Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER       "power"
54 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86                 return 0;
87
88         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89                " Override with \"processor.max_cstate=%d\"\n", id->ident,
90                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92         max_cstate = (long)id->driver_data;
93
94         return 0;
95 }
96
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98         {set_max_cstate, "IBM ThinkPad R40e", {
99                                                DMI_MATCH(DMI_BIOS_VENDOR,
100                                                          "IBM"),
101                                                DMI_MATCH(DMI_BIOS_VERSION,
102                                                          "1SET60WW")},
103          (void *)1},
104         {set_max_cstate, "Medion 41700", {
105                                           DMI_MATCH(DMI_BIOS_VENDOR,
106                                                     "Phoenix Technologies LTD"),
107                                           DMI_MATCH(DMI_BIOS_VERSION,
108                                                     "R01-A1J")}, (void *)1},
109         {set_max_cstate, "Clevo 5600D", {
110                                          DMI_MATCH(DMI_BIOS_VENDOR,
111                                                    "Phoenix Technologies LTD"),
112                                          DMI_MATCH(DMI_BIOS_VERSION,
113                                                    "SHE845M0.86C.0013.D.0302131307")},
114          (void *)2},
115         {},
116 };
117
118 static inline u32 ticks_elapsed(u32 t1, u32 t2)
119 {
120         if (t2 >= t1)
121                 return (t2 - t1);
122         else if (!acpi_fadt.tmr_val_ext)
123                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
124         else
125                 return ((0xFFFFFFFF - t1) + t2);
126 }
127
128 static void
129 acpi_processor_power_activate(struct acpi_processor *pr,
130                               struct acpi_processor_cx *new)
131 {
132         struct acpi_processor_cx *old;
133
134         if (!pr || !new)
135                 return;
136
137         old = pr->power.state;
138
139         if (old)
140                 old->promotion.count = 0;
141         new->demotion.count = 0;
142
143         /* Cleanup from old state. */
144         if (old) {
145                 switch (old->type) {
146                 case ACPI_STATE_C3:
147                         /* Disable bus master reload */
148                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
149                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
150                                                   ACPI_MTX_DO_NOT_LOCK);
151                         break;
152                 }
153         }
154
155         /* Prepare to use new state. */
156         switch (new->type) {
157         case ACPI_STATE_C3:
158                 /* Enable bus master reload */
159                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
161                                           ACPI_MTX_DO_NOT_LOCK);
162                 break;
163         }
164
165         pr->power.state = new;
166
167         return;
168 }
169
170 static void acpi_safe_halt(void)
171 {
172         clear_thread_flag(TIF_POLLING_NRFLAG);
173         smp_mb__after_clear_bit();
174         if (!need_resched())
175                 safe_halt();
176         set_thread_flag(TIF_POLLING_NRFLAG);
177 }
178
179 static atomic_t c3_cpu_count;
180
181 static void acpi_processor_idle(void)
182 {
183         struct acpi_processor *pr = NULL;
184         struct acpi_processor_cx *cx = NULL;
185         struct acpi_processor_cx *next_state = NULL;
186         int sleep_ticks = 0;
187         u32 t1, t2 = 0;
188
189         pr = processors[smp_processor_id()];
190         if (!pr)
191                 return;
192
193         /*
194          * Interrupts must be disabled during bus mastering calculations and
195          * for C2/C3 transitions.
196          */
197         local_irq_disable();
198
199         /*
200          * Check whether we truly need to go idle, or should
201          * reschedule:
202          */
203         if (unlikely(need_resched())) {
204                 local_irq_enable();
205                 return;
206         }
207
208         cx = pr->power.state;
209         if (!cx) {
210                 if (pm_idle_save)
211                         pm_idle_save();
212                 else
213                         acpi_safe_halt();
214                 return;
215         }
216
217         /*
218          * Check BM Activity
219          * -----------------
220          * Check for bus mastering activity (if required), record, and check
221          * for demotion.
