struct ocfs2_path *left_path = NULL;
4208         struct ocfs2_extent_list *el = path_leaf_el(path);
4209         struct ocfs2_extent_rec *rec;
4210         struct ocfs2_extent_block *eb;
4211
4212         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4213                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4214                 if (ret) {
4215                         mlog_errno(ret);
4216                         goto out;
4217                 }
4218
4219                 index--;
4220         }
4221
4222         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4223             path->p_tree_depth) {
4224                 /*
4225                  * Check whether this is the rightmost tree record. If
4226                  * we remove all of this record or part of its right
4227                  * edge then an update of the record lengths above it
4228                  * will be required.
4229                  */
4230                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4231                 if (eb->h_next_leaf_blk == 0)
4232                         is_rightmost_tree_rec = 1;
4233         }
4234
4235         rec = &el->l_recs[index];
4236         if (index == 0 && path->p_tree_depth &&
4237             le32_to_cpu(rec->e_cpos) == cpos) {
4238                 /*
4239                  * Changing the leftmost offset (via partial or whole
4240                  * record truncate) of an interior (or rightmost) path
4241                  * means we have to update the subtree that is formed
4242                  * by this leaf and the one to it's left.
4243                  *
4244                  * There are two cases we can skip:
4245                  *   1) Path is the leftmost one in our inode tree.
4246                  *   2) The leaf is rightmost and will be empty after
4247                  *      we remove the extent record - the rotate code
4248                  *      knows how to update the newly formed edge.
4249                  */
4250
4251                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4252                                                     &left_cpos);
4253                 if (ret) {
4254                         mlog_errno(ret);
4255                         goto out;
4256                 }
4257
4258                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4259                         left_path = ocfs2_new_path(path_root_bh(path),
4260                                                    path_root_el(path));
4261                         if (!left_path) {
4262                                 ret = -ENOMEM;
4263                                 mlog_errno(ret);
4264                                 goto out;
4265                         }
4266
4267                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4268                         if (ret) {
4269                                 mlog_errno(ret);
4270                                 goto out;
4271                         }
4272                 }
4273         }
4274
4275         ret = ocfs2_extend_rotate_transaction(handle, 0,
4276                                               handle->h_buffer_credits,
4277                                               path);
4278         if (ret) {
4279                 mlog_errno(ret);
4280                 goto out;
4281         }
4282
4283         ret = ocfs2_journal_access_path(inode, handle, path);
4284         if (ret) {
4285                 mlog_errno(ret);
4286                 goto out;
4287         }
4288
4289         ret = ocfs2_journal_access_path(inode, handle, left_path);
4290         if (ret) {
4291                 mlog_errno(ret);
4292                 goto out;
4293         }
4294
4295         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4296         trunc_range = cpos + len;
4297
4298         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4299                 int next_free;
4300
4301                 memset(rec, 0, sizeof(*rec));
4302                 ocfs2_cleanup_merge(el, index);
4303                 wants_rotate = 1;
4304
4305                 next_free = le16_to_cpu(el->l_next_free_rec);
4306                 if (is_rightmost_tree_rec && next_free > 1) {
4307                         /*
4308                          * We skip the edge update if this path will
4309                          * be deleted by the rotate code.
4310                          */
4311                         rec = &el->l_recs[next_free - 1];
4312                         ocfs2_adjust_rightmost_records(inode, handle, path,
4313                                                        rec);
4314                 }
4315         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4316                 /* Remove leftmost portion of the record. */
4317                 le32_add_cpu(&rec->e_cpos, len);
4318                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4319                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4320         } else if (rec_range == trunc_range) {
4321                 /* Remove rightmost portion of the record */
4322                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4323                 if (is_rightmost_tree_rec)
4324                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4325         } else {
4326                 /* Caller should have trapped this. */
4327                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4328                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4329                      le32_to_cpu(rec->e_cpos),
4330                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4331                 BUG();
4332         }
4333
4334         if (left_path) {
4335                 int subtree_index;
4336
4337                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4338                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4339                                            subtree_index);
4340         }
4341
4342         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4343
4344         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4345         if (ret) {
4346                 mlog_errno(ret);
4347                 goto out;
4348         }
4349
4350 out:
4351         ocfs2_free_path(left_path);
4352         return ret;
4353 }
4354
4355 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4356                         u32 cpos, u32 len, handle_t *handle,
4357                         struct ocfs2_alloc_context *meta_ac,
4358                         struct ocfs2_cached_dealloc_ctxt *dealloc)
4359 {
4360         int ret, index;
4361         u32 rec_range, trunc_range;
4362         struct ocfs2_extent_rec *rec;
4363         struct ocfs2_extent_list *el;
4364         struct ocfs2_path *path;
4365
4366         ocfs2_extent_map_trunc(inode, 0);
4367
4368         path = ocfs2_new_inode_path(di_bh);
4369         if (!path) {
4370                 ret = -ENOMEM;
4371                 mlog_errno(ret);
4372                 goto out;
4373         }
4374
4375         ret = ocfs2_find_path(inode, path, cpos);
4376         if (ret) {
4377                 mlog_errno(ret);
4378                 goto out;
4379         }
4380
4381         el = path_leaf_el(path);
4382         index = ocfs2_search_extent_list(el, cpos);
4383         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4384                 ocfs2_error(inode->i_sb,
4385                             "Inode %llu has an extent at cpos %u which can no "
4386                             "longer be found.\n",
4387                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4388                 ret = -EROFS;
4389                 goto out;
4390         }
4391
4392         /*
4393          * We have 3 cases of extent removal:
4394          *   1) Range covers the entire extent rec
4395          *   2) Range begins or ends on one edge of the extent rec
4396          *   3) Range is in the middle of the extent rec (no shared edges)
4397          *
4398          * For case 1 we remove the extent rec and left rotate to
4399          * fill the hole.
4400          *
4401          * For case 2 we just shrink the existing extent rec, with a
4402          * tree update if the shrinking edge is also the edge of an
4403          * extent block.
4404          *
4405          * For case 3 we do a right split to turn the extent rec into
4406          * something case 2 can handle.
4407          */
4408         rec = &el->l_recs[index];
4409         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4410         trunc_range = cpos + len;
4411
4412         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4413
4414         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4415              "(cpos %u, len %u)\n",
4416              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4417              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4418
4419         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4420                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4421                                          cpos, len);
4422                 if (ret) {
4423                         mlog_errno(ret);
4424                         goto out;
4425                 }
4426         } else {
4427                 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4428                                        trunc_range, meta_ac);
4429                 if (ret) {
4430                         mlog_errno(ret);
4431                         goto out;
4432                 }
4433
4434                 /*
4435                  * The split could have manipulated the tree enough to
4436                  * move the record location, so we have to look for it again.
