2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 2
36 struct scsi_host_sg_pool {
39 struct kmem_cache *slab;
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
209 blk_put_request(req);
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static struct kmem_cache *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
267 blk_rq_bio_prep(q, rq, bio);
268 else if (!ll_back_merge_fn(q, rq, bio))
271 rq->biotail->bi_next = bio;
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
288 * scsi_req_map_sg - map a scatterlist into a request
289 * @rq: request to fill
291 * @nsegs: number of elements
292 * @bufflen: len of buffer
293 * @gfp: memory allocation flags
295 * scsi_req_map_sg maps a scatterlist into a request so that the
296 * request can be sent to the block layer. We do not trust the scatterlist
297 * sent to use, as some ULDs use that struct to only organize the pages.
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300 int nsegs, unsigned bufflen, gfp_t gfp)
302 struct request_queue *q = rq->q;
303 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304 unsigned int data_len = bufflen, len, bytes, off;
306 struct bio *bio = NULL;
307 int i, err, nr_vecs = 0;
309 for (i = 0; i < nsegs; i++) {
314 while (len > 0 && data_len > 0) {
316 * sg sends a scatterlist that is larger than
317 * the data_len it wants transferred for certain
320 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 bytes = min(bytes, data_len);
324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
327 bio = bio_alloc(gfp, nr_vecs);
332 bio->bi_end_io = scsi_bi_endio;
335 if (bio_add_pc_page(q, bio, page, bytes, off) !=
342 if (bio->bi_vcnt >= nr_vecs) {
343 err = scsi_merge_bio(rq, bio);
345 bio_endio(bio, bio->bi_size, 0);
358 rq->buffer = rq->data = NULL;
359 rq->data_len = bufflen;
363 while ((bio = rq->bio) != NULL) {
364 rq->bio = bio->bi_next;
366 * call endio instead of bio_put incase it was bounced
368 bio_endio(bio, bio->bi_size, 0);
375 * scsi_execute_async - insert request
378 * @cmd_len: length of scsi cdb
379 * @data_direction: data direction
380 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
381 * @bufflen: len of buffer
382 * @use_sg: if buffer is a scatterlist this is the number of elements
383 * @timeout: request timeout in seconds
384 * @retries: number of times to retry request
385 * @flags: or into request flags
387 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
388 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
389 int use_sg, int timeout, int retries, void *privdata,
390 void (*done)(void *, char *, int, int), gfp_t gfp)
393 struct scsi_io_context *sioc;
395 int write = (data_direction == DMA_TO_DEVICE);
397 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
399 return DRIVER_ERROR << 24;
401 req = blk_get_request(sdev->request_queue, write, gfp);
404 req->cmd_type = REQ_TYPE_BLOCK_PC;
405 req->cmd_flags |= REQ_QUIET;
408 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
410 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
415 req->cmd_len = cmd_len;
416 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
417 memcpy(req->cmd, cmd, req->cmd_len);
418 req->sense = sioc->sense;
420 req->timeout = timeout;
421 req->retries = retries;
422 req->end_io_data = sioc;
424 sioc->data = privdata;
427 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
431 blk_put_request(req);
433 kmem_cache_free(scsi_io_context_cache, sioc);
434 return DRIVER_ERROR << 24;
436 EXPORT_SYMBOL_GPL(scsi_execute_async);
439 * Function: scsi_init_cmd_errh()
441 * Purpose: Initialize cmd fields related to error handling.
443 * Arguments: cmd - command that is ready to be queued.
445 * Notes: This function has the job of initializing a number of
446 * fields related to error handling. Typically this will
447 * be called once for each command, as required.
449 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
451 cmd->serial_number = 0;
453 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
454 if (cmd->cmd_len == 0)
455 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
458 void scsi_device_unbusy(struct scsi_device *sdev)
460 struct Scsi_Host *shost = sdev->host;
463 spin_lock_irqsave(shost->host_lock, flags);
465 if (unlikely(scsi_host_in_recovery(shost) &&
466 (shost->host_failed || shost->host_eh_scheduled)))
467 scsi_eh_wakeup(shost);
468 spin_unlock(shost->host_lock);
469 spin_lock(sdev->request_queue->queue_lock);
471 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
475 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
476 * and call blk_run_queue for all the scsi_devices on the target -
477 * including current_sdev first.
479 * Called with *no* scsi locks held.
481 static void scsi_single_lun_run(struct scsi_device *current_sdev)
483 struct Scsi_Host *shost = current_sdev->host;
484 struct scsi_device *sdev, *tmp;
485 struct scsi_target *starget = scsi_target(current_sdev);
488 spin_lock_irqsave(shost->host_lock, flags);
489 starget->starget_sdev_user = NULL;
490 spin_unlock_irqrestore(shost->host_lock, flags);
493 * Call blk_run_queue for all LUNs on the target, starting with
494 * current_sdev. We race with others (to set starget_sdev_user),
495 * but in most cases, we will be first. Ideally, each LU on the
496 * target would get some limited time or requests on the target.
498 blk_run_queue(current_sdev->request_queue);
500 spin_lock_irqsave(shost->host_lock, flags);
501 if (starget->starget_sdev_user)
503 list_for_each_entry_safe(sdev, tmp, &starget->devices,
504 same_target_siblings) {
505 if (sdev == current_sdev)
507 if (scsi_device_get(sdev))
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 blk_run_queue(sdev->request_queue);
512 spin_lock_irqsave(shost->host_lock, flags);
514 scsi_device_put(sdev);
517 spin_unlock_irqrestore(shost->host_lock, flags);
521 * Function: scsi_run_queue()
523 * Purpose: Select a proper request queue to serve next
525 * Arguments: q - last request's queue
529 * Notes: The previous command was completely finished, start
530 * a new one if possible.