222          */
223         if (pr->flags.bm_check) {
224                 u32 bm_status = 0;
225                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
226
227                 if (diff > 32)
228                         diff = 32;
229
230                 while (diff) {
231                         /* if we didn't get called, assume there was busmaster activity */
232                         diff--;
233                         if (diff)
234                                 pr->power.bm_activity |= 0x1;
235                         pr->power.bm_activity <<= 1;
236                 }
237
238                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
239                                   &bm_status, ACPI_MTX_DO_NOT_LOCK);
240                 if (bm_status) {
241                         pr->power.bm_activity++;
242                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
243                                           1, ACPI_MTX_DO_NOT_LOCK);
244                 }
245                 /*
246                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
247                  * the true state of bus mastering activity; forcing us to
248                  * manually check the BMIDEA bit of each IDE channel.
249                  */
250                 else if (errata.piix4.bmisx) {
251                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
252                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
253                                 pr->power.bm_activity++;
254                 }
255
256                 pr->power.bm_check_timestamp = jiffies;
257
258                 /*
259                  * Apply bus mastering demotion policy.  Automatically demote
260                  * to avoid a faulty transition.  Note that the processor
261                  * won't enter a low-power state during this call (to this
262                  * funciton) but should upon the next.
263                  *
264                  * TBD: A better policy might be to fallback to the demotion
265                  *      state (use it for this quantum only) istead of
266                  *      demoting -- and rely on duration as our sole demotion
267                  *      qualification.  This may, however, introduce DMA
268                  *      issues (e.g. floppy DMA transfer overrun/underrun).
269                  */
270                 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
271                         local_irq_enable();
272                         next_state = cx->demotion.state;
273                         goto end;
274                 }
275         }
276
277         cx->usage++;
278
279 #ifdef CONFIG_HOTPLUG_CPU
280         /*
281          * Check for P_LVL2_UP flag before entering C2 and above on
282          * an SMP system. We do it here instead of doing it at _CST/P_LVL
283          * detection phase, to work cleanly with logical CPU hotplug.
284          */
285         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
286             !pr->flags.has_cst && acpi_fadt.plvl2_up)
287                 cx->type = ACPI_STATE_C1;
288 #endif
289         /*
290          * Sleep:
291          * ------
292          * Invoke the current Cx state to put the processor to sleep.
293          */
294         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
295                 clear_thread_flag(TIF_POLLING_NRFLAG);
296                 smp_mb__after_clear_bit();
297                 if (need_resched()) {
298                         set_thread_flag(TIF_POLLING_NRFLAG);
299                         local_irq_enable();
300                         return;
301                 }
302         }
303
304         switch (cx->type) {
305
306         case ACPI_STATE_C1:
307                 /*
308                  * Invoke C1.
309                  * Use the appropriate idle routine, the one that would
310                  * be used without acpi C-states.
311                  */
312                 if (pm_idle_save)
313                         pm_idle_save();
314                 else
315                         acpi_safe_halt();
316
317                 /*
318                  * TBD: Can't get time duration while in C1, as resumes
319                  *      go to an ISR rather than here.  Need to instrument
320                  *      base interrupt handler.
321                  */
322                 sleep_ticks = 0xFFFFFFFF;
323                 break;
324
325         case ACPI_STATE_C2:
326                 /* Get start time (ticks) */
327                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
328                 /* Invoke C2 */
329                 inb(cx->address);
330                 /* Dummy op - must do something useless after P_LVL2 read */
331                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
332                 /* Get end time (ticks) */
333                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
334                 /* Re-enable interrupts */
335                 local_irq_enable();
336                 set_thread_flag(TIF_POLLING_NRFLAG);
337                 /* Compute time (ticks) that we were actually asleep */
338                 sleep_ticks =
339                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
340                 break;
341
342         case ACPI_STATE_C3:
343
344                 if (pr->flags.bm_check) {
345                         if (atomic_inc_return(&c3_cpu_count) ==
346                             num_online_cpus()) {
347                                 /*
348                                  * All CPUs are trying to go to C3
349                                  * Disable bus master arbitration
350                                  */
351                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
352                                                   ACPI_MTX_DO_NOT_LOCK);
353                         }
354                 } else {
355                         /* SMP with no shared cache... Invalidate cache  */
356                         ACPI_FLUSH_CPU_CACHE();
357                 }
358
359                 /* Get start time (ticks) */
360                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
361                 /* Invoke C3 */
362                 inb(cx->address);
363                 /* Dummy op - must do something useless after P_LVL3 read */
364                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
365                 /* Get end time (ticks) */
366                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
367                 if (pr->flags.bm_check) {
368                         /* Enable bus master arbitration */
369                         atomic_dec(&c3_cpu_count);
370                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
371                                           ACPI_MTX_DO_NOT_LOCK);
372                 }
373
374                 /* Re-enable interrupts */
375                 local_irq_enable();
376                 set_thread_flag(TIF_POLLING_NRFLAG);
377                 /* Compute time (ticks) that we were actually asleep */
378                 sleep_ticks =
379                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
380                 break;
381
382         default:
383                 local_irq_enable();
384                 return;
385         }
386
387         next_state = pr->power.state;
388
389         /*
390          * Promotion?
