manual update from upstream:
[linux-2.6] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/uaccess.h>
49 #include <asm/mmu_context.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52
53 /*
54  * Protected counters by write_lock_irq(&tasklist_lock)
55  */
56 unsigned long total_forks;      /* Handle normal Linux uptimes. */
57 int nr_threads;                 /* The idle threads do not count.. */
58
59 int max_threads;                /* tunable limit on nr_threads */
60
61 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62
63  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
64
65 EXPORT_SYMBOL(tasklist_lock);
66
67 int nr_processes(void)
68 {
69         int cpu;
70         int total = 0;
71
72         for_each_online_cpu(cpu)
73                 total += per_cpu(process_counts, cpu);
74
75         return total;
76 }
77
78 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
79 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
80 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
81 static kmem_cache_t *task_struct_cachep;
82 #endif
83
84 /* SLAB cache for signal_struct structures (tsk->signal) */
85 kmem_cache_t *signal_cachep;
86
87 /* SLAB cache for sighand_struct structures (tsk->sighand) */
88 kmem_cache_t *sighand_cachep;
89
90 /* SLAB cache for files_struct structures (tsk->files) */
91 kmem_cache_t *files_cachep;
92
93 /* SLAB cache for fs_struct structures (tsk->fs) */
94 kmem_cache_t *fs_cachep;
95
96 /* SLAB cache for vm_area_struct structures */
97 kmem_cache_t *vm_area_cachep;
98
99 /* SLAB cache for mm_struct structures (tsk->mm) */
100 static kmem_cache_t *mm_cachep;
101
102 void free_task(struct task_struct *tsk)
103 {
104         free_thread_info(tsk->thread_info);
105         free_task_struct(tsk);
106 }
107 EXPORT_SYMBOL(free_task);
108
109 void __put_task_struct(struct task_struct *tsk)
110 {
111         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
112         WARN_ON(atomic_read(&tsk->usage));
113         WARN_ON(tsk == current);
114
115         if (unlikely(tsk->audit_context))
116                 audit_free(tsk);
117         security_task_free(tsk);
118         free_uid(tsk->user);
119         put_group_info(tsk->group_info);
120
121         if (!profile_handoff_task(tsk))
122                 free_task(tsk);
123 }
124
125 void __init fork_init(unsigned long mempages)
126 {
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
130 #endif
131         /* create a slab on which task_structs can be allocated */
132         task_struct_cachep =
133                 kmem_cache_create("task_struct", sizeof(struct task_struct),
134                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
135 #endif
136
137         /*
138          * The default maximum number of threads is set to a safe
139          * value: the thread structures can take up at most half
140          * of memory.
141          */
142         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
143
144         /*
145          * we need to allow at least 20 threads to boot a system
146          */
147         if(max_threads < 20)
148                 max_threads = 20;
149
150         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
151         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
152         init_task.signal->rlim[RLIMIT_SIGPENDING] =
153                 init_task.signal->rlim[RLIMIT_NPROC];
154 }
155
156 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 {
158         struct task_struct *tsk;
159         struct thread_info *ti;
160
161         prepare_to_copy(orig);
162
163         tsk = alloc_task_struct();
164         if (!tsk)
165                 return NULL;
166
167         ti = alloc_thread_info(tsk);
168         if (!ti) {
169                 free_task_struct(tsk);
170                 return NULL;
171         }
172
173         *ti = *orig->thread_info;
174         *tsk = *orig;
175         tsk->thread_info = ti;
176         ti->task = tsk;
177
178         /* One for us, one for whoever does the "release_task()" (usually parent) */
179         atomic_set(&tsk->usage,2);
180         atomic_set(&tsk->fs_excl, 0);
181         return tsk;
182 }
183
184 #ifdef CONFIG_MMU
185 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
186 {
187         struct vm_area_struct *mpnt, *tmp, **pprev;
188         struct rb_node **rb_link, *rb_parent;
189         int retval;
190         unsigned long charge;
191         struct mempolicy *pol;
192
193         down_write(&oldmm->mmap_sem);
194         flush_cache_mm(oldmm);
195         down_write(&mm->mmap_sem);
196
197         mm->locked_vm = 0;
198         mm->mmap = NULL;
199         mm->mmap_cache = NULL;
200         mm->free_area_cache = oldmm->mmap_base;
201         mm->cached_hole_size = ~0UL;
202         mm->map_count = 0;
203         cpus_clear(mm->cpu_vm_mask);
204         mm->mm_rb = RB_ROOT;
205         rb_link = &mm->mm_rb.rb_node;
206         rb_parent = NULL;
207         pprev = &mm->mmap;
208
209         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
210                 struct file *file;
211
212                 if (mpnt->vm_flags & VM_DONTCOPY) {
213                         long pages = vma_pages(mpnt);
214                         mm->total_vm -= pages;
215                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
216                                                                 -pages);
217                         continue;
218                 }
219                 charge = 0;
220                 if (mpnt->vm_flags & VM_ACCOUNT) {
221                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
222                         if (security_vm_enough_memory(len))
223                                 goto fail_nomem;
224                         charge = len;
225                 }
226                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
227                 if (!tmp)
228                         goto fail_nomem;
229                 *tmp = *mpnt;
230                 pol = mpol_copy(vma_policy(mpnt));
231                 retval = PTR_ERR(pol);
232                 if (IS_ERR(pol))
233                         goto fail_nomem_policy;
234                 vma_set_policy(tmp, pol);
235                 tmp->vm_flags &= ~VM_LOCKED;
236                 tmp->vm_mm = mm;
237                 tmp->vm_next = NULL;
238                 anon_vma_link(tmp);
239                 file = tmp->vm_file;
240                 if (file) {
241                         struct inode *inode = file->f_dentry->d_inode;
242                         get_file(file);
243                         if (tmp->vm_flags & VM_DENYWRITE)
244                                 atomic_dec(&inode->i_writecount);
245       
246                         /* insert tmp into the share list, just after mpnt */
247                         spin_lock(&file->f_mapping->i_mmap_lock);
248                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
249                         flush_dcache_mmap_lock(file->f_mapping);
250                         vma_prio_tree_add(tmp, mpnt);
251                         flush_dcache_mmap_unlock(file->f_mapping);
252                         spin_unlock(&file->f_mapping->i_mmap_lock);
253                 }
254
255                 /*
256                  * Link in the new vma and copy the page table entries.