532 static void scsi_run_queue(struct request_queue *q)
534 struct scsi_device *sdev = q->queuedata;
535 struct Scsi_Host *shost = sdev->host;
538 if (sdev->single_lun)
539 scsi_single_lun_run(sdev);
541 spin_lock_irqsave(shost->host_lock, flags);
542 while (!list_empty(&shost->starved_list) &&
543 !shost->host_blocked && !shost->host_self_blocked &&
544 !((shost->can_queue > 0) &&
545 (shost->host_busy >= shost->can_queue))) {
547 * As long as shost is accepting commands and we have
548 * starved queues, call blk_run_queue. scsi_request_fn
549 * drops the queue_lock and can add us back to the
552 * host_lock protects the starved_list and starved_entry.
553 * scsi_request_fn must get the host_lock before checking
554 * or modifying starved_list or starved_entry.
556 sdev = list_entry(shost->starved_list.next,
557 struct scsi_device, starved_entry);
558 list_del_init(&sdev->starved_entry);
559 spin_unlock_irqrestore(shost->host_lock, flags);
562 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
563 !test_and_set_bit(QUEUE_FLAG_REENTER,
564 &sdev->request_queue->queue_flags)) {
565 blk_run_queue(sdev->request_queue);
566 clear_bit(QUEUE_FLAG_REENTER,
567 &sdev->request_queue->queue_flags);
569 blk_run_queue(sdev->request_queue);
571 spin_lock_irqsave(shost->host_lock, flags);
572 if (unlikely(!list_empty(&sdev->starved_entry)))
574 * sdev lost a race, and was put back on the
575 * starved list. This is unlikely but without this
576 * in theory we could loop forever.
580 spin_unlock_irqrestore(shost->host_lock, flags);
586 * Function: scsi_requeue_command()
588 * Purpose: Handle post-processing of completed commands.
590 * Arguments: q - queue to operate on
591 * cmd - command that may need to be requeued.
595 * Notes: After command completion, there may be blocks left
596 * over which weren't finished by the previous command
597 * this can be for a number of reasons - the main one is
598 * I/O errors in the middle of the request, in which case
599 * we need to request the blocks that come after the bad
601 * Notes: Upon return, cmd is a stale pointer.
603 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
605 struct request *req = cmd->request;
608 scsi_unprep_request(req);
609 spin_lock_irqsave(q->queue_lock, flags);
610 blk_requeue_request(q, req);
611 spin_unlock_irqrestore(q->queue_lock, flags);
616 void scsi_next_command(struct scsi_cmnd *cmd)
618 struct scsi_device *sdev = cmd->device;
619 struct request_queue *q = sdev->request_queue;
621 /* need to hold a reference on the device before we let go of the cmd */
622 get_device(&sdev->sdev_gendev);
624 scsi_put_command(cmd);
627 /* ok to remove device now */
628 put_device(&sdev->sdev_gendev);
631 void scsi_run_host_queues(struct Scsi_Host *shost)
633 struct scsi_device *sdev;
635 shost_for_each_device(sdev, shost)
636 scsi_run_queue(sdev->request_queue);
640 * Function: scsi_end_request()
642 * Purpose: Post-processing of completed commands (usually invoked at end
643 * of upper level post-processing and scsi_io_completion).
645 * Arguments: cmd - command that is complete.
646 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
647 * bytes - number of bytes of completed I/O
648 * requeue - indicates whether we should requeue leftovers.
650 * Lock status: Assumed that lock is not held upon entry.
652 * Returns: cmd if requeue required, NULL otherwise.
654 * Notes: This is called for block device requests in order to
655 * mark some number of sectors as complete.
657 * We are guaranteeing that the request queue will be goosed
658 * at some point during this call.
659 * Notes: If cmd was requeued, upon return it will be a stale pointer.
661 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
662 int bytes, int requeue)
664 struct request_queue *q = cmd->device->request_queue;
665 struct request *req = cmd->request;
669 * If there are blocks left over at the end, set up the command
670 * to queue the remainder of them.
672 if (end_that_request_chunk(req, uptodate, bytes)) {
673 int leftover = (req->hard_nr_sectors << 9);
675 if (blk_pc_request(req))
676 leftover = req->data_len;
678 /* kill remainder if no retrys */
679 if (!uptodate && blk_noretry_request(req))
680 end_that_request_chunk(req, 0, leftover);
684 * Bleah. Leftovers again. Stick the
685 * leftovers in the front of the
686 * queue, and goose the queue again.
688 scsi_requeue_command(q, cmd);
695 add_disk_randomness(req->rq_disk);
697 spin_lock_irqsave(q->queue_lock, flags);
698 if (blk_rq_tagged(req))
699 blk_queue_end_tag(q, req);
700 end_that_request_last(req, uptodate);
701 spin_unlock_irqrestore(q->queue_lock, flags);
704 * This will goose the queue request function at the end, so we don't
705 * need to worry about launching another command.
707 scsi_next_command(cmd);
711 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
713 struct scsi_host_sg_pool *sgp;
714 struct scatterlist *sgl;
716 BUG_ON(!cmd->use_sg);
718 switch (cmd->use_sg) {
728 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
732 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
736 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
747 sgp = scsi_sg_pools + cmd->sglist_len;
748 sgl = mempool_alloc(sgp->pool, gfp_mask);
752 EXPORT_SYMBOL(scsi_alloc_sgtable);
754 void scsi_free_sgtable(struct scatterlist *sgl, int index)
756 struct scsi_host_sg_pool *sgp;
758 BUG_ON(index >= SG_MEMPOOL_NR);
760 sgp = scsi_sg_pools + index;
761 mempool_free(sgl, sgp->pool);
764 EXPORT_SYMBOL(scsi_free_sgtable);
767 * Function: scsi_release_buffers()
769 * Purpose: Completion processing for block device I/O requests.
