x86: mach-default setup.c cleanups
[linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52
53 /*
54  * Operations for a specific extent tree type.
55  *
56  * To implement an on-disk btree (extent tree) type in ocfs2, add
57  * an ocfs2_extent_tree_operations structure and the matching
58  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
59  * for the allocation portion of the extent tree.
60  */
61 struct ocfs2_extent_tree_operations {
62         /*
63          * last_eb_blk is the block number of the right most leaf extent
64          * block.  Most on-disk structures containing an extent tree store
65          * this value for fast access.  The ->eo_set_last_eb_blk() and
66          * ->eo_get_last_eb_blk() operations access this value.  They are
67          *  both required.
68          */
69         void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70                                    u64 blkno);
71         u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72
73         /*
74          * The on-disk structure usually keeps track of how many total
75          * clusters are stored in this extent tree.  This function updates
76          * that value.  new_clusters is the delta, and must be
77          * added to the total.  Required.
78          */
79         void (*eo_update_clusters)(struct inode *inode,
80                                    struct ocfs2_extent_tree *et,
81                                    u32 new_clusters);
82
83         /*
84          * If ->eo_insert_check() exists, it is called before rec is
85          * inserted into the extent tree.  It is optional.
86          */
87         int (*eo_insert_check)(struct inode *inode,
88                                struct ocfs2_extent_tree *et,
89                                struct ocfs2_extent_rec *rec);
90         int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
91
92         /*
93          * --------------------------------------------------------------
94          * The remaining are internal to ocfs2_extent_tree and don't have
95          * accessor functions
96          */
97
98         /*
99          * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
100          * It is required.
101          */
102         void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
103
104         /*
105          * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106          * it exists.  If it does not, et->et_max_leaf_clusters is set
107          * to 0 (unlimited).  Optional.
108          */
109         void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110                                           struct ocfs2_extent_tree *et);
111 };
112
113
114 /*
115  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116  * in the methods.
117  */
118 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120                                          u64 blkno);
121 static void ocfs2_dinode_update_clusters(struct inode *inode,
122                                          struct ocfs2_extent_tree *et,
123                                          u32 clusters);
124 static int ocfs2_dinode_insert_check(struct inode *inode,
125                                      struct ocfs2_extent_tree *et,
126                                      struct ocfs2_extent_rec *rec);
127 static int ocfs2_dinode_sanity_check(struct inode *inode,
128                                      struct ocfs2_extent_tree *et);
129 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131         .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
132         .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
133         .eo_update_clusters     = ocfs2_dinode_update_clusters,
134         .eo_insert_check        = ocfs2_dinode_insert_check,
135         .eo_sanity_check        = ocfs2_dinode_sanity_check,
136         .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
137 };
138
139 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
140                                          u64 blkno)
141 {
142         struct ocfs2_dinode *di = et->et_object;
143
144         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
145         di->i_last_eb_blk = cpu_to_le64(blkno);
146 }
147
148 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
149 {
150         struct ocfs2_dinode *di = et->et_object;
151
152         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
153         return le64_to_cpu(di->i_last_eb_blk);
154 }
155
156 static void ocfs2_dinode_update_clusters(struct inode *inode,
157                                          struct ocfs2_extent_tree *et,
158                                          u32 clusters)
159 {
160         struct ocfs2_dinode *di = et->et_object;
161
162         le32_add_cpu(&di->i_clusters, clusters);
163         spin_lock(&OCFS2_I(inode)->ip_lock);
164         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165         spin_unlock(&OCFS2_I(inode)->ip_lock);
166 }
167
168 static int ocfs2_dinode_insert_check(struct inode *inode,
169                                      struct ocfs2_extent_tree *et,
170                                      struct ocfs2_extent_rec *rec)
171 {
172         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
173
174         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176                         (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177                         "Device %s, asking for sparse allocation: inode %llu, "
178                         "cpos %u, clusters %u\n",
179                         osb->dev_str,
180                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
181                         rec->e_cpos,
182                         OCFS2_I(inode)->ip_clusters);
183
184         return 0;
185 }
186
187 static int ocfs2_dinode_sanity_check(struct inode *inode,
188                                      struct ocfs2_extent_tree *et)
189 {
190         int ret = 0;
191         struct ocfs2_dinode *di;
192
193         BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
194
195         di = et->et_object;
196         if (!OCFS2_IS_VALID_DINODE(di)) {
197                 ret = -EIO;
198                 ocfs2_error(inode->i_sb,
199                         "Inode %llu has invalid path root",
200                         (unsigned long long)OCFS2_I(inode)->ip_blkno);
201         }
202
203         return ret;
204 }
205
206 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
207 {
208         struct ocfs2_dinode *di = et->et_object;
209
210         et->et_root_el = &di->id2.i_list;
211 }
212
213
214 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
215 {
216         struct ocfs2_xattr_value_root *xv = et->et_object;
217
218         et->et_root_el = &xv->xr_list;
219 }
220
221 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
222                                               u64 blkno)
223 {
224         struct ocfs2_xattr_value_root *xv =
225                 (struct ocfs2_xattr_value_root *)et->et_object;
226
227         xv->xr_last_eb_blk = cpu_to_le64(blkno);
228 }
229
230 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
231 {
232         struct ocfs2_xattr_value_root *xv =
233                 (struct ocfs2_xattr_value_root *) et->et_object;
234
235         return le64_to_cpu(xv->xr_last_eb_blk);
236 }
237
238 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
239                                               struct ocfs2_extent_tree *et,
240                                               u32 clusters)
241 {
242         struct ocfs2_xattr_value_root *xv =
243                 (struct ocfs2_xattr_value_root *)et->et_object;
244
245         le32_add_cpu(&xv->xr_clusters, clusters);
246 }
247
248 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
249         .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
250         .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
251         .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
252         .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
253 };
254
255 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
256 {
257         struct ocfs2_xattr_block *xb = et->et_object;
258
259         et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
260 }
261
262 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
263                                                     struct ocfs2_extent_tree *et)
264 {
265         et->et_max_leaf_clusters =
266                 ocfs2_clusters_for_bytes(inode->i_sb,
267                                          OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
268 }
269
270 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
271                                              u64 blkno)
272 {
273         struct ocfs2_xattr_block *xb = et->et_object;
274         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
275
276         xt->xt_last_eb_blk = cpu_to_le64(blkno);
277 }
278
279 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
280 {
281         struct ocfs2_xattr_block *xb = et->et_object;
282         struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
283
284         return le64_to_cpu(xt->xt_last_eb_blk);
285 }
286
287 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
288                                              struct ocfs2_extent_tree *et,
289                                              u32 clusters)
290 {
291         struct ocfs2_xattr_block *xb = et->et_object;
292
293         le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
294 }
295
296 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
297         .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
298         .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
299         .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
300         .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
301         .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
302 };
303
304 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
305                                      struct inode *inode,
306                                      struct buffer_head *bh,
307                                      void *obj,
308                                      struct ocfs2_extent_tree_operations *ops)
309 {
310         et->et_ops = ops;
311         et->et_root_bh = bh;
312         if (!obj)
313                 obj = (void *)bh->b_data;
314         et->et_object = obj;
315
316         et->et_ops->eo_fill_root_el(et);
317         if (!et->et_ops->eo_fill_max_leaf_clusters)
318                 et->et_max_leaf_clusters = 0;
319         else
320                 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
321 }
322
323 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
324                                    struct inode *inode,
325                                    struct buffer_head *bh)
326 {
327         __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
328 }
329
330 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
331                                        struct inode *inode,
332                                        struct buffer_head *bh)
333 {
334         __ocfs2_init_extent_tree(et, inode, bh, NULL,
335                                  &ocfs2_xattr_tree_et_ops);
336 }
337
338 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
339                                         struct inode *inode,
340                                         struct buffer_head *bh,
341                                         struct ocfs2_xattr_value_root *xv)
342 {
343         __ocfs2_init_extent_tree(et, inode, bh, xv,
344                                  &ocfs2_xattr_value_et_ops);
345 }
346
347 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
348                                             u64 new_last_eb_blk)
349 {
350         et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
351 }
352
353 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
354 {
355         return et->et_ops->eo_get_last_eb_blk(et);
356 }
357
358 static inline void ocfs2_et_update_clusters(struct inode *inode,
359                                             struct ocfs2_extent_tree *et,
360                                             u32 clusters)
361 {
362         et->et_ops->eo_update_clusters(inode, et, clusters);
363 }
364
365 static inline int ocfs2_et_insert_check(struct inode *inode,
366                                         struct ocfs2_extent_tree *et,
367                                         struct ocfs2_extent_rec *rec)
368 {
369         int ret = 0;
370
371         if (et->et_ops->eo_insert_check)
372                 ret = et->et_ops->eo_insert_check(inode, et, rec);
373         return ret;
374 }
375
376 static inline int ocfs2_et_sanity_check(struct inode *inode,
377                                         struct ocfs2_extent_tree *et)
378 {
379         int ret = 0;
380
381         if (et->et_ops->eo_sanity_check)
382                 ret = et->et_ops->eo_sanity_check(inode, et);
383         return ret;
384 }
385
386 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
387 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
388                                          struct ocfs2_extent_block *eb);
389
390 /*
391  * Structures which describe a path through a btree, and functions to
392  * manipulate them.
393  *
394  * The idea here is to be as generic as possible with the tree
395  * manipulation code.
396  */
397 struct ocfs2_path_item {
398         struct buffer_head              *bh;
399         struct ocfs2_extent_list        *el;
400 };
401
402 #define OCFS2_MAX_PATH_DEPTH    5
403
404 struct ocfs2_path {
405         int                     p_tree_depth;
406         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
407 };
408
409 #define path_root_bh(_path) ((_path)->p_node[0].bh)
410 #define path_root_el(_path) ((_path)->p_node[0].el)
411 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
412 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
413 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
414
415 /*
416  * Reset the actual path elements so that we can re-use the structure
417  * to build another path. Generally, this involves freeing the buffer
418  * heads.
419  */
420 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
421 {
422         int i, start = 0, depth = 0;
423         struct ocfs2_path_item *node;
424
425         if (keep_root)
426                 start = 1;
427
428         for(i = start; i < path_num_items(path); i++) {
429                 node = &path->p_node[i];
430
431                 brelse(node->bh);
432                 node->bh = NULL;
433                 node->el = NULL;
434         }
435
436         /*
437          * Tree depth may change during truncate, or insert. If we're
438          * keeping the root extent list, then make sure that our path
439          * structure reflects the proper depth.
440          */
441         if (keep_root)
442                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
443
444         path->p_tree_depth = depth;
445 }
446
447 static void ocfs2_free_path(struct ocfs2_path *path)
448 {
449         if (path) {
450                 ocfs2_reinit_path(path, 0);
451                 kfree(path);
452         }
453 }
454
455 /*
456  * All the elements of src into dest. After this call, src could be freed
457  * without affecting dest.
458  *
459  * Both paths should have the same root. Any non-root elements of dest
460  * will be freed.
461  */
462 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
463 {
464         int i;
465
466         BUG_ON(path_root_bh(dest) != path_root_bh(src));
467         BUG_ON(path_root_el(dest) != path_root_el(src));
468
469         ocfs2_reinit_path(dest, 1);
470
471         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
472                 dest->p_node[i].bh = src->p_node[i].bh;
473                 dest->p_node[i].el = src->p_node[i].el;
474
475                 if (dest->p_node[i].bh)
476                         get_bh(dest->p_node[i].bh);
477         }
478 }
479
480 /*
481  * Make the *dest path the same as src and re-initialize src path to
482  * have a root only.
483  */
484 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
485 {
486         int i;
487
488         BUG_ON(path_root_bh(dest) != path_root_bh(src));
489
490         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
491                 brelse(dest->p_node[i].bh);
492
493                 dest->p_node[i].bh = src->p_node[i].bh;
494                 dest->p_node[i].el = src->p_node[i].el;
495
496                 src->p_node[i].bh = NULL;
497                 src->p_node[i].el = NULL;
498         }
499 }
500
501 /*
502  * Insert an extent block at given index.
503  *
504  * This will not take an additional reference on eb_bh.
505  */
506 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
507                                         struct buffer_head *eb_bh)
508 {
509         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
510
511         /*
512          * Right now, no root bh is an extent block, so this helps
513          * catch code errors with dinode trees. The assertion can be
514          * safely removed if we ever need to insert extent block
515          * structures at the root.
516          */
517         BUG_ON(index == 0);
518
519         path->p_node[index].bh = eb_bh;
520         path->p_node[index].el = &eb->h_list;
521 }
522
523 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
524                                          struct ocfs2_extent_list *root_el)
525 {
526         struct ocfs2_path *path;
527
528         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
529
530         path = kzalloc(sizeof(*path), GFP_NOFS);
531         if (path) {
532                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
533                 get_bh(root_bh);
534                 path_root_bh(path) = root_bh;
535                 path_root_el(path) = root_el;
536         }
537
538         return path;
539 }
540
541 /*
542  * Convenience function to journal all components in a path.
543  */
544 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
545                                      struct ocfs2_path *path)
546 {
547         int i, ret = 0;
548
549         if (!path)
550                 goto out;
551
552         for(i = 0; i < path_num_items(path); i++) {
553                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
554                                            OCFS2_JOURNAL_ACCESS_WRITE);
555                 if (ret < 0) {
556                         mlog_errno(ret);
557                         goto out;
558                 }
559         }
560
561 out:
562         return ret;
563 }
564
565 /*
566  * Return the index of the extent record which contains cluster #v_cluster.
567  * -1 is returned if it was not found.
568  *
569  * Should work fine on interior and exterior nodes.
570  */
571 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
572 {
573         int ret = -1;
574         int i;
575         struct ocfs2_extent_rec *rec;
576         u32 rec_end, rec_start, clusters;
577
578         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
579                 rec = &el->l_recs[i];
580
581                 rec_start = le32_to_cpu(rec->e_cpos);
582                 clusters = ocfs2_rec_clusters(el, rec);
583
584                 rec_end = rec_start + clusters;
585
586                 if (v_cluster >= rec_start && v_cluster < rec_end) {
587                         ret = i;
588                         break;
589                 }
590         }
591
592         return ret;
593 }
594
595 enum ocfs2_contig_type {
596         CONTIG_NONE = 0,
597         CONTIG_LEFT,
598         CONTIG_RIGHT,
599         CONTIG_LEFTRIGHT,
600 };
601
602
603 /*
604  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
605  * ocfs2_extent_contig only work properly against leaf nodes!
606  */
607 static int ocfs2_block_extent_contig(struct super_block *sb,
608                                      struct ocfs2_extent_rec *ext,
609                                      u64 blkno)
610 {
611         u64 blk_end = le64_to_cpu(ext->e_blkno);
612
613         blk_end += ocfs2_clusters_to_blocks(sb,
614                                     le16_to_cpu(ext->e_leaf_clusters));
615
616         return blkno == blk_end;
617 }
618
619 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
620                                   struct ocfs2_extent_rec *right)
621 {
622         u32 left_range;
623
624         left_range = le32_to_cpu(left->e_cpos) +
625                 le16_to_cpu(left->e_leaf_clusters);
626
627         return (left_range == le32_to_cpu(right->e_cpos));
628 }
629
630 static enum ocfs2_contig_type
631         ocfs2_extent_contig(struct inode *inode,
632                             struct ocfs2_extent_rec *ext,
633                             struct ocfs2_extent_rec *insert_rec)
634 {
635         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
636
637         /*
638          * Refuse to coalesce extent records with different flag
639          * fields - we don't want to mix unwritten extents with user
640          * data.
641          */
642         if (ext->e_flags != insert_rec->e_flags)
643                 return CONTIG_NONE;
644
645         if (ocfs2_extents_adjacent(ext, insert_rec) &&
646             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
647                         return CONTIG_RIGHT;
648
649         blkno = le64_to_cpu(ext->e_blkno);
650         if (ocfs2_extents_adjacent(insert_rec, ext) &&
651             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
652                 return CONTIG_LEFT;
653
654         return CONTIG_NONE;
655 }
656
657 /*
658  * NOTE: We can have pretty much any combination of contiguousness and
659  * appending.
660  *
661  * The usefulness of APPEND_TAIL is more in that it lets us know that
662  * we'll have to update the path to that leaf.
663  */
664 enum ocfs2_append_type {
665         APPEND_NONE = 0,
666         APPEND_TAIL,
667 };
668
669 enum ocfs2_split_type {
670         SPLIT_NONE = 0,
671         SPLIT_LEFT,
672         SPLIT_RIGHT,
673 };
674
675 struct ocfs2_insert_type {
676         enum ocfs2_split_type   ins_split;
677         enum ocfs2_append_type  ins_appending;
678         enum ocfs2_contig_type  ins_contig;
679         int                     ins_contig_index;
680         int                     ins_tree_depth;
681 };
682
683 struct ocfs2_merge_ctxt {
684         enum ocfs2_contig_type  c_contig_type;
685         int                     c_has_empty_extent;
686         int                     c_split_covers_rec;
687 };
688
689 /*
690  * How many free extents have we got before we need more meta data?
691  */
692 int ocfs2_num_free_extents(struct ocfs2_super *osb,
693                            struct inode *inode,
694                            struct ocfs2_extent_tree *et)
695 {
696         int retval;
697         struct ocfs2_extent_list *el = NULL;
698         struct ocfs2_extent_block *eb;
699         struct buffer_head *eb_bh = NULL;
700         u64 last_eb_blk = 0;
701
702         mlog_entry_void();
703
704         el = et->et_root_el;
705         last_eb_blk = ocfs2_et_get_last_eb_blk(et);
706
707         if (last_eb_blk) {
708                 retval = ocfs2_read_block(inode, last_eb_blk,
709                                           &eb_bh);
710                 if (retval < 0) {
711                         mlog_errno(retval);
712                         goto bail;
713                 }
714                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
715                 el = &eb->h_list;
716         }
717
718         BUG_ON(el->l_tree_depth != 0);
719
720         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
721 bail:
722         brelse(eb_bh);
723
724         mlog_exit(retval);
725         return retval;
726 }
727
728 /* expects array to already be allocated
729  *
730  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
731  * l_count for you
732  */
733 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
734                                      handle_t *handle,
735                                      struct inode *inode,
736                                      int wanted,
737                                      struct ocfs2_alloc_context *meta_ac,
738                                      struct buffer_head *bhs[])
739 {
740         int count, status, i;
741         u16 suballoc_bit_start;
742         u32 num_got;
743         u64 first_blkno;
744         struct ocfs2_extent_block *eb;
745
746         mlog_entry_void();
747
748         count = 0;
749         while (count < wanted) {
750                 status = ocfs2_claim_metadata(osb,
751                                               handle,
752                                               meta_ac,
753                                               wanted - count,
754                                               &suballoc_bit_start,
755                                               &num_got,
756                                               &first_blkno);
757                 if (status < 0) {
758                         mlog_errno(status);
759                         goto bail;
760                 }
761
762                 for(i = count;  i < (num_got + count); i++) {
763                         bhs[i] = sb_getblk(osb->sb, first_blkno);
764                         if (bhs[i] == NULL) {
765                                 status = -EIO;
766                                 mlog_errno(status);
767                                 goto bail;
768                         }
769                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
770
771                         status = ocfs2_journal_access(handle, inode, bhs[i],
772                                                       OCFS2_JOURNAL_ACCESS_CREATE);
773                         if (status < 0) {
774                                 mlog_errno(status);
775                                 goto bail;
776                         }
777
778                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
779                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
780                         /* Ok, setup the minimal stuff here. */
781                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
782                         eb->h_blkno = cpu_to_le64(first_blkno);
783                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
784                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
785                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
786                         eb->h_list.l_count =
787                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
788
789                         suballoc_bit_start++;
790                         first_blkno++;
791
792                         /* We'll also be dirtied by the caller, so
793                          * this isn't absolutely necessary. */
794                         status = ocfs2_journal_dirty(handle, bhs[i]);
795                         if (status < 0) {
796                                 mlog_errno(status);
797                                 goto bail;
798                         }
799                 }
800
801                 count += num_got;
802         }
803
804         status = 0;
805 bail:
806         if (status < 0) {
807                 for(i = 0; i < wanted; i++) {
808                         brelse(bhs[i]);
809                         bhs[i] = NULL;
810                 }
811         }
812         mlog_exit(status);
813         return status;
814 }
815
816 /*
817  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
818  *
819  * Returns the sum of the rightmost extent rec logical offset and
820  * cluster count.
821  *
822  * ocfs2_add_branch() uses this to determine what logical cluster
823  * value should be populated into the leftmost new branch records.
824  *
825  * ocfs2_shift_tree_depth() uses this to determine the # clusters
826  * value for the new topmost tree record.
827  */
828 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
829 {
830         int i;
831
832         i = le16_to_cpu(el->l_next_free_rec) - 1;
833
834         return le32_to_cpu(el->l_recs[i].e_cpos) +
835                 ocfs2_rec_clusters(el, &el->l_recs[i]);
836 }
837
838 /*
839  * Add an entire tree branch to our inode. eb_bh is the extent block
840  * to start at, if we don't want to start the branch at the dinode
841  * structure.
842  *
843  * last_eb_bh is required as we have to update it's next_leaf pointer
844  * for the new last extent block.
845  *
846  * the new branch will be 'empty' in the sense that every block will
847  * contain a single record with cluster count == 0.
848  */
849 static int ocfs2_add_branch(struct ocfs2_super *osb,
850                             handle_t *handle,
851                             struct inode *inode,
852                             struct ocfs2_extent_tree *et,
853                             struct buffer_head *eb_bh,
854                             struct buffer_head **last_eb_bh,
855                             struct ocfs2_alloc_context *meta_ac)
856 {
857         int status, new_blocks, i;
858         u64 next_blkno, new_last_eb_blk;
859         struct buffer_head *bh;
860         struct buffer_head **new_eb_bhs = NULL;
861         struct ocfs2_extent_block *eb;
862         struct ocfs2_extent_list  *eb_el;
863         struct ocfs2_extent_list  *el;
864         u32 new_cpos;
865
866         mlog_entry_void();
867
868         BUG_ON(!last_eb_bh || !*last_eb_bh);
869
870         if (eb_bh) {
871                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
872                 el = &eb->h_list;
873         } else
874                 el = et->et_root_el;
875
876         /* we never add a branch to a leaf. */
877         BUG_ON(!el->l_tree_depth);
878
879         new_blocks = le16_to_cpu(el->l_tree_depth);
880
881         /* allocate the number of new eb blocks we need */
882         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
883                              GFP_KERNEL);
884         if (!new_eb_bhs) {
885                 status = -ENOMEM;
886                 mlog_errno(status);
887                 goto bail;
888         }
889
890         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
891                                            meta_ac, new_eb_bhs);
892         if (status < 0) {
893                 mlog_errno(status);
894                 goto bail;
895         }
896
897         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
898         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
899
900         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
901          * linked with the rest of the tree.
902          * conversly, new_eb_bhs[0] is the new bottommost leaf.
903          *
904          * when we leave the loop, new_last_eb_blk will point to the
905          * newest leaf, and next_blkno will point to the topmost extent
906          * block. */
907         next_blkno = new_last_eb_blk = 0;
908         for(i = 0; i < new_blocks; i++) {
909                 bh = new_eb_bhs[i];
910                 eb = (struct ocfs2_extent_block *) bh->b_data;
911                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
913                         status = -EIO;
914                         goto bail;
915                 }
916                 eb_el = &eb->h_list;
917
918                 status = ocfs2_journal_access(handle, inode, bh,
919                                               OCFS2_JOURNAL_ACCESS_CREATE);
920                 if (status < 0) {
921                         mlog_errno(status);
922                         goto bail;
923                 }
924
925                 eb->h_next_leaf_blk = 0;
926                 eb_el->l_tree_depth = cpu_to_le16(i);
927                 eb_el->l_next_free_rec = cpu_to_le16(1);
928                 /*
929                  * This actually counts as an empty extent as
930                  * c_clusters == 0
931                  */
932                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
933                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
934                 /*
935                  * eb_el isn't always an interior node, but even leaf
936                  * nodes want a zero'd flags and reserved field so
937                  * this gets the whole 32 bits regardless of use.
938                  */
939                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
940                 if (!eb_el->l_tree_depth)
941                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
942
943                 status = ocfs2_journal_dirty(handle, bh);
944                 if (status < 0) {
945                         mlog_errno(status);
946                         goto bail;
947                 }
948
949                 next_blkno = le64_to_cpu(eb->h_blkno);
950         }
951
952         /* This is a bit hairy. We want to update up to three blocks
953          * here without leaving any of them in an inconsistent state
954          * in case of error. We don't have to worry about
955          * journal_dirty erroring as it won't unless we've aborted the
956          * handle (in which case we would never be here) so reserving
957          * the write with journal_access is all we need to do. */
958         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
959                                       OCFS2_JOURNAL_ACCESS_WRITE);
960         if (status < 0) {
961                 mlog_errno(status);
962                 goto bail;
963         }
964         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
965                                       OCFS2_JOURNAL_ACCESS_WRITE);
966         if (status < 0) {
967                 mlog_errno(status);
968                 goto bail;
969         }
970         if (eb_bh) {
971                 status = ocfs2_journal_access(handle, inode, eb_bh,
972                                               OCFS2_JOURNAL_ACCESS_WRITE);
973                 if (status < 0) {
974                         mlog_errno(status);
975                         goto bail;
976                 }
977         }
978
979         /* Link the new branch into the rest of the tree (el will
980          * either be on the root_bh, or the extent block passed in. */
981         i = le16_to_cpu(el->l_next_free_rec);
982         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
983         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
984         el->l_recs[i].e_int_clusters = 0;
985         le16_add_cpu(&el->l_next_free_rec, 1);
986
987         /* fe needs a new last extent block pointer, as does the
988          * next_leaf on the previously last-extent-block. */
989         ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
990
991         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
992         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
993
994         status = ocfs2_journal_dirty(handle, *last_eb_bh);
995         if (status < 0)
996                 mlog_errno(status);
997         status = ocfs2_journal_dirty(handle, et->et_root_bh);
998         if (status < 0)
999                 mlog_errno(status);
1000         if (eb_bh) {
1001                 status = ocfs2_journal_dirty(handle, eb_bh);
1002                 if (status < 0)
1003                         mlog_errno(status);
1004         }
1005
1006         /*
1007          * Some callers want to track the rightmost leaf so pass it
1008          * back here.