257                  */
258                 *pprev = tmp;
259                 pprev = &tmp->vm_next;
260
261                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
262                 rb_link = &tmp->vm_rb.rb_right;
263                 rb_parent = &tmp->vm_rb;
264
265                 mm->map_count++;
266                 retval = copy_page_range(mm, oldmm, tmp);
267
268                 if (tmp->vm_ops && tmp->vm_ops->open)
269                         tmp->vm_ops->open(tmp);
270
271                 if (retval)
272                         goto out;
273         }
274         retval = 0;
275 out:
276         up_write(&mm->mmap_sem);
277         flush_tlb_mm(oldmm);
278         up_write(&oldmm->mmap_sem);
279         return retval;
280 fail_nomem_policy:
281         kmem_cache_free(vm_area_cachep, tmp);
282 fail_nomem:
283         retval = -ENOMEM;
284         vm_unacct_memory(charge);
285         goto out;
286 }
287
288 static inline int mm_alloc_pgd(struct mm_struct * mm)
289 {
290         mm->pgd = pgd_alloc(mm);
291         if (unlikely(!mm->pgd))
292                 return -ENOMEM;
293         return 0;
294 }
295
296 static inline void mm_free_pgd(struct mm_struct * mm)
297 {
298         pgd_free(mm->pgd);
299 }
300 #else
301 #define dup_mmap(mm, oldmm)     (0)
302 #define mm_alloc_pgd(mm)        (0)
303 #define mm_free_pgd(mm)
304 #endif /* CONFIG_MMU */
305
306  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
307
308 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
309 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
310
311 #include <linux/init_task.h>
312
313 static struct mm_struct * mm_init(struct mm_struct * mm)
314 {
315         atomic_set(&mm->mm_users, 1);
316         atomic_set(&mm->mm_count, 1);
317         init_rwsem(&mm->mmap_sem);
318         INIT_LIST_HEAD(&mm->mmlist);
319         mm->core_waiters = 0;
320         mm->nr_ptes = 0;
321         set_mm_counter(mm, file_rss, 0);
322         set_mm_counter(mm, anon_rss, 0);
323         spin_lock_init(&mm->page_table_lock);
324         rwlock_init(&mm->ioctx_list_lock);
325         mm->ioctx_list = NULL;
326         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
327         mm->free_area_cache = TASK_UNMAPPED_BASE;
328         mm->cached_hole_size = ~0UL;
329
330         if (likely(!mm_alloc_pgd(mm))) {
331                 mm->def_flags = 0;
332                 return mm;
333         }
334         free_mm(mm);
335         return NULL;
336 }
337
338 /*
339  * Allocate and initialize an mm_struct.
340  */
341 struct mm_struct * mm_alloc(void)
342 {
343         struct mm_struct * mm;
344
345         mm = allocate_mm();
346         if (mm) {
347                 memset(mm, 0, sizeof(*mm));
348                 mm = mm_init(mm);
349         }
350         return mm;
351 }
352
353 /*
354  * Called when the last reference to the mm
355  * is dropped: either by a lazy thread or by
356  * mmput. Free the page directory and the mm.
357  */
358 void fastcall __mmdrop(struct mm_struct *mm)
359 {
360         BUG_ON(mm == &init_mm);
361         mm_free_pgd(mm);
362         destroy_context(mm);
363         free_mm(mm);
364 }
365
366 /*
367  * Decrement the use count and release all resources for an mm.