4437                  */
4438                 ocfs2_reinit_path(path, 1);
4439
4440                 ret = ocfs2_find_path(inode, path, cpos);
4441                 if (ret) {
4442                         mlog_errno(ret);
4443                         goto out;
4444                 }
4445
4446                 el = path_leaf_el(path);
4447                 index = ocfs2_search_extent_list(el, cpos);
4448                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4449                         ocfs2_error(inode->i_sb,
4450                                     "Inode %llu: split at cpos %u lost record.",
4451                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4452                                     cpos);
4453                         ret = -EROFS;
4454                         goto out;
4455                 }
4456
4457                 /*
4458                  * Double check our values here. If anything is fishy,
4459                  * it's easier to catch it at the top level.
4460                  */
4461                 rec = &el->l_recs[index];
4462                 rec_range = le32_to_cpu(rec->e_cpos) +
4463                         ocfs2_rec_clusters(el, rec);
4464                 if (rec_range != trunc_range) {
4465                         ocfs2_error(inode->i_sb,
4466                                     "Inode %llu: error after split at cpos %u"
4467                                     "trunc len %u, existing record is (%u,%u)",
4468                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4469                                     cpos, len, le32_to_cpu(rec->e_cpos),
4470                                     ocfs2_rec_clusters(el, rec));
4471                         ret = -EROFS;
4472                         goto out;
4473                 }
4474
4475                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4476                                          cpos, len);
4477                 if (ret) {
4478                         mlog_errno(ret);
4479                         goto out;
4480                 }
4481         }
4482
4483 out:
4484         ocfs2_free_path(path);
4485         return ret;
4486 }
4487
4488 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4489 {
4490         struct buffer_head *tl_bh = osb->osb_tl_bh;
4491         struct ocfs2_dinode *di;
4492         struct ocfs2_truncate_log *tl;
4493
4494         di = (struct ocfs2_dinode *) tl_bh->b_data;
4495         tl = &di->id2.i_dealloc;
4496
4497         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4498                         "slot %d, invalid truncate log parameters: used = "
4499                         "%u, count = %u\n", osb->slot_num,
4500                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4501         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4502 }
4503
4504 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4505                                            unsigned int new_start)
4506 {
4507         unsigned int tail_index;
4508         unsigned int current_tail;
4509
4510         /* No records, nothing to coalesce */
4511         if (!le16_to_cpu(tl->tl_used))
4512                 return 0;
4513
4514         tail_index = le16_to_cpu(tl->tl_used) - 1;
4515         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4516         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4517
4518         return current_tail == new_start;
4519 }
4520
4521 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4522                               handle_t *handle,
4523                               u64 start_blk,
4524                               unsigned int num_clusters)
4525 {
4526         int status, index;
4527         unsigned int start_cluster, tl_count;
4528         struct inode *tl_inode = osb->osb_tl_inode;
4529         struct buffer_head *tl_bh = osb->osb_tl_bh;
4530         struct ocfs2_dinode *di;
4531         struct ocfs2_truncate_log *tl;
4532
4533         mlog_entry("start_blk = %llu, num_clusters = %u\n",
4534                    (unsigned long long)start_blk, num_clusters);
4535
4536         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4537
4538         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4539
4540         di = (struct ocfs2_dinode *) tl_bh->b_data;
4541         tl = &di->id2.i_dealloc;
4542         if (!OCFS2_IS_VALID_DINODE(di)) {
4543                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4544                 status = -EIO;
4545                 goto bail;
4546         }
4547
4548         tl_count = le16_to_cpu(tl->tl_count);
4549         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4550                         tl_count == 0,
4551                         "Truncate record count on #%llu invalid "
4552                         "wanted %u, actual %u\n",
4553                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4554                         ocfs2_truncate_recs_per_inode(osb->sb),
4555                         le16_to_cpu(tl->tl_count));
4556
4557         /* Caller should have known to flush before calling us. */
4558         index = le16_to_cpu(tl->tl_used);
4559         if (index >= tl_count) {
4560                 status = -ENOSPC;
4561                 mlog_errno(status);
4562                 goto bail;
4563         }
4564
4565         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4566                                       OCFS2_JOURNAL_ACCESS_WRITE);
4567         if (status < 0) {
4568                 mlog_errno(status);
4569                 goto bail;
4570         }
4571
4572         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4573              "%llu (index = %d)\n", num_clusters, start_cluster,
4574              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4575
4576         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4577                 /*
4578                  * Move index back to the record we are coalescing with.
4579                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4580                  */
4581                 index--;
4582
4583                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4584                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4585                      index, le32_to_cpu(tl->tl_recs[index].t_start),
4586                      num_clusters);
4587         } else {
4588                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4589                 tl->tl_used = cpu_to_le16(index + 1);
4590         }
4591         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4592
4593         status = ocfs2_journal_dirty(handle, tl_bh);
4594         if (status < 0) {
4595                 mlog_errno(status);
4596                 goto bail;
4597         }
4598
4599 bail:
4600         mlog_exit(status);
4601         return status;
4602 }
4603
4604 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4605                                          handle_t *handle,
4606                                          struct inode *data_alloc_inode,
4607                                          struct buffer_head *data_alloc_bh)
4608 {
4609         int status = 0;
4610         int i;
4611         unsigned int num_clusters;
4612         u64 start_blk;
4613         struct ocfs2_truncate_rec rec;
4614         struct ocfs2_dinode *di;
4615         struct ocfs2_truncate_log *tl;
4616         struct inode *tl_inode = osb->osb_tl_inode;
4617         struct buffer_head *tl_bh = osb->osb_tl_bh;
4618
4619         mlog_entry_void();
4620
4621         di = (struct ocfs2_dinode *) tl_bh->b_data;
4622         tl = &di->id2.i_dealloc;
4623         i = le16_to_cpu(tl->tl_used) - 1;
4624         while (i >= 0) {
4625                 /* Caller has given us at least enough credits to
4626                  * update the truncate log dinode */
4627                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4628                                               OCFS2_JOURNAL_ACCESS_WRITE);
4629                 if (status < 0) {
4630                         mlog_errno(status);
4631                         goto bail;
4632                 }
4633
4634                 tl->tl_used = cpu_to_le16(i);
4635
4636                 status = ocfs2_journal_dirty(handle, tl_bh);
4637                 if (status < 0) {
4638                         mlog_errno(status);
4639                         goto bail;
4640                 }
4641
4642                 /* TODO: Perhaps we can calculate the bulk of the
4643                  * credits up front rather than extending like
4644                  * this. */
4645                 status = ocfs2_extend_trans(handle,
4646                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4647                 if (status < 0) {
4648                         mlog_errno(status);
4649                         goto bail;
4650                 }
4651
4652                 rec = tl->tl_recs[i];