1009          */
1010         brelse(*last_eb_bh);
1011         get_bh(new_eb_bhs[0]);
1012         *last_eb_bh = new_eb_bhs[0];
1013
1014         status = 0;
1015 bail:
1016         if (new_eb_bhs) {
1017                 for (i = 0; i < new_blocks; i++)
1018                         brelse(new_eb_bhs[i]);
1019                 kfree(new_eb_bhs);
1020         }
1021
1022         mlog_exit(status);
1023         return status;
1024 }
1025
1026 /*
1027  * adds another level to the allocation tree.
1028  * returns back the new extent block so you can add a branch to it
1029  * after this call.
1030  */
1031 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1032                                   handle_t *handle,
1033                                   struct inode *inode,
1034                                   struct ocfs2_extent_tree *et,
1035                                   struct ocfs2_alloc_context *meta_ac,
1036                                   struct buffer_head **ret_new_eb_bh)
1037 {
1038         int status, i;
1039         u32 new_clusters;
1040         struct buffer_head *new_eb_bh = NULL;
1041         struct ocfs2_extent_block *eb;
1042         struct ocfs2_extent_list  *root_el;
1043         struct ocfs2_extent_list  *eb_el;
1044
1045         mlog_entry_void();
1046
1047         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1048                                            &new_eb_bh);
1049         if (status < 0) {
1050                 mlog_errno(status);
1051                 goto bail;
1052         }
1053
1054         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1055         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1056                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1057                 status = -EIO;
1058                 goto bail;
1059         }
1060
1061         eb_el = &eb->h_list;
1062         root_el = et->et_root_el;
1063
1064         status = ocfs2_journal_access(handle, inode, new_eb_bh,
1065                                       OCFS2_JOURNAL_ACCESS_CREATE);
1066         if (status < 0) {
1067                 mlog_errno(status);
1068                 goto bail;
1069         }
1070
1071         /* copy the root extent list data into the new extent block */
1072         eb_el->l_tree_depth = root_el->l_tree_depth;
1073         eb_el->l_next_free_rec = root_el->l_next_free_rec;
1074         for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1075                 eb_el->l_recs[i] = root_el->l_recs[i];
1076
1077         status = ocfs2_journal_dirty(handle, new_eb_bh);
1078         if (status < 0) {
1079                 mlog_errno(status);
1080                 goto bail;
1081         }
1082
1083         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
1084                                       OCFS2_JOURNAL_ACCESS_WRITE);
1085         if (status < 0) {
1086                 mlog_errno(status);
1087                 goto bail;
1088         }
1089
1090         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1091
1092         /* update root_bh now */
1093         le16_add_cpu(&root_el->l_tree_depth, 1);
1094         root_el->l_recs[0].e_cpos = 0;
1095         root_el->l_recs[0].e_blkno = eb->h_blkno;
1096         root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1097         for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1098                 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1099         root_el->l_next_free_rec = cpu_to_le16(1);
1100
1101         /* If this is our 1st tree depth shift, then last_eb_blk
1102          * becomes the allocated extent block */
1103         if (root_el->l_tree_depth == cpu_to_le16(1))
1104                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1105
1106         status = ocfs2_journal_dirty(handle, et->et_root_bh);
1107         if (status < 0) {
1108                 mlog_errno(status);
1109                 goto bail;
1110         }
1111
1112         *ret_new_eb_bh = new_eb_bh;
1113         new_eb_bh = NULL;
1114         status = 0;
1115 bail:
1116         brelse(new_eb_bh);
1117
1118         mlog_exit(status);
1119         return status;
1120 }
1121
1122 /*
1123  * Should only be called when there is no space left in any of the
1124  * leaf nodes. What we want to do is find the lowest tree depth
1125  * non-leaf extent block with room for new records. There are three
1126  * valid results of this search:
1127  *
1128  * 1) a lowest extent block is found, then we pass it back in
1129  *    *lowest_eb_bh and return '0'
1130  *
1131  * 2) the search fails to find anything, but the root_el has room. We
1132  *    pass NULL back in *lowest_eb_bh, but still return '0'
1133  *
1134  * 3) the search fails to find anything AND the root_el is full, in
1135  *    which case we return > 0
1136  *
1137  * return status < 0 indicates an error.
1138  */
1139 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1140                                     struct inode *inode,
1141                                     struct ocfs2_extent_tree *et,
1142                                     struct buffer_head **target_bh)
1143 {
1144         int status = 0, i;
1145         u64 blkno;
1146         struct ocfs2_extent_block *eb;
1147         struct ocfs2_extent_list  *el;
1148         struct buffer_head *bh = NULL;
1149         struct buffer_head *lowest_bh = NULL;
1150
1151         mlog_entry_void();
1152
1153         *target_bh = NULL;
1154
1155         el = et->et_root_el;
1156
1157         while(le16_to_cpu(el->l_tree_depth) > 1) {
1158                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1159                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1160                                     "extent list (next_free_rec == 0)",
1161                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
1162                         status = -EIO;
1163                         goto bail;
1164                 }
1165                 i = le16_to_cpu(el->l_next_free_rec) - 1;
1166                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1167                 if (!blkno) {
1168                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1169                                     "list where extent # %d has no physical "
1170                                     "block start",
1171                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1172                         status = -EIO;
1173                         goto bail;
1174                 }
1175
1176                 brelse(bh);
1177                 bh = NULL;
1178
1179                 status = ocfs2_read_block(inode, blkno, &bh);
1180                 if (status < 0) {
1181                         mlog_errno(status);
1182                         goto bail;
1183                 }
1184
1185                 eb = (struct ocfs2_extent_block *) bh->b_data;
1186                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1187                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1188                         status = -EIO;
1189                         goto bail;
1190                 }
1191                 el = &eb->h_list;
1192
1193                 if (le16_to_cpu(el->l_next_free_rec) <
1194                     le16_to_cpu(el->l_count)) {
1195                         brelse(lowest_bh);
1196                         lowest_bh = bh;
1197                         get_bh(lowest_bh);
1198                 }
1199         }
1200
1201         /* If we didn't find one and the fe doesn't have any room,
1202          * then return '1' */
1203         el = et->et_root_el;
1204         if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1205                 status = 1;
1206
1207         *target_bh = lowest_bh;
1208 bail:
1209         brelse(bh);
1210
1211         mlog_exit(status);
1212         return status;
1213 }
1214
1215 /*
1216  * Grow a b-tree so that it has more records.
1217  *
1218  * We might shift the tree depth in which case existing paths should
1219  * be considered invalid.
1220  *
1221  * Tree depth after the grow is returned via *final_depth.
1222  *
1223  * *last_eb_bh will be updated by ocfs2_add_branch().
1224  */
1225 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1226                            struct ocfs2_extent_tree *et, int *final_depth,
1227                            struct buffer_head **last_eb_bh,
1228                            struct ocfs2_alloc_context *meta_ac)
1229 {
1230         int ret, shift;
1231         struct ocfs2_extent_list *el = et->et_root_el;
1232         int depth = le16_to_cpu(el->l_tree_depth);
1233         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1234         struct buffer_head *bh = NULL;
1235
1236         BUG_ON(meta_ac == NULL);
1237
1238         shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1239         if (shift < 0) {
1240                 ret = shift;
1241                 mlog_errno(ret);
1242                 goto out;
1243         }
1244
1245         /* We traveled all the way to the bottom of the allocation tree
1246          * and didn't find room for any more extents - we need to add
1247          * another tree level */
1248         if (shift) {
1249                 BUG_ON(bh);
1250                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1251
1252                 /* ocfs2_shift_tree_depth will return us a buffer with
1253                  * the new extent block (so we can pass that to
1254                  * ocfs2_add_branch). */
1255                 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1256                                              meta_ac, &bh);
1257                 if (ret < 0) {
1258                         mlog_errno(ret);
1259                         goto out;
1260                 }
1261                 depth++;
1262                 if (depth == 1) {
1263                         /*
1264                          * Special case: we have room now if we shifted from
1265                          * tree_depth 0, so no more work needs to be done.
1266                          *
1267                          * We won't be calling add_branch, so pass
1268                          * back *last_eb_bh as the new leaf. At depth
1269                          * zero, it should always be null so there's
1270                          * no reason to brelse.
1271                          */
1272                         BUG_ON(*last_eb_bh);
1273                         get_bh(bh);
1274                         *last_eb_bh = bh;
1275                         goto out;
1276                 }
1277         }
1278
1279         /* call ocfs2_add_branch to add the final part of the tree with
1280          * the new data. */
1281         mlog(0, "add branch. bh = %p\n", bh);
1282         ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1283                                meta_ac);
1284         if (ret < 0) {
1285                 mlog_errno(ret);
1286                 goto out;
1287         }
1288
1289 out:
1290         if (final_depth)
1291                 *final_depth = depth;
1292         brelse(bh);
1293         return ret;
1294 }
1295
1296 /*
1297  * This function will discard the rightmost extent record.
1298  */
1299 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1300 {
1301         int next_free = le16_to_cpu(el->l_next_free_rec);
1302         int count = le16_to_cpu(el->l_count);
1303         unsigned int num_bytes;
1304
1305         BUG_ON(!next_free);
1306         /* This will cause us to go off the end of our extent list. */
1307         BUG_ON(next_free >= count);
1308
1309         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1310
1311         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1312 }
1313
1314 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1315                               struct ocfs2_extent_rec *insert_rec)
1316 {
1317         int i, insert_index, next_free, has_empty, num_bytes;
1318         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1319         struct ocfs2_extent_rec *rec;
1320
1321         next_free = le16_to_cpu(el->l_next_free_rec);
1322         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1323
1324         BUG_ON(!next_free);
1325
1326         /* The tree code before us didn't allow enough room in the leaf. */
1327         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1328
1329         /*
1330          * The easiest way to approach this is to just remove the
1331          * empty extent and temporarily decrement next_free.
1332          */
1333         if (has_empty) {
1334                 /*
1335                  * If next_free was 1 (only an empty extent), this
1336                  * loop won't execute, which is fine. We still want
1337                  * the decrement above to happen.
1338                  */
1339                 for(i = 0; i < (next_free - 1); i++)
1340                         el->l_recs[i] = el->l_recs[i+1];
1341
1342                 next_free--;
1343         }
1344
1345         /*
1346          * Figure out what the new record index should be.
1347          */
1348         for(i = 0; i < next_free; i++) {
1349                 rec = &el->l_recs[i];
1350
1351                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1352                         break;
1353         }
1354         insert_index = i;
1355
1356         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1357              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1358
1359         BUG_ON(insert_index < 0);
1360         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1361         BUG_ON(insert_index > next_free);
1362
1363         /*
1364          * No need to memmove if we're just adding to the tail.
1365          */
1366         if (insert_index != next_free) {
1367                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1368
1369                 num_bytes = next_free - insert_index;
1370                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1371                 memmove(&el->l_recs[insert_index + 1],
1372                         &el->l_recs[insert_index],
1373                         num_bytes);
1374         }
1375
1376         /*
1377          * Either we had an empty extent, and need to re-increment or
1378          * there was no empty extent on a non full rightmost leaf node,
1379          * in which case we still need to increment.
1380          */
1381         next_free++;
1382         el->l_next_free_rec = cpu_to_le16(next_free);
1383         /*
1384          * Make sure none of the math above just messed up our tree.
1385          */
1386         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1387
1388         el->l_recs[insert_index] = *insert_rec;
1389
1390 }
1391
1392 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1393 {
1394         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1395
1396         BUG_ON(num_recs == 0);
1397
1398         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1399                 num_recs--;
1400                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1401                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1402                 memset(&el->l_recs[num_recs], 0,
1403                        sizeof(struct ocfs2_extent_rec));
1404                 el->l_next_free_rec = cpu_to_le16(num_recs);
1405         }
1406 }
1407
1408 /*
1409  * Create an empty extent record .
1410  *
1411  * l_next_free_rec may be updated.
1412  *
1413  * If an empty extent already exists do nothing.
1414  */
1415 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1416 {
1417         int next_free = le16_to_cpu(el->l_next_free_rec);
1418
1419         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1420
1421         if (next_free == 0)
1422                 goto set_and_inc;
1423
1424         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1425                 return;
1426
1427         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1428                         "Asked to create an empty extent in a full list:\n"
1429                         "count = %u, tree depth = %u",
1430                         le16_to_cpu(el->l_count),
1431                         le16_to_cpu(el->l_tree_depth));
1432
1433         ocfs2_shift_records_right(el);
1434
1435 set_and_inc:
1436         le16_add_cpu(&el->l_next_free_rec, 1);
1437         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1438 }
1439
1440 /*
1441  * For a rotation which involves two leaf nodes, the "root node" is
1442  * the lowest level tree node which contains a path to both leafs. This
1443  * resulting set of information can be used to form a complete "subtree"
1444  *
1445  * This function is passed two full paths from the dinode down to a
1446  * pair of adjacent leaves. It's task is to figure out which path
1447  * index contains the subtree root - this can be the root index itself
1448  * in a worst-case rotation.
1449  *
1450  * The array index of the subtree root is passed back.
1451  */
1452 static int ocfs2_find_subtree_root(struct inode *inode,
1453                                    struct ocfs2_path *left,
1454                                    struct ocfs2_path *right)
1455 {
1456         int i = 0;
1457
1458         /*
1459          * Check that the caller passed in two paths from the same tree.
1460          */
1461         BUG_ON(path_root_bh(left) != path_root_bh(right));
1462
1463         do {
1464                 i++;
1465
1466                 /*
1467                  * The caller didn't pass two adjacent paths.
1468                  */
1469                 mlog_bug_on_msg(i > left->p_tree_depth,
1470                                 "Inode %lu, left depth %u, right depth %u\n"
1471                                 "left leaf blk %llu, right leaf blk %llu\n",
1472                                 inode->i_ino, left->p_tree_depth,
1473                                 right->p_tree_depth,
1474                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1475                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1476         } while (left->p_node[i].bh->b_blocknr ==
1477                  right->p_node[i].bh->b_blocknr);
1478
1479         return i - 1;
1480 }
1481
1482 typedef void (path_insert_t)(void *, struct buffer_head *);
1483
1484 /*
1485  * Traverse a btree path in search of cpos, starting at root_el.
1486  *
1487  * This code can be called with a cpos larger than the tree, in which
1488  * case it will return the rightmost path.
1489  */
1490 static int __ocfs2_find_path(struct inode *inode,
1491                              struct ocfs2_extent_list *root_el, u32 cpos,
1492                              path_insert_t *func, void *data)
1493 {
1494         int i, ret = 0;
1495         u32 range;
1496         u64 blkno;
1497         struct buffer_head *bh = NULL;
1498         struct ocfs2_extent_block *eb;
1499         struct ocfs2_extent_list *el;
1500         struct ocfs2_extent_rec *rec;
1501         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1502
1503         el = root_el;
1504         while (el->l_tree_depth) {
1505                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1506                         ocfs2_error(inode->i_sb,
1507                                     "Inode %llu has empty extent list at "
1508                                     "depth %u\n",
1509                                     (unsigned long long)oi->ip_blkno,
1510                                     le16_to_cpu(el->l_tree_depth));
1511                         ret = -EROFS;
1512                         goto out;
1513
1514                 }
1515
1516                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1517                         rec = &el->l_recs[i];
1518
1519                         /*
1520                          * In the case that cpos is off the allocation
1521                          * tree, this should just wind up returning the
1522                          * rightmost record.
1523                          */
1524                         range = le32_to_cpu(rec->e_cpos) +
1525                                 ocfs2_rec_clusters(el, rec);
1526                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1527                             break;
1528                 }
1529
1530                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1531                 if (blkno == 0) {
1532                         ocfs2_error(inode->i_sb,
1533                                     "Inode %llu has bad blkno in extent list "
1534                                     "at depth %u (index %d)\n",
1535                                     (unsigned long long)oi->ip_blkno,
1536                                     le16_to_cpu(el->l_tree_depth), i);
1537                         ret = -EROFS;
1538                         goto out;
1539                 }
1540
1541                 brelse(bh);
1542                 bh = NULL;
1543                 ret = ocfs2_read_block(inode, blkno, &bh);
1544                 if (ret) {
1545                         mlog_errno(ret);
1546                         goto out;
1547                 }
1548
1549                 eb = (struct ocfs2_extent_block *) bh->b_data;
1550                 el = &eb->h_list;
1551                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1552                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1553                         ret = -EIO;
1554                         goto out;
1555                 }
1556
1557                 if (le16_to_cpu(el->l_next_free_rec) >
1558                     le16_to_cpu(el->l_count)) {
1559                         ocfs2_error(inode->i_sb,
1560                                     "Inode %llu has bad count in extent list "
1561                                     "at block %llu (next free=%u, count=%u)\n",
1562                                     (unsigned long long)oi->ip_blkno,
1563                                     (unsigned long long)bh->b_blocknr,
1564                                     le16_to_cpu(el->l_next_free_rec),
1565                                     le16_to_cpu(el->l_count));
1566                         ret = -EROFS;
1567                         goto out;
1568                 }
1569
1570                 if (func)
1571                         func(data, bh);
1572         }
1573
1574 out:
1575         /*
1576          * Catch any trailing bh that the loop didn't handle.
1577          */
1578         brelse(bh);
1579
1580         return ret;
1581 }
1582
1583 /*
1584  * Given an initialized path (that is, it has a valid root extent
1585  * list), this function will traverse the btree in search of the path
1586  * which would contain cpos.
1587  *
1588  * The path traveled is recorded in the path structure.
1589  *
1590  * Note that this will not do any comparisons on leaf node extent
1591  * records, so it will work fine in the case that we just added a tree
1592  * branch.
1593  */
1594 struct find_path_data {
1595         int index;
1596         struct ocfs2_path *path;
1597 };
1598 static void find_path_ins(void *data, struct buffer_head *bh)
1599 {
1600         struct find_path_data *fp = data;
1601
1602         get_bh(bh);
1603         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1604         fp->index++;
1605 }
1606 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1607                            u32 cpos)
1608 {
1609         struct find_path_data data;
1610
1611         data.index = 1;
1612         data.path = path;
1613         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1614                                  find_path_ins, &data);
1615 }
1616
1617 static void find_leaf_ins(void *data, struct buffer_head *bh)
1618 {
1619         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1620         struct ocfs2_extent_list *el = &eb->h_list;
1621         struct buffer_head **ret = data;
1622
1623         /* We want to retain only the leaf block. */
1624         if (le16_to_cpu(el->l_tree_depth) == 0) {
1625                 get_bh(bh);
1626                 *ret = bh;
1627         }
1628 }
1629 /*
1630  * Find the leaf block in the tree which would contain cpos. No
1631  * checking of the actual leaf is done.
1632  *
1633  * Some paths want to call this instead of allocating a path structure
1634  * and calling ocfs2_find_path().
1635  *
1636  * This function doesn't handle non btree extent lists.
1637  */
1638 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1639                     u32 cpos, struct buffer_head **leaf_bh)
1640 {
1641         int ret;
1642         struct buffer_head *bh = NULL;
1643
1644         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1645         if (ret) {
1646                 mlog_errno(ret);
1647                 goto out;
1648         }
1649
1650         *leaf_bh = bh;
1651 out:
1652         return ret;
1653 }
1654
1655 /*
1656  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1657  *
1658  * Basically, we've moved stuff around at the bottom of the tree and
1659  * we need to fix up the extent records above the changes to reflect
1660  * the new changes.
1661  *
1662  * left_rec: the record on the left.
1663  * left_child_el: is the child list pointed to by left_rec
1664  * right_rec: the record to the right of left_rec
1665  * right_child_el: is the child list pointed to by right_rec
1666  *
1667  * By definition, this only works on interior nodes.
1668  */
1669 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1670                                   struct ocfs2_extent_list *left_child_el,
1671                                   struct ocfs2_extent_rec *right_rec,
1672                                   struct ocfs2_extent_list *right_child_el)
1673 {
1674         u32 left_clusters, right_end;
1675
1676         /*
1677          * Interior nodes never have holes. Their cpos is the cpos of
1678          * the leftmost record in their child list. Their cluster
1679          * count covers the full theoretical range of their child list
1680          * - the range between their cpos and the cpos of the record
1681          * immediately to their right.
1682          */
1683         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1684         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1685                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1686                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1687         }
1688         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1689         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1690
1691         /*
1692          * Calculate the rightmost cluster count boundary before
1693          * moving cpos - we will need to adjust clusters after
1694          * updating e_cpos to keep the same highest cluster count.
1695          */
1696         right_end = le32_to_cpu(right_rec->e_cpos);
1697         right_end += le32_to_cpu(right_rec->e_int_clusters);
1698
1699         right_rec->e_cpos = left_rec->e_cpos;
1700         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1701
1702         right_end -= le32_to_cpu(right_rec->e_cpos);
1703         right_rec->e_int_clusters = cpu_to_le32(right_end);
1704 }
1705
1706 /*
1707  * Adjust the adjacent root node records involved in a
1708  * rotation. left_el_blkno is passed in as a key so that we can easily
1709  * find it's index in the root list.
1710  */
1711 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1712                                       struct ocfs2_extent_list *left_el,
1713                                       struct ocfs2_extent_list *right_el,
1714                                       u64 left_el_blkno)
1715 {
1716         int i;
1717
1718         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1719                le16_to_cpu(left_el->l_tree_depth));
1720
1721         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1722                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1723                         break;
1724         }
1725
1726         /*
1727          * The path walking code should have never returned a root and
1728          * two paths which are not adjacent.
1729          */
1730         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1731
1732         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1733                                       &root_el->l_recs[i + 1], right_el);
1734 }
1735
1736 /*
1737  * We've changed a leaf block (in right_path) and need to reflect that
1738  * change back up the subtree.
1739  *
1740  * This happens in multiple places:
1741  *   - When we've moved an extent record from the left path leaf to the right
1742  *     path leaf to make room for an empty extent in the left path leaf.
1743  *   - When our insert into the right path leaf is at the leftmost edge
1744  *     and requires an update of the path immediately to it's left. This
1745  *     can occur at the end of some types of rotation and appending inserts.
1746  *   - When we've adjusted the last extent record in the left path leaf and the
1747  *     1st extent record in the right path leaf during cross extent block merge.
1748  */
1749 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1750                                        struct ocfs2_path *left_path,
1751                                        struct ocfs2_path *right_path,
1752                                        int subtree_index)
1753 {
1754         int ret, i, idx;
1755         struct ocfs2_extent_list *el, *left_el, *right_el;
1756         struct ocfs2_extent_rec *left_rec, *right_rec;
1757         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1758
1759         /*
1760          * Update the counts and position values within all the
1761          * interior nodes to reflect the leaf rotation we just did.
1762          *
1763          * The root node is handled below the loop.
1764          *
1765          * We begin the loop with right_el and left_el pointing to the
1766          * leaf lists and work our way up.
1767          *
1768          * NOTE: within this loop, left_el and right_el always refer
1769          * to the *child* lists.
1770          */
1771         left_el = path_leaf_el(left_path);
1772         right_el = path_leaf_el(right_path);
1773         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1774                 mlog(0, "Adjust records at index %u\n", i);
1775
1776                 /*
1777                  * One nice property of knowing that all of these
1778                  * nodes are below the root is that we only deal with
1779                  * the leftmost right node record and the rightmost
1780                  * left node record.
1781                  */
1782                 el = left_path->p_node[i].el;
1783                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1784                 left_rec = &el->l_recs[idx];
1785
1786                 el = right_path->p_node[i].el;
1787                 right_rec = &el->l_recs[0];
1788
1789                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1790                                               right_el);
1791
1792                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1793                 if (ret)
1794                         mlog_errno(ret);
1795
1796                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1797                 if (ret)
1798                         mlog_errno(ret);
1799
1800                 /*
1801                  * Setup our list pointers now so that the current
1802                  * parents become children in the next iteration.
1803                  */
1804                 left_el = left_path->p_node[i].el;
1805                 right_el = right_path->p_node[i].el;
1806         }
1807
1808         /*
1809          * At the root node, adjust the two adjacent records which
1810          * begin our path to the leaves.
1811          */
1812
1813         el = left_path->p_node[subtree_index].el;
1814         left_el = left_path->p_node[subtree_index + 1].el;
1815         right_el = right_path->p_node[subtree_index + 1].el;
1816
1817         ocfs2_adjust_root_records(el, left_el, right_el,
1818                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1819
1820         root_bh = left_path->p_node[subtree_index].bh;
1821
1822         ret = ocfs2_journal_dirty(handle, root_bh);
1823         if (ret)
1824                 mlog_errno(ret);
1825 }
1826
1827 static int ocfs2_rotate_subtree_right(struct inode *inode,
1828                                       handle_t *handle,
1829                                       struct ocfs2_path *left_path,
1830                                       struct ocfs2_path *right_path,
1831                                       int subtree_index)
1832 {
1833         int ret, i;
1834         struct buffer_head *right_leaf_bh;
1835         struct buffer_head *left_leaf_bh = NULL;
1836         struct buffer_head *root_bh;
1837         struct ocfs2_extent_list *right_el, *left_el;
1838         struct ocfs2_extent_rec move_rec;
1839
1840         left_leaf_bh = path_leaf_bh(left_path);
1841         left_el = path_leaf_el(left_path);
1842
1843         if (left_el->l_next_free_rec != left_el->l_count) {
1844                 ocfs2_error(inode->i_sb,
1845                             "Inode %llu has non-full interior leaf node %llu"
1846                             "(next free = %u)",
1847                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1848                             (unsigned long long)left_leaf_bh->b_blocknr,
1849                             le16_to_cpu(left_el->l_next_free_rec));
1850                 return -EROFS;
1851         }
1852
1853         /*
1854          * This extent block may already have an empty record, so we
1855          * return early if so.
