2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
122 * Inherited from caller.
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
145 fis[13] = tf->hob_nsect;
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
163 * Inherited from caller.
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
181 tf->hob_nsect = fis[13];
184 static const u8 ata_rw_cmds[] = {
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
211 ATA_CMD_WRITE_FUA_EXT
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
229 int index, fua, lba48, write;
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
243 tf->protocol = ATA_PROT_DMA;
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
268 * Block address read from @tf.
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
280 block |= (tf->device & 0xf) << 24;
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
327 if (!lba_48_ok(block, n_block))
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
336 tf->command = ATA_CMD_FPDMA_READ;
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
355 if (lba_28_ok(block, n_block)) {
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
363 tf->flags |= ATA_TFLAG_LBA48;
365 tf->hob_nsect = (n_block >> 8) & 0xff;
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
371 /* request too large even for LBA48 */
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
377 tf->nsect = n_block & 0xff;
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
383 tf->device |= ATA_LBA;
386 u32 sect, head, cyl, track;
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
404 /* Check whether the converted CHS can fit.
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
468 static const struct ata_xfer_ent {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
489 * Matching XFER_* value, 0 if no match found.
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
506 * Return matching xfer_mask for @xfer_mode.
512 * Matching xfer_mask, 0 if no match found.
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
516 const struct ata_xfer_ent *ent;
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
528 * Return matching xfer_shift for @xfer_mode.
534 * Matching xfer_shift, -1 if no match found.
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
538 const struct ata_xfer_ent *ent;
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
560 static const char *ata_mode_string(unsigned int xfer_mask)
562 static const char * const xfer_mode_str[] = {
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
592 static const char *sata_spd_string(unsigned int spd)
594 static const char * const spd_str[] = {
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
601 return spd_str[spd - 1];
604 void ata_dev_disable(struct ata_device *dev)
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
635 struct ata_ioports *ioaddr = &ap->ioaddr;
638 ap->ops->dev_select(ap, device);
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
655 return 0; /* nothing found */
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
722 struct ata_taskfile tf;
726 ap->ops->dev_select(ap, device);
728 memset(&tf, 0, sizeof(tf));
730 ap->ops->tf_read(ap, &tf);
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
741 else if ((device == 0) && (err == 0x81))
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
749 if (class == ATA_DEV_UNKNOWN)
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
811 ata_id_string(id, s, ofs, len - 1);
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
856 struct ata_taskfile tf;
858 ata_tf_init(dev, &tf);
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
869 return ata_tf_to_lba48(&tf);
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
880 static u64 ata_read_native_max_address(struct ata_device *dev)
883 struct ata_taskfile tf;
885 ata_tf_init(dev, &tf);
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
896 return ata_tf_to_lba(&tf);
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
911 struct ata_taskfile tf;
915 ata_tf_init(dev, &tf);
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
934 return ata_tf_to_lba48(&tf);
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
949 struct ata_taskfile tf;
953 ata_tf_init(dev, &tf);
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
968 return ata_tf_to_lba(&tf);
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
980 static u64 ata_hpa_resize(struct ata_device *dev)
982 u64 sectors = dev->n_sectors;
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
988 hpa_sectors = ata_read_native_max_address(dev);
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 hpa_sectors = ata_set_native_max_address(dev,
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1019 static u64 ata_id_n_sectors(const u16 *id)
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1025 return ata_id_u32(id, 60);
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1030 return id[1] * id[3] * id[6];
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1066 /* SWDMA perhaps ? */
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1081 * This function performs no actual function.
1083 * May be used as the dev_select() entry in ata_port_operations.
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1102 * May be used as the dev_select() entry in ata_port_operations.
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1113 tmp = ATA_DEVICE_OBS;
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1150 ap->ops->dev_select(ap, device);
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1170 static inline void ata_dump_id(const u16 *id)
1172 DPRINTK("49==0x%04x "
1182 DPRINTK("80==0x%04x "
1192 DPRINTK("88==0x%04x "
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1205 * FIXME: pre IDE drive timing (do we care ?).
1213 static unsigned int ata_id_xfermask(const u16 *id)
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1243 if (ata_id_is_cfa(id)) {
1245 * Process compact flash extended modes
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1251 pio_mask |= (1 << 5);
1253 pio_mask |= (1 << 6);
1255 mwdma_mask |= (1 << 3);
1257 mwdma_mask |= (1 << 4);
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1284 * Inherited from caller.
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1304 * Kernel thread context (may sleep)
1306 void ata_port_flush_task(struct ata_port *ap)
1310 cancel_rearming_delayed_work(&ap->port_task);
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1318 struct completion *waiting = qc->private_data;
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1339 * None. Should be called with kernel context, might sleep.