4653                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4654                                                     le32_to_cpu(rec.t_start));
4655                 num_clusters = le32_to_cpu(rec.t_clusters);
4656
4657                 /* if start_blk is not set, we ignore the record as
4658                  * invalid. */
4659                 if (start_blk) {
4660                         mlog(0, "free record %d, start = %u, clusters = %u\n",
4661                              i, le32_to_cpu(rec.t_start), num_clusters);
4662
4663                         status = ocfs2_free_clusters(handle, data_alloc_inode,
4664                                                      data_alloc_bh, start_blk,
4665                                                      num_clusters);
4666                         if (status < 0) {
4667                                 mlog_errno(status);
4668                                 goto bail;
4669                         }
4670                 }
4671                 i--;
4672         }
4673
4674 bail:
4675         mlog_exit(status);
4676         return status;
4677 }
4678
4679 /* Expects you to already be holding tl_inode->i_mutex */
4680 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4681 {
4682         int status;
4683         unsigned int num_to_flush;
4684         handle_t *handle;
4685         struct inode *tl_inode = osb->osb_tl_inode;
4686         struct inode *data_alloc_inode = NULL;
4687         struct buffer_head *tl_bh = osb->osb_tl_bh;
4688         struct buffer_head *data_alloc_bh = NULL;
4689         struct ocfs2_dinode *di;
4690         struct ocfs2_truncate_log *tl;
4691
4692         mlog_entry_void();
4693
4694         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4695
4696         di = (struct ocfs2_dinode *) tl_bh->b_data;
4697         tl = &di->id2.i_dealloc;
4698         if (!OCFS2_IS_VALID_DINODE(di)) {
4699                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4700                 status = -EIO;
4701                 goto out;
4702         }
4703
4704         num_to_flush = le16_to_cpu(tl->tl_used);
4705         mlog(0, "Flush %u records from truncate log #%llu\n",
4706              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
4707         if (!num_to_flush) {
4708                 status = 0;
4709                 goto out;
4710         }
4711
4712         data_alloc_inode = ocfs2_get_system_file_inode(osb,
4713                                                        GLOBAL_BITMAP_SYSTEM_INODE,
4714                                                        OCFS2_INVALID_SLOT);
4715         if (!data_alloc_inode) {
4716                 status = -EINVAL;
4717                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
4718                 goto out;
4719         }
4720
4721         mutex_lock(&data_alloc_inode->i_mutex);
4722
4723         status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
4724         if (status < 0) {
4725                 mlog_errno(status);
4726                 goto out_mutex;
4727         }
4728
4729         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4730         if (IS_ERR(handle)) {
4731                 status = PTR_ERR(handle);
4732                 mlog_errno(status);
4733                 goto out_unlock;
4734         }
4735
4736         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4737                                                data_alloc_bh);
4738         if (status < 0)
4739                 mlog_errno(status);
4740
4741         ocfs2_commit_trans(osb, handle);
4742
4743 out_unlock:
4744         brelse(data_alloc_bh);
4745         ocfs2_meta_unlock(data_alloc_inode, 1);
4746
4747 out_mutex:
4748         mutex_unlock(&data_alloc_inode->i_mutex);
4749         iput(data_alloc_inode);
4750
4751 out:
4752         mlog_exit(status);
4753         return status;
4754 }
4755
4756 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4757 {
4758         int status;
4759         struct inode *tl_inode = osb->osb_tl_inode;
4760
4761         mutex_lock(&tl_inode->i_mutex);
4762         status = __ocfs2_flush_truncate_log(osb);
4763         mutex_unlock(&tl_inode->i_mutex);
4764
4765         return status;
4766 }
4767
4768 static void ocfs2_truncate_log_worker(struct work_struct *work)
4769 {
4770         int status;
4771         struct ocfs2_super *osb =
4772                 container_of(work, struct ocfs2_super,
4773                              osb_truncate_log_wq.work);
4774
4775         mlog_entry_void();
4776
4777         status = ocfs2_flush_truncate_log(osb);
4778         if (status < 0)
4779                 mlog_errno(status);
4780
4781         mlog_exit(status);
4782 }
4783
4784 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4785 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4786                                        int cancel)
4787 {
4788         if (osb->osb_tl_inode) {
4789                 /* We want to push off log flushes while truncates are
4790                  * still running. */
4791                 if (cancel)
4792                         cancel_delayed_work(&osb->osb_truncate_log_wq);
4793
4794                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4795                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4796         }
4797 }
4798
4799 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4800                                        int slot_num,
4801                                        struct inode **tl_inode,
4802                                        struct buffer_head **tl_bh)
4803 {
4804         int status;
4805         struct inode *inode = NULL;
4806         struct buffer_head *bh = NULL;
4807
4808         inode = ocfs2_get_system_file_inode(osb,
4809                                            TRUNCATE_LOG_SYSTEM_INODE,
4810                                            slot_num);
4811         if (!inode) {
4812                 status = -EINVAL;
4813                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4814                 goto bail;
4815         }
4816
4817         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4818                                   OCFS2_BH_CACHED, inode);
4819         if (status < 0) {
4820                 iput(inode);
4821                 mlog_errno(status);
4822                 goto bail;
4823         }
4824
4825         *tl_inode = inode;
4826         *tl_bh    = bh;
4827 bail:
4828         mlog_exit(status);
4829         return status;
4830 }
4831
4832 /* called during the 1st stage of node recovery. we stamp a clean
4833  * truncate log and pass back a copy for processing later. if the
4834  * truncate log does not require processing, a *tl_copy is set to
4835  * NULL. */
4836 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4837                                       int slot_num,
4838                                       struct ocfs2_dinode **tl_copy)
4839 {
4840         int status;
4841         struct inode *tl_inode = NULL;
4842         struct buffer_head *tl_bh = NULL;
4843         struct ocfs2_dinode *di;
4844         struct ocfs2_truncate_log *tl;
4845
4846         *tl_copy = NULL;
4847
4848         mlog(0, "recover truncate log from slot %d\n", slot_num);
4849
4850         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4851         if (status < 0) {
4852                 mlog_errno(status);
4853                 goto bail;
4854         }
4855
4856         di = (struct ocfs2_dinode *) tl_bh->b_data;
4857         tl = &di->id2.i_dealloc;
4858         if (!OCFS2_IS_VALID_DINODE(di)) {
4859                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4860                 status = -EIO;
4861                 goto bail;
4862         }
4863
4864         if (le16_to_cpu(tl->tl_used)) {
4865                 mlog(0, "We'll have %u logs to recover\n",
4866                      le16_to_cpu(tl->tl_used));
4867
4868                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4869                 if (!(*tl_copy)) {
4870                         status = -ENOMEM;
4871                         mlog_errno(status);
4872                         goto bail;
4873                 }
4874
4875                 /* Assuming the write-out below goes well, this copy
4876                  * will be passed back to recovery for processing. */
4877                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4878
4879                 /* All we need to do to clear the truncate log is set
4880                  * tl_used. */
4881                 tl->tl_used = 0;
4882
4883                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
4884                 if (status < 0) {
4885                         mlog_errno(status);
4886                         goto bail;
4887                 }
4888         }
4889
4890 bail:
4891         if (tl_inode)
4892                 iput(tl_inode);
4893         if (tl_bh)
4894                 brelse(tl_bh);