1856          */
1857         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1858                 return 0;
1859
1860         root_bh = left_path->p_node[subtree_index].bh;
1861         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1862
1863         ret = ocfs2_journal_access(handle, inode, root_bh,
1864                                    OCFS2_JOURNAL_ACCESS_WRITE);
1865         if (ret) {
1866                 mlog_errno(ret);
1867                 goto out;
1868         }
1869
1870         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1871                 ret = ocfs2_journal_access(handle, inode,
1872                                            right_path->p_node[i].bh,
1873                                            OCFS2_JOURNAL_ACCESS_WRITE);
1874                 if (ret) {
1875                         mlog_errno(ret);
1876                         goto out;
1877                 }
1878
1879                 ret = ocfs2_journal_access(handle, inode,
1880                                            left_path->p_node[i].bh,
1881                                            OCFS2_JOURNAL_ACCESS_WRITE);
1882                 if (ret) {
1883                         mlog_errno(ret);
1884                         goto out;
1885                 }
1886         }
1887
1888         right_leaf_bh = path_leaf_bh(right_path);
1889         right_el = path_leaf_el(right_path);
1890
1891         /* This is a code error, not a disk corruption. */
1892         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1893                         "because rightmost leaf block %llu is empty\n",
1894                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1895                         (unsigned long long)right_leaf_bh->b_blocknr);
1896
1897         ocfs2_create_empty_extent(right_el);
1898
1899         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1900         if (ret) {
1901                 mlog_errno(ret);
1902                 goto out;
1903         }
1904
1905         /* Do the copy now. */
1906         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1907         move_rec = left_el->l_recs[i];
1908         right_el->l_recs[0] = move_rec;
1909
1910         /*
1911          * Clear out the record we just copied and shift everything
1912          * over, leaving an empty extent in the left leaf.
1913          *
1914          * We temporarily subtract from next_free_rec so that the
1915          * shift will lose the tail record (which is now defunct).
1916          */
1917         le16_add_cpu(&left_el->l_next_free_rec, -1);
1918         ocfs2_shift_records_right(left_el);
1919         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1920         le16_add_cpu(&left_el->l_next_free_rec, 1);
1921
1922         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1923         if (ret) {
1924                 mlog_errno(ret);
1925                 goto out;
1926         }
1927
1928         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1929                                 subtree_index);
1930
1931 out:
1932         return ret;
1933 }
1934
1935 /*
1936  * Given a full path, determine what cpos value would return us a path
1937  * containing the leaf immediately to the left of the current one.
1938  *
1939  * Will return zero if the path passed in is already the leftmost path.
1940  */
1941 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1942                                          struct ocfs2_path *path, u32 *cpos)
1943 {
1944         int i, j, ret = 0;
1945         u64 blkno;
1946         struct ocfs2_extent_list *el;
1947
1948         BUG_ON(path->p_tree_depth == 0);
1949
1950         *cpos = 0;
1951
1952         blkno = path_leaf_bh(path)->b_blocknr;
1953
1954         /* Start at the tree node just above the leaf and work our way up. */
1955         i = path->p_tree_depth - 1;
1956         while (i >= 0) {
1957                 el = path->p_node[i].el;
1958
1959                 /*
1960                  * Find the extent record just before the one in our
1961                  * path.
1962                  */
1963                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1964                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1965                                 if (j == 0) {
1966                                         if (i == 0) {
1967                                                 /*
1968                                                  * We've determined that the
1969                                                  * path specified is already
1970                                                  * the leftmost one - return a
1971                                                  * cpos of zero.
1972                                                  */
1973                                                 goto out;
1974                                         }
1975                                         /*
1976                                          * The leftmost record points to our
1977                                          * leaf - we need to travel up the
1978                                          * tree one level.
1979                                          */
1980                                         goto next_node;
1981                                 }
1982
1983                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1984                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1985                                                            &el->l_recs[j - 1]);
1986                                 *cpos = *cpos - 1;
1987                                 goto out;
1988                         }
1989                 }
1990
1991                 /*
1992                  * If we got here, we never found a valid node where
1993                  * the tree indicated one should be.
1994                  */
1995                 ocfs2_error(sb,
1996                             "Invalid extent tree at extent block %llu\n",
1997                             (unsigned long long)blkno);
1998                 ret = -EROFS;
1999                 goto out;
2000
2001 next_node:
2002                 blkno = path->p_node[i].bh->b_blocknr;
2003                 i--;
2004         }
2005
2006 out:
2007         return ret;
2008 }
2009
2010 /*
2011  * Extend the transaction by enough credits to complete the rotation,
2012  * and still leave at least the original number of credits allocated
2013  * to this transaction.
2014  */
2015 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2016                                            int op_credits,
2017                                            struct ocfs2_path *path)
2018 {
2019         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2020
2021         if (handle->h_buffer_credits < credits)
2022                 return ocfs2_extend_trans(handle, credits);
2023
2024         return 0;
2025 }
2026
2027 /*
2028  * Trap the case where we're inserting into the theoretical range past
2029  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2030  * whose cpos is less than ours into the right leaf.
2031  *
2032  * It's only necessary to look at the rightmost record of the left
2033  * leaf because the logic that calls us should ensure that the
2034  * theoretical ranges in the path components above the leaves are
2035  * correct.
2036  */
2037 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2038                                                  u32 insert_cpos)
2039 {
2040         struct ocfs2_extent_list *left_el;
2041         struct ocfs2_extent_rec *rec;
2042         int next_free;
2043
2044         left_el = path_leaf_el(left_path);
2045         next_free = le16_to_cpu(left_el->l_next_free_rec);
2046         rec = &left_el->l_recs[next_free - 1];
2047
2048         if (insert_cpos > le32_to_cpu(rec->e_cpos))
2049                 return 1;
2050         return 0;
2051 }
2052
2053 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2054 {
2055         int next_free = le16_to_cpu(el->l_next_free_rec);
2056         unsigned int range;
2057         struct ocfs2_extent_rec *rec;
2058
2059         if (next_free == 0)
2060                 return 0;
2061
2062         rec = &el->l_recs[0];
2063         if (ocfs2_is_empty_extent(rec)) {
2064                 /* Empty list. */
2065                 if (next_free == 1)
2066                         return 0;
2067                 rec = &el->l_recs[1];
2068         }
2069
2070         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2071         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2072                 return 1;
2073         return 0;
2074 }
2075
2076 /*
2077  * Rotate all the records in a btree right one record, starting at insert_cpos.
2078  *
2079  * The path to the rightmost leaf should be passed in.
2080  *
2081  * The array is assumed to be large enough to hold an entire path (tree depth).
2082  *
2083  * Upon succesful return from this function:
2084  *
2085  * - The 'right_path' array will contain a path to the leaf block
2086  *   whose range contains e_cpos.
2087  * - That leaf block will have a single empty extent in list index 0.
2088  * - In the case that the rotation requires a post-insert update,
2089  *   *ret_left_path will contain a valid path which can be passed to
2090  *   ocfs2_insert_path().
2091  */
2092 static int ocfs2_rotate_tree_right(struct inode *inode,
2093                                    handle_t *handle,
2094                                    enum ocfs2_split_type split,
2095                                    u32 insert_cpos,
2096                                    struct ocfs2_path *right_path,
2097                                    struct ocfs2_path **ret_left_path)
2098 {
2099         int ret, start, orig_credits = handle->h_buffer_credits;
2100         u32 cpos;
2101         struct ocfs2_path *left_path = NULL;
2102
2103         *ret_left_path = NULL;
2104
2105         left_path = ocfs2_new_path(path_root_bh(right_path),
2106                                    path_root_el(right_path));
2107         if (!left_path) {
2108                 ret = -ENOMEM;
2109                 mlog_errno(ret);
2110                 goto out;
2111         }
2112
2113         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2114         if (ret) {
2115                 mlog_errno(ret);
2116                 goto out;
2117         }
2118
2119         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2120
2121         /*
2122          * What we want to do here is:
2123          *
2124          * 1) Start with the rightmost path.
2125          *
2126          * 2) Determine a path to the leaf block directly to the left
2127          *    of that leaf.
2128          *
2129          * 3) Determine the 'subtree root' - the lowest level tree node
2130          *    which contains a path to both leaves.
2131          *
2132          * 4) Rotate the subtree.
2133          *
2134          * 5) Find the next subtree by considering the left path to be
2135          *    the new right path.
2136          *
2137          * The check at the top of this while loop also accepts
2138          * insert_cpos == cpos because cpos is only a _theoretical_
2139          * value to get us the left path - insert_cpos might very well
2140          * be filling that hole.
2141          *
2142          * Stop at a cpos of '0' because we either started at the
2143          * leftmost branch (i.e., a tree with one branch and a
2144          * rotation inside of it), or we've gone as far as we can in
2145          * rotating subtrees.
2146          */
2147         while (cpos && insert_cpos <= cpos) {
2148                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2149                      insert_cpos, cpos);
2150
2151                 ret = ocfs2_find_path(inode, left_path, cpos);
2152                 if (ret) {
2153                         mlog_errno(ret);
2154                         goto out;
2155                 }
2156
2157                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2158                                 path_leaf_bh(right_path),
2159                                 "Inode %lu: error during insert of %u "
2160                                 "(left path cpos %u) results in two identical "
2161                                 "paths ending at %llu\n",
2162                                 inode->i_ino, insert_cpos, cpos,
2163                                 (unsigned long long)
2164                                 path_leaf_bh(left_path)->b_blocknr);
2165
2166                 if (split == SPLIT_NONE &&
2167                     ocfs2_rotate_requires_path_adjustment(left_path,
2168                                                           insert_cpos)) {
2169
2170                         /*
2171                          * We've rotated the tree as much as we
2172                          * should. The rest is up to
2173                          * ocfs2_insert_path() to complete, after the
2174                          * record insertion. We indicate this
2175                          * situation by returning the left path.
2176                          *
2177                          * The reason we don't adjust the records here
2178                          * before the record insert is that an error
2179                          * later might break the rule where a parent
2180                          * record e_cpos will reflect the actual
2181                          * e_cpos of the 1st nonempty record of the
2182                          * child list.
2183                          */
2184                         *ret_left_path = left_path;
2185                         goto out_ret_path;
2186                 }
2187
2188                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2189
2190                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2191                      start,
2192                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2193                      right_path->p_tree_depth);
2194
2195                 ret = ocfs2_extend_rotate_transaction(handle, start,
2196                                                       orig_credits, right_path);
2197                 if (ret) {
2198                         mlog_errno(ret);
2199                         goto out;
2200                 }
2201
2202                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2203                                                  right_path, start);
2204                 if (ret) {
2205                         mlog_errno(ret);
2206                         goto out;
2207                 }
2208
2209                 if (split != SPLIT_NONE &&
2210                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2211                                                 insert_cpos)) {
2212                         /*
2213                          * A rotate moves the rightmost left leaf
2214                          * record over to the leftmost right leaf
2215                          * slot. If we're doing an extent split
2216                          * instead of a real insert, then we have to
2217                          * check that the extent to be split wasn't
2218                          * just moved over. If it was, then we can
2219                          * exit here, passing left_path back -
2220                          * ocfs2_split_extent() is smart enough to
2221                          * search both leaves.
2222                          */
2223                         *ret_left_path = left_path;
2224                         goto out_ret_path;
2225                 }
2226
2227                 /*
2228                  * There is no need to re-read the next right path
2229                  * as we know that it'll be our current left
2230                  * path. Optimize by copying values instead.
2231                  */
2232                 ocfs2_mv_path(right_path, left_path);
2233
2234                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2235                                                     &cpos);
2236                 if (ret) {
2237                         mlog_errno(ret);
2238                         goto out;
2239                 }
2240         }
2241
2242 out:
2243         ocfs2_free_path(left_path);
2244
2245 out_ret_path:
2246         return ret;
2247 }
2248
2249 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2250                                       struct ocfs2_path *path)
2251 {
2252         int i, idx;
2253         struct ocfs2_extent_rec *rec;
2254         struct ocfs2_extent_list *el;
2255         struct ocfs2_extent_block *eb;
2256         u32 range;
2257
2258         /* Path should always be rightmost. */
2259         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2260         BUG_ON(eb->h_next_leaf_blk != 0ULL);
2261
2262         el = &eb->h_list;
2263         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2264         idx = le16_to_cpu(el->l_next_free_rec) - 1;
2265         rec = &el->l_recs[idx];
2266         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2267
2268         for (i = 0; i < path->p_tree_depth; i++) {
2269                 el = path->p_node[i].el;
2270                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2271                 rec = &el->l_recs[idx];
2272
2273                 rec->e_int_clusters = cpu_to_le32(range);
2274                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2275
2276                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2277         }
2278 }
2279
2280 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2281                               struct ocfs2_cached_dealloc_ctxt *dealloc,
2282                               struct ocfs2_path *path, int unlink_start)
2283 {
2284         int ret, i;
2285         struct ocfs2_extent_block *eb;
2286         struct ocfs2_extent_list *el;
2287         struct buffer_head *bh;
2288
2289         for(i = unlink_start; i < path_num_items(path); i++) {
2290                 bh = path->p_node[i].bh;
2291
2292                 eb = (struct ocfs2_extent_block *)bh->b_data;
2293                 /*
2294                  * Not all nodes might have had their final count
2295                  * decremented by the caller - handle this here.
2296                  */
2297                 el = &eb->h_list;
2298                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2299                         mlog(ML_ERROR,
2300                              "Inode %llu, attempted to remove extent block "
2301                              "%llu with %u records\n",
2302                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2303                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2304                              le16_to_cpu(el->l_next_free_rec));
2305
2306                         ocfs2_journal_dirty(handle, bh);
2307                         ocfs2_remove_from_cache(inode, bh);
2308                         continue;
2309                 }
2310
2311                 el->l_next_free_rec = 0;
2312                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2313
2314                 ocfs2_journal_dirty(handle, bh);
2315
2316                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2317                 if (ret)
2318                         mlog_errno(ret);
2319
2320                 ocfs2_remove_from_cache(inode, bh);
2321         }
2322 }
2323
2324 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2325                                  struct ocfs2_path *left_path,
2326                                  struct ocfs2_path *right_path,
2327                                  int subtree_index,
2328                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2329 {
2330         int i;
2331         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2332         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2333         struct ocfs2_extent_list *el;
2334         struct ocfs2_extent_block *eb;
2335
2336         el = path_leaf_el(left_path);
2337
2338         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2339
2340         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2341                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2342                         break;
2343
2344         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2345
2346         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2347         le16_add_cpu(&root_el->l_next_free_rec, -1);
2348
2349         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2350         eb->h_next_leaf_blk = 0;
2351
2352         ocfs2_journal_dirty(handle, root_bh);
2353         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2354
2355         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2356                           subtree_index + 1);
2357 }
2358
2359 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2360                                      struct ocfs2_path *left_path,
2361                                      struct ocfs2_path *right_path,
2362                                      int subtree_index,
2363                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2364                                      int *deleted,
2365                                      struct ocfs2_extent_tree *et)
2366 {
2367         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2368         struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2369         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2370         struct ocfs2_extent_block *eb;
2371
2372         *deleted = 0;
2373
2374         right_leaf_el = path_leaf_el(right_path);
2375         left_leaf_el = path_leaf_el(left_path);
2376         root_bh = left_path->p_node[subtree_index].bh;
2377         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2378
2379         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2380                 return 0;
2381
2382         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2383         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2384                 /*
2385                  * It's legal for us to proceed if the right leaf is
2386                  * the rightmost one and it has an empty extent. There
2387                  * are two cases to handle - whether the leaf will be
2388                  * empty after removal or not. If the leaf isn't empty
2389                  * then just remove the empty extent up front. The
2390                  * next block will handle empty leaves by flagging
2391                  * them for unlink.
2392                  *
2393                  * Non rightmost leaves will throw -EAGAIN and the
2394                  * caller can manually move the subtree and retry.
2395                  */
2396
2397                 if (eb->h_next_leaf_blk != 0ULL)
2398                         return -EAGAIN;
2399
2400                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2401                         ret = ocfs2_journal_access(handle, inode,
2402                                                    path_leaf_bh(right_path),
2403                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2404                         if (ret) {
2405                                 mlog_errno(ret);
2406                                 goto out;
2407                         }
2408
2409                         ocfs2_remove_empty_extent(right_leaf_el);
2410                 } else
2411                         right_has_empty = 1;
2412         }
2413
2414         if (eb->h_next_leaf_blk == 0ULL &&
2415             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2416                 /*
2417                  * We have to update i_last_eb_blk during the meta
2418                  * data delete.
2419                  */
2420                 ret = ocfs2_journal_access(handle, inode, et_root_bh,
2421                                            OCFS2_JOURNAL_ACCESS_WRITE);
2422                 if (ret) {
2423                         mlog_errno(ret);
2424                         goto out;
2425                 }
2426
2427                 del_right_subtree = 1;
2428         }
2429
2430         /*
2431          * Getting here with an empty extent in the right path implies
2432          * that it's the rightmost path and will be deleted.
2433          */
2434         BUG_ON(right_has_empty && !del_right_subtree);
2435
2436         ret = ocfs2_journal_access(handle, inode, root_bh,
2437                                    OCFS2_JOURNAL_ACCESS_WRITE);
2438         if (ret) {
2439                 mlog_errno(ret);
2440                 goto out;
2441         }
2442
2443         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2444                 ret = ocfs2_journal_access(handle, inode,
2445                                            right_path->p_node[i].bh,
2446                                            OCFS2_JOURNAL_ACCESS_WRITE);
2447                 if (ret) {
2448                         mlog_errno(ret);
2449                         goto out;
2450                 }
2451
2452                 ret = ocfs2_journal_access(handle, inode,
2453                                            left_path->p_node[i].bh,
2454                                            OCFS2_JOURNAL_ACCESS_WRITE);
2455                 if (ret) {
2456                         mlog_errno(ret);
2457                         goto out;
2458                 }
2459         }
2460
2461         if (!right_has_empty) {
2462                 /*
2463                  * Only do this if we're moving a real
2464                  * record. Otherwise, the action is delayed until
2465                  * after removal of the right path in which case we
2466                  * can do a simple shift to remove the empty extent.
2467                  */
2468                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2469                 memset(&right_leaf_el->l_recs[0], 0,
2470                        sizeof(struct ocfs2_extent_rec));
2471         }
2472         if (eb->h_next_leaf_blk == 0ULL) {
2473                 /*
2474                  * Move recs over to get rid of empty extent, decrease
2475                  * next_free. This is allowed to remove the last
2476                  * extent in our leaf (setting l_next_free_rec to
2477                  * zero) - the delete code below won't care.
2478                  */
2479                 ocfs2_remove_empty_extent(right_leaf_el);
2480         }
2481
2482         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2483         if (ret)
2484                 mlog_errno(ret);
2485         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2486         if (ret)
2487                 mlog_errno(ret);
2488
2489         if (del_right_subtree) {
2490                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2491                                      subtree_index, dealloc);
2492                 ocfs2_update_edge_lengths(inode, handle, left_path);
2493
2494                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2495                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2496
2497                 /*
2498                  * Removal of the extent in the left leaf was skipped
2499                  * above so we could delete the right path
2500                  * 1st.
2501                  */
2502                 if (right_has_empty)
2503                         ocfs2_remove_empty_extent(left_leaf_el);
2504
2505                 ret = ocfs2_journal_dirty(handle, et_root_bh);
2506                 if (ret)
2507                         mlog_errno(ret);
2508
2509                 *deleted = 1;
2510         } else
2511                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2512                                            subtree_index);
2513
2514 out:
2515         return ret;
2516 }
2517
2518 /*
2519  * Given a full path, determine what cpos value would return us a path
2520  * containing the leaf immediately to the right of the current one.
2521  *
2522  * Will return zero if the path passed in is already the rightmost path.
2523  *
2524  * This looks similar, but is subtly different to
2525  * ocfs2_find_cpos_for_left_leaf().
2526  */
2527 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2528                                           struct ocfs2_path *path, u32 *cpos)
2529 {
2530         int i, j, ret = 0;
2531         u64 blkno;
2532         struct ocfs2_extent_list *el;
2533
2534         *cpos = 0;
2535
2536         if (path->p_tree_depth == 0)
2537                 return 0;
2538
2539         blkno = path_leaf_bh(path)->b_blocknr;
2540
2541         /* Start at the tree node just above the leaf and work our way up. */
2542         i = path->p_tree_depth - 1;
2543         while (i >= 0) {
2544                 int next_free;
2545
2546                 el = path->p_node[i].el;
2547
2548                 /*
2549                  * Find the extent record just after the one in our
2550                  * path.
2551                  */
2552                 next_free = le16_to_cpu(el->l_next_free_rec);
2553                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2554                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2555                                 if (j == (next_free - 1)) {
2556                                         if (i == 0) {
2557                                                 /*
2558                                                  * We've determined that the
2559                                                  * path specified is already
2560                                                  * the rightmost one - return a
2561                                                  * cpos of zero.
2562                                                  */
2563                                                 goto out;
2564                                         }
2565                                         /*
2566                                          * The rightmost record points to our
2567                                          * leaf - we need to travel up the
2568                                          * tree one level.
2569                                          */
2570                                         goto next_node;
2571                                 }
2572
2573                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2574                                 goto out;
2575                         }
2576                 }
2577
2578                 /*
2579                  * If we got here, we never found a valid node where
2580                  * the tree indicated one should be.
2581                  */
2582                 ocfs2_error(sb,
2583                             "Invalid extent tree at extent block %llu\n",
2584                             (unsigned long long)blkno);
2585                 ret = -EROFS;
2586                 goto out;
2587
2588 next_node:
2589                 blkno = path->p_node[i].bh->b_blocknr;
2590                 i--;
2591         }
2592
2593 out:
2594         return ret;
2595 }
2596
2597 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2598                                             handle_t *handle,
2599                                             struct buffer_head *bh,
2600                                             struct ocfs2_extent_list *el)
2601 {
2602         int ret;
2603
2604         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2605                 return 0;
2606
2607         ret = ocfs2_journal_access(handle, inode, bh,
2608                                    OCFS2_JOURNAL_ACCESS_WRITE);
2609         if (ret) {
2610                 mlog_errno(ret);
2611                 goto out;
2612         }
2613
2614         ocfs2_remove_empty_extent(el);
2615
2616         ret = ocfs2_journal_dirty(handle, bh);
2617         if (ret)
2618                 mlog_errno(ret);
2619
2620 out:
2621         return ret;
2622 }
2623
2624 static int __ocfs2_rotate_tree_left(struct inode *inode,
2625                                     handle_t *handle, int orig_credits,
2626                                     struct ocfs2_path *path,
2627                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2628                                     struct ocfs2_path **empty_extent_path,
2629                                     struct ocfs2_extent_tree *et)
2630 {
2631         int ret, subtree_root, deleted;
2632         u32 right_cpos;
2633         struct ocfs2_path *left_path = NULL;
2634         struct ocfs2_path *right_path = NULL;
2635
2636         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2637
2638         *empty_extent_path = NULL;
2639
2640         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2641                                              &right_cpos);
2642         if (ret) {
2643                 mlog_errno(ret);
2644                 goto out;
2645         }
2646
2647         left_path = ocfs2_new_path(path_root_bh(path),
2648                                    path_root_el(path));
2649         if (!left_path) {
2650                 ret = -ENOMEM;
2651                 mlog_errno(ret);
2652                 goto out;
2653         }
2654
2655         ocfs2_cp_path(left_path, path);
2656
2657         right_path = ocfs2_new_path(path_root_bh(path),
2658                                     path_root_el(path));
2659         if (!right_path) {
2660                 ret = -ENOMEM;
2661                 mlog_errno(ret);
2662                 goto out;
2663         }
2664
2665         while (right_cpos) {
2666                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2667                 if (ret) {
2668                         mlog_errno(ret);
2669                         goto out;
2670                 }
2671
2672                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2673                                                        right_path);
2674
2675                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2676                      subtree_root,
2677                      (unsigned long long)
2678                      right_path->p_node[subtree_root].bh->b_blocknr,
2679                      right_path->p_tree_depth);
2680
2681                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2682                                                       orig_credits, left_path);
2683                 if (ret) {
2684                         mlog_errno(ret);
2685                         goto out;
2686                 }
2687
2688                 /*
2689                  * Caller might still want to make changes to the
2690                  * tree root, so re-add it to the journal here.
2691                  */
2692                 ret = ocfs2_journal_access(handle, inode,
2693                                            path_root_bh(left_path),
2694                                            OCFS2_JOURNAL_ACCESS_WRITE);
2695                 if (ret) {
2696                         mlog_errno(ret);
2697                         goto out;
2698                 }
2699
2700                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2701                                                 right_path, subtree_root,
2702                                                 dealloc, &deleted, et);
2703                 if (ret == -EAGAIN) {
2704                         /*
2705                          * The rotation has to temporarily stop due to
2706                          * the right subtree having an empty
2707                          * extent. Pass it back to the caller for a
2708                          * fixup.
2709                          */
2710                         *empty_extent_path = right_path;
2711                         right_path = NULL;
2712                         goto out;
2713                 }
2714                 if (ret) {
2715                         mlog_errno(ret);
2716                         goto out;
2717                 }
2718
2719                 /*
2720                  * The subtree rotate might have removed records on
2721                  * the rightmost edge. If so, then rotation is
2722                  * complete.
2723                  */
2724                 if (deleted)
2725                         break;
2726
2727                 ocfs2_mv_path(left_path, right_path);
2728
2729                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2730                                                      &right_cpos);
2731                 if (ret) {
2732                         mlog_errno(ret);
2733                         goto out;
2734                 }
2735         }
2736
2737 out:
2738         ocfs2_free_path(right_path);
2739         ocfs2_free_path(left_path);
2740
2741         return ret;
2742 }
2743
2744 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2745                                 struct ocfs2_path *path,
2746                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2747                                 struct ocfs2_extent_tree *et)
2748 {
2749         int ret, subtree_index;
2750         u32 cpos;
2751         struct ocfs2_path *left_path = NULL;
2752         struct ocfs2_extent_block *eb;
2753         struct ocfs2_extent_list *el;
2754
2755
2756         ret = ocfs2_et_sanity_check(inode, et);
2757         if (ret)
2758                 goto out;
2759         /*
2760          * There's two ways we handle this depending on
2761          * whether path is the only existing one.