368  */
369 void mmput(struct mm_struct *mm)
370 {
371         if (atomic_dec_and_test(&mm->mm_users)) {
372                 exit_aio(mm);
373                 exit_mmap(mm);
374                 if (!list_empty(&mm->mmlist)) {
375                         spin_lock(&mmlist_lock);
376                         list_del(&mm->mmlist);
377                         spin_unlock(&mmlist_lock);
378                 }
379                 put_swap_token(mm);
380                 mmdrop(mm);
381         }
382 }
383 EXPORT_SYMBOL_GPL(mmput);
384
385 /**
386  * get_task_mm - acquire a reference to the task's mm
387  *
388  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
389  * this kernel workthread has transiently adopted a user mm with use_mm,
390  * to do its AIO) is not set and if so returns a reference to it, after
391  * bumping up the use count.  User must release the mm via mmput()
392  * after use.  Typically used by /proc and ptrace.
393  */
394 struct mm_struct *get_task_mm(struct task_struct *task)
395 {
396         struct mm_struct *mm;
397
398         task_lock(task);
399         mm = task->mm;
400         if (mm) {
401                 if (task->flags & PF_BORROWED_MM)
402                         mm = NULL;
403                 else
404                         atomic_inc(&mm->mm_users);
405         }
406         task_unlock(task);
407         return mm;
408 }
409 EXPORT_SYMBOL_GPL(get_task_mm);
410
411 /* Please note the differences between mmput and mm_release.
412  * mmput is called whenever we stop holding onto a mm_struct,
413  * error success whatever.
414  *
415  * mm_release is called after a mm_struct has been removed
416  * from the current process.
417  *
418  * This difference is important for error handling, when we
419  * only half set up a mm_struct for a new process and need to restore
420  * the old one.  Because we mmput the new mm_struct before
421  * restoring the old one. . .
422  * Eric Biederman 10 January 1998
423  */
424 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
425 {
426         struct completion *vfork_done = tsk->vfork_done;
427
428         /* Get rid of any cached register state */
429         deactivate_mm(tsk, mm);
430
431         /* notify parent sleeping on vfork() */
432         if (vfork_done) {
433                 tsk->vfork_done = NULL;
434                 complete(vfork_done);
435         }
436         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
437                 u32 __user * tidptr = tsk->clear_child_tid;
438                 tsk->clear_child_tid = NULL;
439
440                 /*
441                  * We don't check the error code - if userspace has
442                  * not set up a proper pointer then tough luck.
443                  */
444                 put_user(0, tidptr);
445                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
446         }
447 }
448
449 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
450 {
451         struct mm_struct * mm, *oldmm;
452         int retval;
453
454         tsk->min_flt = tsk->maj_flt = 0;
455         tsk->nvcsw = tsk->nivcsw = 0;
456
457         tsk->mm = NULL;
458         tsk->active_mm = NULL;
459
460         /*
461          * Are we cloning a kernel thread?
462          *
463          * We need to steal a active VM for that..
464          */
465         oldmm = current->mm;
466         if (!oldmm)
467                 return 0;
468
469         if (clone_flags & CLONE_VM) {
470                 atomic_inc(&oldmm->mm_users);
471                 mm = oldmm;
472                 /*
473                  * There are cases where the PTL is held to ensure no
474                  * new threads start up in user mode using an mm, which
475                  * allows optimizing out ipis; the tlb_gather_mmu code
476                  * is an example.
477                  */
478                 spin_unlock_wait(&oldmm->page_table_lock);
479                 goto good_mm;
480         }
481
482         retval = -ENOMEM;
483         mm = allocate_mm();
484         if (!mm)
485                 goto fail_nomem;
486
487         /* Copy the current MM stuff.. */
488         memcpy(mm, oldmm, sizeof(*mm));
489         if (!mm_init(mm))
490                 goto fail_nomem;
491
492         if (init_new_context(tsk,mm))
493                 goto fail_nocontext;
494
495         retval = dup_mmap(mm, oldmm);
496         if (retval)
497                 goto free_pt;
498
499         mm->hiwater_rss = get_mm_rss(mm);
500         mm->hiwater_vm = mm->total_vm;
501
502 good_mm:
503         tsk->mm = mm;
504         tsk->active_mm = mm;
505         return 0;
506
507 free_pt:
508         mmput(mm);
509 fail_nomem:
510         return retval;
511
512 fail_nocontext:
513         /*
514          * If init_new_context() failed, we cannot use mmput() to free the mm
515          * because it calls destroy_context()
516          */
517         mm_free_pgd(mm);
518         free_mm(mm);
519         return retval;
520 }
521
522 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
523 {
524         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
525         /* We don't need to lock fs - think why ;-) */
526         if (fs) {
527                 atomic_set(&fs->count, 1);
528                 rwlock_init(&fs->lock);
529                 fs->umask = old->umask;
530                 read_lock(&old->lock);
531                 fs->rootmnt = mntget(old->rootmnt);
532                 fs->root = dget(old->root);
533                 fs->pwdmnt = mntget(old->pwdmnt);
534                 fs->pwd = dget(old->pwd);
535                 if (old->altroot) {
536                         fs->altrootmnt = mntget(old->altrootmnt);
537                         fs->altroot = dget(old->altroot);
538                 } else {
539                         fs->altrootmnt = NULL;
540                         fs->altroot = NULL;
541                 }
542                 read_unlock(&old->lock);
543         }
544         return fs;
545 }
546
547 struct fs_struct *copy_fs_struct(struct fs_struct *old)
548 {
549         return __copy_fs_struct(old);
550 }
551