771 * Arguments: cmd - command that we are bailing.
773 * Lock status: Assumed that no lock is held upon entry.
777 * Notes: In the event that an upper level driver rejects a
778 * command, we must release resources allocated during
779 * the __init_io() function. Primarily this would involve
780 * the scatter-gather table, and potentially any bounce
783 static void scsi_release_buffers(struct scsi_cmnd *cmd)
786 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
789 * Zero these out. They now point to freed memory, and it is
790 * dangerous to hang onto the pointers.
792 cmd->request_buffer = NULL;
793 cmd->request_bufflen = 0;
797 * Function: scsi_io_completion()
799 * Purpose: Completion processing for block device I/O requests.
801 * Arguments: cmd - command that is finished.
803 * Lock status: Assumed that no lock is held upon entry.
807 * Notes: This function is matched in terms of capabilities to
808 * the function that created the scatter-gather list.
809 * In other words, if there are no bounce buffers
810 * (the normal case for most drivers), we don't need
811 * the logic to deal with cleaning up afterwards.
813 * We must do one of several things here:
815 * a) Call scsi_end_request. This will finish off the
816 * specified number of sectors. If we are done, the
817 * command block will be released, and the queue
818 * function will be goosed. If we are not done, then
819 * scsi_end_request will directly goose the queue.
821 * b) We can just use scsi_requeue_command() here. This would
822 * be used if we just wanted to retry, for example.
824 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
826 int result = cmd->result;
827 int this_count = cmd->request_bufflen;
828 struct request_queue *q = cmd->device->request_queue;
829 struct request *req = cmd->request;
830 int clear_errors = 1;
831 struct scsi_sense_hdr sshdr;
833 int sense_deferred = 0;
835 scsi_release_buffers(cmd);
838 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
840 sense_deferred = scsi_sense_is_deferred(&sshdr);
843 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
844 req->errors = result;
847 if (sense_valid && req->sense) {
849 * SG_IO wants current and deferred errors
851 int len = 8 + cmd->sense_buffer[7];
853 if (len > SCSI_SENSE_BUFFERSIZE)
854 len = SCSI_SENSE_BUFFERSIZE;
855 memcpy(req->sense, cmd->sense_buffer, len);
856 req->sense_len = len;
859 req->data_len = cmd->resid;
863 * Next deal with any sectors which we were able to correctly
866 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
868 req->nr_sectors, good_bytes));
869 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
874 /* A number of bytes were successfully read. If there
875 * are leftovers and there is some kind of error
876 * (result != 0), retry the rest.
878 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
881 /* good_bytes = 0, or (inclusive) there were leftovers and
882 * result = 0, so scsi_end_request couldn't retry.
884 if (sense_valid && !sense_deferred) {
885 switch (sshdr.sense_key) {
887 if (cmd->device->removable) {
888 /* Detected disc change. Set a bit
889 * and quietly refuse further access.
891 cmd->device->changed = 1;
892 scsi_end_request(cmd, 0, this_count, 1);
895 /* Must have been a power glitch, or a
896 * bus reset. Could not have been a
897 * media change, so we just retry the
898 * request and see what happens.
900 scsi_requeue_command(q, cmd);
904 case ILLEGAL_REQUEST:
905 /* If we had an ILLEGAL REQUEST returned, then
906 * we may have performed an unsupported
907 * command. The only thing this should be
908 * would be a ten byte read where only a six
909 * byte read was supported. Also, on a system
910 * where READ CAPACITY failed, we may have
911 * read past the end of the disk.
913 if ((cmd->device->use_10_for_rw &&
914 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
915 (cmd->cmnd[0] == READ_10 ||
916 cmd->cmnd[0] == WRITE_10)) {
917 cmd->device->use_10_for_rw = 0;
918 /* This will cause a retry with a
921 scsi_requeue_command(q, cmd);
924 scsi_end_request(cmd, 0, this_count, 1);
929 /* If the device is in the process of becoming
930 * ready, or has a temporary blockage, retry.
932 if (sshdr.asc == 0x04) {
933 switch (sshdr.ascq) {
934 case 0x01: /* becoming ready */
935 case 0x04: /* format in progress */
936 case 0x05: /* rebuild in progress */
937 case 0x06: /* recalculation in progress */
938 case 0x07: /* operation in progress */
939 case 0x08: /* Long write in progress */
940 case 0x09: /* self test in progress */
941 scsi_requeue_command(q, cmd);
947 if (!(req->cmd_flags & REQ_QUIET)) {
948 scmd_printk(KERN_INFO, cmd,
949 "Device not ready: ");
950 scsi_print_sense_hdr("", &sshdr);
952 scsi_end_request(cmd, 0, this_count, 1);
954 case VOLUME_OVERFLOW:
955 if (!(req->cmd_flags & REQ_QUIET)) {
956 scmd_printk(KERN_INFO, cmd,
957 "Volume overflow, CDB: ");
958 __scsi_print_command(cmd->cmnd);
959 scsi_print_sense("", cmd);
961 /* See SSC3rXX or current. */
962 scsi_end_request(cmd, 0, this_count, 1);
968 if (host_byte(result) == DID_RESET) {
969 /* Third party bus reset or reset for error recovery
970 * reasons. Just retry the request and see what
973 scsi_requeue_command(q, cmd);
977 if (!(req->cmd_flags & REQ_QUIET)) {
978 scsi_print_result(cmd);
979 if (driver_byte(result) & DRIVER_SENSE)
980 scsi_print_sense("", cmd);
983 scsi_end_request(cmd, 0, this_count, !result);
985 EXPORT_SYMBOL(scsi_io_completion);
988 * Function: scsi_init_io()
990 * Purpose: SCSI I/O initialize function.