2762          */
2763         ret = ocfs2_extend_rotate_transaction(handle, 0,
2764                                               handle->h_buffer_credits,
2765                                               path);
2766         if (ret) {
2767                 mlog_errno(ret);
2768                 goto out;
2769         }
2770
2771         ret = ocfs2_journal_access_path(inode, handle, path);
2772         if (ret) {
2773                 mlog_errno(ret);
2774                 goto out;
2775         }
2776
2777         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2778         if (ret) {
2779                 mlog_errno(ret);
2780                 goto out;
2781         }
2782
2783         if (cpos) {
2784                 /*
2785                  * We have a path to the left of this one - it needs
2786                  * an update too.
2787                  */
2788                 left_path = ocfs2_new_path(path_root_bh(path),
2789                                            path_root_el(path));
2790                 if (!left_path) {
2791                         ret = -ENOMEM;
2792                         mlog_errno(ret);
2793                         goto out;
2794                 }
2795
2796                 ret = ocfs2_find_path(inode, left_path, cpos);
2797                 if (ret) {
2798                         mlog_errno(ret);
2799                         goto out;
2800                 }
2801
2802                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2803                 if (ret) {
2804                         mlog_errno(ret);
2805                         goto out;
2806                 }
2807
2808                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2809
2810                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2811                                      subtree_index, dealloc);
2812                 ocfs2_update_edge_lengths(inode, handle, left_path);
2813
2814                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2815                 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2816         } else {
2817                 /*
2818                  * 'path' is also the leftmost path which
2819                  * means it must be the only one. This gets
2820                  * handled differently because we want to
2821                  * revert the inode back to having extents
2822                  * in-line.
2823                  */
2824                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2825
2826                 el = et->et_root_el;
2827                 el->l_tree_depth = 0;
2828                 el->l_next_free_rec = 0;
2829                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2830
2831                 ocfs2_et_set_last_eb_blk(et, 0);
2832         }
2833
2834         ocfs2_journal_dirty(handle, path_root_bh(path));
2835
2836 out:
2837         ocfs2_free_path(left_path);
2838         return ret;
2839 }
2840
2841 /*
2842  * Left rotation of btree records.
2843  *
2844  * In many ways, this is (unsurprisingly) the opposite of right
2845  * rotation. We start at some non-rightmost path containing an empty
2846  * extent in the leaf block. The code works its way to the rightmost
2847  * path by rotating records to the left in every subtree.
2848  *
2849  * This is used by any code which reduces the number of extent records
2850  * in a leaf. After removal, an empty record should be placed in the
2851  * leftmost list position.
2852  *
2853  * This won't handle a length update of the rightmost path records if
2854  * the rightmost tree leaf record is removed so the caller is
2855  * responsible for detecting and correcting that.
2856  */
2857 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2858                                   struct ocfs2_path *path,
2859                                   struct ocfs2_cached_dealloc_ctxt *dealloc,
2860                                   struct ocfs2_extent_tree *et)
2861 {
2862         int ret, orig_credits = handle->h_buffer_credits;
2863         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2864         struct ocfs2_extent_block *eb;
2865         struct ocfs2_extent_list *el;
2866
2867         el = path_leaf_el(path);
2868         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2869                 return 0;
2870
2871         if (path->p_tree_depth == 0) {
2872 rightmost_no_delete:
2873                 /*
2874                  * Inline extents. This is trivially handled, so do
2875                  * it up front.
2876                  */
2877                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2878                                                        path_leaf_bh(path),
2879                                                        path_leaf_el(path));
2880                 if (ret)
2881                         mlog_errno(ret);
2882                 goto out;
2883         }
2884
2885         /*
2886          * Handle rightmost branch now. There's several cases:
2887          *  1) simple rotation leaving records in there. That's trivial.
2888          *  2) rotation requiring a branch delete - there's no more
2889          *     records left. Two cases of this:
2890          *     a) There are branches to the left.
2891          *     b) This is also the leftmost (the only) branch.
2892          *
2893          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2894          *  2a) we need the left branch so that we can update it with the unlink
2895          *  2b) we need to bring the inode back to inline extents.
2896          */
2897
2898         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2899         el = &eb->h_list;
2900         if (eb->h_next_leaf_blk == 0) {
2901                 /*
2902                  * This gets a bit tricky if we're going to delete the
2903                  * rightmost path. Get the other cases out of the way
2904                  * 1st.
2905                  */
2906                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2907                         goto rightmost_no_delete;
2908
2909                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2910                         ret = -EIO;
2911                         ocfs2_error(inode->i_sb,
2912                                     "Inode %llu has empty extent block at %llu",
2913                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2914                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2915                         goto out;
2916                 }
2917
2918                 /*
2919                  * XXX: The caller can not trust "path" any more after
2920                  * this as it will have been deleted. What do we do?
2921                  *
2922                  * In theory the rotate-for-merge code will never get
2923                  * here because it'll always ask for a rotate in a
2924                  * nonempty list.
2925                  */
2926
2927                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2928                                                   dealloc, et);
2929                 if (ret)
2930                         mlog_errno(ret);
2931                 goto out;
2932         }
2933
2934         /*
2935          * Now we can loop, remembering the path we get from -EAGAIN
2936          * and restarting from there.
2937          */
2938 try_rotate:
2939         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2940                                        dealloc, &restart_path, et);
2941         if (ret && ret != -EAGAIN) {
2942                 mlog_errno(ret);
2943                 goto out;
2944         }
2945
2946         while (ret == -EAGAIN) {
2947                 tmp_path = restart_path;
2948                 restart_path = NULL;
2949
2950                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2951                                                tmp_path, dealloc,
2952                                                &restart_path, et);
2953                 if (ret && ret != -EAGAIN) {
2954                         mlog_errno(ret);
2955                         goto out;
2956                 }
2957
2958                 ocfs2_free_path(tmp_path);
2959                 tmp_path = NULL;
2960
2961                 if (ret == 0)
2962                         goto try_rotate;
2963         }
2964
2965 out:
2966         ocfs2_free_path(tmp_path);
2967         ocfs2_free_path(restart_path);
2968         return ret;
2969 }
2970
2971 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2972                                 int index)
2973 {
2974         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2975         unsigned int size;
2976
2977         if (rec->e_leaf_clusters == 0) {
2978                 /*
2979                  * We consumed all of the merged-from record. An empty
2980                  * extent cannot exist anywhere but the 1st array
2981                  * position, so move things over if the merged-from
2982                  * record doesn't occupy that position.
2983                  *
2984                  * This creates a new empty extent so the caller
2985                  * should be smart enough to have removed any existing
2986                  * ones.
2987                  */
2988                 if (index > 0) {
2989                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2990                         size = index * sizeof(struct ocfs2_extent_rec);
2991                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2992                 }
2993
2994                 /*
2995                  * Always memset - the caller doesn't check whether it
2996                  * created an empty extent, so there could be junk in
2997                  * the other fields.
2998                  */
2999                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3000         }
3001 }
3002
3003 static int ocfs2_get_right_path(struct inode *inode,
3004                                 struct ocfs2_path *left_path,
3005                                 struct ocfs2_path **ret_right_path)
3006 {
3007         int ret;
3008         u32 right_cpos;
3009         struct ocfs2_path *right_path = NULL;
3010         struct ocfs2_extent_list *left_el;
3011
3012         *ret_right_path = NULL;
3013
3014         /* This function shouldn't be called for non-trees. */
3015         BUG_ON(left_path->p_tree_depth == 0);
3016
3017         left_el = path_leaf_el(left_path);
3018         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3019
3020         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3021                                              &right_cpos);
3022         if (ret) {
3023                 mlog_errno(ret);
3024                 goto out;
3025         }
3026
3027         /* This function shouldn't be called for the rightmost leaf. */
3028         BUG_ON(right_cpos == 0);
3029
3030         right_path = ocfs2_new_path(path_root_bh(left_path),
3031                                     path_root_el(left_path));
3032         if (!right_path) {
3033                 ret = -ENOMEM;
3034                 mlog_errno(ret);
3035                 goto out;
3036         }
3037
3038         ret = ocfs2_find_path(inode, right_path, right_cpos);
3039         if (ret) {
3040                 mlog_errno(ret);
3041                 goto out;
3042         }
3043
3044         *ret_right_path = right_path;
3045 out:
3046         if (ret)
3047                 ocfs2_free_path(right_path);
3048         return ret;
3049 }
3050
3051 /*
3052  * Remove split_rec clusters from the record at index and merge them
3053  * onto the beginning of the record "next" to it.
3054  * For index < l_count - 1, the next means the extent rec at index + 1.
3055  * For index == l_count - 1, the "next" means the 1st extent rec of the
3056  * next extent block.
3057  */
3058 static int ocfs2_merge_rec_right(struct inode *inode,
3059                                  struct ocfs2_path *left_path,
3060                                  handle_t *handle,
3061                                  struct ocfs2_extent_rec *split_rec,
3062                                  int index)
3063 {
3064         int ret, next_free, i;
3065         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3066         struct ocfs2_extent_rec *left_rec;
3067         struct ocfs2_extent_rec *right_rec;
3068         struct ocfs2_extent_list *right_el;
3069         struct ocfs2_path *right_path = NULL;
3070         int subtree_index = 0;
3071         struct ocfs2_extent_list *el = path_leaf_el(left_path);
3072         struct buffer_head *bh = path_leaf_bh(left_path);
3073         struct buffer_head *root_bh = NULL;
3074
3075         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3076         left_rec = &el->l_recs[index];
3077
3078         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3079             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3080                 /* we meet with a cross extent block merge. */
3081                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3082                 if (ret) {
3083                         mlog_errno(ret);
3084                         goto out;
3085                 }
3086
3087                 right_el = path_leaf_el(right_path);
3088                 next_free = le16_to_cpu(right_el->l_next_free_rec);
3089                 BUG_ON(next_free <= 0);
3090                 right_rec = &right_el->l_recs[0];
3091                 if (ocfs2_is_empty_extent(right_rec)) {
3092                         BUG_ON(next_free <= 1);
3093                         right_rec = &right_el->l_recs[1];
3094                 }
3095
3096                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3097                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3098                        le32_to_cpu(right_rec->e_cpos));
3099
3100                 subtree_index = ocfs2_find_subtree_root(inode,
3101                                                         left_path, right_path);
3102
3103                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3104                                                       handle->h_buffer_credits,
3105                                                       right_path);
3106                 if (ret) {
3107                         mlog_errno(ret);
3108                         goto out;
3109                 }
3110
3111                 root_bh = left_path->p_node[subtree_index].bh;
3112                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3113
3114                 ret = ocfs2_journal_access(handle, inode, root_bh,
3115                                            OCFS2_JOURNAL_ACCESS_WRITE);
3116                 if (ret) {
3117                         mlog_errno(ret);
3118                         goto out;
3119                 }
3120
3121                 for (i = subtree_index + 1;
3122                      i < path_num_items(right_path); i++) {
3123                         ret = ocfs2_journal_access(handle, inode,
3124                                                    right_path->p_node[i].bh,
3125                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3126                         if (ret) {
3127                                 mlog_errno(ret);
3128                                 goto out;
3129                         }
3130
3131                         ret = ocfs2_journal_access(handle, inode,
3132                                                    left_path->p_node[i].bh,
3133                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3134                         if (ret) {
3135                                 mlog_errno(ret);
3136                                 goto out;
3137                         }
3138                 }
3139
3140         } else {
3141                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3142                 right_rec = &el->l_recs[index + 1];
3143         }
3144
3145         ret = ocfs2_journal_access(handle, inode, bh,
3146                                    OCFS2_JOURNAL_ACCESS_WRITE);
3147         if (ret) {
3148                 mlog_errno(ret);
3149                 goto out;
3150         }
3151
3152         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3153
3154         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3155         le64_add_cpu(&right_rec->e_blkno,
3156                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3157         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3158
3159         ocfs2_cleanup_merge(el, index);
3160
3161         ret = ocfs2_journal_dirty(handle, bh);
3162         if (ret)
3163                 mlog_errno(ret);
3164
3165         if (right_path) {
3166                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3167                 if (ret)
3168                         mlog_errno(ret);
3169
3170                 ocfs2_complete_edge_insert(inode, handle, left_path,
3171                                            right_path, subtree_index);
3172         }
3173 out:
3174         if (right_path)
3175                 ocfs2_free_path(right_path);
3176         return ret;
3177 }
3178
3179 static int ocfs2_get_left_path(struct inode *inode,
3180                                struct ocfs2_path *right_path,
3181                                struct ocfs2_path **ret_left_path)
3182 {
3183         int ret;
3184         u32 left_cpos;
3185         struct ocfs2_path *left_path = NULL;
3186
3187         *ret_left_path = NULL;
3188
3189         /* This function shouldn't be called for non-trees. */
3190         BUG_ON(right_path->p_tree_depth == 0);
3191
3192         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3193                                             right_path, &left_cpos);
3194         if (ret) {
3195                 mlog_errno(ret);
3196                 goto out;
3197         }
3198
3199         /* This function shouldn't be called for the leftmost leaf. */
3200         BUG_ON(left_cpos == 0);
3201
3202         left_path = ocfs2_new_path(path_root_bh(right_path),
3203                                    path_root_el(right_path));
3204         if (!left_path) {
3205                 ret = -ENOMEM;
3206                 mlog_errno(ret);
3207                 goto out;
3208         }
3209
3210         ret = ocfs2_find_path(inode, left_path, left_cpos);
3211         if (ret) {
3212                 mlog_errno(ret);
3213                 goto out;
3214         }
3215
3216         *ret_left_path = left_path;
3217 out:
3218         if (ret)
3219                 ocfs2_free_path(left_path);
3220         return ret;
3221 }
3222
3223 /*
3224  * Remove split_rec clusters from the record at index and merge them
3225  * onto the tail of the record "before" it.
3226  * For index > 0, the "before" means the extent rec at index - 1.
3227  *
3228  * For index == 0, the "before" means the last record of the previous
3229  * extent block. And there is also a situation that we may need to
3230  * remove the rightmost leaf extent block in the right_path and change
3231  * the right path to indicate the new rightmost path.
3232  */
3233 static int ocfs2_merge_rec_left(struct inode *inode,
3234                                 struct ocfs2_path *right_path,
3235                                 handle_t *handle,
3236                                 struct ocfs2_extent_rec *split_rec,
3237                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
3238                                 struct ocfs2_extent_tree *et,
3239                                 int index)
3240 {
3241         int ret, i, subtree_index = 0, has_empty_extent = 0;
3242         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3243         struct ocfs2_extent_rec *left_rec;
3244         struct ocfs2_extent_rec *right_rec;
3245         struct ocfs2_extent_list *el = path_leaf_el(right_path);
3246         struct buffer_head *bh = path_leaf_bh(right_path);
3247         struct buffer_head *root_bh = NULL;
3248         struct ocfs2_path *left_path = NULL;
3249         struct ocfs2_extent_list *left_el;
3250
3251         BUG_ON(index < 0);
3252
3253         right_rec = &el->l_recs[index];
3254         if (index == 0) {
3255                 /* we meet with a cross extent block merge. */
3256                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3257                 if (ret) {
3258                         mlog_errno(ret);
3259                         goto out;
3260                 }
3261
3262                 left_el = path_leaf_el(left_path);
3263                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3264                        le16_to_cpu(left_el->l_count));
3265
3266                 left_rec = &left_el->l_recs[
3267                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
3268                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3269                        le16_to_cpu(left_rec->e_leaf_clusters) !=
3270                        le32_to_cpu(split_rec->e_cpos));
3271
3272                 subtree_index = ocfs2_find_subtree_root(inode,
3273                                                         left_path, right_path);
3274
3275                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3276                                                       handle->h_buffer_credits,
3277                                                       left_path);
3278                 if (ret) {
3279                         mlog_errno(ret);
3280                         goto out;
3281                 }
3282
3283                 root_bh = left_path->p_node[subtree_index].bh;
3284                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3285
3286                 ret = ocfs2_journal_access(handle, inode, root_bh,
3287                                            OCFS2_JOURNAL_ACCESS_WRITE);
3288                 if (ret) {
3289                         mlog_errno(ret);
3290                         goto out;
3291                 }
3292
3293                 for (i = subtree_index + 1;
3294                      i < path_num_items(right_path); i++) {
3295                         ret = ocfs2_journal_access(handle, inode,
3296                                                    right_path->p_node[i].bh,
3297                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3298                         if (ret) {
3299                                 mlog_errno(ret);
3300                                 goto out;
3301                         }
3302
3303                         ret = ocfs2_journal_access(handle, inode,
3304                                                    left_path->p_node[i].bh,
3305                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3306                         if (ret) {
3307                                 mlog_errno(ret);
3308                                 goto out;
3309                         }
3310                 }
3311         } else {
3312                 left_rec = &el->l_recs[index - 1];
3313                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3314                         has_empty_extent = 1;
3315         }
3316
3317         ret = ocfs2_journal_access(handle, inode, bh,
3318                                    OCFS2_JOURNAL_ACCESS_WRITE);
3319         if (ret) {
3320                 mlog_errno(ret);
3321                 goto out;
3322         }
3323
3324         if (has_empty_extent && index == 1) {
3325                 /*
3326                  * The easy case - we can just plop the record right in.
3327                  */
3328                 *left_rec = *split_rec;
3329
3330                 has_empty_extent = 0;
3331         } else
3332                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3333
3334         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3335         le64_add_cpu(&right_rec->e_blkno,
3336                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3337         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3338
3339         ocfs2_cleanup_merge(el, index);
3340
3341         ret = ocfs2_journal_dirty(handle, bh);
3342         if (ret)
3343                 mlog_errno(ret);
3344
3345         if (left_path) {
3346                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3347                 if (ret)
3348                         mlog_errno(ret);
3349
3350                 /*
3351                  * In the situation that the right_rec is empty and the extent
3352                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3353                  * it and we need to delete the right extent block.
3354                  */
3355                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3356                     le16_to_cpu(el->l_next_free_rec) == 1) {
3357
3358                         ret = ocfs2_remove_rightmost_path(inode, handle,
3359                                                           right_path,
3360                                                           dealloc, et);
3361                         if (ret) {
3362                                 mlog_errno(ret);
3363                                 goto out;
3364                         }
3365
3366                         /* Now the rightmost extent block has been deleted.
3367                          * So we use the new rightmost path.
3368                          */
3369                         ocfs2_mv_path(right_path, left_path);
3370                         left_path = NULL;
3371                 } else
3372                         ocfs2_complete_edge_insert(inode, handle, left_path,
3373                                                    right_path, subtree_index);
3374         }
3375 out:
3376         if (left_path)
3377                 ocfs2_free_path(left_path);
3378         return ret;
3379 }
3380
3381 static int ocfs2_try_to_merge_extent(struct inode *inode,
3382                                      handle_t *handle,
3383                                      struct ocfs2_path *path,
3384                                      int split_index,
3385                                      struct ocfs2_extent_rec *split_rec,
3386                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3387                                      struct ocfs2_merge_ctxt *ctxt,
3388                                      struct ocfs2_extent_tree *et)
3389
3390 {
3391         int ret = 0;
3392         struct ocfs2_extent_list *el = path_leaf_el(path);
3393         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3394
3395         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3396
3397         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3398                 /*
3399                  * The merge code will need to create an empty
3400                  * extent to take the place of the newly
3401                  * emptied slot. Remove any pre-existing empty
3402                  * extents - having more than one in a leaf is
3403                  * illegal.
3404                  */
3405                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3406                                              dealloc, et);
3407                 if (ret) {
3408                         mlog_errno(ret);
3409                         goto out;
3410                 }
3411                 split_index--;
3412                 rec = &el->l_recs[split_index];
3413         }
3414
3415         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3416                 /*
3417                  * Left-right contig implies this.
3418                  */
3419                 BUG_ON(!ctxt->c_split_covers_rec);
3420
3421                 /*
3422                  * Since the leftright insert always covers the entire
3423                  * extent, this call will delete the insert record
3424                  * entirely, resulting in an empty extent record added to
3425                  * the extent block.
3426                  *
3427                  * Since the adding of an empty extent shifts
3428                  * everything back to the right, there's no need to
3429                  * update split_index here.
3430                  *
3431                  * When the split_index is zero, we need to merge it to the
3432                  * prevoius extent block. It is more efficient and easier
3433                  * if we do merge_right first and merge_left later.
3434                  */
3435                 ret = ocfs2_merge_rec_right(inode, path,
3436                                             handle, split_rec,
3437                                             split_index);
3438                 if (ret) {
3439                         mlog_errno(ret);
3440                         goto out;
3441                 }
3442
3443                 /*
3444                  * We can only get this from logic error above.
3445                  */
3446                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3447
3448                 /* The merge left us with an empty extent, remove it. */
3449                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3450                                              dealloc, et);
3451                 if (ret) {
3452                         mlog_errno(ret);
3453                         goto out;
3454                 }
3455
3456                 rec = &el->l_recs[split_index];
3457
3458                 /*
3459                  * Note that we don't pass split_rec here on purpose -
3460                  * we've merged it into the rec already.
3461                  */
3462                 ret = ocfs2_merge_rec_left(inode, path,
3463                                            handle, rec,
3464                                            dealloc, et,
3465                                            split_index);
3466
3467                 if (ret) {
3468                         mlog_errno(ret);
3469                         goto out;
3470                 }
3471
3472                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3473                                              dealloc, et);
3474                 /*
3475                  * Error from this last rotate is not critical, so
3476                  * print but don't bubble it up.
3477                  */
3478                 if (ret)
3479                         mlog_errno(ret);
3480                 ret = 0;
3481         } else {
3482                 /*
3483                  * Merge a record to the left or right.
3484                  *
3485                  * 'contig_type' is relative to the existing record,
3486                  * so for example, if we're "right contig", it's to
3487                  * the record on the left (hence the left merge).
3488                  */
3489                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3490                         ret = ocfs2_merge_rec_left(inode,
3491                                                    path,
3492                                                    handle, split_rec,
3493                                                    dealloc, et,
3494                                                    split_index);
3495                         if (ret) {
3496                                 mlog_errno(ret);
3497                                 goto out;
3498                         }
3499                 } else {
3500                         ret = ocfs2_merge_rec_right(inode,
3501                                                     path,
3502                                                     handle, split_rec,
3503                                                     split_index);
3504                         if (ret) {
3505                                 mlog_errno(ret);
3506                                 goto out;
3507                         }
3508                 }
3509
3510                 if (ctxt->c_split_covers_rec) {
3511                         /*
3512                          * The merge may have left an empty extent in
3513                          * our leaf. Try to rotate it away.
3514                          */
3515                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3516                                                      dealloc, et);
3517                         if (ret)
3518                                 mlog_errno(ret);
3519                         ret = 0;
3520                 }
3521         }
3522
3523 out:
3524         return ret;
3525 }
3526
3527 static void ocfs2_subtract_from_rec(struct super_block *sb,
3528                                     enum ocfs2_split_type split,
3529                                     struct ocfs2_extent_rec *rec,
3530                                     struct ocfs2_extent_rec *split_rec)
3531 {
3532         u64 len_blocks;
3533
3534         len_blocks = ocfs2_clusters_to_blocks(sb,
3535                                 le16_to_cpu(split_rec->e_leaf_clusters));
3536
3537         if (split == SPLIT_LEFT) {
3538                 /*
3539                  * Region is on the left edge of the existing
3540                  * record.
3541                  */
3542                 le32_add_cpu(&rec->e_cpos,
3543                              le16_to_cpu(split_rec->e_leaf_clusters));
3544                 le64_add_cpu(&rec->e_blkno, len_blocks);
3545                 le16_add_cpu(&rec->e_leaf_clusters,
3546                              -le16_to_cpu(split_rec->e_leaf_clusters));
3547         } else {
3548                 /*
3549                  * Region is on the right edge of the existing
3550                  * record.
3551                  */
3552                 le16_add_cpu(&rec->e_leaf_clusters,
3553                              -le16_to_cpu(split_rec->e_leaf_clusters));
3554         }
3555 }
3556
3557 /*
3558  * Do the final bits of extent record insertion at the target leaf
3559  * list. If this leaf is part of an allocation tree, it is assumed
3560  * that the tree above has been prepared.
3561  */
3562 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3563                                  struct ocfs2_extent_list *el,
3564                                  struct ocfs2_insert_type *insert,
3565                                  struct inode *inode)
3566 {
3567         int i = insert->ins_contig_index;
3568         unsigned int range;
3569         struct ocfs2_extent_rec *rec;
3570
3571         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3572
3573         if (insert->ins_split != SPLIT_NONE) {
3574                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3575                 BUG_ON(i == -1);
3576                 rec = &el->l_recs[i];
3577                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3578                                         insert_rec);
3579                 goto rotate;
3580         }
3581
3582         /*
3583          * Contiguous insert - either left or right.
3584          */
3585         if (insert->ins_contig != CONTIG_NONE) {
3586                 rec = &el->l_recs[i];
3587                 if (insert->ins_contig == CONTIG_LEFT) {
3588                         rec->e_blkno = insert_rec->e_blkno;
3589                         rec->e_cpos = insert_rec->e_cpos;
3590                 }
3591                 le16_add_cpu(&rec->e_leaf_clusters,
3592                              le16_to_cpu(insert_rec->e_leaf_clusters));
3593                 return;
3594         }
3595
3596         /*
3597          * Handle insert into an empty leaf.
3598          */
3599         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3600             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3601              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3602                 el->l_recs[0] = *insert_rec;
3603                 el->l_next_free_rec = cpu_to_le16(1);
3604                 return;
3605         }
3606
3607         /*
3608          * Appending insert.