552 EXPORT_SYMBOL_GPL(copy_fs_struct);
553
554 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
555 {
556         if (clone_flags & CLONE_FS) {
557                 atomic_inc(&current->fs->count);
558                 return 0;
559         }
560         tsk->fs = __copy_fs_struct(current->fs);
561         if (!tsk->fs)
562                 return -ENOMEM;
563         return 0;
564 }
565
566 static int count_open_files(struct fdtable *fdt)
567 {
568         int size = fdt->max_fdset;
569         int i;
570
571         /* Find the last open fd */
572         for (i = size/(8*sizeof(long)); i > 0; ) {
573                 if (fdt->open_fds->fds_bits[--i])
574                         break;
575         }
576         i = (i+1) * 8 * sizeof(long);
577         return i;
578 }
579
580 static struct files_struct *alloc_files(void)
581 {
582         struct files_struct *newf;
583         struct fdtable *fdt;
584
585         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
586         if (!newf)
587                 goto out;
588
589         atomic_set(&newf->count, 1);
590
591         spin_lock_init(&newf->file_lock);
592         fdt = &newf->fdtab;
593         fdt->next_fd = 0;
594         fdt->max_fds = NR_OPEN_DEFAULT;
595         fdt->max_fdset = __FD_SETSIZE;
596         fdt->close_on_exec = &newf->close_on_exec_init;
597         fdt->open_fds = &newf->open_fds_init;
598         fdt->fd = &newf->fd_array[0];
599         INIT_RCU_HEAD(&fdt->rcu);
600         fdt->free_files = NULL;
601         fdt->next = NULL;
602         rcu_assign_pointer(newf->fdt, fdt);
603 out:
604         return newf;
605 }
606
607 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
608 {
609         struct files_struct *oldf, *newf;
610         struct file **old_fds, **new_fds;
611         int open_files, size, i, error = 0, expand;
612         struct fdtable *old_fdt, *new_fdt;
613
614         /*
615          * A background process may not have any files ...
616          */
617         oldf = current->files;
618         if (!oldf)
619                 goto out;
620
621         if (clone_flags & CLONE_FILES) {
622                 atomic_inc(&oldf->count);
623                 goto out;
624         }
625
626         /*
627          * Note: we may be using current for both targets (See exec.c)
628          * This works because we cache current->files (old) as oldf. Don't
629          * break this.
630          */
631         tsk->files = NULL;
632         error = -ENOMEM;
633         newf = alloc_files();
634         if (!newf)
635                 goto out;
636
637         spin_lock(&oldf->file_lock);
638         old_fdt = files_fdtable(oldf);
639         new_fdt = files_fdtable(newf);
640         size = old_fdt->max_fdset;
641         open_files = count_open_files(old_fdt);
642         expand = 0;
643
644         /*
645          * Check whether we need to allocate a larger fd array or fd set.
646          * Note: we're not a clone task, so the open count won't  change.
647          */
648         if (open_files > new_fdt->max_fdset) {
649                 new_fdt->max_fdset = 0;
650                 expand = 1;
651         }
652         if (open_files > new_fdt->max_fds) {
653                 new_fdt->max_fds = 0;
654                 expand = 1;
655         }
656
657         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
658         if (expand) {
659                 spin_unlock(&oldf->file_lock);
660                 spin_lock(&newf->file_lock);
661                 error = expand_files(newf, open_files-1);
662                 spin_unlock(&newf->file_lock);
663                 if (error < 0)
664                         goto out_release;
665                 new_fdt = files_fdtable(newf);
666                 /*
667                  * Reacquire the oldf lock and a pointer to its fd table
668                  * who knows it may have a new bigger fd table. We need
669                  * the latest pointer.
670                  */
671                 spin_lock(&oldf->file_lock);
672                 old_fdt = files_fdtable(oldf);
673         }
674
675         old_fds = old_fdt->fd;
676         new_fds = new_fdt->fd;
677
678         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
679         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
680
681         for (i = open_files; i != 0; i--) {
682                 struct file *f = *old_fds++;
683                 if (f) {
684                         get_file(f);
685                 } else {
686                         /*
687                          * The fd may be claimed in the fd bitmap but not yet
688                          * instantiated in the files array if a sibling thread
689                          * is partway through open().  So make sure that this
690                          * fd is available to the new process.
691                          */
692                         FD_CLR(open_files - i, new_fdt->open_fds);
693                 }
694                 rcu_assign_pointer(*new_fds++, f);
695         }
696         spin_unlock(&oldf->file_lock);
697
698         /* compute the remainder to be cleared */
699         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
700
701         /* This is long word aligned thus could use a optimized version */ 
702         memset(new_fds, 0, size); 
703
704         if (new_fdt->max_fdset > open_files) {
705                 int left = (new_fdt->max_fdset-open_files)/8;
706                 int start = open_files / (8 * sizeof(unsigned long));
707
708                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
709                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
710         }
711
712         tsk->files = newf;
713         error = 0;
714 out:
715         return error;
716
717 out_release:
718         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
719         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
720         free_fd_array(new_fdt->fd, new_fdt->max_fds);
721         kmem_cache_free(files_cachep, newf);
722         goto out;
723 }
724
725 /*
726  *      Helper to unshare the files of the current task.