992 * Arguments: cmd - Command descriptor we wish to initialize
994 * Returns: 0 on success
995 * BLKPREP_DEFER if the failure is retryable
996 * BLKPREP_KILL if the failure is fatal
998 static int scsi_init_io(struct scsi_cmnd *cmd)
1000 struct request *req = cmd->request;
1001 struct scatterlist *sgpnt;
1005 * We used to not use scatter-gather for single segment request,
1006 * but now we do (it makes highmem I/O easier to support without
1009 cmd->use_sg = req->nr_phys_segments;
1012 * If sg table allocation fails, requeue request later.
1014 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1015 if (unlikely(!sgpnt)) {
1016 scsi_unprep_request(req);
1017 return BLKPREP_DEFER;
1021 cmd->request_buffer = (char *) sgpnt;
1022 if (blk_pc_request(req))
1023 cmd->request_bufflen = req->data_len;
1025 cmd->request_bufflen = req->nr_sectors << 9;
1028 * Next, walk the list, and fill in the addresses and sizes of
1031 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1032 if (likely(count <= cmd->use_sg)) {
1033 cmd->use_sg = count;
1037 printk(KERN_ERR "Incorrect number of segments after building list\n");
1038 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1039 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1040 req->current_nr_sectors);
1042 return BLKPREP_KILL;
1045 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1046 struct request *req)
1048 struct scsi_cmnd *cmd;
1050 if (!req->special) {
1051 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1059 /* pull a tag out of the request if we have one */
1060 cmd->tag = req->tag;
1066 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1068 BUG_ON(!blk_pc_request(cmd->request));
1070 * This will complete the whole command with uptodate=1 so
1071 * as far as the block layer is concerned the command completed
1072 * successfully. Since this is a REQ_BLOCK_PC command the
1073 * caller should check the request's errors value
1075 scsi_io_completion(cmd, cmd->request_bufflen);
1078 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1080 struct scsi_cmnd *cmd;
1081 int ret = scsi_prep_state_check(sdev, req);
1083 if (ret != BLKPREP_OK)
1086 cmd = scsi_get_cmd_from_req(sdev, req);
1088 return BLKPREP_DEFER;
1091 * BLOCK_PC requests may transfer data, in which case they must
1092 * a bio attached to them. Or they might contain a SCSI command
1093 * that does not transfer data, in which case they may optionally
1094 * submit a request without an attached bio.
1099 BUG_ON(!req->nr_phys_segments);
1101 ret = scsi_init_io(cmd);
1105 BUG_ON(req->data_len);
1108 cmd->request_bufflen = 0;
1109 cmd->request_buffer = NULL;
1114 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1115 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1116 cmd->cmd_len = req->cmd_len;
1118 cmd->sc_data_direction = DMA_NONE;
1119 else if (rq_data_dir(req) == WRITE)
1120 cmd->sc_data_direction = DMA_TO_DEVICE;
1122 cmd->sc_data_direction = DMA_FROM_DEVICE;
1124 cmd->transfersize = req->data_len;
1125 cmd->allowed = req->retries;
1126 cmd->timeout_per_command = req->timeout;
1127 cmd->done = scsi_blk_pc_done;
1130 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1133 * Setup a REQ_TYPE_FS command. These are simple read/write request
1134 * from filesystems that still need to be translated to SCSI CDBs from
1137 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1139 struct scsi_cmnd *cmd;
1140 int ret = scsi_prep_state_check(sdev, req);
1142 if (ret != BLKPREP_OK)
1145 * Filesystem requests must transfer data.
1147 BUG_ON(!req->nr_phys_segments);
1149 cmd = scsi_get_cmd_from_req(sdev, req);
1151 return BLKPREP_DEFER;
1153 return scsi_init_io(cmd);
1155 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1157 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1159 int ret = BLKPREP_OK;
1162 * If the device is not in running state we will reject some
1165 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1166 switch (sdev->sdev_state) {
1169 * If the device is offline we refuse to process any
1170 * commands. The device must be brought online
1171 * before trying any recovery commands.
1173 sdev_printk(KERN_ERR, sdev,
1174 "rejecting I/O to offline device\n");
1179 * If the device is fully deleted, we refuse to
1180 * process any commands as well.
1182 sdev_printk(KERN_ERR, sdev,
1183 "rejecting I/O to dead device\n");
1189 * If the devices is blocked we defer normal commands.
1191 if (!(req->cmd_flags & REQ_PREEMPT))
1192 ret = BLKPREP_DEFER;
1196 * For any other not fully online state we only allow
1197 * special commands. In particular any user initiated
1198 * command is not allowed.
1200 if (!(req->cmd_flags & REQ_PREEMPT))
1207 EXPORT_SYMBOL(scsi_prep_state_check);
1209 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1211 struct scsi_device *sdev = q->queuedata;
1215 req->errors = DID_NO_CONNECT << 16;
1216 /* release the command and kill it */
1218 struct scsi_cmnd *cmd = req->special;
1219 scsi_release_buffers(cmd);
1220 scsi_put_command(cmd);
1221 req->special = NULL;
1226 * If we defer, the elv_next_request() returns NULL, but the
1227 * queue must be restarted, so we plug here if no returning
1228 * command will automatically do that.