1342 * Zero on success, AC_ERR_* mask on failure
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1349 struct ata_port *ap = dev->ap;
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
1352 unsigned int tag, preempted_tag;
1353 u32 preempted_sactive, preempted_qc_active;
1354 DECLARE_COMPLETION_ONSTACK(wait);
1355 unsigned long flags;
1356 unsigned int err_mask;
1359 spin_lock_irqsave(ap->lock, flags);
1361 /* no internal command while frozen */
1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
1363 spin_unlock_irqrestore(ap->lock, flags);
1364 return AC_ERR_SYSTEM;
1367 /* initialize internal qc */
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1379 if (test_and_set_bit(tag, &ap->qc_allocated))
1381 qc = __ata_qc_from_tag(ap, tag);
1389 preempted_tag = ap->active_tag;
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
1392 ap->active_tag = ATA_TAG_POISON;
1396 /* prepare & issue qc */
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
1403 unsigned int i, buflen = 0;
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1408 ata_sg_init(qc, sg, n_elem);
1409 qc->nbytes = buflen;
1412 qc->private_data = &wait;
1413 qc->complete_fn = ata_qc_complete_internal;
1417 spin_unlock_irqrestore(ap->lock, flags);
1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1421 ata_port_flush_task(ap);
1424 spin_lock_irqsave(ap->lock, flags);
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1437 ata_qc_complete(qc);
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
1441 "qc timeout (cmd 0x%x)\n", command);
1444 spin_unlock_irqrestore(ap->lock, flags);
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1457 qc->err_mask |= AC_ERR_OTHER;
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
1464 spin_lock_irqsave(ap->lock, flags);
1466 *tf = qc->result_tf;
1467 err_mask = qc->err_mask;
1470 ap->active_tag = preempted_tag;
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1483 * Kill the following code as soon as those drivers are fixed.
1485 if (ap->flags & ATA_FLAG_DISABLED) {
1486 err_mask |= AC_ERR_SYSTEM;
1490 spin_unlock_irqrestore(ap->lock, flags);
1496 * ata_exec_internal - execute libata internal command
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1508 * None. Should be called with kernel context, might sleep.
1511 * Zero on success, AC_ERR_* mask on failure
1513 unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
1520 if (dma_dir != DMA_NONE) {
1522 sg_init_one(&sg, buf, buflen);
1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1539 * Kernel thread context (may sleep).
1542 * Zero on success, AC_ERR_* mask on failure
1544 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1546 struct ata_taskfile tf;
1548 ata_tf_init(dev, &tf);
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1558 * ata_pio_need_iordy - check if iordy needed
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1565 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1588 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1593 /* Is the speed faster than the drive allows non IORDY ? */
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1601 return 3 << ATA_SHIFT_PIO;
1605 * ata_dev_read_id - Read ID data from the specified device
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
1608 * @flags: ATA_READID_* flags
1609 * @id: buffer to read IDENTIFY data into
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1617 * Kernel thread context (may sleep)
1620 * 0 on success, -errno otherwise.
1622 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1623 unsigned int flags, u16 *id)
1625 struct ata_port *ap = dev->ap;
1626 unsigned int class = *p_class;
1627 struct ata_taskfile tf;
1628 unsigned int err_mask = 0;
1630 int may_fallback = 1, tried_spinup = 0;
1633 if (ata_msg_ctl(ap))
1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1638 ata_tf_init(dev, &tf);
1642 tf.command = ATA_CMD_ID_ATA;
1645 tf.command = ATA_CMD_ID_ATAPI;
1649 reason = "unsupported class";
1653 tf.protocol = ATA_PROT_PIO;
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1663 tf.flags |= ATA_TFLAG_POLLING;
1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1666 id, sizeof(id[0]) * ATA_ID_WORDS);
1668 if (err_mask & AC_ERR_NODEV_HINT) {
1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1670 ap->print_id, dev->devno);
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1685 class = ATA_DEV_ATA;
1690 reason = "I/O error";
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1699 swap_buf_le16(id, ATA_ID_WORDS);
1703 reason = "device reports invalid type";
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1709 if (ata_id_is_ata(id))
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1726 if (err_mask && id[2] != 0x738c) {
1728 reason = "SPINUP failed";
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1735 if (id[2] == 0x37c8)
1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1744 * INITIALIZE DEVICE PARAMETERS
1746 * Some drives were very specific about that exact sequence.