727  *      We don't want to expose copy_files internals to
728  *      the exec layer of the kernel.
729  */
730
731 int unshare_files(void)
732 {
733         struct files_struct *files  = current->files;
734         int rc;
735
736         if(!files)
737                 BUG();
738
739         /* This can race but the race causes us to copy when we don't
740            need to and drop the copy */
741         if(atomic_read(&files->count) == 1)
742         {
743                 atomic_inc(&files->count);
744                 return 0;
745         }
746         rc = copy_files(0, current);
747         if(rc)
748                 current->files = files;
749         return rc;
750 }
751
752 EXPORT_SYMBOL(unshare_files);
753
754 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
755 {
756         struct sighand_struct *sig;
757
758         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
759                 atomic_inc(&current->sighand->count);
760                 return 0;
761         }
762         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
763         tsk->sighand = sig;
764         if (!sig)
765                 return -ENOMEM;
766         spin_lock_init(&sig->siglock);
767         atomic_set(&sig->count, 1);
768         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
769         return 0;
770 }
771
772 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
773 {
774         struct signal_struct *sig;
775         int ret;
776
777         if (clone_flags & CLONE_THREAD) {
778                 atomic_inc(&current->signal->count);
779                 atomic_inc(&current->signal->live);
780                 return 0;
781         }
782         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
783         tsk->signal = sig;
784         if (!sig)
785                 return -ENOMEM;
786
787         ret = copy_thread_group_keys(tsk);
788         if (ret < 0) {
789                 kmem_cache_free(signal_cachep, sig);
790                 return ret;
791         }
792
793         atomic_set(&sig->count, 1);
794         atomic_set(&sig->live, 1);
795         init_waitqueue_head(&sig->wait_chldexit);
796         sig->flags = 0;
797         sig->group_exit_code = 0;
798         sig->group_exit_task = NULL;
799         sig->group_stop_count = 0;
800         sig->curr_target = NULL;
801         init_sigpending(&sig->shared_pending);
802         INIT_LIST_HEAD(&sig->posix_timers);
803
804         sig->it_real_value = sig->it_real_incr = 0;
805         sig->real_timer.function = it_real_fn;
806         sig->real_timer.data = (unsigned long) tsk;
807         init_timer(&sig->real_timer);
808
809         sig->it_virt_expires = cputime_zero;
810         sig->it_virt_incr = cputime_zero;
811         sig->it_prof_expires = cputime_zero;
812         sig->it_prof_incr = cputime_zero;
813
814         sig->tty = current->signal->tty;
815         sig->pgrp = process_group(current);
816         sig->session = current->signal->session;
817         sig->leader = 0;        /* session leadership doesn't inherit */
818         sig->tty_old_pgrp = 0;
819
820         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
821         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
822         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
823         sig->sched_time = 0;
824         INIT_LIST_HEAD(&sig->cpu_timers[0]);
825         INIT_LIST_HEAD(&sig->cpu_timers[1]);
826         INIT_LIST_HEAD(&sig->cpu_timers[2]);
827
828         task_lock(current->group_leader);
829         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
830         task_unlock(current->group_leader);
831
832         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
833                 /*
834                  * New sole thread in the process gets an expiry time
835                  * of the whole CPU time limit.
836                  */
837                 tsk->it_prof_expires =
838                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
839         }
840
841         return 0;
842 }
843
844 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
845 {
846         unsigned long new_flags = p->flags;
847
848         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
849         new_flags |= PF_FORKNOEXEC;
850         if (!(clone_flags & CLONE_PTRACE))
851                 p->ptrace = 0;
852         p->flags = new_flags;
853 }
854
855 asmlinkage long sys_set_tid_address(int __user *tidptr)
856 {
857         current->clear_child_tid = tidptr;
858
859         return current->pid;
860 }
861
862 /*
863  * This creates a new process as a copy of the old one,
864  * but does not actually start it yet.
865  *
866  * It copies the registers, and all the appropriate
867  * parts of the process environment (as per the clone
868  * flags). The actual kick-off is left to the caller.
869  */
870 static task_t *copy_process(unsigned long clone_flags,
871                                  unsigned long stack_start,
872                                  struct pt_regs *regs,
873                                  unsigned long stack_size,
874                                  int __user *parent_tidptr,
875                                  int __user *child_tidptr,
876                                  int pid)
877 {
878         int retval;
879         struct task_struct *p = NULL;
880
881         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
882                 return ERR_PTR(-EINVAL);
883
884         /*
885          * Thread groups must share signals as well, and detached threads
886          * can only be started up within the thread group.
887          */
888         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
889                 return ERR_PTR(-EINVAL);
890
891         /*
892          * Shared signal handlers imply shared VM. By way of the above,
893          * thread groups also imply shared VM. Blocking this case allows
894          * for various simplifications in other code.