1230 if (sdev->device_busy == 0)
1234 req->cmd_flags |= REQ_DONTPREP;
1239 EXPORT_SYMBOL(scsi_prep_return);
1241 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1243 struct scsi_device *sdev = q->queuedata;
1244 int ret = BLKPREP_KILL;
1246 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1247 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1248 return scsi_prep_return(q, req, ret);
1252 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1255 * Called with the queue_lock held.
1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 struct scsi_device *sdev)
1260 if (sdev->device_busy >= sdev->queue_depth)
1262 if (sdev->device_busy == 0 && sdev->device_blocked) {
1264 * unblock after device_blocked iterates to zero
1266 if (--sdev->device_blocked == 0) {
1268 sdev_printk(KERN_INFO, sdev,
1269 "unblocking device at zero depth\n"));
1275 if (sdev->device_blocked)
1282 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1283 * return 0. We must end up running the queue again whenever 0 is
1284 * returned, else IO can hang.
1286 * Called with host_lock held.
1288 static inline int scsi_host_queue_ready(struct request_queue *q,
1289 struct Scsi_Host *shost,
1290 struct scsi_device *sdev)
1292 if (scsi_host_in_recovery(shost))
1294 if (shost->host_busy == 0 && shost->host_blocked) {
1296 * unblock after host_blocked iterates to zero
1298 if (--shost->host_blocked == 0) {
1300 printk("scsi%d unblocking host at zero depth\n",
1307 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1308 shost->host_blocked || shost->host_self_blocked) {
1309 if (list_empty(&sdev->starved_entry))
1310 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1314 /* We're OK to process the command, so we can't be starved */
1315 if (!list_empty(&sdev->starved_entry))
1316 list_del_init(&sdev->starved_entry);
1322 * Kill a request for a dead device
1324 static void scsi_kill_request(struct request *req, struct request_queue *q)
1326 struct scsi_cmnd *cmd = req->special;
1327 struct scsi_device *sdev = cmd->device;
1328 struct Scsi_Host *shost = sdev->host;
1330 blkdev_dequeue_request(req);
1332 if (unlikely(cmd == NULL)) {
1333 printk(KERN_CRIT "impossible request in %s.\n",
1338 scsi_init_cmd_errh(cmd);
1339 cmd->result = DID_NO_CONNECT << 16;
1340 atomic_inc(&cmd->device->iorequest_cnt);
1343 * SCSI request completion path will do scsi_device_unbusy(),
1344 * bump busy counts. To bump the counters, we need to dance
1345 * with the locks as normal issue path does.
1347 sdev->device_busy++;
1348 spin_unlock(sdev->request_queue->queue_lock);
1349 spin_lock(shost->host_lock);
1351 spin_unlock(shost->host_lock);
1352 spin_lock(sdev->request_queue->queue_lock);
1357 static void scsi_softirq_done(struct request *rq)
1359 struct scsi_cmnd *cmd = rq->completion_data;
1360 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1363 INIT_LIST_HEAD(&cmd->eh_entry);
1365 disposition = scsi_decide_disposition(cmd);
1366 if (disposition != SUCCESS &&
1367 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1368 sdev_printk(KERN_ERR, cmd->device,
1369 "timing out command, waited %lus\n",
1371 disposition = SUCCESS;
1374 scsi_log_completion(cmd, disposition);
1376 switch (disposition) {
1378 scsi_finish_command(cmd);
1381 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1383 case ADD_TO_MLQUEUE:
1384 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1387 if (!scsi_eh_scmd_add(cmd, 0))
1388 scsi_finish_command(cmd);
1393 * Function: scsi_request_fn()
1395 * Purpose: Main strategy routine for SCSI.
1397 * Arguments: q - Pointer to actual queue.
1401 * Lock status: IO request lock assumed to be held when called.
1403 static void scsi_request_fn(struct request_queue *q)
1405 struct scsi_device *sdev = q->queuedata;
1406 struct Scsi_Host *shost;
1407 struct scsi_cmnd *cmd;
1408 struct request *req;
1411 printk("scsi: killing requests for dead queue\n");
1412 while ((req = elv_next_request(q)) != NULL)
1413 scsi_kill_request(req, q);
1417 if(!get_device(&sdev->sdev_gendev))
1418 /* We must be tearing the block queue down already */
1422 * To start with, we keep looping until the queue is empty, or until
1423 * the host is no longer able to accept any more requests.
1426 while (!blk_queue_plugged(q)) {
1429 * get next queueable request. We do this early to make sure
1430 * that the request is fully prepared even if we cannot
1433 req = elv_next_request(q);
1434 if (!req || !scsi_dev_queue_ready(q, sdev))
1437 if (unlikely(!scsi_device_online(sdev))) {
1438 sdev_printk(KERN_ERR, sdev,
1439 "rejecting I/O to offline device\n");
1440 scsi_kill_request(req, q);
1446 * Remove the request from the request list.
1448 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1449 blkdev_dequeue_request(req);
1450 sdev->device_busy++;
1452 spin_unlock(q->queue_lock);
1454 if (unlikely(cmd == NULL)) {
1455 printk(KERN_CRIT "impossible request in %s.\n"
1456 "please mail a stack trace to "
1457 "linux-scsi@vger.kernel.org\n",
1459 blk_dump_rq_flags(req, "foo");
1462 spin_lock(shost->host_lock);
1464 if (!scsi_host_queue_ready(q, shost, sdev))
1466 if (sdev->single_lun) {
1467 if (scsi_target(sdev)->starget_sdev_user &&
1468 scsi_target(sdev)->starget_sdev_user != sdev)
1470 scsi_target(sdev)->starget_sdev_user = sdev;
1475 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1476 * take the lock again.