3609          */
3610         if (insert->ins_appending == APPEND_TAIL) {
3611                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3612                 rec = &el->l_recs[i];
3613                 range = le32_to_cpu(rec->e_cpos)
3614                         + le16_to_cpu(rec->e_leaf_clusters);
3615                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3616
3617                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3618                                 le16_to_cpu(el->l_count),
3619                                 "inode %lu, depth %u, count %u, next free %u, "
3620                                 "rec.cpos %u, rec.clusters %u, "
3621                                 "insert.cpos %u, insert.clusters %u\n",
3622                                 inode->i_ino,
3623                                 le16_to_cpu(el->l_tree_depth),
3624                                 le16_to_cpu(el->l_count),
3625                                 le16_to_cpu(el->l_next_free_rec),
3626                                 le32_to_cpu(el->l_recs[i].e_cpos),
3627                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3628                                 le32_to_cpu(insert_rec->e_cpos),
3629                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3630                 i++;
3631                 el->l_recs[i] = *insert_rec;
3632                 le16_add_cpu(&el->l_next_free_rec, 1);
3633                 return;
3634         }
3635
3636 rotate:
3637         /*
3638          * Ok, we have to rotate.
3639          *
3640          * At this point, it is safe to assume that inserting into an
3641          * empty leaf and appending to a leaf have both been handled
3642          * above.
3643          *
3644          * This leaf needs to have space, either by the empty 1st
3645          * extent record, or by virtue of an l_next_rec < l_count.
3646          */
3647         ocfs2_rotate_leaf(el, insert_rec);
3648 }
3649
3650 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3651                                            handle_t *handle,
3652                                            struct ocfs2_path *path,
3653                                            struct ocfs2_extent_rec *insert_rec)
3654 {
3655         int ret, i, next_free;
3656         struct buffer_head *bh;
3657         struct ocfs2_extent_list *el;
3658         struct ocfs2_extent_rec *rec;
3659
3660         /*
3661          * Update everything except the leaf block.
3662          */
3663         for (i = 0; i < path->p_tree_depth; i++) {
3664                 bh = path->p_node[i].bh;
3665                 el = path->p_node[i].el;
3666
3667                 next_free = le16_to_cpu(el->l_next_free_rec);
3668                 if (next_free == 0) {
3669                         ocfs2_error(inode->i_sb,
3670                                     "Dinode %llu has a bad extent list",
3671                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3672                         ret = -EIO;
3673                         return;
3674                 }
3675
3676                 rec = &el->l_recs[next_free - 1];
3677
3678                 rec->e_int_clusters = insert_rec->e_cpos;
3679                 le32_add_cpu(&rec->e_int_clusters,
3680                              le16_to_cpu(insert_rec->e_leaf_clusters));
3681                 le32_add_cpu(&rec->e_int_clusters,
3682                              -le32_to_cpu(rec->e_cpos));
3683
3684                 ret = ocfs2_journal_dirty(handle, bh);
3685                 if (ret)
3686                         mlog_errno(ret);
3687
3688         }
3689 }
3690
3691 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3692                                     struct ocfs2_extent_rec *insert_rec,
3693                                     struct ocfs2_path *right_path,
3694                                     struct ocfs2_path **ret_left_path)
3695 {
3696         int ret, next_free;
3697         struct ocfs2_extent_list *el;
3698         struct ocfs2_path *left_path = NULL;
3699
3700         *ret_left_path = NULL;
3701
3702         /*
3703          * This shouldn't happen for non-trees. The extent rec cluster
3704          * count manipulation below only works for interior nodes.
3705          */
3706         BUG_ON(right_path->p_tree_depth == 0);
3707
3708         /*
3709          * If our appending insert is at the leftmost edge of a leaf,
3710          * then we might need to update the rightmost records of the
3711          * neighboring path.
3712          */
3713         el = path_leaf_el(right_path);
3714         next_free = le16_to_cpu(el->l_next_free_rec);
3715         if (next_free == 0 ||
3716             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3717                 u32 left_cpos;
3718
3719                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3720                                                     &left_cpos);
3721                 if (ret) {
3722                         mlog_errno(ret);
3723                         goto out;
3724                 }
3725
3726                 mlog(0, "Append may need a left path update. cpos: %u, "
3727                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3728                      left_cpos);
3729
3730                 /*
3731                  * No need to worry if the append is already in the
3732                  * leftmost leaf.
3733                  */
3734                 if (left_cpos) {
3735                         left_path = ocfs2_new_path(path_root_bh(right_path),
3736                                                    path_root_el(right_path));
3737                         if (!left_path) {
3738                                 ret = -ENOMEM;
3739                                 mlog_errno(ret);
3740                                 goto out;
3741                         }
3742
3743                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3744                         if (ret) {
3745                                 mlog_errno(ret);
3746                                 goto out;
3747                         }
3748
3749                         /*
3750                          * ocfs2_insert_path() will pass the left_path to the
3751                          * journal for us.
3752                          */
3753                 }
3754         }
3755
3756         ret = ocfs2_journal_access_path(inode, handle, right_path);
3757         if (ret) {
3758                 mlog_errno(ret);
3759                 goto out;
3760         }
3761
3762         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3763
3764         *ret_left_path = left_path;
3765         ret = 0;
3766 out:
3767         if (ret != 0)
3768                 ocfs2_free_path(left_path);
3769
3770         return ret;
3771 }
3772
3773 static void ocfs2_split_record(struct inode *inode,
3774                                struct ocfs2_path *left_path,
3775                                struct ocfs2_path *right_path,
3776                                struct ocfs2_extent_rec *split_rec,
3777                                enum ocfs2_split_type split)
3778 {
3779         int index;
3780         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3781         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3782         struct ocfs2_extent_rec *rec, *tmprec;
3783
3784         right_el = path_leaf_el(right_path);;
3785         if (left_path)
3786                 left_el = path_leaf_el(left_path);
3787
3788         el = right_el;
3789         insert_el = right_el;
3790         index = ocfs2_search_extent_list(el, cpos);
3791         if (index != -1) {
3792                 if (index == 0 && left_path) {
3793                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3794
3795                         /*
3796                          * This typically means that the record
3797                          * started in the left path but moved to the
3798                          * right as a result of rotation. We either
3799                          * move the existing record to the left, or we
3800                          * do the later insert there.
3801                          *
3802                          * In this case, the left path should always
3803                          * exist as the rotate code will have passed
3804                          * it back for a post-insert update.
3805                          */
3806
3807                         if (split == SPLIT_LEFT) {
3808                                 /*
3809                                  * It's a left split. Since we know
3810                                  * that the rotate code gave us an
3811                                  * empty extent in the left path, we
3812                                  * can just do the insert there.
3813                                  */
3814                                 insert_el = left_el;
3815                         } else {
3816                                 /*
3817                                  * Right split - we have to move the
3818                                  * existing record over to the left
3819                                  * leaf. The insert will be into the
3820                                  * newly created empty extent in the
3821                                  * right leaf.
3822                                  */
3823                                 tmprec = &right_el->l_recs[index];
3824                                 ocfs2_rotate_leaf(left_el, tmprec);
3825                                 el = left_el;
3826
3827                                 memset(tmprec, 0, sizeof(*tmprec));
3828                                 index = ocfs2_search_extent_list(left_el, cpos);
3829                                 BUG_ON(index == -1);
3830                         }
3831                 }
3832         } else {
3833                 BUG_ON(!left_path);
3834                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3835                 /*
3836                  * Left path is easy - we can just allow the insert to
3837                  * happen.
3838                  */
3839                 el = left_el;
3840                 insert_el = left_el;
3841                 index = ocfs2_search_extent_list(el, cpos);
3842                 BUG_ON(index == -1);
3843         }
3844
3845         rec = &el->l_recs[index];
3846         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3847         ocfs2_rotate_leaf(insert_el, split_rec);
3848 }
3849
3850 /*
3851  * This function only does inserts on an allocation b-tree. For tree
3852  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3853  *
3854  * right_path is the path we want to do the actual insert
3855  * in. left_path should only be passed in if we need to update that
3856  * portion of the tree after an edge insert.
3857  */
3858 static int ocfs2_insert_path(struct inode *inode,
3859                              handle_t *handle,
3860                              struct ocfs2_path *left_path,
3861                              struct ocfs2_path *right_path,
3862                              struct ocfs2_extent_rec *insert_rec,
3863                              struct ocfs2_insert_type *insert)
3864 {
3865         int ret, subtree_index;
3866         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3867
3868         if (left_path) {
3869                 int credits = handle->h_buffer_credits;
3870
3871                 /*
3872                  * There's a chance that left_path got passed back to
3873                  * us without being accounted for in the
3874                  * journal. Extend our transaction here to be sure we
3875                  * can change those blocks.
3876                  */
3877                 credits += left_path->p_tree_depth;
3878
3879                 ret = ocfs2_extend_trans(handle, credits);
3880                 if (ret < 0) {
3881                         mlog_errno(ret);
3882                         goto out;
3883                 }
3884
3885                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3886                 if (ret < 0) {
3887                         mlog_errno(ret);
3888                         goto out;
3889                 }
3890         }
3891
3892         /*
3893          * Pass both paths to the journal. The majority of inserts
3894          * will be touching all components anyway.
3895          */
3896         ret = ocfs2_journal_access_path(inode, handle, right_path);
3897         if (ret < 0) {
3898                 mlog_errno(ret);
3899                 goto out;
3900         }
3901
3902         if (insert->ins_split != SPLIT_NONE) {
3903                 /*
3904                  * We could call ocfs2_insert_at_leaf() for some types
3905                  * of splits, but it's easier to just let one separate
3906                  * function sort it all out.
3907                  */
3908                 ocfs2_split_record(inode, left_path, right_path,
3909                                    insert_rec, insert->ins_split);
3910
3911                 /*
3912                  * Split might have modified either leaf and we don't
3913                  * have a guarantee that the later edge insert will
3914                  * dirty this for us.
3915                  */
3916                 if (left_path)
3917                         ret = ocfs2_journal_dirty(handle,
3918                                                   path_leaf_bh(left_path));
3919                         if (ret)
3920                                 mlog_errno(ret);
3921         } else
3922                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3923                                      insert, inode);
3924
3925         ret = ocfs2_journal_dirty(handle, leaf_bh);
3926         if (ret)
3927                 mlog_errno(ret);
3928
3929         if (left_path) {
3930                 /*
3931                  * The rotate code has indicated that we need to fix
3932                  * up portions of the tree after the insert.
3933                  *
3934                  * XXX: Should we extend the transaction here?
3935                  */
3936                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3937                                                         right_path);
3938                 ocfs2_complete_edge_insert(inode, handle, left_path,
3939                                            right_path, subtree_index);
3940         }
3941
3942         ret = 0;
3943 out:
3944         return ret;
3945 }
3946
3947 static int ocfs2_do_insert_extent(struct inode *inode,
3948                                   handle_t *handle,
3949                                   struct ocfs2_extent_tree *et,
3950                                   struct ocfs2_extent_rec *insert_rec,
3951                                   struct ocfs2_insert_type *type)
3952 {
3953         int ret, rotate = 0;
3954         u32 cpos;
3955         struct ocfs2_path *right_path = NULL;
3956         struct ocfs2_path *left_path = NULL;
3957         struct ocfs2_extent_list *el;
3958
3959         el = et->et_root_el;
3960
3961         ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
3962                                    OCFS2_JOURNAL_ACCESS_WRITE);
3963         if (ret) {
3964                 mlog_errno(ret);
3965                 goto out;
3966         }
3967
3968         if (le16_to_cpu(el->l_tree_depth) == 0) {
3969                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3970                 goto out_update_clusters;
3971         }
3972
3973         right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
3974         if (!right_path) {
3975                 ret = -ENOMEM;
3976                 mlog_errno(ret);
3977                 goto out;
3978         }
3979
3980         /*
3981          * Determine the path to start with. Rotations need the
3982          * rightmost path, everything else can go directly to the
3983          * target leaf.
3984          */
3985         cpos = le32_to_cpu(insert_rec->e_cpos);
3986         if (type->ins_appending == APPEND_NONE &&
3987             type->ins_contig == CONTIG_NONE) {
3988                 rotate = 1;
3989                 cpos = UINT_MAX;
3990         }
3991
3992         ret = ocfs2_find_path(inode, right_path, cpos);
3993         if (ret) {
3994                 mlog_errno(ret);
3995                 goto out;
3996         }
3997
3998         /*
3999          * Rotations and appends need special treatment - they modify
4000          * parts of the tree's above them.
4001          *
4002          * Both might pass back a path immediate to the left of the
4003          * one being inserted to. This will be cause
4004          * ocfs2_insert_path() to modify the rightmost records of
4005          * left_path to account for an edge insert.
4006          *
4007          * XXX: When modifying this code, keep in mind that an insert
4008          * can wind up skipping both of these two special cases...
4009          */
4010         if (rotate) {
4011                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4012                                               le32_to_cpu(insert_rec->e_cpos),
4013                                               right_path, &left_path);
4014                 if (ret) {
4015                         mlog_errno(ret);
4016                         goto out;
4017                 }
4018
4019                 /*
4020                  * ocfs2_rotate_tree_right() might have extended the
4021                  * transaction without re-journaling our tree root.
4022                  */
4023                 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
4024                                            OCFS2_JOURNAL_ACCESS_WRITE);
4025                 if (ret) {
4026                         mlog_errno(ret);
4027                         goto out;
4028                 }
4029         } else if (type->ins_appending == APPEND_TAIL
4030                    && type->ins_contig != CONTIG_LEFT) {
4031                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4032                                                right_path, &left_path);
4033                 if (ret) {
4034                         mlog_errno(ret);
4035                         goto out;
4036                 }
4037         }
4038
4039         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4040                                 insert_rec, type);
4041         if (ret) {
4042                 mlog_errno(ret);
4043                 goto out;
4044         }
4045
4046 out_update_clusters:
4047         if (type->ins_split == SPLIT_NONE)
4048                 ocfs2_et_update_clusters(inode, et,
4049                                          le16_to_cpu(insert_rec->e_leaf_clusters));
4050
4051         ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4052         if (ret)
4053                 mlog_errno(ret);
4054
4055 out:
4056         ocfs2_free_path(left_path);
4057         ocfs2_free_path(right_path);
4058
4059         return ret;
4060 }
4061
4062 static enum ocfs2_contig_type
4063 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4064                                struct ocfs2_extent_list *el, int index,
4065                                struct ocfs2_extent_rec *split_rec)
4066 {
4067         int status;
4068         enum ocfs2_contig_type ret = CONTIG_NONE;
4069         u32 left_cpos, right_cpos;
4070         struct ocfs2_extent_rec *rec = NULL;
4071         struct ocfs2_extent_list *new_el;
4072         struct ocfs2_path *left_path = NULL, *right_path = NULL;
4073         struct buffer_head *bh;
4074         struct ocfs2_extent_block *eb;
4075
4076         if (index > 0) {
4077                 rec = &el->l_recs[index - 1];
4078         } else if (path->p_tree_depth > 0) {
4079                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4080                                                        path, &left_cpos);
4081                 if (status)
4082                         goto out;
4083
4084                 if (left_cpos != 0) {
4085                         left_path = ocfs2_new_path(path_root_bh(path),
4086                                                    path_root_el(path));
4087                         if (!left_path)
4088                                 goto out;
4089
4090                         status = ocfs2_find_path(inode, left_path, left_cpos);
4091                         if (status)
4092                                 goto out;
4093
4094                         new_el = path_leaf_el(left_path);
4095
4096                         if (le16_to_cpu(new_el->l_next_free_rec) !=
4097                             le16_to_cpu(new_el->l_count)) {
4098                                 bh = path_leaf_bh(left_path);
4099                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4100                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4101                                                                  eb);
4102                                 goto out;
4103                         }
4104                         rec = &new_el->l_recs[
4105                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
4106                 }
4107         }
4108
4109         /*
4110          * We're careful to check for an empty extent record here -
4111          * the merge code will know what to do if it sees one.
4112          */
4113         if (rec) {
4114                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4115                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4116                                 ret = CONTIG_RIGHT;
4117                 } else {
4118                         ret = ocfs2_extent_contig(inode, rec, split_rec);
4119                 }
4120         }
4121
4122         rec = NULL;
4123         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4124                 rec = &el->l_recs[index + 1];
4125         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4126                  path->p_tree_depth > 0) {
4127                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4128                                                         path, &right_cpos);
4129                 if (status)
4130                         goto out;
4131
4132                 if (right_cpos == 0)
4133                         goto out;
4134
4135                 right_path = ocfs2_new_path(path_root_bh(path),
4136                                             path_root_el(path));
4137                 if (!right_path)
4138                         goto out;
4139
4140                 status = ocfs2_find_path(inode, right_path, right_cpos);
4141                 if (status)
4142                         goto out;
4143
4144                 new_el = path_leaf_el(right_path);
4145                 rec = &new_el->l_recs[0];
4146                 if (ocfs2_is_empty_extent(rec)) {
4147                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4148                                 bh = path_leaf_bh(right_path);
4149                                 eb = (struct ocfs2_extent_block *)bh->b_data;
4150                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
4151                                                                  eb);
4152                                 goto out;
4153                         }
4154                         rec = &new_el->l_recs[1];
4155                 }
4156         }
4157
4158         if (rec) {
4159                 enum ocfs2_contig_type contig_type;
4160
4161                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4162
4163                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4164                         ret = CONTIG_LEFTRIGHT;
4165                 else if (ret == CONTIG_NONE)
4166                         ret = contig_type;
4167         }
4168
4169 out:
4170         if (left_path)
4171                 ocfs2_free_path(left_path);
4172         if (right_path)
4173                 ocfs2_free_path(right_path);
4174
4175         return ret;
4176 }
4177
4178 static void ocfs2_figure_contig_type(struct inode *inode,
4179                                      struct ocfs2_insert_type *insert,
4180                                      struct ocfs2_extent_list *el,
4181                                      struct ocfs2_extent_rec *insert_rec,
4182                                      struct ocfs2_extent_tree *et)
4183 {
4184         int i;
4185         enum ocfs2_contig_type contig_type = CONTIG_NONE;
4186
4187         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4188
4189         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4190                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4191                                                   insert_rec);
4192                 if (contig_type != CONTIG_NONE) {
4193                         insert->ins_contig_index = i;
4194                         break;
4195                 }
4196         }
4197         insert->ins_contig = contig_type;
4198
4199         if (insert->ins_contig != CONTIG_NONE) {
4200                 struct ocfs2_extent_rec *rec =
4201                                 &el->l_recs[insert->ins_contig_index];
4202                 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4203                                    le16_to_cpu(insert_rec->e_leaf_clusters);
4204
4205                 /*
4206                  * Caller might want us to limit the size of extents, don't
4207                  * calculate contiguousness if we might exceed that limit.
4208                  */
4209                 if (et->et_max_leaf_clusters &&
4210                     (len > et->et_max_leaf_clusters))
4211                         insert->ins_contig = CONTIG_NONE;
4212         }
4213 }
4214
4215 /*
4216  * This should only be called against the righmost leaf extent list.
4217  *
4218  * ocfs2_figure_appending_type() will figure out whether we'll have to
4219  * insert at the tail of the rightmost leaf.
4220  *
4221  * This should also work against the root extent list for tree's with 0
4222  * depth. If we consider the root extent list to be the rightmost leaf node
4223  * then the logic here makes sense.
4224  */
4225 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4226                                         struct ocfs2_extent_list *el,
4227                                         struct ocfs2_extent_rec *insert_rec)
4228 {
4229         int i;
4230         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4231         struct ocfs2_extent_rec *rec;
4232
4233         insert->ins_appending = APPEND_NONE;
4234
4235         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4236
4237         if (!el->l_next_free_rec)
4238                 goto set_tail_append;
4239
4240         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4241                 /* Were all records empty? */
4242                 if (le16_to_cpu(el->l_next_free_rec) == 1)
4243                         goto set_tail_append;
4244         }
4245
4246         i = le16_to_cpu(el->l_next_free_rec) - 1;
4247         rec = &el->l_recs[i];
4248
4249         if (cpos >=
4250             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4251                 goto set_tail_append;
4252
4253         return;
4254
4255 set_tail_append:
4256         insert->ins_appending = APPEND_TAIL;
4257 }
4258
4259 /*
4260  * Helper function called at the begining of an insert.
4261  *
4262  * This computes a few things that are commonly used in the process of
4263  * inserting into the btree:
4264  *   - Whether the new extent is contiguous with an existing one.
4265  *   - The current tree depth.
4266  *   - Whether the insert is an appending one.
4267  *   - The total # of free records in the tree.
4268  *
4269  * All of the information is stored on the ocfs2_insert_type
4270  * structure.
4271  */
4272 static int ocfs2_figure_insert_type(struct inode *inode,
4273                                     struct ocfs2_extent_tree *et,
4274                                     struct buffer_head **last_eb_bh,
4275                                     struct ocfs2_extent_rec *insert_rec,
4276                                     int *free_records,
4277                                     struct ocfs2_insert_type *insert)
4278 {
4279         int ret;
4280         struct ocfs2_extent_block *eb;
4281         struct ocfs2_extent_list *el;
4282         struct ocfs2_path *path = NULL;
4283         struct buffer_head *bh = NULL;
4284
4285         insert->ins_split = SPLIT_NONE;
4286
4287         el = et->et_root_el;
4288         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4289
4290         if (el->l_tree_depth) {
4291                 /*
4292                  * If we have tree depth, we read in the
4293                  * rightmost extent block ahead of time as
4294                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4295                  * may want it later.
4296                  */
4297                 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et), &bh);
4298                 if (ret) {
4299                         mlog_exit(ret);
4300                         goto out;
4301                 }
4302                 eb = (struct ocfs2_extent_block *) bh->b_data;
4303                 el = &eb->h_list;
4304         }
4305
4306         /*
4307          * Unless we have a contiguous insert, we'll need to know if
4308          * there is room left in our allocation tree for another
4309          * extent record.
4310          *
4311          * XXX: This test is simplistic, we can search for empty
4312          * extent records too.
4313          */
4314         *free_records = le16_to_cpu(el->l_count) -
4315                 le16_to_cpu(el->l_next_free_rec);
4316
4317         if (!insert->ins_tree_depth) {
4318                 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4319                 ocfs2_figure_appending_type(insert, el, insert_rec);
4320                 return 0;
4321         }
4322
4323         path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4324         if (!path) {
4325                 ret = -ENOMEM;
4326                 mlog_errno(ret);
4327                 goto out;
4328         }
4329
4330         /*
4331          * In the case that we're inserting past what the tree
4332          * currently accounts for, ocfs2_find_path() will return for
4333          * us the rightmost tree path. This is accounted for below in
4334          * the appending code.
4335          */
4336         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4337         if (ret) {
4338                 mlog_errno(ret);
4339                 goto out;
4340         }
4341
4342         el = path_leaf_el(path);
4343
4344         /*
4345          * Now that we have the path, there's two things we want to determine:
4346          * 1) Contiguousness (also set contig_index if this is so)
4347          *
4348          * 2) Are we doing an append? We can trivially break this up
4349          *     into two types of appends: simple record append, or a
4350          *     rotate inside the tail leaf.
4351          */
4352         ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4353
4354         /*
4355          * The insert code isn't quite ready to deal with all cases of
4356          * left contiguousness. Specifically, if it's an insert into
4357          * the 1st record in a leaf, it will require the adjustment of
4358          * cluster count on the last record of the path directly to it's
4359          * left. For now, just catch that case and fool the layers
4360          * above us. This works just fine for tree_depth == 0, which
4361          * is why we allow that above.
4362          */
4363         if (insert->ins_contig == CONTIG_LEFT &&
4364             insert->ins_contig_index == 0)
4365                 insert->ins_contig = CONTIG_NONE;
4366
4367         /*
4368          * Ok, so we can simply compare against last_eb to figure out
4369          * whether the path doesn't exist. This will only happen in
4370          * the case that we're doing a tail append, so maybe we can
4371          * take advantage of that information somehow.
4372          */
4373         if (ocfs2_et_get_last_eb_blk(et) ==
4374             path_leaf_bh(path)->b_blocknr) {
4375                 /*
4376                  * Ok, ocfs2_find_path() returned us the rightmost
4377                  * tree path. This might be an appending insert. There are
4378                  * two cases:
4379                  *    1) We're doing a true append at the tail:
4380                  *      -This might even be off the end of the leaf
4381                  *    2) We're "appending" by rotating in the tail
4382                  */
4383                 ocfs2_figure_appending_type(insert, el, insert_rec);
4384         }
4385
4386 out:
4387         ocfs2_free_path(path);
4388
4389         if (ret == 0)
4390                 *last_eb_bh = bh;
4391         else
4392                 brelse(bh);
4393         return ret;
4394 }
4395
4396 /*
4397  * Insert an extent into an inode btree.