895          */
896         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
897                 return ERR_PTR(-EINVAL);
898
899         retval = security_task_create(clone_flags);
900         if (retval)
901                 goto fork_out;
902
903         retval = -ENOMEM;
904         p = dup_task_struct(current);
905         if (!p)
906                 goto fork_out;
907
908         retval = -EAGAIN;
909         if (atomic_read(&p->user->processes) >=
910                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
911                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
912                                 p->user != &root_user)
913                         goto bad_fork_free;
914         }
915
916         atomic_inc(&p->user->__count);
917         atomic_inc(&p->user->processes);
918         get_group_info(p->group_info);
919
920         /*
921          * If multiple threads are within copy_process(), then this check
922          * triggers too late. This doesn't hurt, the check is only there
923          * to stop root fork bombs.
924          */
925         if (nr_threads >= max_threads)
926                 goto bad_fork_cleanup_count;
927
928         if (!try_module_get(p->thread_info->exec_domain->module))
929                 goto bad_fork_cleanup_count;
930
931         if (p->binfmt && !try_module_get(p->binfmt->module))
932                 goto bad_fork_cleanup_put_domain;
933
934         p->did_exec = 0;
935         copy_flags(clone_flags, p);
936         p->pid = pid;
937         retval = -EFAULT;
938         if (clone_flags & CLONE_PARENT_SETTID)
939                 if (put_user(p->pid, parent_tidptr))
940                         goto bad_fork_cleanup;
941
942         p->proc_dentry = NULL;
943
944         INIT_LIST_HEAD(&p->children);
945         INIT_LIST_HEAD(&p->sibling);
946         p->vfork_done = NULL;
947         spin_lock_init(&p->alloc_lock);
948         spin_lock_init(&p->proc_lock);
949
950         clear_tsk_thread_flag(p, TIF_SIGPENDING);
951         init_sigpending(&p->pending);
952
953         p->utime = cputime_zero;
954         p->stime = cputime_zero;
955         p->sched_time = 0;
956         p->rchar = 0;           /* I/O counter: bytes read */
957         p->wchar = 0;           /* I/O counter: bytes written */
958         p->syscr = 0;           /* I/O counter: read syscalls */
959         p->syscw = 0;           /* I/O counter: write syscalls */
960         acct_clear_integrals(p);
961
962         p->it_virt_expires = cputime_zero;
963         p->it_prof_expires = cputime_zero;
964         p->it_sched_expires = 0;
965         INIT_LIST_HEAD(&p->cpu_timers[0]);
966         INIT_LIST_HEAD(&p->cpu_timers[1]);
967         INIT_LIST_HEAD(&p->cpu_timers[2]);
968
969         p->lock_depth = -1;             /* -1 = no lock */
970         do_posix_clock_monotonic_gettime(&p->start_time);
971         p->security = NULL;
972         p->io_context = NULL;
973         p->io_wait = NULL;
974         p->audit_context = NULL;
975 #ifdef CONFIG_NUMA
976         p->mempolicy = mpol_copy(p->mempolicy);
977         if (IS_ERR(p->mempolicy)) {
978                 retval = PTR_ERR(p->mempolicy);
979                 p->mempolicy = NULL;
980                 goto bad_fork_cleanup;
981         }
982 #endif
983
984         p->tgid = p->pid;
985         if (clone_flags & CLONE_THREAD)
986                 p->tgid = current->tgid;
987
988         if ((retval = security_task_alloc(p)))
989                 goto bad_fork_cleanup_policy;
990         if ((retval = audit_alloc(p)))
991                 goto bad_fork_cleanup_security;
992         /* copy all the process information */
993         if ((retval = copy_semundo(clone_flags, p)))
994                 goto bad_fork_cleanup_audit;
995         if ((retval = copy_files(clone_flags, p)))
996                 goto bad_fork_cleanup_semundo;
997         if ((retval = copy_fs(clone_flags, p)))
998                 goto bad_fork_cleanup_files;
999         if ((retval = copy_sighand(clone_flags, p)))
1000                 goto bad_fork_cleanup_fs;
1001         if ((retval = copy_signal(clone_flags, p)))
1002                 goto bad_fork_cleanup_sighand;
1003         if ((retval = copy_mm(clone_flags, p)))
1004                 goto bad_fork_cleanup_signal;
1005         if ((retval = copy_keys(clone_flags, p)))
1006                 goto bad_fork_cleanup_mm;
1007         if ((retval = copy_namespace(clone_flags, p)))
1008                 goto bad_fork_cleanup_keys;
1009         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1010         if (retval)
1011                 goto bad_fork_cleanup_namespace;
1012
1013         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1014         /*
1015          * Clear TID on mm_release()?
1016          */
1017         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1018
1019         /*
1020          * Syscall tracing should be turned off in the child regardless
1021          * of CLONE_PTRACE.