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1752 reason = "INIT_DEV_PARAMS failed";
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1759 flags &= ~ATA_READID_POSTRESET;
1769 if (ata_msg_warn(ap))
1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
1775 static inline u8 ata_dev_knobble(struct ata_device *dev)
1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1780 static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1786 if (!ata_id_has_ncq(dev->id)) {
1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1794 if (ap->flags & ATA_FLAG_NCQ) {
1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1796 dev->flags |= ATA_DFLAG_NCQ;
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
1807 * @dev: Target device to configure
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
1813 * Kernel thread context (may sleep)
1816 * 0 on success, -errno otherwise
1818 int ata_dev_configure(struct ata_device *dev)
1820 struct ata_port *ap = dev->ap;
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1823 const u16 *id = dev->id;
1824 unsigned int xfer_mask;
1825 char revbuf[7]; /* XYZ-99\0 */
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 if (ata_msg_probe(ap))
1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1840 dev->horkage |= ata_dev_blacklisted(dev);
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1847 /* print device capabilities */
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
1856 /* initialize to-be-configured parameters */
1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1858 dev->max_sectors = 0;
1866 * common ATA, ATAPI feature tests
1869 /* find max transfer mode; for printk only */
1870 xfer_mask = ata_id_xfermask(id);
1872 if (ata_msg_probe(ap))
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
1889 snprintf(revbuf, 7, "CFA");
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1894 dev->n_sectors = ata_id_n_sectors(id);
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1899 if (ata_id_has_lba(id)) {
1900 const char *lba_desc;
1904 dev->flags |= ATA_DFLAG_LBA;
1905 if (ata_id_has_lba48(id)) {
1906 dev->flags |= ATA_DFLAG_LBA48;
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1914 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1915 ata_id_hpa_enabled(dev->id))
1916 dev->n_sectors = ata_hpa_resize(dev);
1919 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1921 /* print device info to dmesg */
1922 if (ata_msg_drv(ap) && print_info) {
1923 ata_dev_printk(dev, KERN_INFO,
1924 "%s: %s, %s, max %s\n",
1925 revbuf, modelbuf, fwrevbuf,
1926 ata_mode_string(xfer_mask));
1927 ata_dev_printk(dev, KERN_INFO,
1928 "%Lu sectors, multi %u: %s %s\n",
1929 (unsigned long long)dev->n_sectors,
1930 dev->multi_count, lba_desc, ncq_desc);
1935 /* Default translation */
1936 dev->cylinders = id[1];
1938 dev->sectors = id[6];
1940 if (ata_id_current_chs_valid(id)) {
1941 /* Current CHS translation is valid. */
1942 dev->cylinders = id[54];
1943 dev->heads = id[55];
1944 dev->sectors = id[56];
1947 /* print device info to dmesg */
1948 if (ata_msg_drv(ap) && print_info) {
1949 ata_dev_printk(dev, KERN_INFO,
1950 "%s: %s, %s, max %s\n",
1951 revbuf, modelbuf, fwrevbuf,
1952 ata_mode_string(xfer_mask));
1953 ata_dev_printk(dev, KERN_INFO,
1954 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1955 (unsigned long long)dev->n_sectors,
1956 dev->multi_count, dev->cylinders,
1957 dev->heads, dev->sectors);
1964 /* ATAPI-specific feature tests */
1965 else if (dev->class == ATA_DEV_ATAPI) {
1966 char *cdb_intr_string = "";
1968 rc = atapi_cdb_len(id);
1969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1970 if (ata_msg_warn(ap))
1971 ata_dev_printk(dev, KERN_WARNING,
1972 "unsupported CDB len\n");
1976 dev->cdb_len = (unsigned int) rc;
1978 if (ata_id_cdb_intr(dev->id)) {
1979 dev->flags |= ATA_DFLAG_CDB_INTR;
1980 cdb_intr_string = ", CDB intr";
1983 /* print device info to dmesg */
1984 if (ata_msg_drv(ap) && print_info)
1985 ata_dev_printk(dev, KERN_INFO,
1986 "ATAPI: %s, %s, max %s%s\n",
1988 ata_mode_string(xfer_mask),
1992 /* determine max_sectors */
1993 dev->max_sectors = ATA_MAX_SECTORS;
1994 if (dev->flags & ATA_DFLAG_LBA48)
1995 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1997 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1998 /* Let the user know. We don't want to disallow opens for
1999 rescue purposes, or in case the vendor is just a blithering
2002 ata_dev_printk(dev, KERN_WARNING,
2003 "Drive reports diagnostics failure. This may indicate a drive\n");
2004 ata_dev_printk(dev, KERN_WARNING,
2005 "fault or invalid emulation. Contact drive vendor for information.\n");
2009 /* limit bridge transfers to udma5, 200 sectors */
2010 if (ata_dev_knobble(dev)) {
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "applying bridge limits\n");
2014 dev->udma_mask &= ATA_UDMA5;
2015 dev->max_sectors = ATA_MAX_SECTORS;
2018 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2019 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2022 if (ap->ops->dev_config)
2023 ap->ops->dev_config(dev);
2025 if (ata_msg_probe(ap))
2026 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2027 __FUNCTION__, ata_chk_status(ap));
2031 if (ata_msg_probe(ap))
2032 ata_dev_printk(dev, KERN_DEBUG,
2033 "%s: EXIT, err\n", __FUNCTION__);
2038 * ata_cable_40wire - return 40 wire cable type
2041 * Helper method for drivers which want to hardwire 40 wire cable
2045 int ata_cable_40wire(struct ata_port *ap)
2047 return ATA_CBL_PATA40;
2051 * ata_cable_80wire - return 80 wire cable type
2054 * Helper method for drivers which want to hardwire 80 wire cable
2058 int ata_cable_80wire(struct ata_port *ap)
2060 return ATA_CBL_PATA80;
2064 * ata_cable_unknown - return unknown PATA cable.