4398  *
4399  * The caller needs to update fe->i_clusters
4400  */
4401 int ocfs2_insert_extent(struct ocfs2_super *osb,
4402                         handle_t *handle,
4403                         struct inode *inode,
4404                         struct ocfs2_extent_tree *et,
4405                         u32 cpos,
4406                         u64 start_blk,
4407                         u32 new_clusters,
4408                         u8 flags,
4409                         struct ocfs2_alloc_context *meta_ac)
4410 {
4411         int status;
4412         int uninitialized_var(free_records);
4413         struct buffer_head *last_eb_bh = NULL;
4414         struct ocfs2_insert_type insert = {0, };
4415         struct ocfs2_extent_rec rec;
4416
4417         mlog(0, "add %u clusters at position %u to inode %llu\n",
4418              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4419
4420         memset(&rec, 0, sizeof(rec));
4421         rec.e_cpos = cpu_to_le32(cpos);
4422         rec.e_blkno = cpu_to_le64(start_blk);
4423         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4424         rec.e_flags = flags;
4425         status = ocfs2_et_insert_check(inode, et, &rec);
4426         if (status) {
4427                 mlog_errno(status);
4428                 goto bail;
4429         }
4430
4431         status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4432                                           &free_records, &insert);
4433         if (status < 0) {
4434                 mlog_errno(status);
4435                 goto bail;
4436         }
4437
4438         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4439              "Insert.contig_index: %d, Insert.free_records: %d, "
4440              "Insert.tree_depth: %d\n",
4441              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4442              free_records, insert.ins_tree_depth);
4443
4444         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4445                 status = ocfs2_grow_tree(inode, handle, et,
4446                                          &insert.ins_tree_depth, &last_eb_bh,
4447                                          meta_ac);
4448                 if (status) {
4449                         mlog_errno(status);
4450                         goto bail;
4451                 }
4452         }
4453
4454         /* Finally, we can add clusters. This might rotate the tree for us. */
4455         status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4456         if (status < 0)
4457                 mlog_errno(status);
4458         else if (et->et_ops == &ocfs2_dinode_et_ops)
4459                 ocfs2_extent_map_insert_rec(inode, &rec);
4460
4461 bail:
4462         brelse(last_eb_bh);
4463
4464         mlog_exit(status);
4465         return status;
4466 }
4467
4468 /*
4469  * Allcate and add clusters into the extent b-tree.
4470  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4471  * The extent b-tree's root is specified by et, and
4472  * it is not limited to the file storage. Any extent tree can use this
4473  * function if it implements the proper ocfs2_extent_tree.
4474  */
4475 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4476                                 struct inode *inode,
4477                                 u32 *logical_offset,
4478                                 u32 clusters_to_add,
4479                                 int mark_unwritten,
4480                                 struct ocfs2_extent_tree *et,
4481                                 handle_t *handle,
4482                                 struct ocfs2_alloc_context *data_ac,
4483                                 struct ocfs2_alloc_context *meta_ac,
4484                                 enum ocfs2_alloc_restarted *reason_ret)
4485 {
4486         int status = 0;
4487         int free_extents;
4488         enum ocfs2_alloc_restarted reason = RESTART_NONE;
4489         u32 bit_off, num_bits;
4490         u64 block;
4491         u8 flags = 0;
4492
4493         BUG_ON(!clusters_to_add);
4494
4495         if (mark_unwritten)
4496                 flags = OCFS2_EXT_UNWRITTEN;
4497
4498         free_extents = ocfs2_num_free_extents(osb, inode, et);
4499         if (free_extents < 0) {
4500                 status = free_extents;
4501                 mlog_errno(status);
4502                 goto leave;
4503         }
4504
4505         /* there are two cases which could cause us to EAGAIN in the
4506          * we-need-more-metadata case:
4507          * 1) we haven't reserved *any*
4508          * 2) we are so fragmented, we've needed to add metadata too
4509          *    many times. */
4510         if (!free_extents && !meta_ac) {
4511                 mlog(0, "we haven't reserved any metadata!\n");
4512                 status = -EAGAIN;
4513                 reason = RESTART_META;
4514                 goto leave;
4515         } else if ((!free_extents)
4516                    && (ocfs2_alloc_context_bits_left(meta_ac)
4517                        < ocfs2_extend_meta_needed(et->et_root_el))) {
4518                 mlog(0, "filesystem is really fragmented...\n");
4519                 status = -EAGAIN;
4520                 reason = RESTART_META;
4521                 goto leave;
4522         }
4523
4524         status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4525                                         clusters_to_add, &bit_off, &num_bits);
4526         if (status < 0) {
4527                 if (status != -ENOSPC)
4528                         mlog_errno(status);
4529                 goto leave;
4530         }
4531
4532         BUG_ON(num_bits > clusters_to_add);
4533
4534         /* reserve our write early -- insert_extent may update the inode */
4535         status = ocfs2_journal_access(handle, inode, et->et_root_bh,
4536                                       OCFS2_JOURNAL_ACCESS_WRITE);
4537         if (status < 0) {
4538                 mlog_errno(status);
4539                 goto leave;
4540         }
4541
4542         block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4543         mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4544              num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4545         status = ocfs2_insert_extent(osb, handle, inode, et,
4546                                      *logical_offset, block,
4547                                      num_bits, flags, meta_ac);
4548         if (status < 0) {
4549                 mlog_errno(status);
4550                 goto leave;
4551         }
4552
4553         status = ocfs2_journal_dirty(handle, et->et_root_bh);
4554         if (status < 0) {
4555                 mlog_errno(status);
4556                 goto leave;
4557         }
4558
4559         clusters_to_add -= num_bits;
4560         *logical_offset += num_bits;
4561
4562         if (clusters_to_add) {
4563                 mlog(0, "need to alloc once more, wanted = %u\n",
4564                      clusters_to_add);
4565                 status = -EAGAIN;
4566                 reason = RESTART_TRANS;
4567         }
4568
4569 leave:
4570         mlog_exit(status);
4571         if (reason_ret)
4572                 *reason_ret = reason;
4573         return status;
4574 }
4575
4576 static void ocfs2_make_right_split_rec(struct super_block *sb,
4577                                        struct ocfs2_extent_rec *split_rec,
4578                                        u32 cpos,
4579                                        struct ocfs2_extent_rec *rec)
4580 {
4581         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4582         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4583
4584         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4585
4586         split_rec->e_cpos = cpu_to_le32(cpos);
4587         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4588
4589         split_rec->e_blkno = rec->e_blkno;
4590         le64_add_cpu(&split_rec->e_blkno,
4591                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4592
4593         split_rec->e_flags = rec->e_flags;
4594 }
4595
4596 static int ocfs2_split_and_insert(struct inode *inode,
4597                                   handle_t *handle,
4598                                   struct ocfs2_path *path,
4599                                   struct ocfs2_extent_tree *et,
4600                                   struct buffer_head **last_eb_bh,
4601                                   int split_index,
4602                                   struct ocfs2_extent_rec *orig_split_rec,
4603                                   struct ocfs2_alloc_context *meta_ac)
4604 {
4605         int ret = 0, depth;
4606         unsigned int insert_range, rec_range, do_leftright = 0;
4607         struct ocfs2_extent_rec tmprec;
4608         struct ocfs2_extent_list *rightmost_el;
4609         struct ocfs2_extent_rec rec;
4610         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4611         struct ocfs2_insert_type insert;
4612         struct ocfs2_extent_block *eb;
4613
4614 leftright:
4615         /*
4616          * Store a copy of the record on the stack - it might move
4617          * around as the tree is manipulated below.
4618          */
4619         rec = path_leaf_el(path)->l_recs[split_index];
4620
4621         rightmost_el = et->et_root_el;
4622
4623         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4624         if (depth) {
4625                 BUG_ON(!(*last_eb_bh));
4626                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4627                 rightmost_el = &eb->h_list;
4628         }
4629
4630         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4631             le16_to_cpu(rightmost_el->l_count)) {
4632                 ret = ocfs2_grow_tree(inode, handle, et,
4633                                       &depth, last_eb_bh, meta_ac);
4634                 if (ret) {
4635                         mlog_errno(ret);
4636                         goto out;
4637                 }
4638         }
4639
4640         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4641         insert.ins_appending = APPEND_NONE;
4642         insert.ins_contig = CONTIG_NONE;
4643         insert.ins_tree_depth = depth;
4644
4645         insert_range = le32_to_cpu(split_rec.e_cpos) +
4646                 le16_to_cpu(split_rec.e_leaf_clusters);
4647         rec_range = le32_to_cpu(rec.e_cpos) +
4648                 le16_to_cpu(rec.e_leaf_clusters);
4649
4650         if (split_rec.e_cpos == rec.e_cpos) {
4651                 insert.ins_split = SPLIT_LEFT;
4652         } else if (insert_range == rec_range) {
4653                 insert.ins_split = SPLIT_RIGHT;
4654         } else {
4655                 /*
4656                  * Left/right split. We fake this as a right split
4657                  * first and then make a second pass as a left split.
4658                  */
4659                 insert.ins_split = SPLIT_RIGHT;
4660
4661                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4662                                            &rec);
4663
4664                 split_rec = tmprec;
4665
4666                 BUG_ON(do_leftright);
4667                 do_leftright = 1;
4668         }
4669
4670         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4671         if (ret) {
4672                 mlog_errno(ret);
4673                 goto out;
4674         }
4675
4676         if (do_leftright == 1) {
4677                 u32 cpos;
4678                 struct ocfs2_extent_list *el;
4679
4680                 do_leftright++;
4681                 split_rec = *orig_split_rec;
4682
4683                 ocfs2_reinit_path(path, 1);
4684
4685                 cpos = le32_to_cpu(split_rec.e_cpos);
4686                 ret = ocfs2_find_path(inode, path, cpos);
4687                 if (ret) {
4688                         mlog_errno(ret);
4689                         goto out;
4690                 }
4691
4692                 el = path_leaf_el(path);
4693                 split_index = ocfs2_search_extent_list(el, cpos);
4694                 goto leftright;
4695         }
4696 out:
4697
4698         return ret;
4699 }
4700
4701 /*
4702  * Mark part or all of the extent record at split_index in the leaf
4703  * pointed to by path as written. This removes the unwritten
4704  * extent flag.
4705  *
4706  * Care is taken to handle contiguousness so as to not grow the tree.
4707  *
4708  * meta_ac is not strictly necessary - we only truly need it if growth
4709  * of the tree is required. All other cases will degrade into a less
4710  * optimal tree layout.
4711  *
4712  * last_eb_bh should be the rightmost leaf block for any extent
4713  * btree. Since a split may grow the tree or a merge might shrink it,
4714  * the caller cannot trust the contents of that buffer after this call.
4715  *
4716  * This code is optimized for readability - several passes might be
4717  * made over certain portions of the tree. All of those blocks will
4718  * have been brought into cache (and pinned via the journal), so the
4719  * extra overhead is not expressed in terms of disk reads.
4720  */
4721 static int __ocfs2_mark_extent_written(struct inode *inode,
4722                                        struct ocfs2_extent_tree *et,
4723                                        handle_t *handle,
4724                                        struct ocfs2_path *path,
4725                                        int split_index,
4726                                        struct ocfs2_extent_rec *split_rec,
4727                                        struct ocfs2_alloc_context *meta_ac,
4728                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4729 {
4730         int ret = 0;
4731         struct ocfs2_extent_list *el = path_leaf_el(path);
4732         struct buffer_head *last_eb_bh = NULL;
4733         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4734         struct ocfs2_merge_ctxt ctxt;
4735         struct ocfs2_extent_list *rightmost_el;
4736
4737         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4738                 ret = -EIO;
4739                 mlog_errno(ret);
4740                 goto out;
4741         }
4742
4743         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4744             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4745              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4746                 ret = -EIO;
4747                 mlog_errno(ret);
4748                 goto out;
4749         }
4750
4751         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4752                                                             split_index,
4753                                                             split_rec);
4754
4755         /*
4756          * The core merge / split code wants to know how much room is
4757          * left in this inodes allocation tree, so we pass the
4758          * rightmost extent list.
4759          */
4760         if (path->p_tree_depth) {
4761                 struct ocfs2_extent_block *eb;
4762
4763                 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4764                                        &last_eb_bh);
4765                 if (ret) {
4766                         mlog_exit(ret);
4767                         goto out;
4768                 }
4769
4770                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4771                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4772                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4773                         ret = -EROFS;
4774                         goto out;
4775                 }
4776
4777                 rightmost_el = &eb->h_list;
4778         } else
4779                 rightmost_el = path_root_el(path);
4780
4781         if (rec->e_cpos == split_rec->e_cpos &&
4782             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4783                 ctxt.c_split_covers_rec = 1;
4784         else
4785                 ctxt.c_split_covers_rec = 0;
4786
4787         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4788
4789         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4790              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4791              ctxt.c_split_covers_rec);
4792
4793         if (ctxt.c_contig_type == CONTIG_NONE) {
4794                 if (ctxt.c_split_covers_rec)
4795                         el->l_recs[split_index] = *split_rec;
4796                 else
4797                         ret = ocfs2_split_and_insert(inode, handle, path, et,
4798                                                      &last_eb_bh, split_index,
4799                                                      split_rec, meta_ac);
4800                 if (ret)
4801                         mlog_errno(ret);
4802         } else {
4803                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4804                                                 split_index, split_rec,
4805                                                 dealloc, &ctxt, et);
4806                 if (ret)
4807                         mlog_errno(ret);
4808         }
4809
4810 out:
4811         brelse(last_eb_bh);
4812         return ret;
4813 }
4814
4815 /*
4816  * Mark the already-existing extent at cpos as written for len clusters.
4817  *
4818  * If the existing extent is larger than the request, initiate a
4819  * split. An attempt will be made at merging with adjacent extents.
4820  *
4821  * The caller is responsible for passing down meta_ac if we'll need it.
4822  */
4823 int ocfs2_mark_extent_written(struct inode *inode,
4824                               struct ocfs2_extent_tree *et,
4825                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4826                               struct ocfs2_alloc_context *meta_ac,
4827                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4828 {
4829         int ret, index;
4830         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4831         struct ocfs2_extent_rec split_rec;
4832         struct ocfs2_path *left_path = NULL;
4833         struct ocfs2_extent_list *el;
4834
4835         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4836              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4837
4838         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4839                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4840                             "that are being written to, but the feature bit "
4841                             "is not set in the super block.",
4842                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4843                 ret = -EROFS;
4844                 goto out;
4845         }
4846
4847         /*
4848          * XXX: This should be fixed up so that we just re-insert the
4849          * next extent records.
4850          *
4851          * XXX: This is a hack on the extent tree, maybe it should be
4852          * an op?
4853          */
4854         if (et->et_ops == &ocfs2_dinode_et_ops)
4855                 ocfs2_extent_map_trunc(inode, 0);
4856
4857         left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
4858         if (!left_path) {
4859                 ret = -ENOMEM;
4860                 mlog_errno(ret);
4861                 goto out;
4862         }
4863
4864         ret = ocfs2_find_path(inode, left_path, cpos);
4865         if (ret) {
4866                 mlog_errno(ret);
4867                 goto out;
4868         }
4869         el = path_leaf_el(left_path);
4870
4871         index = ocfs2_search_extent_list(el, cpos);
4872         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4873                 ocfs2_error(inode->i_sb,
4874                             "Inode %llu has an extent at cpos %u which can no "
4875                             "longer be found.\n",
4876                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4877                 ret = -EROFS;
4878                 goto out;
4879         }
4880
4881         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4882         split_rec.e_cpos = cpu_to_le32(cpos);
4883         split_rec.e_leaf_clusters = cpu_to_le16(len);
4884         split_rec.e_blkno = cpu_to_le64(start_blkno);
4885         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4886         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4887
4888         ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
4889                                           index, &split_rec, meta_ac,
4890                                           dealloc);
4891         if (ret)
4892                 mlog_errno(ret);
4893
4894 out:
4895         ocfs2_free_path(left_path);
4896         return ret;
4897 }
4898
4899 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
4900                             handle_t *handle, struct ocfs2_path *path,
4901                             int index, u32 new_range,
4902                             struct ocfs2_alloc_context *meta_ac)
4903 {
4904         int ret, depth, credits = handle->h_buffer_credits;
4905         struct buffer_head *last_eb_bh = NULL;
4906         struct ocfs2_extent_block *eb;
4907         struct ocfs2_extent_list *rightmost_el, *el;
4908         struct ocfs2_extent_rec split_rec;
4909         struct ocfs2_extent_rec *rec;
4910         struct ocfs2_insert_type insert;
4911
4912         /*
4913          * Setup the record to split before we grow the tree.
4914          */
4915         el = path_leaf_el(path);
4916         rec = &el->l_recs[index];
4917         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4918
4919         depth = path->p_tree_depth;
4920         if (depth > 0) {
4921                 ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
4922                                        &last_eb_bh);
4923                 if (ret < 0) {
4924                         mlog_errno(ret);
4925                         goto out;
4926                 }
4927
4928                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4929                 rightmost_el = &eb->h_list;
4930         } else
4931                 rightmost_el = path_leaf_el(path);
4932
4933         credits += path->p_tree_depth +
4934                    ocfs2_extend_meta_needed(et->et_root_el);
4935         ret = ocfs2_extend_trans(handle, credits);
4936         if (ret) {
4937                 mlog_errno(ret);
4938                 goto out;
4939         }
4940
4941         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4942             le16_to_cpu(rightmost_el->l_count)) {
4943                 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
4944                                       meta_ac);
4945                 if (ret) {
4946                         mlog_errno(ret);
4947                         goto out;
4948                 }
4949         }
4950
4951         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4952         insert.ins_appending = APPEND_NONE;
4953         insert.ins_contig = CONTIG_NONE;
4954         insert.ins_split = SPLIT_RIGHT;
4955         insert.ins_tree_depth = depth;
4956
4957         ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4958         if (ret)
4959                 mlog_errno(ret);
4960
4961 out:
4962         brelse(last_eb_bh);
4963         return ret;
4964 }
4965
4966 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4967                               struct ocfs2_path *path, int index,
4968                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4969                               u32 cpos, u32 len,
4970                               struct ocfs2_extent_tree *et)
4971 {
4972         int ret;
4973         u32 left_cpos, rec_range, trunc_range;
4974         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4975         struct super_block *sb = inode->i_sb;
4976         struct ocfs2_path *left_path = NULL;
4977         struct ocfs2_extent_list *el = path_leaf_el(path);
4978         struct ocfs2_extent_rec *rec;
4979         struct ocfs2_extent_block *eb;
4980
4981         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4982                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
4983                 if (ret) {
4984                         mlog_errno(ret);
4985                         goto out;
4986                 }
4987
4988                 index--;
4989         }
4990
4991         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4992             path->p_tree_depth) {
4993                 /*
4994                  * Check whether this is the rightmost tree record. If
4995                  * we remove all of this record or part of its right
4996                  * edge then an update of the record lengths above it
4997                  * will be required.
4998                  */
4999                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5000                 if (eb->h_next_leaf_blk == 0)
5001                         is_rightmost_tree_rec = 1;
5002         }
5003
5004         rec = &el->l_recs[index];
5005         if (index == 0 && path->p_tree_depth &&
5006             le32_to_cpu(rec->e_cpos) == cpos) {
5007                 /*
5008                  * Changing the leftmost offset (via partial or whole
5009                  * record truncate) of an interior (or rightmost) path
5010                  * means we have to update the subtree that is formed
5011                  * by this leaf and the one to it's left.
5012                  *
5013                  * There are two cases we can skip:
5014                  *   1) Path is the leftmost one in our inode tree.
5015                  *   2) The leaf is rightmost and will be empty after
5016                  *      we remove the extent record - the rotate code
5017                  *      knows how to update the newly formed edge.
5018                  */
5019
5020                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5021                                                     &left_cpos);
5022                 if (ret) {
5023                         mlog_errno(ret);
5024                         goto out;
5025                 }
5026
5027                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5028                         left_path = ocfs2_new_path(path_root_bh(path),
5029                                                    path_root_el(path));
5030                         if (!left_path) {
5031                                 ret = -ENOMEM;
5032                                 mlog_errno(ret);
5033                                 goto out;
5034                         }
5035
5036                         ret = ocfs2_find_path(inode, left_path, left_cpos);
5037                         if (ret) {
5038                                 mlog_errno(ret);
5039                                 goto out;
5040                         }
5041                 }
5042         }
5043
5044         ret = ocfs2_extend_rotate_transaction(handle, 0,
5045                                               handle->h_buffer_credits,
5046                                               path);
5047         if (ret) {
5048                 mlog_errno(ret);
5049                 goto out;
5050         }
5051
5052         ret = ocfs2_journal_access_path(inode, handle, path);
5053         if (ret) {
5054                 mlog_errno(ret);
5055                 goto out;
5056         }
5057
5058         ret = ocfs2_journal_access_path(inode, handle, left_path);
5059         if (ret) {
5060                 mlog_errno(ret);
5061                 goto out;
5062         }
5063
5064         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5065         trunc_range = cpos + len;
5066
5067         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5068                 int next_free;
5069
5070                 memset(rec, 0, sizeof(*rec));
5071                 ocfs2_cleanup_merge(el, index);
5072                 wants_rotate = 1;
5073
5074                 next_free = le16_to_cpu(el->l_next_free_rec);
5075                 if (is_rightmost_tree_rec && next_free > 1) {
5076                         /*
5077                          * We skip the edge update if this path will
5078                          * be deleted by the rotate code.
5079                          */
5080                         rec = &el->l_recs[next_free - 1];
5081                         ocfs2_adjust_rightmost_records(inode, handle, path,
5082                                                        rec);
5083                 }
5084         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5085                 /* Remove leftmost portion of the record. */
5086                 le32_add_cpu(&rec->e_cpos, len);
5087                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5088                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5089         } else if (rec_range == trunc_range) {
5090                 /* Remove rightmost portion of the record */
5091                 le16_add_cpu(&rec->e_leaf_clusters, -len);
5092                 if (is_rightmost_tree_rec)
5093                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5094         } else {
5095                 /* Caller should have trapped this. */
5096                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5097                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5098                      le32_to_cpu(rec->e_cpos),
5099                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5100                 BUG();
5101         }
5102
5103         if (left_path) {
5104                 int subtree_index;
5105
5106                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5107                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5108                                            subtree_index);
5109         }
5110
5111         ocfs2_journal_dirty(handle, path_leaf_bh(path));
5112
5113         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5114         if (ret) {
5115                 mlog_errno(ret);
5116                 goto out;
5117         }
5118
5119 out:
5120         ocfs2_free_path(left_path);
5121         return ret;
5122 }
5123
5124 int ocfs2_remove_extent(struct inode *inode,
5125                         struct ocfs2_extent_tree *et,
5126                         u32 cpos, u32 len, handle_t *handle,
5127                         struct ocfs2_alloc_context *meta_ac,
5128                         struct ocfs2_cached_dealloc_ctxt *dealloc)
5129 {
5130         int ret, index;
5131         u32 rec_range, trunc_range;
5132         struct ocfs2_extent_rec *rec;
5133         struct ocfs2_extent_list *el;
5134         struct ocfs2_path *path = NULL;
5135
5136         ocfs2_extent_map_trunc(inode, 0);
5137
5138         path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
5139         if (!path) {
5140                 ret = -ENOMEM;
5141                 mlog_errno(ret);
5142                 goto out;
5143         }
5144
5145         ret = ocfs2_find_path(inode, path, cpos);
5146         if (ret) {
5147                 mlog_errno(ret);
5148                 goto out;
5149         }
5150
5151         el = path_leaf_el(path);
5152         index = ocfs2_search_extent_list(el, cpos);
5153         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5154                 ocfs2_error(inode->i_sb,
5155                             "Inode %llu has an extent at cpos %u which can no "
5156                             "longer be found.\n",
5157                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5158                 ret = -EROFS;
5159                 goto out;
5160         }
5161
5162         /*
5163          * We have 3 cases of extent removal:
5164          *   1) Range covers the entire extent rec
5165          *   2) Range begins or ends on one edge of the extent rec
5166          *   3) Range is in the middle of the extent rec (no shared edges)
5167          *
5168          * For case 1 we remove the extent rec and left rotate to
5169          * fill the hole.
5170          *
5171          * For case 2 we just shrink the existing extent rec, with a
5172          * tree update if the shrinking edge is also the edge of an
5173          * extent block.
5174          *
5175          * For case 3 we do a right split to turn the extent rec into
5176          * something case 2 can handle.
5177          */
5178         rec = &el->l_recs[index];
5179         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5180         trunc_range = cpos + len;
5181
5182         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5183
5184         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5185              "(cpos %u, len %u)\n",
5186              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5187              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5188
5189         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5190                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5191                                          cpos, len, et);
5192                 if (ret) {
5193                         mlog_errno(ret);
5194                         goto out;
5195                 }
5196         } else {
5197                 ret = ocfs2_split_tree(inode, et, handle, path, index,
5198                                        trunc_range, meta_ac);
5199                 if (ret) {
5200                         mlog_errno(ret);
5201                         goto out;
5202                 }
5203
5204                 /*
5205                  * The split could have manipulated the tree enough to
5206                  * move the record location, so we have to look for it again.
5207                  */
5208                 ocfs2_reinit_path(path, 1);
5209
5210                 ret = ocfs2_find_path(inode, path, cpos);
5211                 if (ret) {
5212                         mlog_errno(ret);
5213                         goto out;
5214                 }
5215
5216                 el = path_leaf_el(path);
5217                 index = ocfs2_search_extent_list(el, cpos);
5218                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5219                         ocfs2_error(inode->i_sb,
5220                                     "Inode %llu: split at cpos %u lost record.",
5221                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5222                                     cpos);
5223                         ret = -EROFS;
5224                         goto out;
5225                 }
5226
5227                 /*
5228                  * Double check our values here. If anything is fishy,
5229                  * it's easier to catch it at the top level.