1022          */
1023         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1024 #ifdef TIF_SYSCALL_EMU
1025         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1026 #endif
1027
1028         /* Our parent execution domain becomes current domain
1029            These must match for thread signalling to apply */
1030            
1031         p->parent_exec_id = p->self_exec_id;
1032
1033         /* ok, now we should be set up.. */
1034         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1035         p->pdeath_signal = 0;
1036         p->exit_state = 0;
1037
1038         /*
1039          * Ok, make it visible to the rest of the system.
1040          * We dont wake it up yet.
1041          */
1042         p->group_leader = p;
1043         INIT_LIST_HEAD(&p->ptrace_children);
1044         INIT_LIST_HEAD(&p->ptrace_list);
1045
1046         /* Perform scheduler related setup. Assign this task to a CPU. */
1047         sched_fork(p, clone_flags);
1048
1049         /* Need tasklist lock for parent etc handling! */
1050         write_lock_irq(&tasklist_lock);
1051
1052         /*
1053          * The task hasn't been attached yet, so its cpus_allowed mask will
1054          * not be changed, nor will its assigned CPU.
1055          *
1056          * The cpus_allowed mask of the parent may have changed after it was
1057          * copied first time - so re-copy it here, then check the child's CPU
1058          * to ensure it is on a valid CPU (and if not, just force it back to
1059          * parent's CPU). This avoids alot of nasty races.
1060          */
1061         p->cpus_allowed = current->cpus_allowed;
1062         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1063                         !cpu_online(task_cpu(p))))
1064                 set_task_cpu(p, smp_processor_id());
1065
1066         /*
1067          * Check for pending SIGKILL! The new thread should not be allowed
1068          * to slip out of an OOM kill. (or normal SIGKILL.)
1069          */
1070         if (sigismember(&current->pending.signal, SIGKILL)) {
1071                 write_unlock_irq(&tasklist_lock);
1072                 retval = -EINTR;
1073                 goto bad_fork_cleanup_namespace;
1074         }
1075
1076         /* CLONE_PARENT re-uses the old parent */
1077         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1078                 p->real_parent = current->real_parent;
1079         else
1080                 p->real_parent = current;
1081         p->parent = p->real_parent;
1082
1083         if (clone_flags & CLONE_THREAD) {
1084                 spin_lock(&current->sighand->siglock);
1085                 /*
1086                  * Important: if an exit-all has been started then
1087                  * do not create this new thread - the whole thread
1088                  * group is supposed to exit anyway.
1089                  */
1090                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1091                         spin_unlock(&current->sighand->siglock);
1092                         write_unlock_irq(&tasklist_lock);
1093                         retval = -EAGAIN;
1094                         goto bad_fork_cleanup_namespace;
1095                 }
1096                 p->group_leader = current->group_leader;
1097
1098                 if (current->signal->group_stop_count > 0) {
1099                         /*
1100                          * There is an all-stop in progress for the group.
1101                          * We ourselves will stop as soon as we check signals.
1102                          * Make the new thread part of that group stop too.
1103                          */
1104                         current->signal->group_stop_count++;
1105                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1106                 }
1107
1108                 if (!cputime_eq(current->signal->it_virt_expires,
1109                                 cputime_zero) ||
1110                     !cputime_eq(current->signal->it_prof_expires,
1111                                 cputime_zero) ||
1112                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1113                     !list_empty(&current->signal->cpu_timers[0]) ||
1114                     !list_empty(&current->signal->cpu_timers[1]) ||
1115                     !list_empty(&current->signal->cpu_timers[2])) {
1116                         /*
1117                          * Have child wake up on its first tick to check
1118                          * for process CPU timers.
1119                          */
1120                         p->it_prof_expires = jiffies_to_cputime(1);
1121                 }
1122
1123                 spin_unlock(&current->sighand->siglock);
1124         }
1125
1126         /*
1127          * inherit ioprio
1128          */
1129         p->ioprio = current->ioprio;
1130
1131         SET_LINKS(p);
1132         if (unlikely(p->ptrace & PT_PTRACED))
1133                 __ptrace_link(p, current->parent);
1134
1135         cpuset_fork(p);
1136
1137         attach_pid(p, PIDTYPE_PID, p->pid);
1138         attach_pid(p, PIDTYPE_TGID, p->tgid);
1139         if (thread_group_leader(p)) {
1140                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1141                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1142                 if (p->pid)
1143                         __get_cpu_var(process_counts)++;
1144         }
1145
1146         if (!current->signal->tty && p->signal->tty)
1147                 p->signal->tty = NULL;
1148
1149         nr_threads++;
1150         total_forks++;
1151         write_unlock_irq(&tasklist_lock);
1152         retval = 0;
1153
1154 fork_out:
1155         if (retval)
1156                 return ERR_PTR(retval);
1157         return p;
1158
1159 bad_fork_cleanup_namespace:
1160         exit_namespace(p);
1161 bad_fork_cleanup_keys:
1162         exit_keys(p);
1163 bad_fork_cleanup_mm:
1164         if (p->mm)