391          * ----------
392          * Track the number of longs (time asleep is greater than threshold)
393          * and promote when the count threshold is reached.  Note that bus
394          * mastering activity may prevent promotions.
395          * Do not promote above max_cstate.
396          */
397         if (cx->promotion.state &&
398             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
399                 if (sleep_ticks > cx->promotion.threshold.ticks) {
400                         cx->promotion.count++;
401                         cx->demotion.count = 0;
402                         if (cx->promotion.count >=
403                             cx->promotion.threshold.count) {
404                                 if (pr->flags.bm_check) {
405                                         if (!
406                                             (pr->power.bm_activity & cx->
407                                              promotion.threshold.bm)) {
408                                                 next_state =
409                                                     cx->promotion.state;
410                                                 goto end;
411                                         }
412                                 } else {
413                                         next_state = cx->promotion.state;
414                                         goto end;
415                                 }
416                         }
417                 }
418         }
419
420         /*
421          * Demotion?
422          * ---------
423          * Track the number of shorts (time asleep is less than time threshold)
424          * and demote when the usage threshold is reached.
425          */
426         if (cx->demotion.state) {
427                 if (sleep_ticks < cx->demotion.threshold.ticks) {
428                         cx->demotion.count++;
429                         cx->promotion.count = 0;
430                         if (cx->demotion.count >= cx->demotion.threshold.count) {
431                                 next_state = cx->demotion.state;
432                                 goto end;
433                         }
434                 }
435         }
436
437       end:
438         /*
439          * Demote if current state exceeds max_cstate
440          */
441         if ((pr->power.state - pr->power.states) > max_cstate) {
442                 if (cx->demotion.state)
443                         next_state = cx->demotion.state;
444         }
445
446         /*
447          * New Cx State?
448          * -------------
449          * If we're going to start using a new Cx state we must clean up
450          * from the previous and prepare to use the new.
451          */
452         if (next_state != pr->power.state)
453                 acpi_processor_power_activate(pr, next_state);
454 }
455
456 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
457 {
458         unsigned int i;
459         unsigned int state_is_set = 0;
460         struct acpi_processor_cx *lower = NULL;
461         struct acpi_processor_cx *higher = NULL;
462         struct acpi_processor_cx *cx;
463
464         ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
465
466         if (!pr)
467                 return_VALUE(-EINVAL);
468
469         /*
470          * This function sets the default Cx state policy (OS idle handler).
471          * Our scheme is to promote quickly to C2 but more conservatively
472          * to C3.  We're favoring C2  for its characteristics of low latency
473          * (quick response), good power savings, and ability to allow bus
474          * mastering activity.  Note that the Cx state policy is completely
475          * customizable and can be altered dynamically.