2067 * Helper method for drivers which have no PATA cable detection.
2070 int ata_cable_unknown(struct ata_port *ap)
2072 return ATA_CBL_PATA_UNK;
2076 * ata_cable_sata - return SATA cable type
2079 * Helper method for drivers which have SATA cables
2082 int ata_cable_sata(struct ata_port *ap)
2084 return ATA_CBL_SATA;
2088 * ata_bus_probe - Reset and probe ATA bus
2091 * Master ATA bus probing function. Initiates a hardware-dependent
2092 * bus reset, then attempts to identify any devices found on
2096 * PCI/etc. bus probe sem.
2099 * Zero on success, negative errno otherwise.
2102 int ata_bus_probe(struct ata_port *ap)
2104 unsigned int classes[ATA_MAX_DEVICES];
2105 int tries[ATA_MAX_DEVICES];
2107 struct ata_device *dev;
2111 for (i = 0; i < ATA_MAX_DEVICES; i++)
2112 tries[i] = ATA_PROBE_MAX_TRIES;
2115 /* reset and determine device classes */
2116 ap->ops->phy_reset(ap);
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2125 classes[dev->devno] = ATA_DEV_NONE;
2127 dev->class = ATA_DEV_UNKNOWN;
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2135 for (i = 0; i < ATA_MAX_DEVICES; i++)
2136 ap->device[i].pio_mode = XFER_PIO_0;
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2142 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2143 dev = &ap->device[i];
2146 dev->class = classes[i];
2148 if (!ata_dev_enabled(dev))
2151 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2157 /* Now ask for the cable type as PDIAG- should have been released */
2158 if (ap->ops->cable_detect)
2159 ap->cbl = ap->ops->cable_detect(ap);
2161 /* After the identify sequence we can now set up the devices. We do
2162 this in the normal order so that the user doesn't get confused */
2164 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2165 dev = &ap->device[i];
2166 if (!ata_dev_enabled(dev))
2169 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2170 rc = ata_dev_configure(dev);
2171 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2176 /* configure transfer mode */
2177 rc = ata_set_mode(ap, &dev);
2181 for (i = 0; i < ATA_MAX_DEVICES; i++)
2182 if (ata_dev_enabled(&ap->device[i]))
2185 /* no device present, disable port */
2186 ata_port_disable(ap);
2187 ap->ops->port_disable(ap);
2191 tries[dev->devno]--;
2195 /* eeek, something went very wrong, give up */
2196 tries[dev->devno] = 0;
2200 /* give it just one more chance */
2201 tries[dev->devno] = min(tries[dev->devno], 1);
2203 if (tries[dev->devno] == 1) {
2204 /* This is the last chance, better to slow
2205 * down than lose it.
2207 sata_down_spd_limit(ap);
2208 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2212 if (!tries[dev->devno])
2213 ata_dev_disable(dev);
2219 * ata_port_probe - Mark port as enabled
2220 * @ap: Port for which we indicate enablement
2222 * Modify @ap data structure such that the system
2223 * thinks that the entire port is enabled.
2225 * LOCKING: host lock, or some other form of
2229 void ata_port_probe(struct ata_port *ap)
2231 ap->flags &= ~ATA_FLAG_DISABLED;
2235 * sata_print_link_status - Print SATA link status
2236 * @ap: SATA port to printk link status about
2238 * This function prints link speed and status of a SATA link.