5230                  */
5231                 rec = &el->l_recs[index];
5232                 rec_range = le32_to_cpu(rec->e_cpos) +
5233                         ocfs2_rec_clusters(el, rec);
5234                 if (rec_range != trunc_range) {
5235                         ocfs2_error(inode->i_sb,
5236                                     "Inode %llu: error after split at cpos %u"
5237                                     "trunc len %u, existing record is (%u,%u)",
5238                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
5239                                     cpos, len, le32_to_cpu(rec->e_cpos),
5240                                     ocfs2_rec_clusters(el, rec));
5241                         ret = -EROFS;
5242                         goto out;
5243                 }
5244
5245                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5246                                          cpos, len, et);
5247                 if (ret) {
5248                         mlog_errno(ret);
5249                         goto out;
5250                 }
5251         }
5252
5253 out:
5254         ocfs2_free_path(path);
5255         return ret;
5256 }
5257
5258 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5259 {
5260         struct buffer_head *tl_bh = osb->osb_tl_bh;
5261         struct ocfs2_dinode *di;
5262         struct ocfs2_truncate_log *tl;
5263
5264         di = (struct ocfs2_dinode *) tl_bh->b_data;
5265         tl = &di->id2.i_dealloc;
5266
5267         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5268                         "slot %d, invalid truncate log parameters: used = "
5269                         "%u, count = %u\n", osb->slot_num,
5270                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5271         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5272 }
5273
5274 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5275                                            unsigned int new_start)
5276 {
5277         unsigned int tail_index;
5278         unsigned int current_tail;
5279
5280         /* No records, nothing to coalesce */
5281         if (!le16_to_cpu(tl->tl_used))
5282                 return 0;
5283
5284         tail_index = le16_to_cpu(tl->tl_used) - 1;
5285         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5286         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5287
5288         return current_tail == new_start;
5289 }
5290
5291 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5292                               handle_t *handle,
5293                               u64 start_blk,
5294                               unsigned int num_clusters)
5295 {
5296         int status, index;
5297         unsigned int start_cluster, tl_count;
5298         struct inode *tl_inode = osb->osb_tl_inode;
5299         struct buffer_head *tl_bh = osb->osb_tl_bh;
5300         struct ocfs2_dinode *di;
5301         struct ocfs2_truncate_log *tl;
5302
5303         mlog_entry("start_blk = %llu, num_clusters = %u\n",
5304                    (unsigned long long)start_blk, num_clusters);
5305
5306         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5307
5308         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5309
5310         di = (struct ocfs2_dinode *) tl_bh->b_data;
5311         tl = &di->id2.i_dealloc;
5312         if (!OCFS2_IS_VALID_DINODE(di)) {
5313                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5314                 status = -EIO;
5315                 goto bail;
5316         }
5317
5318         tl_count = le16_to_cpu(tl->tl_count);
5319         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5320                         tl_count == 0,
5321                         "Truncate record count on #%llu invalid "
5322                         "wanted %u, actual %u\n",
5323                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5324                         ocfs2_truncate_recs_per_inode(osb->sb),
5325                         le16_to_cpu(tl->tl_count));
5326
5327         /* Caller should have known to flush before calling us. */
5328         index = le16_to_cpu(tl->tl_used);
5329         if (index >= tl_count) {
5330                 status = -ENOSPC;
5331                 mlog_errno(status);
5332                 goto bail;
5333         }
5334
5335         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5336                                       OCFS2_JOURNAL_ACCESS_WRITE);
5337         if (status < 0) {
5338                 mlog_errno(status);
5339                 goto bail;
5340         }
5341
5342         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5343              "%llu (index = %d)\n", num_clusters, start_cluster,
5344              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5345
5346         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5347                 /*
5348                  * Move index back to the record we are coalescing with.
5349                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5350                  */
5351                 index--;
5352
5353                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5354                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5355                      index, le32_to_cpu(tl->tl_recs[index].t_start),
5356                      num_clusters);
5357         } else {
5358                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5359                 tl->tl_used = cpu_to_le16(index + 1);
5360         }
5361         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5362
5363         status = ocfs2_journal_dirty(handle, tl_bh);
5364         if (status < 0) {
5365                 mlog_errno(status);
5366                 goto bail;
5367         }
5368
5369 bail:
5370         mlog_exit(status);
5371         return status;
5372 }
5373
5374 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5375                                          handle_t *handle,
5376                                          struct inode *data_alloc_inode,
5377                                          struct buffer_head *data_alloc_bh)
5378 {
5379         int status = 0;
5380         int i;
5381         unsigned int num_clusters;
5382         u64 start_blk;
5383         struct ocfs2_truncate_rec rec;
5384         struct ocfs2_dinode *di;
5385         struct ocfs2_truncate_log *tl;
5386         struct inode *tl_inode = osb->osb_tl_inode;
5387         struct buffer_head *tl_bh = osb->osb_tl_bh;
5388
5389         mlog_entry_void();
5390
5391         di = (struct ocfs2_dinode *) tl_bh->b_data;
5392         tl = &di->id2.i_dealloc;
5393         i = le16_to_cpu(tl->tl_used) - 1;
5394         while (i >= 0) {
5395                 /* Caller has given us at least enough credits to
5396                  * update the truncate log dinode */
5397                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5398                                               OCFS2_JOURNAL_ACCESS_WRITE);
5399                 if (status < 0) {
5400                         mlog_errno(status);
5401                         goto bail;
5402                 }
5403
5404                 tl->tl_used = cpu_to_le16(i);
5405
5406                 status = ocfs2_journal_dirty(handle, tl_bh);
5407                 if (status < 0) {
5408                         mlog_errno(status);
5409                         goto bail;
5410                 }
5411
5412                 /* TODO: Perhaps we can calculate the bulk of the
5413                  * credits up front rather than extending like
5414                  * this. */
5415                 status = ocfs2_extend_trans(handle,
5416                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5417                 if (status < 0) {
5418                         mlog_errno(status);
5419                         goto bail;
5420                 }
5421
5422                 rec = tl->tl_recs[i];
5423                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5424                                                     le32_to_cpu(rec.t_start));
5425                 num_clusters = le32_to_cpu(rec.t_clusters);
5426
5427                 /* if start_blk is not set, we ignore the record as
5428                  * invalid. */
5429                 if (start_blk) {
5430                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5431                              i, le32_to_cpu(rec.t_start), num_clusters);
5432
5433                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5434                                                      data_alloc_bh, start_blk,
5435                                                      num_clusters);
5436                         if (status < 0) {
5437                                 mlog_errno(status);
5438                                 goto bail;
5439                         }
5440                 }
5441                 i--;
5442         }
5443
5444 bail:
5445         mlog_exit(status);
5446         return status;
5447 }
5448
5449 /* Expects you to already be holding tl_inode->i_mutex */
5450 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5451 {
5452         int status;
5453         unsigned int num_to_flush;
5454         handle_t *handle;
5455         struct inode *tl_inode = osb->osb_tl_inode;
5456         struct inode *data_alloc_inode = NULL;
5457         struct buffer_head *tl_bh = osb->osb_tl_bh;
5458         struct buffer_head *data_alloc_bh = NULL;
5459         struct ocfs2_dinode *di;
5460         struct ocfs2_truncate_log *tl;
5461
5462         mlog_entry_void();
5463
5464         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5465
5466         di = (struct ocfs2_dinode *) tl_bh->b_data;
5467         tl = &di->id2.i_dealloc;
5468         if (!OCFS2_IS_VALID_DINODE(di)) {
5469                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5470                 status = -EIO;
5471                 goto out;
5472         }
5473
5474         num_to_flush = le16_to_cpu(tl->tl_used);
5475         mlog(0, "Flush %u records from truncate log #%llu\n",
5476              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5477         if (!num_to_flush) {
5478                 status = 0;
5479                 goto out;
5480         }
5481
5482         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5483                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5484                                                        OCFS2_INVALID_SLOT);
5485         if (!data_alloc_inode) {
5486                 status = -EINVAL;
5487                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5488                 goto out;
5489         }
5490
5491         mutex_lock(&data_alloc_inode->i_mutex);
5492
5493         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5494         if (status < 0) {
5495                 mlog_errno(status);
5496                 goto out_mutex;
5497         }
5498
5499         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5500         if (IS_ERR(handle)) {
5501                 status = PTR_ERR(handle);
5502                 mlog_errno(status);
5503                 goto out_unlock;
5504         }
5505
5506         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5507                                                data_alloc_bh);
5508         if (status < 0)
5509                 mlog_errno(status);
5510
5511         ocfs2_commit_trans(osb, handle);
5512
5513 out_unlock:
5514         brelse(data_alloc_bh);
5515         ocfs2_inode_unlock(data_alloc_inode, 1);
5516
5517 out_mutex:
5518         mutex_unlock(&data_alloc_inode->i_mutex);
5519         iput(data_alloc_inode);
5520
5521 out:
5522         mlog_exit(status);
5523         return status;
5524 }
5525
5526 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5527 {
5528         int status;
5529         struct inode *tl_inode = osb->osb_tl_inode;
5530
5531         mutex_lock(&tl_inode->i_mutex);
5532         status = __ocfs2_flush_truncate_log(osb);
5533         mutex_unlock(&tl_inode->i_mutex);
5534
5535         return status;
5536 }
5537
5538 static void ocfs2_truncate_log_worker(struct work_struct *work)
5539 {
5540         int status;
5541         struct ocfs2_super *osb =
5542                 container_of(work, struct ocfs2_super,
5543                              osb_truncate_log_wq.work);
5544
5545         mlog_entry_void();
5546
5547         status = ocfs2_flush_truncate_log(osb);
5548         if (status < 0)
5549                 mlog_errno(status);
5550         else
5551                 ocfs2_init_inode_steal_slot(osb);
5552
5553         mlog_exit(status);
5554 }
5555
5556 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5557 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5558                                        int cancel)
5559 {
5560         if (osb->osb_tl_inode) {
5561                 /* We want to push off log flushes while truncates are
5562                  * still running. */
5563                 if (cancel)
5564                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5565
5566                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5567                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5568         }
5569 }
5570
5571 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5572                                        int slot_num,
5573                                        struct inode **tl_inode,
5574                                        struct buffer_head **tl_bh)
5575 {
5576         int status;
5577         struct inode *inode = NULL;
5578         struct buffer_head *bh = NULL;
5579
5580         inode = ocfs2_get_system_file_inode(osb,
5581                                            TRUNCATE_LOG_SYSTEM_INODE,
5582                                            slot_num);
5583         if (!inode) {
5584                 status = -EINVAL;
5585                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5586                 goto bail;
5587         }
5588
5589         status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
5590         if (status < 0) {
5591                 iput(inode);
5592                 mlog_errno(status);
5593                 goto bail;
5594         }
5595
5596         *tl_inode = inode;
5597         *tl_bh    = bh;
5598 bail:
5599         mlog_exit(status);
5600         return status;
5601 }
5602
5603 /* called during the 1st stage of node recovery. we stamp a clean
5604  * truncate log and pass back a copy for processing later. if the
5605  * truncate log does not require processing, a *tl_copy is set to
5606  * NULL. */
5607 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5608                                       int slot_num,
5609                                       struct ocfs2_dinode **tl_copy)
5610 {
5611         int status;
5612         struct inode *tl_inode = NULL;
5613         struct buffer_head *tl_bh = NULL;
5614         struct ocfs2_dinode *di;
5615         struct ocfs2_truncate_log *tl;
5616
5617         *tl_copy = NULL;
5618
5619         mlog(0, "recover truncate log from slot %d\n", slot_num);
5620
5621         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5622         if (status < 0) {
5623                 mlog_errno(status);
5624                 goto bail;
5625         }
5626
5627         di = (struct ocfs2_dinode *) tl_bh->b_data;
5628         tl = &di->id2.i_dealloc;
5629         if (!OCFS2_IS_VALID_DINODE(di)) {
5630                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5631                 status = -EIO;
5632                 goto bail;
5633         }
5634
5635         if (le16_to_cpu(tl->tl_used)) {
5636                 mlog(0, "We'll have %u logs to recover\n",
5637                      le16_to_cpu(tl->tl_used));
5638
5639                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5640                 if (!(*tl_copy)) {
5641                         status = -ENOMEM;
5642                         mlog_errno(status);
5643                         goto bail;
5644                 }
5645
5646                 /* Assuming the write-out below goes well, this copy
5647                  * will be passed back to recovery for processing. */
5648                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5649
5650                 /* All we need to do to clear the truncate log is set
5651                  * tl_used. */
5652                 tl->tl_used = 0;
5653
5654                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5655                 if (status < 0) {
5656                         mlog_errno(status);
5657                         goto bail;
5658                 }
5659         }
5660
5661 bail:
5662         if (tl_inode)
5663                 iput(tl_inode);
5664         brelse(tl_bh);
5665
5666         if (status < 0 && (*tl_copy)) {
5667                 kfree(*tl_copy);
5668                 *tl_copy = NULL;
5669         }
5670
5671         mlog_exit(status);
5672         return status;
5673 }
5674
5675 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5676                                          struct ocfs2_dinode *tl_copy)
5677 {
5678         int status = 0;
5679         int i;
5680         unsigned int clusters, num_recs, start_cluster;
5681         u64 start_blk;
5682         handle_t *handle;
5683         struct inode *tl_inode = osb->osb_tl_inode;
5684         struct ocfs2_truncate_log *tl;
5685
5686         mlog_entry_void();
5687
5688         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5689                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5690                 return -EINVAL;
5691         }
5692
5693         tl = &tl_copy->id2.i_dealloc;
5694         num_recs = le16_to_cpu(tl->tl_used);
5695         mlog(0, "cleanup %u records from %llu\n", num_recs,
5696              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5697
5698         mutex_lock(&tl_inode->i_mutex);
5699         for(i = 0; i < num_recs; i++) {
5700                 if (ocfs2_truncate_log_needs_flush(osb)) {
5701                         status = __ocfs2_flush_truncate_log(osb);
5702                         if (status < 0) {
5703                                 mlog_errno(status);
5704                                 goto bail_up;
5705                         }
5706                 }
5707
5708                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5709                 if (IS_ERR(handle)) {
5710                         status = PTR_ERR(handle);
5711                         mlog_errno(status);
5712                         goto bail_up;
5713                 }
5714
5715                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5716                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5717                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5718
5719                 status = ocfs2_truncate_log_append(osb, handle,
5720                                                    start_blk, clusters);
5721                 ocfs2_commit_trans(osb, handle);
5722                 if (status < 0) {
5723                         mlog_errno(status);
5724                         goto bail_up;
5725                 }
5726         }
5727
5728 bail_up:
5729         mutex_unlock(&tl_inode->i_mutex);
5730
5731         mlog_exit(status);
5732         return status;
5733 }
5734
5735 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5736 {
5737         int status;
5738         struct inode *tl_inode = osb->osb_tl_inode;
5739
5740         mlog_entry_void();
5741
5742         if (tl_inode) {
5743                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5744                 flush_workqueue(ocfs2_wq);
5745
5746                 status = ocfs2_flush_truncate_log(osb);
5747                 if (status < 0)
5748                         mlog_errno(status);
5749
5750                 brelse(osb->osb_tl_bh);
5751                 iput(osb->osb_tl_inode);
5752         }
5753
5754         mlog_exit_void();
5755 }
5756
5757 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5758 {
5759         int status;
5760         struct inode *tl_inode = NULL;
5761         struct buffer_head *tl_bh = NULL;
5762
5763         mlog_entry_void();
5764
5765         status = ocfs2_get_truncate_log_info(osb,
5766                                              osb->slot_num,
5767                                              &tl_inode,
5768                                              &tl_bh);
5769         if (status < 0)
5770                 mlog_errno(status);
5771
5772         /* ocfs2_truncate_log_shutdown keys on the existence of
5773          * osb->osb_tl_inode so we don't set any of the osb variables
5774          * until we're sure all is well. */
5775         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5776                           ocfs2_truncate_log_worker);
5777         osb->osb_tl_bh    = tl_bh;
5778         osb->osb_tl_inode = tl_inode;
5779
5780         mlog_exit(status);
5781         return status;
5782 }
5783
5784 /*
5785  * Delayed de-allocation of suballocator blocks.
5786  *
5787  * Some sets of block de-allocations might involve multiple suballocator inodes.
5788  *
5789  * The locking for this can get extremely complicated, especially when
5790  * the suballocator inodes to delete from aren't known until deep
5791  * within an unrelated codepath.
5792  *
5793  * ocfs2_extent_block structures are a good example of this - an inode
5794  * btree could have been grown by any number of nodes each allocating
5795  * out of their own suballoc inode.
5796  *
5797  * These structures allow the delay of block de-allocation until a
5798  * later time, when locking of multiple cluster inodes won't cause
5799  * deadlock.
5800  */
5801
5802 /*
5803  * Describes a single block free from a suballocator
5804  */
5805 struct ocfs2_cached_block_free {
5806         struct ocfs2_cached_block_free          *free_next;
5807         u64                                     free_blk;
5808         unsigned int                            free_bit;
5809 };
5810
5811 struct ocfs2_per_slot_free_list {
5812         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5813         int                                     f_inode_type;
5814         int                                     f_slot;
5815         struct ocfs2_cached_block_free          *f_first;
5816 };
5817
5818 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5819                                    int sysfile_type,
5820                                    int slot,
5821                                    struct ocfs2_cached_block_free *head)
5822 {
5823         int ret;
5824         u64 bg_blkno;
5825         handle_t *handle;
5826         struct inode *inode;
5827         struct buffer_head *di_bh = NULL;
5828         struct ocfs2_cached_block_free *tmp;
5829
5830         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5831         if (!inode) {
5832                 ret = -EINVAL;
5833                 mlog_errno(ret);
5834                 goto out;
5835         }
5836
5837         mutex_lock(&inode->i_mutex);
5838
5839         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5840         if (ret) {
5841                 mlog_errno(ret);
5842                 goto out_mutex;
5843         }
5844
5845         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5846         if (IS_ERR(handle)) {
5847                 ret = PTR_ERR(handle);
5848                 mlog_errno(ret);
5849                 goto out_unlock;
5850         }
5851
5852         while (head) {
5853                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5854                                                       head->free_bit);
5855                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5856                      head->free_bit, (unsigned long long)head->free_blk);
5857
5858                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5859                                                head->free_bit, bg_blkno, 1);
5860                 if (ret) {
5861                         mlog_errno(ret);
5862                         goto out_journal;
5863                 }
5864
5865                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5866                 if (ret) {
5867                         mlog_errno(ret);
5868                         goto out_journal;
5869                 }
5870
5871                 tmp = head;
5872                 head = head->free_next;
5873                 kfree(tmp);
5874         }
5875
5876 out_journal:
5877         ocfs2_commit_trans(osb, handle);
5878
5879 out_unlock:
5880         ocfs2_inode_unlock(inode, 1);
5881         brelse(di_bh);
5882 out_mutex:
5883         mutex_unlock(&inode->i_mutex);
5884         iput(inode);
5885 out:
5886         while(head) {
5887                 /* Premature exit may have left some dangling items. */
5888                 tmp = head;
5889                 head = head->free_next;
5890                 kfree(tmp);
5891         }
5892
5893         return ret;
5894 }
5895
5896 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5897                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5898 {
5899         int ret = 0, ret2;
5900         struct ocfs2_per_slot_free_list *fl;
5901
5902         if (!ctxt)
5903                 return 0;
5904
5905         while (ctxt->c_first_suballocator) {
5906                 fl = ctxt->c_first_suballocator;
5907
5908                 if (fl->f_first) {
5909                         mlog(0, "Free items: (type %u, slot %d)\n",
5910                              fl->f_inode_type, fl->f_slot);
5911                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5912                                                        fl->f_slot, fl->f_first);
5913                         if (ret2)
5914                                 mlog_errno(ret2);
5915                         if (!ret)
5916                                 ret = ret2;
5917                 }
5918
5919                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5920                 kfree(fl);
5921         }
5922
5923         return ret;
5924 }
5925
5926 static struct ocfs2_per_slot_free_list *
5927 ocfs2_find_per_slot_free_list(int type,
5928                               int slot,
5929                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5930 {
5931         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5932
5933         while (fl) {
5934                 if (fl->f_inode_type == type && fl->f_slot == slot)
5935                         return fl;
5936
5937                 fl = fl->f_next_suballocator;
5938         }
5939
5940         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5941         if (fl) {
5942                 fl->f_inode_type = type;
5943                 fl->f_slot = slot;
5944                 fl->f_first = NULL;
5945                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5946
5947                 ctxt->c_first_suballocator = fl;
5948         }
5949         return fl;
5950 }
5951
5952 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5953                                      int type, int slot, u64 blkno,
5954                                      unsigned int bit)
5955 {
5956         int ret;
5957         struct ocfs2_per_slot_free_list *fl;
5958         struct ocfs2_cached_block_free *item;
5959
5960         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5961         if (fl == NULL) {
5962                 ret = -ENOMEM;
5963                 mlog_errno(ret);
5964                 goto out;
5965         }
5966
5967         item = kmalloc(sizeof(*item), GFP_NOFS);
5968         if (item == NULL) {
5969                 ret = -ENOMEM;
5970                 mlog_errno(ret);
5971                 goto out;
5972         }
5973
5974         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5975              type, slot, bit, (unsigned long long)blkno);
5976
5977         item->free_blk = blkno;
5978         item->free_bit = bit;
5979         item->free_next = fl->f_first;
5980
5981         fl->f_first = item;
5982
5983         ret = 0;
5984 out:
5985         return ret;
5986 }
5987
5988 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5989                                          struct ocfs2_extent_block *eb)
5990 {
5991         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5992                                          le16_to_cpu(eb->h_suballoc_slot),
5993                                          le64_to_cpu(eb->h_blkno),
5994                                          le16_to_cpu(eb->h_suballoc_bit));
5995 }
5996
5997 /* This function will figure out whether the currently last extent
5998  * block will be deleted, and if it will, what the new last extent
5999  * block will be so we can update his h_next_leaf_blk field, as well
6000  * as the dinodes i_last_eb_blk */
6001 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6002                                        unsigned int clusters_to_del,
6003                                        struct ocfs2_path *path,
6004                                        struct buffer_head **new_last_eb)
6005 {
6006         int next_free, ret = 0;
6007         u32 cpos;
6008         struct ocfs2_extent_rec *rec;
6009         struct ocfs2_extent_block *eb;
6010         struct ocfs2_extent_list *el;
6011         struct buffer_head *bh = NULL;
6012
6013         *new_last_eb = NULL;
6014
6015         /* we have no tree, so of course, no last_eb. */
6016         if (!path->p_tree_depth)
6017                 goto out;
6018
6019         /* trunc to zero special case - this makes tree_depth = 0
6020          * regardless of what it is.  */
6021         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6022                 goto out;
6023
6024         el = path_leaf_el(path);
6025         BUG_ON(!el->l_next_free_rec);
6026
6027         /*
6028          * Make sure that this extent list will actually be empty
6029          * after we clear away the data. We can shortcut out if
6030          * there's more than one non-empty extent in the
6031          * list. Otherwise, a check of the remaining extent is
6032          * necessary.
6033          */
6034         next_free = le16_to_cpu(el->l_next_free_rec);
6035         rec = NULL;
6036         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6037                 if (next_free > 2)
6038                         goto out;
6039
6040                 /* We may have a valid extent in index 1, check it. */
6041                 if (next_free == 2)
6042                         rec = &el->l_recs[1];
6043
6044                 /*
6045                  * Fall through - no more nonempty extents, so we want
6046                  * to delete this leaf.
6047                  */
6048         } else {
6049                 if (next_free > 1)
6050                         goto out;
6051
6052                 rec = &el->l_recs[0];
6053         }
6054
6055         if (rec) {
6056                 /*
6057                  * Check it we'll only be trimming off the end of this
6058                  * cluster.
6059                  */
6060                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6061                         goto out;
6062         }
6063
6064         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6065         if (ret) {
6066                 mlog_errno(ret);
6067                 goto out;
6068         }
6069
6070         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6071         if (ret) {
6072                 mlog_errno(ret);
6073                 goto out;
6074         }
6075
6076         eb = (struct ocfs2_extent_block *) bh->b_data;
6077         el = &eb->h_list;
6078         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6079                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6080                 ret = -EROFS;
6081                 goto out;
6082         }
6083
6084         *new_last_eb = bh;
6085         get_bh(*new_last_eb);
6086         mlog(0, "returning block %llu, (cpos: %u)\n",
6087              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6088 out:
6089         brelse(bh);
6090
6091         return ret;
6092 }
6093
6094 /*
6095  * Trim some clusters off the rightmost edge of a tree. Only called
6096  * during truncate.
6097  *
6098  * The caller needs to:
6099  *   - start journaling of each path component.
6100  *   - compute and fully set up any new last ext block
6101  */
6102 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6103                            handle_t *handle, struct ocfs2_truncate_context *tc,
6104                            u32 clusters_to_del, u64 *delete_start)
6105 {
6106         int ret, i, index = path->p_tree_depth;
6107         u32 new_edge = 0;
6108         u64 deleted_eb = 0;
6109         struct buffer_head *bh;
6110         struct ocfs2_extent_list *el;
6111         struct ocfs2_extent_rec *rec;
6112
6113         *delete_start = 0;
6114
6115         while (index >= 0) {
6116                 bh = path->p_node[index].bh;
6117                 el = path->p_node[index].el;
6118
6119                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6120                      index,  (unsigned long long)bh->b_blocknr);
6121
6122                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6123
6124                 if (index !=
6125                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6126                         ocfs2_error(inode->i_sb,
6127                                     "Inode %lu has invalid ext. block %llu",
6128                                     inode->i_ino,
6129                                     (unsigned long long)bh->b_blocknr);
6130                         ret = -EROFS;
6131                         goto out;
6132                 }
6133
6134 find_tail_record:
6135                 i = le16_to_cpu(el->l_next_free_rec) - 1;
6136                 rec = &el->l_recs[i];
6137
6138                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6139                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6140                      ocfs2_rec_clusters(el, rec),
6141                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6142                      le16_to_cpu(el->l_next_free_rec));
6143
6144                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6145
6146                 if (le16_to_cpu(el->l_tree_depth) == 0) {
6147                         /*
6148                          * If the leaf block contains a single empty
6149                          * extent and no records, we can just remove
6150                          * the block.
6151                          */
6152                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
6153                                 memset(rec, 0,
6154                                        sizeof(struct ocfs2_extent_rec));
6155                                 el->l_next_free_rec = cpu_to_le16(0);
6156
6157                                 goto delete;
6158                         }
6159
6160                         /*
6161                          * Remove any empty extents by shifting things
6162                          * left. That should make life much easier on
6163                          * the code below. This condition is rare
6164                          * enough that we shouldn't see a performance
6165                          * hit.
6166                          */
6167                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6168                                 le16_add_cpu(&el->l_next_free_rec, -1);
6169
6170                                 for(i = 0;
6171                                     i < le16_to_cpu(el->l_next_free_rec); i++)
6172                                         el->l_recs[i] = el->l_recs[i + 1];
6173
6174                                 memset(&el->l_recs[i], 0,
6175                                        sizeof(struct ocfs2_extent_rec));
6176
6177                                 /*
6178                                  * We've modified our extent list. The
6179                                  * simplest way to handle this change
6180                                  * is to being the search from the
6181                                  * start again.