1478 spin_unlock_irq(shost->host_lock);
1481 * Finally, initialize any error handling parameters, and set up
1482 * the timers for timeouts.
1484 scsi_init_cmd_errh(cmd);
1487 * Dispatch the command to the low-level driver.
1489 rtn = scsi_dispatch_cmd(cmd);
1490 spin_lock_irq(q->queue_lock);
1492 /* we're refusing the command; because of
1493 * the way locks get dropped, we need to
1494 * check here if plugging is required */
1495 if(sdev->device_busy == 0)
1505 spin_unlock_irq(shost->host_lock);
1508 * lock q, handle tag, requeue req, and decrement device_busy. We
1509 * must return with queue_lock held.
1511 * Decrementing device_busy without checking it is OK, as all such
1512 * cases (host limits or settings) should run the queue at some
1515 spin_lock_irq(q->queue_lock);
1516 blk_requeue_request(q, req);
1517 sdev->device_busy--;
1518 if(sdev->device_busy == 0)
1521 /* must be careful here...if we trigger the ->remove() function
1522 * we cannot be holding the q lock */
1523 spin_unlock_irq(q->queue_lock);
1524 put_device(&sdev->sdev_gendev);
1525 spin_lock_irq(q->queue_lock);
1528 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1530 struct device *host_dev;
1531 u64 bounce_limit = 0xffffffff;
1533 if (shost->unchecked_isa_dma)
1534 return BLK_BOUNCE_ISA;
1536 * Platforms with virtual-DMA translation
1537 * hardware have no practical limit.
1539 if (!PCI_DMA_BUS_IS_PHYS)
1540 return BLK_BOUNCE_ANY;
1542 host_dev = scsi_get_device(shost);
1543 if (host_dev && host_dev->dma_mask)
1544 bounce_limit = *host_dev->dma_mask;
1546 return bounce_limit;
1548 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1550 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1551 request_fn_proc *request_fn)
1553 struct request_queue *q;
1555 q = blk_init_queue(request_fn, NULL);
1559 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1560 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1561 blk_queue_max_sectors(q, shost->max_sectors);
1562 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1563 blk_queue_segment_boundary(q, shost->dma_boundary);
1565 if (!shost->use_clustering)
1566 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1569 EXPORT_SYMBOL(__scsi_alloc_queue);
1571 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1573 struct request_queue *q;
1575 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1579 blk_queue_prep_rq(q, scsi_prep_fn);
1580 blk_queue_softirq_done(q, scsi_softirq_done);
1584 void scsi_free_queue(struct request_queue *q)
1586 blk_cleanup_queue(q);
1590 * Function: scsi_block_requests()
1592 * Purpose: Utility function used by low-level drivers to prevent further
1593 * commands from being queued to the device.
1595 * Arguments: shost - Host in question
1599 * Lock status: No locks are assumed held.
1601 * Notes: There is no timer nor any other means by which the requests
1602 * get unblocked other than the low-level driver calling
1603 * scsi_unblock_requests().
1605 void scsi_block_requests(struct Scsi_Host *shost)
1607 shost->host_self_blocked = 1;
1609 EXPORT_SYMBOL(scsi_block_requests);
1612 * Function: scsi_unblock_requests()
1614 * Purpose: Utility function used by low-level drivers to allow further
1615 * commands from being queued to the device.
1617 * Arguments: shost - Host in question
1621 * Lock status: No locks are assumed held.
1623 * Notes: There is no timer nor any other means by which the requests
1624 * get unblocked other than the low-level driver calling
1625 * scsi_unblock_requests().
1627 * This is done as an API function so that changes to the
1628 * internals of the scsi mid-layer won't require wholesale
1629 * changes to drivers that use this feature.
1631 void scsi_unblock_requests(struct Scsi_Host *shost)
1633 shost->host_self_blocked = 0;
1634 scsi_run_host_queues(shost);
1636 EXPORT_SYMBOL(scsi_unblock_requests);
1638 int __init scsi_init_queue(void)
1642 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1643 sizeof(struct scsi_io_context),
1645 if (!scsi_io_context_cache) {
1646 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1650 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1651 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1652 int size = sgp->size * sizeof(struct scatterlist);
1654 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1655 SLAB_HWCACHE_ALIGN, NULL);
1657 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1661 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1664 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1672 void scsi_exit_queue(void)
1676 kmem_cache_destroy(scsi_io_context_cache);
1678 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1679 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1680 mempool_destroy(sgp->pool);
1681 kmem_cache_destroy(sgp->slab);
1686 * scsi_mode_select - issue a mode select
1687 * @sdev: SCSI device to be queried
1688 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1689 * @sp: Save page bit (0 == don't save, 1 == save)
1690 * @modepage: mode page being requested
1691 * @buffer: request buffer (may not be smaller than eight bytes)
1692 * @len: length of request buffer.
1693 * @timeout: command timeout
1694 * @retries: number of retries before failing
1695 * @data: returns a structure abstracting the mode header data
1696 * @sense: place to put sense data (or NULL if no sense to be collected).
1697 * must be SCSI_SENSE_BUFFERSIZE big.