1165                 mmput(p->mm);
1166 bad_fork_cleanup_signal:
1167         exit_signal(p);
1168 bad_fork_cleanup_sighand:
1169         exit_sighand(p);
1170 bad_fork_cleanup_fs:
1171         exit_fs(p); /* blocking */
1172 bad_fork_cleanup_files:
1173         exit_files(p); /* blocking */
1174 bad_fork_cleanup_semundo:
1175         exit_sem(p);
1176 bad_fork_cleanup_audit:
1177         audit_free(p);
1178 bad_fork_cleanup_security:
1179         security_task_free(p);
1180 bad_fork_cleanup_policy:
1181 #ifdef CONFIG_NUMA
1182         mpol_free(p->mempolicy);
1183 #endif
1184 bad_fork_cleanup:
1185         if (p->binfmt)
1186                 module_put(p->binfmt->module);
1187 bad_fork_cleanup_put_domain:
1188         module_put(p->thread_info->exec_domain->module);
1189 bad_fork_cleanup_count:
1190         put_group_info(p->group_info);
1191         atomic_dec(&p->user->processes);
1192         free_uid(p->user);
1193 bad_fork_free:
1194         free_task(p);
1195         goto fork_out;
1196 }
1197
1198 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1199 {
1200         memset(regs, 0, sizeof(struct pt_regs));
1201         return regs;
1202 }
1203
1204 task_t * __devinit fork_idle(int cpu)
1205 {
1206         task_t *task;
1207         struct pt_regs regs;
1208
1209         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1210         if (!task)
1211                 return ERR_PTR(-ENOMEM);
1212         init_idle(task, cpu);
1213         unhash_process(task);
1214         return task;
1215 }
1216
1217 static inline int fork_traceflag (unsigned clone_flags)
1218 {
1219         if (clone_flags & CLONE_UNTRACED)
1220                 return 0;
1221         else if (clone_flags & CLONE_VFORK) {
1222                 if (current->ptrace & PT_TRACE_VFORK)
1223                         return PTRACE_EVENT_VFORK;
1224         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1225                 if (current->ptrace & PT_TRACE_CLONE)
1226                         return PTRACE_EVENT_CLONE;
1227         } else if (current->ptrace & PT_TRACE_FORK)
1228                 return PTRACE_EVENT_FORK;
1229
1230         return 0;
1231 }
1232
1233 /*
1234  *  Ok, this is the main fork-routine.
1235  *
1236  * It copies the process, and if successful kick-starts
1237  * it and waits for it to finish using the VM if required.
1238  */
1239 long do_fork(unsigned long clone_flags,
1240               unsigned long stack_start,
1241               struct pt_regs *regs,
1242               unsigned long stack_size,
1243               int __user *parent_tidptr,
1244               int __user *child_tidptr)
1245 {
1246         struct task_struct *p;
1247         int trace = 0;
1248         long pid = alloc_pidmap();
1249
1250         if (pid < 0)
1251                 return -EAGAIN;
1252         if (unlikely(current->ptrace)) {
1253                 trace = fork_traceflag (clone_flags);
1254                 if (trace)
1255                         clone_flags |= CLONE_PTRACE;
1256         }
1257
1258         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1259         /*
1260          * Do this prior waking up the new thread - the thread pointer
1261          * might get invalid after that point, if the thread exits quickly.
1262          */
1263         if (!IS_ERR(p)) {
1264                 struct completion vfork;
1265
1266                 if (clone_flags & CLONE_VFORK) {
1267                         p->vfork_done = &vfork;
1268                         init_completion(&vfork);
1269                 }
1270
1271                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1272                         /*
1273                          * We'll start up with an immediate SIGSTOP.
1274                          */
1275                         sigaddset(&p->pending.signal, SIGSTOP);
1276                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1277                 }
1278
1279                 if (!(clone_flags & CLONE_STOPPED))
1280                         wake_up_new_task(p, clone_flags);
1281                 else
1282                         p->state = TASK_STOPPED;
1283
1284                 if (unlikely (trace)) {
1285                         current->ptrace_message = pid;
1286                         ptrace_notify ((trace << 8) | SIGTRAP);
1287                 }
1288
1289                 if (clone_flags & CLONE_VFORK) {
1290                         wait_for_completion(&vfork);
1291                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1292                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1293                 }
1294         } else {
1295                 free_pidmap(pid);
1296                 pid = PTR_ERR(p);
1297         }
1298         return pid;
1299 }
1300
1301 void __init proc_caches_init(void)
1302 {
1303         sighand_cachep = kmem_cache_create("sighand_cache",
1304                         sizeof(struct sighand_struct), 0,
1305                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1306         signal_cachep = kmem_cache_create("signal_cache",
1307                         sizeof(struct signal_struct), 0,
1308                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1309         files_cachep = kmem_cache_create("files_cache", 
1310                         sizeof(struct files_struct), 0,
1311                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1312         fs_cachep = kmem_cache_create("fs_cache", 
1313                         sizeof(struct fs_struct), 0,
1314                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1315         vm_area_cachep = kmem_cache_create("vm_area_struct",
1316                         sizeof(struct vm_area_struct), 0,
1317                         SLAB_PANIC, NULL, NULL);
1318         mm_cachep = kmem_cache_create("mm_struct",
1319                         sizeof(struct mm_struct), 0,
1320                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1321 }