4895
4896         if (status < 0 && (*tl_copy)) {
4897                 kfree(*tl_copy);
4898                 *tl_copy = NULL;
4899         }
4900
4901         mlog_exit(status);
4902         return status;
4903 }
4904
4905 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4906                                          struct ocfs2_dinode *tl_copy)
4907 {
4908         int status = 0;
4909         int i;
4910         unsigned int clusters, num_recs, start_cluster;
4911         u64 start_blk;
4912         handle_t *handle;
4913         struct inode *tl_inode = osb->osb_tl_inode;
4914         struct ocfs2_truncate_log *tl;
4915
4916         mlog_entry_void();
4917
4918         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4919                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4920                 return -EINVAL;
4921         }
4922
4923         tl = &tl_copy->id2.i_dealloc;
4924         num_recs = le16_to_cpu(tl->tl_used);
4925         mlog(0, "cleanup %u records from %llu\n", num_recs,
4926              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
4927
4928         mutex_lock(&tl_inode->i_mutex);
4929         for(i = 0; i < num_recs; i++) {
4930                 if (ocfs2_truncate_log_needs_flush(osb)) {
4931                         status = __ocfs2_flush_truncate_log(osb);
4932                         if (status < 0) {
4933                                 mlog_errno(status);
4934                                 goto bail_up;
4935                         }
4936                 }
4937
4938                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
4939                 if (IS_ERR(handle)) {
4940                         status = PTR_ERR(handle);
4941                         mlog_errno(status);
4942                         goto bail_up;
4943                 }
4944
4945                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4946                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4947                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4948
4949                 status = ocfs2_truncate_log_append(osb, handle,
4950                                                    start_blk, clusters);
4951                 ocfs2_commit_trans(osb, handle);
4952                 if (status < 0) {
4953                         mlog_errno(status);
4954                         goto bail_up;
4955                 }
4956         }
4957
4958 bail_up:
4959         mutex_unlock(&tl_inode->i_mutex);
4960
4961         mlog_exit(status);
4962         return status;
4963 }
4964
4965 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4966 {
4967         int status;
4968         struct inode *tl_inode = osb->osb_tl_inode;
4969
4970         mlog_entry_void();
4971
4972         if (tl_inode) {
4973                 cancel_delayed_work(&osb->osb_truncate_log_wq);
4974                 flush_workqueue(ocfs2_wq);
4975
4976                 status = ocfs2_flush_truncate_log(osb);
4977                 if (status < 0)
4978                         mlog_errno(status);
4979
4980                 brelse(osb->osb_tl_bh);
4981                 iput(osb->osb_tl_inode);
4982         }
4983
4984         mlog_exit_void();
4985 }
4986
4987 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
4988 {
4989         int status;
4990         struct inode *tl_inode = NULL;
4991         struct buffer_head *tl_bh = NULL;
4992
4993         mlog_entry_void();
4994
4995         status = ocfs2_get_truncate_log_info(osb,
4996                                              osb->slot_num,
4997                                              &tl_inode,
4998                                              &tl_bh);
4999         if (status < 0)
5000                 mlog_errno(status);
5001
5002         /* ocfs2_truncate_log_shutdown keys on the existence of
5003          * osb->osb_tl_inode so we don't set any of the osb variables
5004          * until we're sure all is well. */
5005         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5006                           ocfs2_truncate_log_worker);
5007         osb->osb_tl_bh    = tl_bh;
5008         osb->osb_tl_inode = tl_inode;
5009
5010         mlog_exit(status);
5011         return status;
5012 }
5013
5014 /*
5015  * Delayed de-allocation of suballocator blocks.
5016  *
5017  * Some sets of block de-allocations might involve multiple suballocator inodes.
5018  *
5019  * The locking for this can get extremely complicated, especially when
5020  * the suballocator inodes to delete from aren't known until deep
5021  * within an unrelated codepath.
5022  *
5023  * ocfs2_extent_block structures are a good example of this - an inode
5024  * btree could have been grown by any number of nodes each allocating
5025  * out of their own suballoc inode.
5026  *
5027  * These structures allow the delay of block de-allocation until a
5028  * later time, when locking of multiple cluster inodes won't cause
5029  * deadlock.
5030  */
5031
5032 /*
5033  * Describes a single block free from a suballocator
5034  */
5035 struct ocfs2_cached_block_free {
5036         struct ocfs2_cached_block_free          *free_next;
5037         u64                                     free_blk;
5038         unsigned int                            free_bit;
5039 };
5040
5041 struct ocfs2_per_slot_free_list {
5042         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5043         int                                     f_inode_type;
5044         int                                     f_slot;
5045         struct ocfs2_cached_block_free          *f_first;
5046 };
5047
5048 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5049                                    int sysfile_type,
5050                                    int slot,
5051                                    struct ocfs2_cached_block_free *head)
5052 {
5053         int ret;
5054         u64 bg_blkno;
5055         handle_t *handle;
5056         struct inode *inode;
5057         struct buffer_head *di_bh = NULL;
5058         struct ocfs2_cached_block_free *tmp;
5059
5060         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5061         if (!inode) {
5062                 ret = -EINVAL;
5063                 mlog_errno(ret);
5064                 goto out;
5065         }
5066
5067         mutex_lock(&inode->i_mutex);
5068
5069         ret = ocfs2_meta_lock(inode, &di_bh, 1);
5070         if (ret) {
5071                 mlog_errno(ret);
5072                 goto out_mutex;
5073         }
5074
5075         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5076         if (IS_ERR(handle)) {
5077                 ret = PTR_ERR(handle);
5078                 mlog_errno(ret);
5079                 goto out_unlock;
5080         }
5081
5082         while (head) {
5083                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5084                                                       head->free_bit);
5085                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5086                      head->free_bit, (unsigned long long)head->free_blk);
5087
5088                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5089                                                head->free_bit, bg_blkno, 1);
5090                 if (ret) {
5091                         mlog_errno(ret);
5092                         goto out_journal;
5093                 }
5094
5095                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5096                 if (ret) {
5097                         mlog_errno(ret);
5098                         goto out_journal;
5099                 }
5100
5101                 tmp = head;
5102                 head = head->free_next;
5103                 kfree(tmp);
5104         }
5105
5106 out_journal:
5107         ocfs2_commit_trans(osb, handle);
5108
5109 out_unlock:
5110         ocfs2_meta_unlock(inode, 1);
5111         brelse(di_bh);
5112 out_mutex:
5113         mutex_unlock(&inode->i_mutex);
5114         iput(inode);
5115 out:
5116         while(head) {
5117                 /* Premature exit may have left some dangling items. */
5118                 tmp = head;
5119                 head = head->free_next;
5120                 kfree(tmp);
5121         }
5122
5123         return ret;
5124 }
5125
5126 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5127                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5128 {
5129         int ret = 0, ret2;
5130         struct ocfs2_per_slot_free_list *fl;
5131
5132         if (!ctxt)
5133                 return 0;
5134
5135         while (ctxt->c_first_suballocator) {
5136                 fl = ctxt->c_first_suballocator;
5137
5138                 if (fl->f_first) {
5139                         mlog(0, "Free items: (type %u, slot %d)\n",
5140                              fl->f_inode_type, fl->f_slot);
5141                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5142                                                        fl->f_slot, fl->f_first);