6182                                  */
6183                                 goto find_tail_record;
6184                         }
6185
6186                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6187
6188                         /*
6189                          * We'll use "new_edge" on our way back up the
6190                          * tree to know what our rightmost cpos is.
6191                          */
6192                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
6193                         new_edge += le32_to_cpu(rec->e_cpos);
6194
6195                         /*
6196                          * The caller will use this to delete data blocks.
6197                          */
6198                         *delete_start = le64_to_cpu(rec->e_blkno)
6199                                 + ocfs2_clusters_to_blocks(inode->i_sb,
6200                                         le16_to_cpu(rec->e_leaf_clusters));
6201
6202                         /*
6203                          * If it's now empty, remove this record.
6204                          */
6205                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6206                                 memset(rec, 0,
6207                                        sizeof(struct ocfs2_extent_rec));
6208                                 le16_add_cpu(&el->l_next_free_rec, -1);
6209                         }
6210                 } else {
6211                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6212                                 memset(rec, 0,
6213                                        sizeof(struct ocfs2_extent_rec));
6214                                 le16_add_cpu(&el->l_next_free_rec, -1);
6215
6216                                 goto delete;
6217                         }
6218
6219                         /* Can this actually happen? */
6220                         if (le16_to_cpu(el->l_next_free_rec) == 0)
6221                                 goto delete;
6222
6223                         /*
6224                          * We never actually deleted any clusters
6225                          * because our leaf was empty. There's no
6226                          * reason to adjust the rightmost edge then.
6227                          */
6228                         if (new_edge == 0)
6229                                 goto delete;
6230
6231                         rec->e_int_clusters = cpu_to_le32(new_edge);
6232                         le32_add_cpu(&rec->e_int_clusters,
6233                                      -le32_to_cpu(rec->e_cpos));
6234
6235                          /*
6236                           * A deleted child record should have been
6237                           * caught above.
6238                           */
6239                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6240                 }
6241
6242 delete:
6243                 ret = ocfs2_journal_dirty(handle, bh);
6244                 if (ret) {
6245                         mlog_errno(ret);
6246                         goto out;
6247                 }
6248
6249                 mlog(0, "extent list container %llu, after: record %d: "
6250                      "(%u, %u, %llu), next = %u.\n",
6251                      (unsigned long long)bh->b_blocknr, i,
6252                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6253                      (unsigned long long)le64_to_cpu(rec->e_blkno),
6254                      le16_to_cpu(el->l_next_free_rec));
6255
6256                 /*
6257                  * We must be careful to only attempt delete of an
6258                  * extent block (and not the root inode block).
6259                  */
6260                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6261                         struct ocfs2_extent_block *eb =
6262                                 (struct ocfs2_extent_block *)bh->b_data;
6263
6264                         /*
6265                          * Save this for use when processing the
6266                          * parent block.
6267                          */
6268                         deleted_eb = le64_to_cpu(eb->h_blkno);
6269
6270                         mlog(0, "deleting this extent block.\n");
6271
6272                         ocfs2_remove_from_cache(inode, bh);
6273
6274                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6275                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6276                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6277
6278                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6279                         /* An error here is not fatal. */
6280                         if (ret < 0)
6281                                 mlog_errno(ret);
6282                 } else {
6283                         deleted_eb = 0;
6284                 }
6285
6286                 index--;
6287         }
6288
6289         ret = 0;
6290 out:
6291         return ret;
6292 }
6293
6294 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6295                              unsigned int clusters_to_del,
6296                              struct inode *inode,
6297                              struct buffer_head *fe_bh,
6298                              handle_t *handle,
6299                              struct ocfs2_truncate_context *tc,
6300                              struct ocfs2_path *path)
6301 {
6302         int status;
6303         struct ocfs2_dinode *fe;
6304         struct ocfs2_extent_block *last_eb = NULL;
6305         struct ocfs2_extent_list *el;
6306         struct buffer_head *last_eb_bh = NULL;
6307         u64 delete_blk = 0;
6308
6309         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6310
6311         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6312                                              path, &last_eb_bh);
6313         if (status < 0) {
6314                 mlog_errno(status);
6315                 goto bail;
6316         }
6317
6318         /*
6319          * Each component will be touched, so we might as well journal
6320          * here to avoid having to handle errors later.
6321          */
6322         status = ocfs2_journal_access_path(inode, handle, path);
6323         if (status < 0) {
6324                 mlog_errno(status);
6325                 goto bail;
6326         }
6327
6328         if (last_eb_bh) {
6329                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6330                                               OCFS2_JOURNAL_ACCESS_WRITE);
6331                 if (status < 0) {
6332                         mlog_errno(status);
6333                         goto bail;
6334                 }
6335
6336                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6337         }
6338
6339         el = &(fe->id2.i_list);
6340
6341         /*
6342          * Lower levels depend on this never happening, but it's best
6343          * to check it up here before changing the tree.
6344          */
6345         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6346                 ocfs2_error(inode->i_sb,
6347                             "Inode %lu has an empty extent record, depth %u\n",
6348                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
6349                 status = -EROFS;
6350                 goto bail;
6351         }
6352
6353         spin_lock(&OCFS2_I(inode)->ip_lock);
6354         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6355                                       clusters_to_del;
6356         spin_unlock(&OCFS2_I(inode)->ip_lock);
6357         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6358         inode->i_blocks = ocfs2_inode_sector_count(inode);
6359
6360         status = ocfs2_trim_tree(inode, path, handle, tc,
6361                                  clusters_to_del, &delete_blk);
6362         if (status) {
6363                 mlog_errno(status);
6364                 goto bail;
6365         }
6366
6367         if (le32_to_cpu(fe->i_clusters) == 0) {
6368                 /* trunc to zero is a special case. */
6369                 el->l_tree_depth = 0;
6370                 fe->i_last_eb_blk = 0;
6371         } else if (last_eb)
6372                 fe->i_last_eb_blk = last_eb->h_blkno;
6373
6374         status = ocfs2_journal_dirty(handle, fe_bh);
6375         if (status < 0) {
6376                 mlog_errno(status);
6377                 goto bail;
6378         }
6379
6380         if (last_eb) {
6381                 /* If there will be a new last extent block, then by
6382                  * definition, there cannot be any leaves to the right of
6383                  * him. */
6384                 last_eb->h_next_leaf_blk = 0;
6385                 status = ocfs2_journal_dirty(handle, last_eb_bh);
6386                 if (status < 0) {
6387                         mlog_errno(status);
6388                         goto bail;
6389                 }
6390         }
6391
6392         if (delete_blk) {
6393                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6394                                                    clusters_to_del);
6395                 if (status < 0) {
6396                         mlog_errno(status);
6397                         goto bail;
6398                 }
6399         }
6400         status = 0;
6401 bail:
6402
6403         mlog_exit(status);
6404         return status;
6405 }
6406
6407 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6408 {
6409         set_buffer_uptodate(bh);
6410         mark_buffer_dirty(bh);
6411         return 0;
6412 }
6413
6414 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6415                                      unsigned int from, unsigned int to,
6416                                      struct page *page, int zero, u64 *phys)
6417 {
6418         int ret, partial = 0;
6419
6420         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6421         if (ret)
6422                 mlog_errno(ret);
6423
6424         if (zero)
6425                 zero_user_segment(page, from, to);
6426
6427         /*
6428          * Need to set the buffers we zero'd into uptodate
6429          * here if they aren't - ocfs2_map_page_blocks()
6430          * might've skipped some
6431          */
6432         ret = walk_page_buffers(handle, page_buffers(page),
6433                                 from, to, &partial,
6434                                 ocfs2_zero_func);
6435         if (ret < 0)
6436                 mlog_errno(ret);
6437         else if (ocfs2_should_order_data(inode)) {
6438                 ret = ocfs2_jbd2_file_inode(handle, inode);
6439 #ifdef CONFIG_OCFS2_COMPAT_JBD
6440                 ret = walk_page_buffers(handle, page_buffers(page),
6441                                         from, to, &partial,
6442                                         ocfs2_journal_dirty_data);
6443 #endif
6444                 if (ret < 0)
6445                         mlog_errno(ret);
6446         }
6447
6448         if (!partial)
6449                 SetPageUptodate(page);
6450
6451         flush_dcache_page(page);
6452 }
6453
6454 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6455                                      loff_t end, struct page **pages,
6456                                      int numpages, u64 phys, handle_t *handle)
6457 {
6458         int i;
6459         struct page *page;
6460         unsigned int from, to = PAGE_CACHE_SIZE;
6461         struct super_block *sb = inode->i_sb;
6462
6463         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6464
6465         if (numpages == 0)
6466                 goto out;
6467
6468         to = PAGE_CACHE_SIZE;
6469         for(i = 0; i < numpages; i++) {
6470                 page = pages[i];
6471
6472                 from = start & (PAGE_CACHE_SIZE - 1);
6473                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6474                         to = end & (PAGE_CACHE_SIZE - 1);
6475
6476                 BUG_ON(from > PAGE_CACHE_SIZE);
6477                 BUG_ON(to > PAGE_CACHE_SIZE);
6478
6479                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6480                                          &phys);
6481
6482                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6483         }
6484 out:
6485         if (pages)
6486                 ocfs2_unlock_and_free_pages(pages, numpages);
6487 }
6488
6489 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6490                                 struct page **pages, int *num)
6491 {
6492         int numpages, ret = 0;
6493         struct super_block *sb = inode->i_sb;
6494         struct address_space *mapping = inode->i_mapping;
6495         unsigned long index;
6496         loff_t last_page_bytes;
6497
6498         BUG_ON(start > end);
6499
6500         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6501                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6502
6503         numpages = 0;
6504         last_page_bytes = PAGE_ALIGN(end);
6505         index = start >> PAGE_CACHE_SHIFT;
6506         do {
6507                 pages[numpages] = grab_cache_page(mapping, index);
6508                 if (!pages[numpages]) {
6509                         ret = -ENOMEM;
6510                         mlog_errno(ret);
6511                         goto out;
6512                 }
6513
6514                 numpages++;
6515                 index++;
6516         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6517
6518 out:
6519         if (ret != 0) {
6520                 if (pages)
6521                         ocfs2_unlock_and_free_pages(pages, numpages);
6522                 numpages = 0;
6523         }
6524
6525         *num = numpages;
6526
6527         return ret;
6528 }
6529
6530 /*
6531  * Zero the area past i_size but still within an allocated
6532  * cluster. This avoids exposing nonzero data on subsequent file
6533  * extends.
6534  *
6535  * We need to call this before i_size is updated on the inode because
6536  * otherwise block_write_full_page() will skip writeout of pages past
6537  * i_size. The new_i_size parameter is passed for this reason.
6538  */
6539 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6540                                   u64 range_start, u64 range_end)
6541 {
6542         int ret = 0, numpages;
6543         struct page **pages = NULL;
6544         u64 phys;
6545         unsigned int ext_flags;
6546         struct super_block *sb = inode->i_sb;
6547
6548         /*
6549          * File systems which don't support sparse files zero on every
6550          * extend.
6551          */
6552         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6553                 return 0;
6554
6555         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6556                         sizeof(struct page *), GFP_NOFS);
6557         if (pages == NULL) {
6558                 ret = -ENOMEM;
6559                 mlog_errno(ret);
6560                 goto out;
6561         }
6562
6563         if (range_start == range_end)
6564                 goto out;
6565
6566         ret = ocfs2_extent_map_get_blocks(inode,
6567                                           range_start >> sb->s_blocksize_bits,
6568                                           &phys, NULL, &ext_flags);
6569         if (ret) {
6570                 mlog_errno(ret);
6571                 goto out;
6572         }
6573
6574         /*
6575          * Tail is a hole, or is marked unwritten. In either case, we
6576          * can count on read and write to return/push zero's.
6577          */
6578         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6579                 goto out;
6580
6581         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6582                                    &numpages);
6583         if (ret) {
6584                 mlog_errno(ret);
6585                 goto out;
6586         }
6587
6588         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6589                                  numpages, phys, handle);
6590
6591         /*
6592          * Initiate writeout of the pages we zero'd here. We don't
6593          * wait on them - the truncate_inode_pages() call later will
6594          * do that for us.
6595          */
6596         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6597                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6598         if (ret)
6599                 mlog_errno(ret);
6600
6601 out:
6602         if (pages)
6603                 kfree(pages);
6604
6605         return ret;
6606 }
6607
6608 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6609                                              struct ocfs2_dinode *di)
6610 {
6611         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6612         unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6613
6614         if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6615                 memset(&di->id2, 0, blocksize -
6616                                     offsetof(struct ocfs2_dinode, id2) -
6617                                     xattrsize);
6618         else
6619                 memset(&di->id2, 0, blocksize -
6620                                     offsetof(struct ocfs2_dinode, id2));
6621 }
6622
6623 void ocfs2_dinode_new_extent_list(struct inode *inode,
6624                                   struct ocfs2_dinode *di)
6625 {
6626         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6627         di->id2.i_list.l_tree_depth = 0;
6628         di->id2.i_list.l_next_free_rec = 0;
6629         di->id2.i_list.l_count = cpu_to_le16(
6630                 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6631 }
6632
6633 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6634 {
6635         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6636         struct ocfs2_inline_data *idata = &di->id2.i_data;
6637
6638         spin_lock(&oi->ip_lock);
6639         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6640         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6641         spin_unlock(&oi->ip_lock);
6642
6643         /*
6644          * We clear the entire i_data structure here so that all
6645          * fields can be properly initialized.
6646          */
6647         ocfs2_zero_dinode_id2_with_xattr(inode, di);
6648
6649         idata->id_count = cpu_to_le16(
6650                         ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6651 }
6652
6653 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6654                                          struct buffer_head *di_bh)
6655 {
6656         int ret, i, has_data, num_pages = 0;
6657         handle_t *handle;
6658         u64 uninitialized_var(block);
6659         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6660         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6661         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6662         struct ocfs2_alloc_context *data_ac = NULL;
6663         struct page **pages = NULL;
6664         loff_t end = osb->s_clustersize;
6665         struct ocfs2_extent_tree et;
6666
6667         has_data = i_size_read(inode) ? 1 : 0;
6668
6669         if (has_data) {
6670                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6671                                 sizeof(struct page *), GFP_NOFS);
6672                 if (pages == NULL) {
6673                         ret = -ENOMEM;
6674                         mlog_errno(ret);
6675                         goto out;
6676                 }
6677
6678                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6679                 if (ret) {
6680                         mlog_errno(ret);
6681                         goto out;
6682                 }
6683         }
6684
6685         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6686         if (IS_ERR(handle)) {
6687                 ret = PTR_ERR(handle);
6688                 mlog_errno(ret);
6689                 goto out_unlock;
6690         }
6691
6692         ret = ocfs2_journal_access(handle, inode, di_bh,
6693                                    OCFS2_JOURNAL_ACCESS_WRITE);
6694         if (ret) {
6695                 mlog_errno(ret);
6696                 goto out_commit;
6697         }
6698
6699         if (has_data) {
6700                 u32 bit_off, num;
6701                 unsigned int page_end;
6702                 u64 phys;
6703
6704                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6705                                            &num);
6706                 if (ret) {
6707                         mlog_errno(ret);
6708                         goto out_commit;
6709                 }
6710
6711                 /*
6712                  * Save two copies, one for insert, and one that can
6713                  * be changed by ocfs2_map_and_dirty_page() below.
6714                  */
6715                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6716
6717                 /*
6718                  * Non sparse file systems zero on extend, so no need
6719                  * to do that now.
6720                  */
6721                 if (!ocfs2_sparse_alloc(osb) &&
6722                     PAGE_CACHE_SIZE < osb->s_clustersize)
6723                         end = PAGE_CACHE_SIZE;
6724
6725                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6726                 if (ret) {
6727                         mlog_errno(ret);
6728                         goto out_commit;
6729                 }
6730
6731                 /*
6732                  * This should populate the 1st page for us and mark
6733                  * it up to date.
6734                  */
6735                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6736                 if (ret) {
6737                         mlog_errno(ret);
6738                         goto out_commit;
6739                 }
6740
6741                 page_end = PAGE_CACHE_SIZE;
6742                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6743                         page_end = osb->s_clustersize;
6744
6745                 for (i = 0; i < num_pages; i++)
6746                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6747                                                  pages[i], i > 0, &phys);
6748         }
6749
6750         spin_lock(&oi->ip_lock);
6751         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6752         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6753         spin_unlock(&oi->ip_lock);
6754
6755         ocfs2_dinode_new_extent_list(inode, di);
6756
6757         ocfs2_journal_dirty(handle, di_bh);
6758
6759         if (has_data) {
6760                 /*
6761                  * An error at this point should be extremely rare. If
6762                  * this proves to be false, we could always re-build
6763                  * the in-inode data from our pages.
6764                  */
6765                 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
6766                 ret = ocfs2_insert_extent(osb, handle, inode, &et,
6767                                           0, block, 1, 0, NULL);
6768                 if (ret) {
6769                         mlog_errno(ret);
6770                         goto out_commit;
6771                 }
6772
6773                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6774         }
6775
6776 out_commit:
6777         ocfs2_commit_trans(osb, handle);
6778
6779 out_unlock:
6780         if (data_ac)
6781                 ocfs2_free_alloc_context(data_ac);
6782
6783 out:
6784         if (pages) {
6785                 ocfs2_unlock_and_free_pages(pages, num_pages);
6786                 kfree(pages);
6787         }
6788
6789         return ret;
6790 }
6791
6792 /*
6793  * It is expected, that by the time you call this function,
6794  * inode->i_size and fe->i_size have been adjusted.
6795  *
6796  * WARNING: This will kfree the truncate context
6797  */
6798 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6799                           struct inode *inode,
6800                           struct buffer_head *fe_bh,
6801                           struct ocfs2_truncate_context *tc)
6802 {
6803         int status, i, credits, tl_sem = 0;
6804         u32 clusters_to_del, new_highest_cpos, range;
6805         struct ocfs2_extent_list *el;
6806         handle_t *handle = NULL;
6807         struct inode *tl_inode = osb->osb_tl_inode;
6808         struct ocfs2_path *path = NULL;
6809         struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
6810
6811         mlog_entry_void();
6812
6813         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6814                                                      i_size_read(inode));
6815
6816         path = ocfs2_new_path(fe_bh, &di->id2.i_list);
6817         if (!path) {
6818                 status = -ENOMEM;
6819                 mlog_errno(status);
6820                 goto bail;
6821         }
6822
6823         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6824
6825 start:
6826         /*
6827          * Check that we still have allocation to delete.
6828          */
6829         if (OCFS2_I(inode)->ip_clusters == 0) {
6830                 status = 0;
6831                 goto bail;
6832         }
6833
6834         /*
6835          * Truncate always works against the rightmost tree branch.
6836          */
6837         status = ocfs2_find_path(inode, path, UINT_MAX);
6838         if (status) {
6839                 mlog_errno(status);
6840                 goto bail;
6841         }
6842
6843         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6844              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6845
6846         /*
6847          * By now, el will point to the extent list on the bottom most
6848          * portion of this tree. Only the tail record is considered in
6849          * each pass.
6850          *
6851          * We handle the following cases, in order:
6852          * - empty extent: delete the remaining branch
6853          * - remove the entire record
6854          * - remove a partial record
6855          * - no record needs to be removed (truncate has completed)
6856          */
6857         el = path_leaf_el(path);
6858         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6859                 ocfs2_error(inode->i_sb,
6860                             "Inode %llu has empty extent block at %llu\n",
6861                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6862                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6863                 status = -EROFS;
6864                 goto bail;
6865         }
6866
6867         i = le16_to_cpu(el->l_next_free_rec) - 1;
6868         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6869                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6870         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6871                 clusters_to_del = 0;
6872         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6873                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6874         } else if (range > new_highest_cpos) {
6875                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6876                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6877                                   new_highest_cpos;
6878         } else {
6879                 status = 0;
6880                 goto bail;
6881         }
6882
6883         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6884              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6885
6886         mutex_lock(&tl_inode->i_mutex);
6887         tl_sem = 1;
6888         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6889          * record is free for use. If there isn't any, we flush to get
6890          * an empty truncate log.  */
6891         if (ocfs2_truncate_log_needs_flush(osb)) {
6892                 status = __ocfs2_flush_truncate_log(osb);
6893                 if (status < 0) {
6894                         mlog_errno(status);
6895                         goto bail;
6896                 }
6897         }
6898
6899         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6900                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6901                                                 el);
6902         handle = ocfs2_start_trans(osb, credits);
6903         if (IS_ERR(handle)) {
6904                 status = PTR_ERR(handle);
6905                 handle = NULL;
6906                 mlog_errno(status);
6907                 goto bail;
6908         }
6909
6910         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6911                                    tc, path);
6912         if (status < 0) {
6913                 mlog_errno(status);
6914                 goto bail;
6915         }
6916
6917         mutex_unlock(&tl_inode->i_mutex);
6918         tl_sem = 0;
6919
6920         ocfs2_commit_trans(osb, handle);
6921         handle = NULL;
6922
6923         ocfs2_reinit_path(path, 1);
6924
6925         /*
6926          * The check above will catch the case where we've truncated
6927          * away all allocation.
6928          */
6929         goto start;
6930
6931 bail:
6932
6933         ocfs2_schedule_truncate_log_flush(osb, 1);
6934
6935         if (tl_sem)
6936                 mutex_unlock(&tl_inode->i_mutex);
6937
6938         if (handle)
6939                 ocfs2_commit_trans(osb, handle);
6940
6941         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6942
6943         ocfs2_free_path(path);
6944
6945         /* This will drop the ext_alloc cluster lock for us */
6946         ocfs2_free_truncate_context(tc);
6947
6948         mlog_exit(status);
6949         return status;
6950 }
6951
6952 /*
6953  * Expects the inode to already be locked.
6954  */
6955 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6956                            struct inode *inode,
6957                            struct buffer_head *fe_bh,
6958                            struct ocfs2_truncate_context **tc)
6959 {
6960         int status;
6961         unsigned int new_i_clusters;
6962         struct ocfs2_dinode *fe;
6963         struct ocfs2_extent_block *eb;
6964         struct buffer_head *last_eb_bh = NULL;
6965
6966         mlog_entry_void();
6967
6968         *tc = NULL;
6969
6970         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6971                                                   i_size_read(inode));
6972         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6973
6974         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6975              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6976              (unsigned long long)le64_to_cpu(fe->i_size));
6977
6978         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6979         if (!(*tc)) {
6980                 status = -ENOMEM;
6981                 mlog_errno(status);
6982                 goto bail;
6983         }
6984         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6985
6986         if (fe->id2.i_list.l_tree_depth) {
6987                 status = ocfs2_read_block(inode, le64_to_cpu(fe->i_last_eb_blk),
6988                                           &last_eb_bh);
6989                 if (status < 0) {
6990                         mlog_errno(status);
6991                         goto bail;
6992                 }
6993                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6994                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6995                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6996
6997                         brelse(last_eb_bh);
6998                         status = -EIO;
6999                         goto bail;
7000                 }
7001         }
7002
7003         (*tc)->tc_last_eb_bh = last_eb_bh;
7004
7005         status = 0;
7006 bail:
7007         if (status < 0) {
7008                 if (*tc)
7009                         ocfs2_free_truncate_context(*tc);
7010                 *tc = NULL;
7011         }
7012         mlog_exit_void();
7013         return status;
7014 }
7015
7016 /*
7017  * 'start' is inclusive, 'end' is not.
7018  */
7019 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7020                           unsigned int start, unsigned int end, int trunc)
7021 {
7022         int ret;
7023         unsigned int numbytes;
7024         handle_t *handle;
7025         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7026         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7027         struct ocfs2_inline_data *idata = &di->id2.i_data;
7028
7029         if (end > i_size_read(inode))
7030                 end = i_size_read(inode);
7031
7032         BUG_ON(start >= end);
7033
7034         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7035             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7036             !ocfs2_supports_inline_data(osb)) {
7037                 ocfs2_error(inode->i_sb,
7038                             "Inline data flags for inode %llu don't agree! "
7039                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7040                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
7041                             le16_to_cpu(di->i_dyn_features),
7042                             OCFS2_I(inode)->ip_dyn_features,
7043                             osb->s_feature_incompat);
7044                 ret = -EROFS;
7045                 goto out;
7046         }
7047
7048         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7049         if (IS_ERR(handle)) {
7050                 ret = PTR_ERR(handle);
7051                 mlog_errno(ret);
7052                 goto out;
7053         }
7054
7055         ret = ocfs2_journal_access(handle, inode, di_bh,
7056                                    OCFS2_JOURNAL_ACCESS_WRITE);
7057         if (ret) {
7058                 mlog_errno(ret);
7059                 goto out_commit;
7060         }
7061
7062         numbytes = end - start;
7063         memset(idata->id_data + start, 0, numbytes);
7064
7065         /*
7066          * No need to worry about the data page here - it's been
7067          * truncated already and inline data doesn't need it for
7068          * pushing zero's to disk, so we'll let readpage pick it up
7069          * later.
7070          */
7071         if (trunc) {
7072                 i_size_write(inode, start);
7073                 di->i_size = cpu_to_le64(start);
7074         }
7075
7076         inode->i_blocks = ocfs2_inode_sector_count(inode);
7077         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7078
7079         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7080         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7081
7082         ocfs2_journal_dirty(handle, di_bh);
7083
7084 out_commit:
7085         ocfs2_commit_trans(osb, handle);
7086
7087 out:
7088         return ret;
7089 }
7090
7091 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7092 {
7093         /*
7094          * The caller is responsible for completing deallocation
7095          * before freeing the context.
7096          */
7097         if (tc->tc_dealloc.c_first_suballocator != NULL)
7098                 mlog(ML_NOTICE,
7099                      "Truncate completion has non-empty dealloc context\n");
7100
7101         brelse(tc->tc_last_eb_bh);
7102
7103         kfree(tc);
7104 }