2243 void sata_print_link_status(struct ata_port *ap)
2245 u32 sstatus, scontrol, tmp;
2247 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2249 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2251 if (ata_port_online(ap)) {
2252 tmp = (sstatus >> 4) & 0xf;
2253 ata_port_printk(ap, KERN_INFO,
2254 "SATA link up %s (SStatus %X SControl %X)\n",
2255 sata_spd_string(tmp), sstatus, scontrol);
2257 ata_port_printk(ap, KERN_INFO,
2258 "SATA link down (SStatus %X SControl %X)\n",
2264 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2265 * @ap: SATA port associated with target SATA PHY.
2267 * This function issues commands to standard SATA Sxxx
2268 * PHY registers, to wake up the phy (and device), and
2269 * clear any reset condition.
2272 * PCI/etc. bus probe sem.
2275 void __sata_phy_reset(struct ata_port *ap)
2278 unsigned long timeout = jiffies + (HZ * 5);
2280 if (ap->flags & ATA_FLAG_SATA_RESET) {
2281 /* issue phy wake/reset */
2282 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2283 /* Couldn't find anything in SATA I/II specs, but
2284 * AHCI-1.1 10.4.2 says at least 1 ms. */
2287 /* phy wake/clear reset */
2288 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2290 /* wait for phy to become ready, if necessary */
2293 sata_scr_read(ap, SCR_STATUS, &sstatus);
2294 if ((sstatus & 0xf) != 1)
2296 } while (time_before(jiffies, timeout));
2298 /* print link status */
2299 sata_print_link_status(ap);
2301 /* TODO: phy layer with polling, timeouts, etc. */
2302 if (!ata_port_offline(ap))
2305 ata_port_disable(ap);
2307 if (ap->flags & ATA_FLAG_DISABLED)
2310 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2311 ata_port_disable(ap);
2315 ap->cbl = ATA_CBL_SATA;
2319 * sata_phy_reset - Reset SATA bus.
2320 * @ap: SATA port associated with target SATA PHY.
2322 * This function resets the SATA bus, and then probes
2323 * the bus for devices.
2326 * PCI/etc. bus probe sem.
2329 void sata_phy_reset(struct ata_port *ap)
2331 __sata_phy_reset(ap);
2332 if (ap->flags & ATA_FLAG_DISABLED)
2338 * ata_dev_pair - return other device on cable
2341 * Obtain the other device on the same cable, or if none is
2342 * present NULL is returned
2345 struct ata_device *ata_dev_pair(struct ata_device *adev)
2347 struct ata_port *ap = adev->ap;
2348 struct ata_device *pair = &ap->device[1 - adev->devno];
2349 if (!ata_dev_enabled(pair))
2355 * ata_port_disable - Disable port.
2356 * @ap: Port to be disabled.
2358 * Modify @ap data structure such that the system
2359 * thinks that the entire port is disabled, and should
2360 * never attempt to probe or communicate with devices
2363 * LOCKING: host lock, or some other form of
2367 void ata_port_disable(struct ata_port *ap)
2369 ap->device[0].class = ATA_DEV_NONE;
2370 ap->device[1].class = ATA_DEV_NONE;
2371 ap->flags |= ATA_FLAG_DISABLED;
2375 * sata_down_spd_limit - adjust SATA spd limit downward
2376 * @ap: Port to adjust SATA spd limit for
2378 * Adjust SATA spd limit of @ap downward. Note that this
2379 * function only adjusts the limit. The change must be applied
2380 * using sata_set_spd().
2383 * Inherited from caller.
2386 * 0 on success, negative errno on failure
2388 int sata_down_spd_limit(struct ata_port *ap)
2390 u32 sstatus, spd, mask;
2393 if (!sata_scr_valid(ap))
2396 /* If SCR can be read, use it to determine the current SPD.
2397 * If not, use cached value in ap->sata_spd.
2399 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2401 spd = (sstatus >> 4) & 0xf;
2405 mask = ap->sata_spd_limit;
2409 /* unconditionally mask off the highest bit */
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2413 /* Mask off all speeds higher than or equal to the current
2414 * one. Force 1.5Gbps if current SPD is not available.
2417 mask &= (1 << (spd - 1)) - 1;
2421 /* were we already at the bottom? */
2425 ap->sata_spd_limit = mask;
2427 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2428 sata_spd_string(fls(mask)));
2433 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2437 if (ap->sata_spd_limit == UINT_MAX)
2440 limit = fls(ap->sata_spd_limit);
2442 spd = (*scontrol >> 4) & 0xf;
2443 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2445 return spd != limit;
2449 * sata_set_spd_needed - is SATA spd configuration needed
2450 * @ap: Port in question
2452 * Test whether the spd limit in SControl matches
2453 * @ap->sata_spd_limit. This function is used to determine
2454 * whether hardreset is necessary to apply SATA spd
2458 * Inherited from caller.