5143                         if (ret2)
5144                                 mlog_errno(ret2);
5145                         if (!ret)
5146                                 ret = ret2;
5147                 }
5148
5149                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5150                 kfree(fl);
5151         }
5152
5153         return ret;
5154 }
5155
5156 static struct ocfs2_per_slot_free_list *
5157 ocfs2_find_per_slot_free_list(int type,
5158                               int slot,
5159                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5160 {
5161         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5162
5163         while (fl) {
5164                 if (fl->f_inode_type == type && fl->f_slot == slot)
5165                         return fl;
5166
5167                 fl = fl->f_next_suballocator;
5168         }
5169
5170         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5171         if (fl) {
5172                 fl->f_inode_type = type;
5173                 fl->f_slot = slot;
5174                 fl->f_first = NULL;
5175                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5176
5177                 ctxt->c_first_suballocator = fl;
5178         }
5179         return fl;
5180 }
5181
5182 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5183                                      int type, int slot, u64 blkno,
5184                                      unsigned int bit)
5185 {
5186         int ret;
5187         struct ocfs2_per_slot_free_list *fl;
5188         struct ocfs2_cached_block_free *item;
5189
5190         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5191         if (fl == NULL) {
5192                 ret = -ENOMEM;
5193                 mlog_errno(ret);
5194                 goto out;
5195         }
5196
5197         item = kmalloc(sizeof(*item), GFP_NOFS);
5198         if (item == NULL) {
5199                 ret = -ENOMEM;
5200                 mlog_errno(ret);
5201                 goto out;
5202         }
5203
5204         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5205              type, slot, bit, (unsigned long long)blkno);
5206
5207         item->free_blk = blkno;
5208         item->free_bit = bit;
5209         item->free_next = fl->f_first;
5210
5211         fl->f_first = item;
5212
5213         ret = 0;
5214 out:
5215         return ret;
5216 }
5217
5218 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5219                                          struct ocfs2_extent_block *eb)
5220 {
5221         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5222                                          le16_to_cpu(eb->h_suballoc_slot),
5223                                          le64_to_cpu(eb->h_blkno),
5224                                          le16_to_cpu(eb->h_suballoc_bit));
5225 }
5226
5227 /* This function will figure out whether the currently last extent
5228  * block will be deleted, and if it will, what the new last extent
5229  * block will be so we can update his h_next_leaf_blk field, as well
5230  * as the dinodes i_last_eb_blk */
5231 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5232                                        unsigned int clusters_to_del,
5233                                        struct ocfs2_path *path,
5234                                        struct buffer_head **new_last_eb)
5235 {
5236         int next_free, ret = 0;
5237         u32 cpos;
5238         struct ocfs2_extent_rec *rec;
5239         struct ocfs2_extent_block *eb;
5240         struct ocfs2_extent_list *el;
5241         struct buffer_head *bh = NULL;
5242
5243         *new_last_eb = NULL;
5244
5245         /* we have no tree, so of course, no last_eb. */
5246         if (!path->p_tree_depth)
5247                 goto out;
5248
5249         /* trunc to zero special case - this makes tree_depth = 0
5250          * regardless of what it is.  */
5251         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5252                 goto out;
5253
5254         el = path_leaf_el(path);
5255         BUG_ON(!el->l_next_free_rec);
5256
5257         /*
5258          * Make sure that this extent list will actually be empty
5259          * after we clear away the data. We can shortcut out if
5260          * there's more than one non-empty extent in the
5261          * list. Otherwise, a check of the remaining extent is
5262          * necessary.
5263          */
5264         next_free = le16_to_cpu(el->l_next_free_rec);
5265         rec = NULL;
5266         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5267                 if (next_free > 2)
5268                         goto out;
5269
5270                 /* We may have a valid extent in index 1, check it. */
5271                 if (next_free == 2)
5272                         rec = &el->l_recs[1];
5273
5274                 /*
5275                  * Fall through - no more nonempty extents, so we want
5276                  * to delete this leaf.
5277                  */
5278         } else {
5279                 if (next_free > 1)
5280                         goto out;
5281
5282                 rec = &el->l_recs[0];
5283         }
5284
5285         if (rec) {
5286                 /*
5287                  * Check it we'll only be trimming off the end of this
5288                  * cluster.
5289                  */
5290                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5291                         goto out;
5292         }
5293
5294         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5295         if (ret) {
5296                 mlog_errno(ret);
5297                 goto out;
5298         }
5299
5300         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5301         if (ret) {
5302                 mlog_errno(ret);
5303                 goto out;
5304         }
5305
5306         eb = (struct ocfs2_extent_block *) bh->b_data;
5307         el = &eb->h_list;
5308         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5309                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5310                 ret = -EROFS;
5311                 goto out;
5312         }
5313
5314         *new_last_eb = bh;
5315         get_bh(*new_last_eb);
5316         mlog(0, "returning block %llu, (cpos: %u)\n",
5317              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5318 out:
5319         brelse(bh);
5320
5321         return ret;
5322 }
5323
5324 /*
5325  * Trim some clusters off the rightmost edge of a tree. Only called
5326  * during truncate.
5327  *
5328  * The caller needs to:
5329  *   - start journaling of each path component.
5330  *   - compute and fully set up any new last ext block
5331  */
5332 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5333                            handle_t *handle, struct ocfs2_truncate_context *tc,
5334                            u32 clusters_to_del, u64 *delete_start)
5335 {
5336         int ret, i, index = path->p_tree_depth;
5337         u32 new_edge = 0;
5338         u64 deleted_eb = 0;
5339         struct buffer_head *bh;
5340         struct ocfs2_extent_list *el;
5341         struct ocfs2_extent_rec *rec;
5342
5343         *delete_start = 0;
5344
5345         while (index >= 0) {
5346                 bh = path->p_node[index].bh;
5347                 el = path->p_node[index].el;
5348
5349                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5350                      index,  (unsigned long long)bh->b_blocknr);
5351
5352                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5353
5354                 if (index !=
5355                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5356                         ocfs2_error(inode->i_sb,
5357                                     "Inode %lu has invalid ext. block %llu",
5358                                     inode->i_ino,
5359                                     (unsigned long long)bh->b_blocknr);
5360                         ret = -EROFS;
5361                         goto out;
5362                 }
5363
5364 find_tail_record:
5365                 i = le16_to_cpu(el->l_next_free_rec) - 1;
5366                 rec = &el->l_recs[i];
5367
5368                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5369                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5370                      ocfs2_rec_clusters(el, rec),
5371                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5372                      le16_to_cpu(el->l_next_free_rec));
5373
5374                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5375
5376                 if (le16_to_cpu(el->l_tree_depth) == 0) {
5377                         /*
5378                          * If the leaf block contains a single empty
5379                          * extent and no records, we can just remove
5380                          * the block.