476          */
477
478         /* startup state */
479         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
480                 cx = &pr->power.states[i];
481                 if (!cx->valid)
482                         continue;
483
484                 if (!state_is_set)
485                         pr->power.state = cx;
486                 state_is_set++;
487                 break;
488         }
489
490         if (!state_is_set)
491                 return_VALUE(-ENODEV);
492
493         /* demotion */
494         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
495                 cx = &pr->power.states[i];
496                 if (!cx->valid)
497                         continue;
498
499                 if (lower) {
500                         cx->demotion.state = lower;
501                         cx->demotion.threshold.ticks = cx->latency_ticks;
502                         cx->demotion.threshold.count = 1;
503                         if (cx->type == ACPI_STATE_C3)
504                                 cx->demotion.threshold.bm = bm_history;
505                 }
506
507                 lower = cx;
508         }
509
510         /* promotion */
511         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
512                 cx = &pr->power.states[i];
513                 if (!cx->valid)
514                         continue;
515
516                 if (higher) {
517                         cx->promotion.state = higher;
518                         cx->promotion.threshold.ticks = cx->latency_ticks;
519                         if (cx->type >= ACPI_STATE_C2)
520                                 cx->promotion.threshold.count = 4;
521                         else
522                                 cx->promotion.threshold.count = 10;
523                         if (higher->type == ACPI_STATE_C3)
524                                 cx->promotion.threshold.bm = bm_history;
525                 }
526
527                 higher = cx;
528         }
529
530         return_VALUE(0);
531 }
532
533 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
534 {
535         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
536
537         if (!pr)
538                 return_VALUE(-EINVAL);
539
540         if (!pr->pblk)
541                 return_VALUE(-ENODEV);
542
543         memset(pr->power.states, 0, sizeof(pr->power.states));
544
545         /* if info is obtained from pblk/fadt, type equals state */
546         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
547         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
548         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
549
550         /* the C0 state only exists as a filler in our array,
551          * and all processors need to support C1 */
552         pr->power.states[ACPI_STATE_C0].valid = 1;
553         pr->power.states[ACPI_STATE_C1].valid = 1;
554
555 #ifndef CONFIG_HOTPLUG_CPU
556         /*
557          * Check for P_LVL2_UP flag before entering C2 and above on
558          * an SMP system. 
559          */
560         if ((num_online_cpus() > 1) && acpi_fadt.plvl2_up)
561                 return_VALUE(-ENODEV);
562 #endif
563
564         /* determine C2 and C3 address from pblk */
565         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
566         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
567
568         /* determine latencies from FADT */
569         pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
570         pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
571
572         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573                           "lvl2[0x%08x] lvl3[0x%08x]\n",
574                           pr->power.states[ACPI_STATE_C2].address,
575                           pr->power.states[ACPI_STATE_C3].address));
576
577         return_VALUE(0);
578 }
579
580 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
581 {
582         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
583
584         memset(pr->power.states, 0, sizeof(pr->power.states));
585
586         /* if info is obtained from pblk/fadt, type equals state */
587         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
588         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
589         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
590
591         /* the C0 state only exists as a filler in our array,
592          * and all processors need to support C1 */
593         pr->power.states[ACPI_STATE_C0].valid = 1;
594         pr->power.states[ACPI_STATE_C1].valid = 1;
595
596         return_VALUE(0);
597 }
598
599 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
600 {
601         acpi_status status = 0;
602         acpi_integer count;
603         int i;
604         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
605         union acpi_object *cst;
606
607         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
608
609         if (nocst)
610                 return_VALUE(-ENODEV);
611
612         pr->power.count = 0;
613         for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
614                 memset(&(pr->power.states[i]), 0,
615                        sizeof(struct acpi_processor_cx));
616
617         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
618         if (ACPI_FAILURE(status)) {
619                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
620                 return_VALUE(-ENODEV);
621         }
622
623         cst = (union acpi_object *)buffer.pointer;
624
625         /* There must be at least 2 elements */
626         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
627                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
628                                   "not enough elements in _CST\n"));
629                 status = -EFAULT;
630                 goto end;
631         }
632
633         count = cst->package.elements[0].integer.value;
634
635         /* Validate number of power states. */
636         if (count < 1 || count != cst->package.count - 1) {
637                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
638                                   "count given by _CST is not valid\n"));
639                 status = -EFAULT;
640                 goto end;
641         }
642
643         /* We support up to ACPI_PROCESSOR_MAX_POWER. */
644         if (count > ACPI_PROCESSOR_MAX_POWER) {
645                 printk(KERN_WARNING
646                        "Limiting number of power states to max (%d)\n",
647                        ACPI_PROCESSOR_MAX_POWER);
648                 printk(KERN_WARNING
649                        "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