1699 * Returns zero if successful; negative error number or scsi
1704 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1705 unsigned char *buffer, int len, int timeout, int retries,
1706 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1708 unsigned char cmd[10];
1709 unsigned char *real_buffer;
1712 memset(cmd, 0, sizeof(cmd));
1713 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1715 if (sdev->use_10_for_ms) {
1718 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1721 memcpy(real_buffer + 8, buffer, len);
1725 real_buffer[2] = data->medium_type;
1726 real_buffer[3] = data->device_specific;
1727 real_buffer[4] = data->longlba ? 0x01 : 0;
1729 real_buffer[6] = data->block_descriptor_length >> 8;
1730 real_buffer[7] = data->block_descriptor_length;
1732 cmd[0] = MODE_SELECT_10;
1736 if (len > 255 || data->block_descriptor_length > 255 ||
1740 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1743 memcpy(real_buffer + 4, buffer, len);
1746 real_buffer[1] = data->medium_type;
1747 real_buffer[2] = data->device_specific;
1748 real_buffer[3] = data->block_descriptor_length;
1751 cmd[0] = MODE_SELECT;
1755 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1756 sshdr, timeout, retries);
1760 EXPORT_SYMBOL_GPL(scsi_mode_select);
1763 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1764 * six bytes if necessary.
1765 * @sdev: SCSI device to be queried
1766 * @dbd: set if mode sense will allow block descriptors to be returned
1767 * @modepage: mode page being requested
1768 * @buffer: request buffer (may not be smaller than eight bytes)
1769 * @len: length of request buffer.
1770 * @timeout: command timeout
1771 * @retries: number of retries before failing
1772 * @data: returns a structure abstracting the mode header data
1773 * @sense: place to put sense data (or NULL if no sense to be collected).
1774 * must be SCSI_SENSE_BUFFERSIZE big.
1776 * Returns zero if unsuccessful, or the header offset (either 4
1777 * or 8 depending on whether a six or ten byte command was
1778 * issued) if successful.
1781 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1782 unsigned char *buffer, int len, int timeout, int retries,
1783 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1785 unsigned char cmd[12];
1789 struct scsi_sense_hdr my_sshdr;
1791 memset(data, 0, sizeof(*data));
1792 memset(&cmd[0], 0, 12);
1793 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1796 /* caller might not be interested in sense, but we need it */
1801 use_10_for_ms = sdev->use_10_for_ms;
1803 if (use_10_for_ms) {
1807 cmd[0] = MODE_SENSE_10;
1814 cmd[0] = MODE_SENSE;
1819 memset(buffer, 0, len);
1821 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1822 sshdr, timeout, retries);
1824 /* This code looks awful: what it's doing is making sure an
1825 * ILLEGAL REQUEST sense return identifies the actual command
1826 * byte as the problem. MODE_SENSE commands can return
1827 * ILLEGAL REQUEST if the code page isn't supported */
1829 if (use_10_for_ms && !scsi_status_is_good(result) &&
1830 (driver_byte(result) & DRIVER_SENSE)) {
1831 if (scsi_sense_valid(sshdr)) {
1832 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1833 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1835 * Invalid command operation code
1837 sdev->use_10_for_ms = 0;
1843 if(scsi_status_is_good(result)) {
1844 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1845 (modepage == 6 || modepage == 8))) {
1846 /* Initio breakage? */
1849 data->medium_type = 0;
1850 data->device_specific = 0;
1852 data->block_descriptor_length = 0;
1853 } else if(use_10_for_ms) {
1854 data->length = buffer[0]*256 + buffer[1] + 2;
1855 data->medium_type = buffer[2];
1856 data->device_specific = buffer[3];
1857 data->longlba = buffer[4] & 0x01;
1858 data->block_descriptor_length = buffer[6]*256
1861 data->length = buffer[0] + 1;
1862 data->medium_type = buffer[1];
1863 data->device_specific = buffer[2];
1864 data->block_descriptor_length = buffer[3];
1866 data->header_length = header_length;
1871 EXPORT_SYMBOL(scsi_mode_sense);
1874 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1877 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1879 struct scsi_sense_hdr sshdr;
1882 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1885 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1887 if ((scsi_sense_valid(&sshdr)) &&
1888 ((sshdr.sense_key == UNIT_ATTENTION) ||
1889 (sshdr.sense_key == NOT_READY))) {
1896 EXPORT_SYMBOL(scsi_test_unit_ready);
1899 * scsi_device_set_state - Take the given device through the device
1901 * @sdev: scsi device to change the state of.
1902 * @state: state to change to.
1904 * Returns zero if unsuccessful or an error if the requested
1905 * transition is illegal.
1908 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1910 enum scsi_device_state oldstate = sdev->sdev_state;
1912 if (state == oldstate)
1917 /* There are no legal states that come back to
1918 * created. This is the manually initialised start
1992 sdev->sdev_state = state;
1996 SCSI_LOG_ERROR_RECOVERY(1,
1997 sdev_printk(KERN_ERR, sdev,
1998 "Illegal state transition %s->%s\n",
1999 scsi_device_state_name(oldstate),
2000 scsi_device_state_name(state))
2004 EXPORT_SYMBOL(scsi_device_set_state);
2007 * scsi_device_quiesce - Block user issued commands.
2008 * @sdev: scsi device to quiesce.
2010 * This works by trying to transition to the SDEV_QUIESCE state
2011 * (which must be a legal transition). When the device is in this
2012 * state, only special requests will be accepted, all others will
2013 * be deferred. Since special requests may also be requeued requests,
2014 * a successful return doesn't guarantee the device will be
2015 * totally quiescent.
2017 * Must be called with user context, may sleep.
2019 * Returns zero if unsuccessful or an error if not.
2022 scsi_device_quiesce(struct scsi_device *sdev)
2024 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2028 scsi_run_queue(sdev->request_queue);
2029 while (sdev->device_busy) {
2030 msleep_interruptible(200);
2031 scsi_run_queue(sdev->request_queue);
2035 EXPORT_SYMBOL(scsi_device_quiesce);
2038 * scsi_device_resume - Restart user issued commands to a quiesced device.