5381                          */
5382                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
5383                                 memset(rec, 0,
5384                                        sizeof(struct ocfs2_extent_rec));
5385                                 el->l_next_free_rec = cpu_to_le16(0);
5386
5387                                 goto delete;
5388                         }
5389
5390                         /*
5391                          * Remove any empty extents by shifting things
5392                          * left. That should make life much easier on
5393                          * the code below. This condition is rare
5394                          * enough that we shouldn't see a performance
5395                          * hit.
5396                          */
5397                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5398                                 le16_add_cpu(&el->l_next_free_rec, -1);
5399
5400                                 for(i = 0;
5401                                     i < le16_to_cpu(el->l_next_free_rec); i++)
5402                                         el->l_recs[i] = el->l_recs[i + 1];
5403
5404                                 memset(&el->l_recs[i], 0,
5405                                        sizeof(struct ocfs2_extent_rec));
5406
5407                                 /*
5408                                  * We've modified our extent list. The
5409                                  * simplest way to handle this change
5410                                  * is to being the search from the
5411                                  * start again.
5412                                  */
5413                                 goto find_tail_record;
5414                         }
5415
5416                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5417
5418                         /*
5419                          * We'll use "new_edge" on our way back up the
5420                          * tree to know what our rightmost cpos is.
5421                          */
5422                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
5423                         new_edge += le32_to_cpu(rec->e_cpos);
5424
5425                         /*
5426                          * The caller will use this to delete data blocks.
5427                          */
5428                         *delete_start = le64_to_cpu(rec->e_blkno)
5429                                 + ocfs2_clusters_to_blocks(inode->i_sb,
5430                                         le16_to_cpu(rec->e_leaf_clusters));
5431
5432                         /*
5433                          * If it's now empty, remove this record.
5434                          */
5435                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5436                                 memset(rec, 0,
5437                                        sizeof(struct ocfs2_extent_rec));
5438                                 le16_add_cpu(&el->l_next_free_rec, -1);
5439                         }
5440                 } else {
5441                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5442                                 memset(rec, 0,
5443                                        sizeof(struct ocfs2_extent_rec));
5444                                 le16_add_cpu(&el->l_next_free_rec, -1);
5445
5446                                 goto delete;
5447                         }
5448
5449                         /* Can this actually happen? */
5450                         if (le16_to_cpu(el->l_next_free_rec) == 0)
5451                                 goto delete;
5452
5453                         /*
5454                          * We never actually deleted any clusters
5455                          * because our leaf was empty. There's no
5456                          * reason to adjust the rightmost edge then.
5457                          */
5458                         if (new_edge == 0)
5459                                 goto delete;
5460
5461                         rec->e_int_clusters = cpu_to_le32(new_edge);
5462                         le32_add_cpu(&rec->e_int_clusters,
5463                                      -le32_to_cpu(rec->e_cpos));
5464
5465                          /*
5466                           * A deleted child record should have been
5467                           * caught above.
5468                           */
5469                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5470                 }
5471
5472 delete:
5473                 ret = ocfs2_journal_dirty(handle, bh);
5474                 if (ret) {
5475                         mlog_errno(ret);
5476                         goto out;
5477                 }
5478
5479                 mlog(0, "extent list container %llu, after: record %d: "
5480                      "(%u, %u, %llu), next = %u.\n",
5481                      (unsigned long long)bh->b_blocknr, i,
5482                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5483                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5484                      le16_to_cpu(el->l_next_free_rec));
5485
5486                 /*
5487                  * We must be careful to only attempt delete of an
5488                  * extent block (and not the root inode block).
5489                  */
5490                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5491                         struct ocfs2_extent_block *eb =
5492                                 (struct ocfs2_extent_block *)bh->b_data;
5493
5494                         /*
5495                          * Save this for use when processing the
5496                          * parent block.
5497                          */
5498                         deleted_eb = le64_to_cpu(eb->h_blkno);
5499
5500                         mlog(0, "deleting this extent block.\n");
5501
5502                         ocfs2_remove_from_cache(inode, bh);
5503
5504                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5505                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5506                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5507
5508                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5509                         /* An error here is not fatal. */
5510                         if (ret < 0)
5511                                 mlog_errno(ret);
5512                 } else {
5513                         deleted_eb = 0;
5514                 }
5515
5516                 index--;
5517         }
5518
5519         ret = 0;
5520 out:
5521         return ret;
5522 }
5523
5524 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5525                              unsigned int clusters_to_del,
5526                              struct inode *inode,
5527                              struct buffer_head *fe_bh,
5528                              handle_t *handle,
5529                              struct ocfs2_truncate_context *tc,
5530                              struct ocfs2_path *path)
5531 {
5532         int status;
5533         struct ocfs2_dinode *fe;
5534         struct ocfs2_extent_block *last_eb = NULL;
5535         struct ocfs2_extent_list *el;
5536         struct buffer_head *last_eb_bh = NULL;
5537         u64 delete_blk = 0;
5538
5539         fe = (struct ocfs2_dinode *) fe_bh->b_data;
5540
5541         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5542                                              path, &last_eb_bh);
5543         if (status < 0) {
5544                 mlog_errno(status);
5545                 goto bail;
5546         }
5547
5548         /*
5549          * Each component will be touched, so we might as well journal
5550          * here to avoid having to handle errors later.
5551          */
5552         status = ocfs2_journal_access_path(inode, handle, path);
5553         if (status < 0) {
5554                 mlog_errno(status);
5555                 goto bail;
5556         }
5557
5558         if (last_eb_bh) {
5559                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5560                                               OCFS2_JOURNAL_ACCESS_WRITE);
5561                 if (status < 0) {
5562                         mlog_errno(status);
5563                         goto bail;
5564                 }
5565
5566                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5567         }
5568
5569         el = &(fe->id2.i_list);
5570
5571         /*
5572          * Lower levels depend on this never happening, but it's best
5573          * to check it up here before changing the tree.