650                 count = ACPI_PROCESSOR_MAX_POWER;
651         }
652
653         /* Tell driver that at least _CST is supported. */
654         pr->flags.has_cst = 1;
655
656         for (i = 1; i <= count; i++) {
657                 union acpi_object *element;
658                 union acpi_object *obj;
659                 struct acpi_power_register *reg;
660                 struct acpi_processor_cx cx;
661
662                 memset(&cx, 0, sizeof(cx));
663
664                 element = (union acpi_object *)&(cst->package.elements[i]);
665                 if (element->type != ACPI_TYPE_PACKAGE)
666                         continue;
667
668                 if (element->package.count != 4)
669                         continue;
670
671                 obj = (union acpi_object *)&(element->package.elements[0]);
672
673                 if (obj->type != ACPI_TYPE_BUFFER)
674                         continue;
675
676                 reg = (struct acpi_power_register *)obj->buffer.pointer;
677
678                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
679                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
680                         continue;
681
682                 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
683                     0 : reg->address;
684
685                 /* There should be an easy way to extract an integer... */
686                 obj = (union acpi_object *)&(element->package.elements[1]);
687                 if (obj->type != ACPI_TYPE_INTEGER)
688                         continue;
689
690                 cx.type = obj->integer.value;
691
692                 if ((cx.type != ACPI_STATE_C1) &&
693                     (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
694                         continue;
695
696                 if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
697                         continue;
698
699                 obj = (union acpi_object *)&(element->package.elements[2]);
700                 if (obj->type != ACPI_TYPE_INTEGER)
701                         continue;
702
703                 cx.latency = obj->integer.value;
704
705                 obj = (union acpi_object *)&(element->package.elements[3]);
706                 if (obj->type != ACPI_TYPE_INTEGER)
707                         continue;
708
709                 cx.power = obj->integer.value;
710
711                 (pr->power.count)++;
712                 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
713         }
714
715         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
716                           pr->power.count));
717
718         /* Validate number of power states discovered */
719         if (pr->power.count < 2)
720                 status = -EFAULT;
721
722       end:
723         acpi_os_free(buffer.pointer);
724
725         return_VALUE(status);
726 }
727
728 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
729 {
730         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
731
732         if (!cx->address)
733                 return_VOID;
734
735         /*
736          * C2 latency must be less than or equal to 100
737          * microseconds.
738          */
739         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
740                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
741                                   "latency too large [%d]\n", cx->latency));
742                 return_VOID;
743         }
744
745         /*
746          * Otherwise we've met all of our C2 requirements.
747          * Normalize the C2 latency to expidite policy
748          */
749         cx->valid = 1;
750         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
751
752         return_VOID;
753 }
754
755 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
756                                            struct acpi_processor_cx *cx)
757 {
758         static int bm_check_flag;
759
760         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
761
762         if (!cx->address)
763                 return_VOID;
764
765         /*
766          * C3 latency must be less than or equal to 1000
767          * microseconds.
768          */
769         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
770                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
771                                   "latency too large [%d]\n", cx->latency));
772                 return_VOID;
773         }
774
775         /*
776          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
777          * DMA transfers are used by any ISA device to avoid livelock.
778          * Note that we could disable Type-F DMA (as recommended by
779          * the erratum), but this is known to disrupt certain ISA
780          * devices thus we take the conservative approach.
781          */
782         else if (errata.piix4.fdma) {
783                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
784                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
785                 return_VOID;
786         }
787
788         /* All the logic here assumes flags.bm_check is same across all CPUs */
789         if (!bm_check_flag) {
790                 /* Determine whether bm_check is needed based on CPU  */
791                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
792                 bm_check_flag = pr->flags.bm_check;
793         } else {
794                 pr->flags.bm_check = bm_check_flag;
795         }
796
797         if (pr->flags.bm_check) {
798                 /* bus mastering control is necessary */
799                 if (!pr->flags.bm_control) {
800                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
801                                           "C3 support requires bus mastering control\n"));
802                         return_VOID;
803                 }
804         } else {
805                 /*
806                  * WBINVD should be set in fadt, for C3 state to be
807                  * supported on when bm_check is not required.
808                  */
809                 if (acpi_fadt.wb_invd != 1) {
810                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
811                                           "Cache invalidation should work properly"
812                                           " for C3 to be enabled on SMP systems\n"));
813                         return_VOID;
814                 }
815                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
816                                   0, ACPI_MTX_DO_NOT_LOCK);
817         }
818
819         /*
820          * Otherwise we've met all of our C3 requirements.