2461 * 1 if SATA spd configuration is needed, 0 otherwise.
2463 int sata_set_spd_needed(struct ata_port *ap)
2467 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2470 return __sata_set_spd_needed(ap, &scontrol);
2474 * sata_set_spd - set SATA spd according to spd limit
2475 * @ap: Port to set SATA spd for
2477 * Set SATA spd of @ap according to sata_spd_limit.
2480 * Inherited from caller.
2483 * 0 if spd doesn't need to be changed, 1 if spd has been
2484 * changed. Negative errno if SCR registers are inaccessible.
2486 int sata_set_spd(struct ata_port *ap)
2491 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2494 if (!__sata_set_spd_needed(ap, &scontrol))
2497 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2504 * This mode timing computation functionality is ported over from
2505 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2508 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2509 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2510 * for UDMA6, which is currently supported only by Maxtor drives.
2512 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2515 static const struct ata_timing ata_timing[] = {
2517 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2518 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2519 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2520 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2522 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2523 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2528 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2538 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2539 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2540 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2541 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2543 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2544 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2545 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2547 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2552 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2553 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2555 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2557 q->setup = EZ(t->setup * 1000, T);
2558 q->act8b = EZ(t->act8b * 1000, T);
2559 q->rec8b = EZ(t->rec8b * 1000, T);
2560 q->cyc8b = EZ(t->cyc8b * 1000, T);
2561 q->active = EZ(t->active * 1000, T);
2562 q->recover = EZ(t->recover * 1000, T);
2563 q->cycle = EZ(t->cycle * 1000, T);
2564 q->udma = EZ(t->udma * 1000, UT);
2567 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2568 struct ata_timing *m, unsigned int what)
2570 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2571 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2572 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2573 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2574 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2575 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2576 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2577 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2580 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2582 const struct ata_timing *t;
2584 for (t = ata_timing; t->mode != speed; t++)
2585 if (t->mode == 0xFF)
2590 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2591 struct ata_timing *t, int T, int UT)
2593 const struct ata_timing *s;
2594 struct ata_timing p;
2600 if (!(s = ata_timing_find_mode(speed)))
2603 memcpy(t, s, sizeof(*s));
2606 * If the drive is an EIDE drive, it can tell us it needs extended
2607 * PIO/MW_DMA cycle timing.
2610 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2611 memset(&p, 0, sizeof(p));
2612 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2613 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2614 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2615 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2616 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2618 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2622 * Convert the timing to bus clock counts.
2625 ata_timing_quantize(t, t, T, UT);
2628 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2629 * S.M.A.R.T * and some other commands. We have to ensure that the
2630 * DMA cycle timing is slower/equal than the fastest PIO timing.
2633 if (speed > XFER_PIO_6) {
2634 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2635 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2639 * Lengthen active & recovery time so that cycle time is correct.
2642 if (t->act8b + t->rec8b < t->cyc8b) {
2643 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2644 t->rec8b = t->cyc8b - t->act8b;
2647 if (t->active + t->recover < t->cycle) {
2648 t->active += (t->cycle - (t->active + t->recover)) / 2;
2649 t->recover = t->cycle - t->active;
2652 /* In a few cases quantisation may produce enough errors to
2653 leave t->cycle too low for the sum of active and recovery
2654 if so we must correct this */
2655 if (t->active + t->recover > t->cycle)
2656 t->cycle = t->active + t->recover;
2662 * ata_down_xfermask_limit - adjust dev xfer masks downward
2663 * @dev: Device to adjust xfer masks
2664 * @sel: ATA_DNXFER_* selector
2666 * Adjust xfer masks of @dev downward. Note that this function
2667 * does not apply the change. Invoking ata_set_mode() afterwards
2668 * will apply the limit.
2671 * Inherited from caller.