2039 * @sdev: scsi device to resume.
2041 * Moves the device from quiesced back to running and restarts the
2044 * Must be called with user context, may sleep.
2047 scsi_device_resume(struct scsi_device *sdev)
2049 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2051 scsi_run_queue(sdev->request_queue);
2053 EXPORT_SYMBOL(scsi_device_resume);
2056 device_quiesce_fn(struct scsi_device *sdev, void *data)
2058 scsi_device_quiesce(sdev);
2062 scsi_target_quiesce(struct scsi_target *starget)
2064 starget_for_each_device(starget, NULL, device_quiesce_fn);
2066 EXPORT_SYMBOL(scsi_target_quiesce);
2069 device_resume_fn(struct scsi_device *sdev, void *data)
2071 scsi_device_resume(sdev);
2075 scsi_target_resume(struct scsi_target *starget)
2077 starget_for_each_device(starget, NULL, device_resume_fn);
2079 EXPORT_SYMBOL(scsi_target_resume);
2082 * scsi_internal_device_block - internal function to put a device
2083 * temporarily into the SDEV_BLOCK state
2084 * @sdev: device to block
2086 * Block request made by scsi lld's to temporarily stop all
2087 * scsi commands on the specified device. Called from interrupt
2088 * or normal process context.
2090 * Returns zero if successful or error if not
2093 * This routine transitions the device to the SDEV_BLOCK state
2094 * (which must be a legal transition). When the device is in this
2095 * state, all commands are deferred until the scsi lld reenables
2096 * the device with scsi_device_unblock or device_block_tmo fires.
2097 * This routine assumes the host_lock is held on entry.
2100 scsi_internal_device_block(struct scsi_device *sdev)
2102 struct request_queue *q = sdev->request_queue;
2103 unsigned long flags;
2106 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2111 * The device has transitioned to SDEV_BLOCK. Stop the
2112 * block layer from calling the midlayer with this device's
2115 spin_lock_irqsave(q->queue_lock, flags);
2117 spin_unlock_irqrestore(q->queue_lock, flags);
2121 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2124 * scsi_internal_device_unblock - resume a device after a block request
2125 * @sdev: device to resume
2127 * Called by scsi lld's or the midlayer to restart the device queue
2128 * for the previously suspended scsi device. Called from interrupt or
2129 * normal process context.
2131 * Returns zero if successful or error if not.
2134 * This routine transitions the device to the SDEV_RUNNING state
2135 * (which must be a legal transition) allowing the midlayer to
2136 * goose the queue for this device. This routine assumes the
2137 * host_lock is held upon entry.
2140 scsi_internal_device_unblock(struct scsi_device *sdev)
2142 struct request_queue *q = sdev->request_queue;
2144 unsigned long flags;
2147 * Try to transition the scsi device to SDEV_RUNNING
2148 * and goose the device queue if successful.
2150 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2154 spin_lock_irqsave(q->queue_lock, flags);
2156 spin_unlock_irqrestore(q->queue_lock, flags);
2160 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2163 device_block(struct scsi_device *sdev, void *data)
2165 scsi_internal_device_block(sdev);
2169 target_block(struct device *dev, void *data)
2171 if (scsi_is_target_device(dev))
2172 starget_for_each_device(to_scsi_target(dev), NULL,
2178 scsi_target_block(struct device *dev)
2180 if (scsi_is_target_device(dev))
2181 starget_for_each_device(to_scsi_target(dev), NULL,
2184 device_for_each_child(dev, NULL, target_block);
2186 EXPORT_SYMBOL_GPL(scsi_target_block);
2189 device_unblock(struct scsi_device *sdev, void *data)
2191 scsi_internal_device_unblock(sdev);
2195 target_unblock(struct device *dev, void *data)
2197 if (scsi_is_target_device(dev))
2198 starget_for_each_device(to_scsi_target(dev), NULL,
2204 scsi_target_unblock(struct device *dev)
2206 if (scsi_is_target_device(dev))
2207 starget_for_each_device(to_scsi_target(dev), NULL,
2210 device_for_each_child(dev, NULL, target_unblock);
2212 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2215 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2216 * @sg: scatter-gather list
2217 * @sg_count: number of segments in sg
2218 * @offset: offset in bytes into sg, on return offset into the mapped area
2219 * @len: bytes to map, on return number of bytes mapped
2221 * Returns virtual address of the start of the mapped page
2223 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2224 size_t *offset, size_t *len)
2227 size_t sg_len = 0, len_complete = 0;
2230 WARN_ON(!irqs_disabled());
2232 for (i = 0; i < sg_count; i++) {
2233 len_complete = sg_len; /* Complete sg-entries */
2234 sg_len += sg[i].length;
2235 if (sg_len > *offset)
2239 if (unlikely(i == sg_count)) {
2240 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2242 __FUNCTION__, sg_len, *offset, sg_count);
2247 /* Offset starting from the beginning of first page in this sg-entry */
2248 *offset = *offset - len_complete + sg[i].offset;
2250 /* Assumption: contiguous pages can be accessed as "page + i" */
2251 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2252 *offset &= ~PAGE_MASK;
2254 /* Bytes in this sg-entry from *offset to the end of the page */
2255 sg_len = PAGE_SIZE - *offset;
2259 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2261 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2264 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2265 * mapped with scsi_kmap_atomic_sg
2266 * @virt: virtual address to be unmapped
2268 void scsi_kunmap_atomic_sg(void *virt)
2270 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2272 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);