821          * Normalize the C3 latency to expidite policy.  Enable
822          * checking of bus mastering status (bm_check) so we can
823          * use this in our C3 policy
824          */
825         cx->valid = 1;
826         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
827
828         return_VOID;
829 }
830
831 static int acpi_processor_power_verify(struct acpi_processor *pr)
832 {
833         unsigned int i;
834         unsigned int working = 0;
835
836         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
837                 struct acpi_processor_cx *cx = &pr->power.states[i];
838
839                 switch (cx->type) {
840                 case ACPI_STATE_C1:
841                         cx->valid = 1;
842                         break;
843
844                 case ACPI_STATE_C2:
845                         acpi_processor_power_verify_c2(cx);
846                         break;
847
848                 case ACPI_STATE_C3:
849                         acpi_processor_power_verify_c3(pr, cx);
850                         break;
851                 }
852
853                 if (cx->valid)
854                         working++;
855         }
856
857         return (working);
858 }
859
860 static int acpi_processor_get_power_info(struct acpi_processor *pr)
861 {
862         unsigned int i;
863         int result;
864
865         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
866
867         /* NOTE: the idle thread may not be running while calling
868          * this function */
869
870         result = acpi_processor_get_power_info_cst(pr);
871         if (result == -ENODEV)
872                 result = acpi_processor_get_power_info_fadt(pr);
873
874         if ((result) || (acpi_processor_power_verify(pr) < 2))
875                 result = acpi_processor_get_power_info_default_c1(pr);
876
877         /*
878          * Set Default Policy
879          * ------------------
880          * Now that we know which states are supported, set the default
881          * policy.  Note that this policy can be changed dynamically
882          * (e.g. encourage deeper sleeps to conserve battery life when
883          * not on AC).
884          */
885         result = acpi_processor_set_power_policy(pr);
886         if (result)
887                 return_VALUE(result);
888
889         /*
890          * if one state of type C2 or C3 is available, mark this
891          * CPU as being "idle manageable"
892          */
893         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
894                 if (pr->power.states[i].valid) {
895                         pr->power.count = i;
896                         if (pr->power.states[i].type >= ACPI_STATE_C2)
897                                 pr->flags.power = 1;
898                 }
899         }
900
901         return_VALUE(0);
902 }
903
904 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
905 {
906         int result = 0;
907
908         ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
909
910         if (!pr)
911                 return_VALUE(-EINVAL);
912
913         if (nocst) {
914                 return_VALUE(-ENODEV);
915         }
916
917         if (!pr->flags.power_setup_done)
918                 return_VALUE(-ENODEV);
919
920         /* Fall back to the default idle loop */
921         pm_idle = pm_idle_save;
922         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
923
924         pr->flags.power = 0;
925         result = acpi_processor_get_power_info(pr);
926         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
927                 pm_idle = acpi_processor_idle;
928
929         return_VALUE(result);
930 }
931
932 /* proc interface */
933
934 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
935 {
936         struct acpi_processor *pr = (struct acpi_processor *)seq->private;
937         unsigned int i;
938
939         ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
940
941         if (!pr)
942                 goto end;
943
944         seq_printf(seq, "active state:            C%zd\n"
945                    "max_cstate:              C%d\n"
946                    "bus master activity:     %08x\n",
947                    pr->power.state ? pr->power.state - pr->power.states : 0,
948                    max_cstate, (unsigned)pr->power.bm_activity);
949
950         seq_puts(seq, "states:\n");
951
952         for (i = 1; i <= pr->power.count; i++) {
953                 seq_printf(seq, "   %cC%d:                  ",
954                            (&pr->power.states[i] ==
955                             pr->power.state ? '*' : ' '), i);
956
957                 if (!pr->power.states[i].valid) {
958                         seq_puts(seq, "<not supported>\n");
959                         continue;
960                 }
961
962                 switch (pr->power.states[i].type) {
963                 case ACPI_STATE_C1:
964                         seq_printf(seq, "type[C1] ");
965                         break;
966                 case ACPI_STATE_C2:
967                         seq_printf(seq, "type[C2] ");
968                         break;
969                 case ACPI_STATE_C3:
970                         seq_printf(seq, "type[C3] ");
971                         break;
972                 default:
973                         seq_printf(seq, "type[--] ");
974                         break;