2674 * 0 on success, negative errno on failure
2676 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2679 unsigned int orig_mask, xfer_mask;
2680 unsigned int pio_mask, mwdma_mask, udma_mask;
2683 quiet = !!(sel & ATA_DNXFER_QUIET);
2684 sel &= ~ATA_DNXFER_QUIET;
2686 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2689 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2692 case ATA_DNXFER_PIO:
2693 highbit = fls(pio_mask) - 1;
2694 pio_mask &= ~(1 << highbit);
2697 case ATA_DNXFER_DMA:
2699 highbit = fls(udma_mask) - 1;
2700 udma_mask &= ~(1 << highbit);
2703 } else if (mwdma_mask) {
2704 highbit = fls(mwdma_mask) - 1;
2705 mwdma_mask &= ~(1 << highbit);
2711 case ATA_DNXFER_40C:
2712 udma_mask &= ATA_UDMA_MASK_40C;
2715 case ATA_DNXFER_FORCE_PIO0:
2717 case ATA_DNXFER_FORCE_PIO:
2726 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2728 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2732 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2733 snprintf(buf, sizeof(buf), "%s:%s",
2734 ata_mode_string(xfer_mask),
2735 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2737 snprintf(buf, sizeof(buf), "%s",
2738 ata_mode_string(xfer_mask));
2740 ata_dev_printk(dev, KERN_WARNING,
2741 "limiting speed to %s\n", buf);
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2750 static int ata_dev_set_mode(struct ata_device *dev)
2752 struct ata_eh_context *ehc = &dev->ap->eh_context;
2753 unsigned int err_mask;
2756 dev->flags &= ~ATA_DFLAG_PIO;
2757 if (dev->xfer_shift == ATA_SHIFT_PIO)
2758 dev->flags |= ATA_DFLAG_PIO;
2760 err_mask = ata_dev_set_xfermode(dev);
2761 /* Old CFA may refuse this command, which is just fine */
2762 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2763 err_mask &= ~AC_ERR_DEV;
2766 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2767 "(err_mask=0x%x)\n", err_mask);
2771 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2772 rc = ata_dev_revalidate(dev, 0);
2773 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2777 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2778 dev->xfer_shift, (int)dev->xfer_mode);
2780 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2781 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2786 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2787 * @ap: port on which timings will be programmed
2788 * @r_failed_dev: out paramter for failed device
2790 * Standard implementation of the function used to tune and set
2791 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2792 * ata_dev_set_mode() fails, pointer to the failing device is
2793 * returned in @r_failed_dev.
2796 * PCI/etc. bus probe sem.
2799 * 0 on success, negative errno otherwise
2802 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2804 struct ata_device *dev;
2805 int i, rc = 0, used_dma = 0, found = 0;
2808 /* step 1: calculate xfer_mask */
2809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2810 unsigned int pio_mask, dma_mask;
2812 dev = &ap->device[i];
2814 if (!ata_dev_enabled(dev))
2817 ata_dev_xfermask(dev);
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2831 /* step 2: always set host PIO timings */
2832 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2833 dev = &ap->device[i];
2834 if (!ata_dev_enabled(dev))
2837 if (!dev->pio_mode) {
2838 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2843 dev->xfer_mode = dev->pio_mode;
2844 dev->xfer_shift = ATA_SHIFT_PIO;
2845 if (ap->ops->set_piomode)
2846 ap->ops->set_piomode(ap, dev);
2849 /* step 3: set host DMA timings */
2850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2851 dev = &ap->device[i];
2853 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2856 dev->xfer_mode = dev->dma_mode;
2857 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2858 if (ap->ops->set_dmamode)
2859 ap->ops->set_dmamode(ap, dev);
2862 /* step 4: update devices' xfer mode */
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2866 /* don't update suspended devices' xfer mode */
2867 if (!ata_dev_enabled(dev))
2870 rc = ata_dev_set_mode(dev);
2875 /* Record simplex status. If we selected DMA then the other
2876 * host channels are not permitted to do so.
2878 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2879 ap->host->simplex_claimed = ap;
2883 *r_failed_dev = dev;
2888 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2889 * @ap: port on which timings will be programmed
2890 * @r_failed_dev: out paramter for failed device
2892 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2893 * ata_set_mode() fails, pointer to the failing device is
2894 * returned in @r_failed_dev.
2897 * PCI/etc. bus probe sem.
2900 * 0 on success, negative errno otherwise
2902 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2904 /* has private set_mode? */
2905 if (ap->ops->set_mode)
2906 return ap->ops->set_mode(ap, r_failed_dev);
2907 return ata_do_set_mode(ap, r_failed_dev);
2911 * ata_tf_to_host - issue ATA taskfile to host controller
2912 * @ap: port to which command is being issued
2913 * @tf: ATA taskfile register set
2915 * Issues ATA taskfile register set to ATA host controller,
2916 * with proper synchronization with interrupt handler and
2920 * spin_lock_irqsave(host lock)
2923 static inline void ata_tf_to_host(struct ata_port *ap,
2924 const struct ata_taskfile *tf)
2926 ap->ops->tf_load(ap, tf);
2927 ap->ops->exec_command(ap, tf);
2931 * ata_busy_sleep - sleep until BSY clears, or timeout
2932 * @ap: port containing status register to be polled
2933 * @tmout_pat: impatience timeout
2934 * @tmout: overall timeout
2936 * Sleep until ATA Status register bit BSY clears,
2937 * or a timeout occurs.