5574          */
5575         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5576                 ocfs2_error(inode->i_sb,
5577                             "Inode %lu has an empty extent record, depth %u\n",
5578                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
5579                 status = -EROFS;
5580                 goto bail;
5581         }
5582
5583         spin_lock(&OCFS2_I(inode)->ip_lock);
5584         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5585                                       clusters_to_del;
5586         spin_unlock(&OCFS2_I(inode)->ip_lock);
5587         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5588         inode->i_blocks = ocfs2_inode_sector_count(inode);
5589
5590         status = ocfs2_trim_tree(inode, path, handle, tc,
5591                                  clusters_to_del, &delete_blk);
5592         if (status) {
5593                 mlog_errno(status);
5594                 goto bail;
5595         }
5596
5597         if (le32_to_cpu(fe->i_clusters) == 0) {
5598                 /* trunc to zero is a special case. */
5599                 el->l_tree_depth = 0;
5600                 fe->i_last_eb_blk = 0;
5601         } else if (last_eb)
5602                 fe->i_last_eb_blk = last_eb->h_blkno;
5603
5604         status = ocfs2_journal_dirty(handle, fe_bh);
5605         if (status < 0) {
5606                 mlog_errno(status);
5607                 goto bail;
5608         }
5609
5610         if (last_eb) {
5611                 /* If there will be a new last extent block, then by
5612                  * definition, there cannot be any leaves to the right of
5613                  * him. */
5614                 last_eb->h_next_leaf_blk = 0;
5615                 status = ocfs2_journal_dirty(handle, last_eb_bh);
5616                 if (status < 0) {
5617                         mlog_errno(status);
5618                         goto bail;
5619                 }
5620         }
5621
5622         if (delete_blk) {
5623                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5624                                                    clusters_to_del);
5625                 if (status < 0) {
5626                         mlog_errno(status);
5627                         goto bail;
5628                 }
5629         }
5630         status = 0;
5631 bail:
5632
5633         mlog_exit(status);
5634         return status;
5635 }
5636
5637 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5638 {
5639         set_buffer_uptodate(bh);
5640         mark_buffer_dirty(bh);
5641         return 0;
5642 }
5643
5644 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5645 {
5646         set_buffer_uptodate(bh);
5647         mark_buffer_dirty(bh);
5648         return ocfs2_journal_dirty_data(handle, bh);
5649 }
5650
5651 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
5652                                      loff_t end, struct page **pages,
5653                                      int numpages, u64 phys, handle_t *handle)
5654 {
5655         int i, ret, partial = 0;
5656         void *kaddr;
5657         struct page *page;
5658         unsigned int from, to = PAGE_CACHE_SIZE;
5659         struct super_block *sb = inode->i_sb;
5660
5661         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5662
5663         if (numpages == 0)
5664                 goto out;
5665
5666         to = PAGE_CACHE_SIZE;
5667         for(i = 0; i < numpages; i++) {
5668                 page = pages[i];
5669
5670                 from = start & (PAGE_CACHE_SIZE - 1);
5671                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
5672                         to = end & (PAGE_CACHE_SIZE - 1);
5673
5674                 BUG_ON(from > PAGE_CACHE_SIZE);
5675                 BUG_ON(to > PAGE_CACHE_SIZE);
5676
5677                 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
5678                 if (ret)
5679                         mlog_errno(ret);
5680
5681                 kaddr = kmap_atomic(page, KM_USER0);
5682                 memset(kaddr + from, 0, to - from);
5683                 kunmap_atomic(kaddr, KM_USER0);
5684
5685                 /*
5686                  * Need to set the buffers we zero'd into uptodate
5687                  * here if they aren't - ocfs2_map_page_blocks()
5688                  * might've skipped some
5689                  */
5690                 if (ocfs2_should_order_data(inode)) {
5691                         ret = walk_page_buffers(handle,
5692                                                 page_buffers(page),
5693                                                 from, to, &partial,
5694                                                 ocfs2_ordered_zero_func);
5695                         if (ret < 0)
5696                                 mlog_errno(ret);
5697                 } else {
5698                         ret = walk_page_buffers(handle, page_buffers(page),
5699                                                 from, to, &partial,
5700                                                 ocfs2_writeback_zero_func);
5701                         if (ret < 0)
5702                                 mlog_errno(ret);
5703                 }
5704
5705                 if (!partial)
5706                         SetPageUptodate(page);
5707
5708                 flush_dcache_page(page);
5709
5710                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
5711         }
5712 out:
5713         if (pages) {
5714                 for (i = 0; i < numpages; i++) {
5715                         page = pages[i];
5716                         unlock_page(page);
5717                         mark_page_accessed(page);
5718                         page_cache_release(page);
5719                 }
5720         }
5721 }
5722
5723 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
5724                                 struct page **pages, int *num, u64 *phys)
5725 {
5726         int i, numpages = 0, ret = 0;
5727         unsigned int ext_flags;
5728         struct super_block *sb = inode->i_sb;
5729         struct address_space *mapping = inode->i_mapping;
5730         unsigned long index;
5731         loff_t last_page_bytes;
5732
5733         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5734         BUG_ON(start > end);
5735
5736         if (start == end)
5737                 goto out;
5738
5739         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
5740                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
5741
5742         ret = ocfs2_extent_map_get_blocks(inode, start >> sb->s_blocksize_bits,
5743                                           phys, NULL, &ext_flags);
5744         if (ret) {
5745                 mlog_errno(ret);
5746                 goto out;
5747         }
5748
5749         /* Tail is a hole. */
5750         if (*phys == 0)
5751                 goto out;
5752
5753         /* Tail is marked as unwritten, we can count on write to zero
5754          * in that case. */
5755         if (ext_flags & OCFS2_EXT_UNWRITTEN)
5756                 goto out;
5757
5758         last_page_bytes = PAGE_ALIGN(end);
5759         index = start >> PAGE_CACHE_SHIFT;
5760         do {
5761                 pages[numpages] = grab_cache_page(mapping, index);
5762                 if (!pages[numpages]) {
5763                         ret = -ENOMEM;
5764                         mlog_errno(ret);
5765                         goto out;
5766                 }
5767
5768                 numpages++;
5769                 index++;
5770         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
5771
5772 out:
5773         if (ret != 0) {
5774                 if (pages) {
5775                         for (i = 0; i < numpages; i++) {
5776                                 if (pages[i]) {
5777                                         unlock_page(pages[i]);
5778                                         page_cache_release(pages[i]);
5779                                 }
5780                         }
5781                 }
5782                 numpages = 0;
5783         }
5784
5785         *num = numpages;
5786
5787         return ret;
5788 }
5789
5790 /*
5791  * Zero the area past i_size but still within an allocated
5792  * cluster. This avoids exposing nonzero data on subsequent file
5793  * extends.
5794  *
5795  * We need to call this before i_size is updated on the inode because
5796  * otherwise block_write_full_page() will skip writeout of pages past
5797  * i_size. The new_i_size parameter is passed for this reason.
5798  */
5799 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
5800                                   u64 range_start, u64 range_end)
5801 {
5802         int ret, numpages;
5803         struct page **pages = NULL;
5804         u64 phys;
5805
5806         /*
5807          * File systems which don't support sparse files zero on every
5808          * extend.
5809          */
5810         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
5811                 return 0;
5812
5813         pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
5814                         sizeof(struct page *), GFP_NOFS);
5815         if (pages == NULL) {
5816                 ret = -ENOMEM;
5817                 mlog_errno(ret);
5818                 goto out;
5819         }
5820
5821         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
5822                                    &numpages, &phys);
5823         if (ret) {
5824                 mlog_errno(ret);
5825                 goto out;
5826         }
5827
5828         if (numpages == 0)
5829                 goto out;
5830
5831         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
5832                                  numpages, phys, handle);
5833
5834         /*
5835          * Initiate writeout of the pages we zero'd here. We don't
5836          * wait on them - the truncate_inode_pages() call later will
5837          * do that for us.
5838          */
5839         ret = do_sync_mapping_range(inode->i_mapping, range_start,
5840                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
5841         if (ret)
5842                 mlog_errno(ret);
5843
5844 out:
5845         if (pages)
5846                 kfree(pages);
5847
5848         return ret;
5849 }
5850
5851 /*
5852  * It is expected, that by the time you call this function,
5853  * inode->i_size and fe->i_size have been adjusted.