975                 }
976
977                 if (pr->power.states[i].promotion.state)
978                         seq_printf(seq, "promotion[C%zd] ",
979                                    (pr->power.states[i].promotion.state -
980                                     pr->power.states));
981                 else
982                         seq_puts(seq, "promotion[--] ");
983
984                 if (pr->power.states[i].demotion.state)
985                         seq_printf(seq, "demotion[C%zd] ",
986                                    (pr->power.states[i].demotion.state -
987                                     pr->power.states));
988                 else
989                         seq_puts(seq, "demotion[--] ");
990
991                 seq_printf(seq, "latency[%03d] usage[%08d]\n",
992                            pr->power.states[i].latency,
993                            pr->power.states[i].usage);
994         }
995
996       end:
997         return_VALUE(0);
998 }
999
1000 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1001 {
1002         return single_open(file, acpi_processor_power_seq_show,
1003                            PDE(inode)->data);
1004 }
1005
1006 static struct file_operations acpi_processor_power_fops = {
1007         .open = acpi_processor_power_open_fs,
1008         .read = seq_read,
1009         .llseek = seq_lseek,
1010         .release = single_release,
1011 };
1012
1013 int acpi_processor_power_init(struct acpi_processor *pr,
1014                               struct acpi_device *device)
1015 {
1016         acpi_status status = 0;
1017         static int first_run = 0;
1018         struct proc_dir_entry *entry = NULL;
1019         unsigned int i;
1020
1021         ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1022
1023         if (!first_run) {
1024                 dmi_check_system(processor_power_dmi_table);
1025                 if (max_cstate < ACPI_C_STATES_MAX)
1026                         printk(KERN_NOTICE
1027                                "ACPI: processor limited to max C-state %d\n",
1028                                max_cstate);
1029                 first_run++;
1030         }
1031
1032         if (!pr)
1033                 return_VALUE(-EINVAL);
1034
1035         if (acpi_fadt.cst_cnt && !nocst) {
1036                 status =
1037                     acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1038                 if (ACPI_FAILURE(status)) {
1039                         ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1040                                           "Notifying BIOS of _CST ability failed\n"));
1041                 }
1042         }
1043
1044         acpi_processor_power_init_pdc(&(pr->power), pr->id);
1045         acpi_processor_set_pdc(pr, pr->power.pdc);
1046         acpi_processor_get_power_info(pr);
1047
1048         /*
1049          * Install the idle handler if processor power management is supported.
1050          * Note that we use previously set idle handler will be used on
1051          * platforms that only support C1.
1052          */
1053         if ((pr->flags.power) && (!boot_option_idle_override)) {
1054                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1055                 for (i = 1; i <= pr->power.count; i++)
1056                         if (pr->power.states[i].valid)
1057                                 printk(" C%d[C%d]", i,
1058                                        pr->power.states[i].type);
1059                 printk(")\n");
1060
1061                 if (pr->id == 0) {
1062                         pm_idle_save = pm_idle;
1063                         pm_idle = acpi_processor_idle;
1064                 }
1065         }
1066
1067         /* 'power' [R] */
1068         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1069                                   S_IRUGO, acpi_device_dir(device));
1070         if (!entry)
1071                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1072                                   "Unable to create '%s' fs entry\n",
1073                                   ACPI_PROCESSOR_FILE_POWER));
1074         else {
1075                 entry->proc_fops = &acpi_processor_power_fops;
1076                 entry->data = acpi_driver_data(device);
1077                 entry->owner = THIS_MODULE;
1078         }
1079
1080         pr->flags.power_setup_done = 1;
1081
1082         return_VALUE(0);
1083 }
1084
1085 int acpi_processor_power_exit(struct acpi_processor *pr,
1086                               struct acpi_device *device)
1087 {
1088         ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1089
1090         pr->flags.power_setup_done = 0;
1091
1092         if (acpi_device_dir(device))
1093                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1094                                   acpi_device_dir(device));
1095
1096         /* Unregister the idle handler when processor #0 is removed. */
1097         if (pr->id == 0) {
1098                 pm_idle = pm_idle_save;
1099
1100                 /*
1101                  * We are about to unload the current idle thread pm callback
1102                  * (pm_idle), Wait for all processors to update cached/local
1103                  * copies of pm_idle before proceeding.
1104                  */
1105                 cpu_idle_wait();
1106         }
1107
1108         return_VALUE(0);
1109 }