5854  *
5855  * WARNING: This will kfree the truncate context
5856  */
5857 int ocfs2_commit_truncate(struct ocfs2_super *osb,
5858                           struct inode *inode,
5859                           struct buffer_head *fe_bh,
5860                           struct ocfs2_truncate_context *tc)
5861 {
5862         int status, i, credits, tl_sem = 0;
5863         u32 clusters_to_del, new_highest_cpos, range;
5864         struct ocfs2_extent_list *el;
5865         handle_t *handle = NULL;
5866         struct inode *tl_inode = osb->osb_tl_inode;
5867         struct ocfs2_path *path = NULL;
5868
5869         mlog_entry_void();
5870
5871         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
5872                                                      i_size_read(inode));
5873
5874         path = ocfs2_new_inode_path(fe_bh);
5875         if (!path) {
5876                 status = -ENOMEM;
5877                 mlog_errno(status);
5878                 goto bail;
5879         }
5880
5881         ocfs2_extent_map_trunc(inode, new_highest_cpos);
5882
5883 start:
5884         /*
5885          * Check that we still have allocation to delete.
5886          */
5887         if (OCFS2_I(inode)->ip_clusters == 0) {
5888                 status = 0;
5889                 goto bail;
5890         }
5891
5892         /*
5893          * Truncate always works against the rightmost tree branch.
5894          */
5895         status = ocfs2_find_path(inode, path, UINT_MAX);
5896         if (status) {
5897                 mlog_errno(status);
5898                 goto bail;
5899         }
5900
5901         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
5902              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
5903
5904         /*
5905          * By now, el will point to the extent list on the bottom most
5906          * portion of this tree. Only the tail record is considered in
5907          * each pass.
5908          *
5909          * We handle the following cases, in order:
5910          * - empty extent: delete the remaining branch
5911          * - remove the entire record
5912          * - remove a partial record
5913          * - no record needs to be removed (truncate has completed)
5914          */
5915         el = path_leaf_el(path);
5916         if (le16_to_cpu(el->l_next_free_rec) == 0) {
5917                 ocfs2_error(inode->i_sb,
5918                             "Inode %llu has empty extent block at %llu\n",
5919                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
5920                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
5921                 status = -EROFS;
5922                 goto bail;
5923         }
5924
5925         i = le16_to_cpu(el->l_next_free_rec) - 1;
5926         range = le32_to_cpu(el->l_recs[i].e_cpos) +
5927                 ocfs2_rec_clusters(el, &el->l_recs[i]);
5928         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
5929                 clusters_to_del = 0;
5930         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
5931                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
5932         } else if (range > new_highest_cpos) {
5933                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
5934                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
5935                                   new_highest_cpos;
5936         } else {
5937                 status = 0;
5938                 goto bail;
5939         }
5940
5941         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
5942              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
5943
5944         BUG_ON(clusters_to_del == 0);
5945
5946         mutex_lock(&tl_inode->i_mutex);
5947         tl_sem = 1;
5948         /* ocfs2_truncate_log_needs_flush guarantees us at least one
5949          * record is free for use. If there isn't any, we flush to get
5950          * an empty truncate log.  */
5951         if (ocfs2_truncate_log_needs_flush(osb)) {
5952                 status = __ocfs2_flush_truncate_log(osb);
5953                 if (status < 0) {
5954                         mlog_errno(status);
5955                         goto bail;
5956                 }
5957         }
5958
5959         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
5960                                                 (struct ocfs2_dinode *)fe_bh->b_data,
5961                                                 el);
5962         handle = ocfs2_start_trans(osb, credits);
5963         if (IS_ERR(handle)) {
5964                 status = PTR_ERR(handle);
5965                 handle = NULL;
5966                 mlog_errno(status);
5967                 goto bail;
5968         }
5969
5970         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
5971                                    tc, path);
5972         if (status < 0) {
5973                 mlog_errno(status);
5974                 goto bail;
5975         }
5976
5977         mutex_unlock(&tl_inode->i_mutex);
5978         tl_sem = 0;
5979
5980         ocfs2_commit_trans(osb, handle);
5981         handle = NULL;
5982
5983         ocfs2_reinit_path(path, 1);
5984
5985         /*
5986          * The check above will catch the case where we've truncated
5987          * away all allocation.
5988          */
5989         goto start;
5990
5991 bail:
5992
5993         ocfs2_schedule_truncate_log_flush(osb, 1);
5994
5995         if (tl_sem)
5996                 mutex_unlock(&tl_inode->i_mutex);
5997
5998         if (handle)
5999                 ocfs2_commit_trans(osb, handle);
6000
6001         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6002
6003         ocfs2_free_path(path);
6004
6005         /* This will drop the ext_alloc cluster lock for us */
6006         ocfs2_free_truncate_context(tc);
6007
6008         mlog_exit(status);
6009         return status;
6010 }
6011
6012 /*
6013  * Expects the inode to already be locked.
6014  */
6015 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6016                            struct inode *inode,
6017                            struct buffer_head *fe_bh,
6018                            struct ocfs2_truncate_context **tc)
6019 {
6020         int status;
6021         unsigned int new_i_clusters;
6022         struct ocfs2_dinode *fe;
6023         struct ocfs2_extent_block *eb;
6024         struct buffer_head *last_eb_bh = NULL;
6025
6026         mlog_entry_void();
6027
6028         *tc = NULL;
6029
6030         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6031                                                   i_size_read(inode));
6032         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6033
6034         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6035              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6036              (unsigned long long)le64_to_cpu(fe->i_size));
6037
6038         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6039         if (!(*tc)) {
6040                 status = -ENOMEM;
6041                 mlog_errno(status);
6042                 goto bail;
6043         }
6044         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6045
6046         if (fe->id2.i_list.l_tree_depth) {
6047                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6048                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6049                 if (status < 0) {
6050                         mlog_errno(status);
6051                         goto bail;
6052                 }
6053                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6054                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6055                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6056
6057                         brelse(last_eb_bh);
6058                         status = -EIO;
6059                         goto bail;
6060                 }
6061         }
6062
6063         (*tc)->tc_last_eb_bh = last_eb_bh;
6064
6065         status = 0;
6066 bail:
6067         if (status < 0) {
6068                 if (*tc)
6069                         ocfs2_free_truncate_context(*tc);
6070                 *tc = NULL;
6071         }
6072         mlog_exit_void();
6073         return status;
6074 }
6075
6076 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6077 {
6078         /*
6079          * The caller is responsible for completing deallocation
6080          * before freeing the context.
6081          */
6082         if (tc->tc_dealloc.c_first_suballocator != NULL)
6083                 mlog(ML_NOTICE,
6084                      "Truncate completion has non-empty dealloc context\n");
6085
6086         if (tc->tc_last_eb_bh)
6087                 brelse(tc->tc_last_eb_bh);
6088
6089         kfree(tc);
6090 }