2940 * Kernel thread context (may sleep).
2943 * 0 on success, -errno otherwise.
2945 int ata_busy_sleep(struct ata_port *ap,
2946 unsigned long tmout_pat, unsigned long tmout)
2948 unsigned long timer_start, timeout;
2951 status = ata_busy_wait(ap, ATA_BUSY, 300);
2952 timer_start = jiffies;
2953 timeout = timer_start + tmout_pat;
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
2957 status = ata_busy_wait(ap, ATA_BUSY, 3);
2960 if (status != 0xff && (status & ATA_BUSY))
2961 ata_port_printk(ap, KERN_WARNING,
2962 "port is slow to respond, please be patient "
2963 "(Status 0x%x)\n", status);
2965 timeout = timer_start + tmout;
2966 while (status != 0xff && (status & ATA_BUSY) &&
2967 time_before(jiffies, timeout)) {
2969 status = ata_chk_status(ap);
2975 if (status & ATA_BUSY) {
2976 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2977 "(%lu secs, Status 0x%x)\n",
2978 tmout / HZ, status);
2986 * ata_wait_ready - sleep until BSY clears, or timeout
2987 * @ap: port containing status register to be polled
2988 * @deadline: deadline jiffies for the operation
2990 * Sleep until ATA Status register bit BSY clears, or timeout
2994 * Kernel thread context (may sleep).
2997 * 0 on success, -errno otherwise.
2999 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3001 unsigned long start = jiffies;
3005 u8 status = ata_chk_status(ap);
3006 unsigned long now = jiffies;
3008 if (!(status & ATA_BUSY))
3010 if (!ata_port_online(ap) && status == 0xff)
3012 if (time_after(now, deadline))
3015 if (!warned && time_after(now, start + 5 * HZ) &&
3016 (deadline - now > 3 * HZ)) {
3017 ata_port_printk(ap, KERN_WARNING,
3018 "port is slow to respond, please be patient "
3019 "(Status 0x%x)\n", status);
3027 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3028 unsigned long deadline)
3030 struct ata_ioports *ioaddr = &ap->ioaddr;
3031 unsigned int dev0 = devmask & (1 << 0);
3032 unsigned int dev1 = devmask & (1 << 1);
3035 /* if device 0 was found in ata_devchk, wait for its
3039 rc = ata_wait_ready(ap, deadline);
3047 /* if device 1 was found in ata_devchk, wait for register
3048 * access briefly, then wait for BSY to clear.
3053 ap->ops->dev_select(ap, 1);
3055 /* Wait for register access. Some ATAPI devices fail
3056 * to set nsect/lbal after reset, so don't waste too
3057 * much time on it. We're gonna wait for !BSY anyway.
3059 for (i = 0; i < 2; i++) {
3062 nsect = ioread8(ioaddr->nsect_addr);
3063 lbal = ioread8(ioaddr->lbal_addr);
3064 if ((nsect == 1) && (lbal == 1))
3066 msleep(50); /* give drive a breather */
3069 rc = ata_wait_ready(ap, deadline);
3077 /* is all this really necessary? */
3078 ap->ops->dev_select(ap, 0);
3080 ap->ops->dev_select(ap, 1);
3082 ap->ops->dev_select(ap, 0);
3087 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3088 unsigned long deadline)
3090 struct ata_ioports *ioaddr = &ap->ioaddr;
3092 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3094 /* software reset. causes dev0 to be selected */
3095 iowrite8(ap->ctl, ioaddr->ctl_addr);
3096 udelay(20); /* FIXME: flush */
3097 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3098 udelay(20); /* FIXME: flush */
3099 iowrite8(ap->ctl, ioaddr->ctl_addr);
3101 /* spec mandates ">= 2ms" before checking status.
3102 * We wait 150ms, because that was the magic delay used for
3103 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3104 * between when the ATA command register is written, and then
3105 * status is checked. Because waiting for "a while" before
3106 * checking status is fine, post SRST, we perform this magic
3107 * delay here as well.
3109 * Old drivers/ide uses the 2mS rule and then waits for ready
3113 /* Before we perform post reset processing we want to see if
3114 * the bus shows 0xFF because the odd clown forgets the D7
3115 * pulldown resistor.
3117 if (ata_check_status(ap) == 0xFF)
3120 return ata_bus_post_reset(ap, devmask, deadline);
3124 * ata_bus_reset - reset host port and associated ATA channel
3125 * @ap: port to reset
3127 * This is typically the first time we actually start issuing
3128 * commands to the ATA channel. We wait for BSY to clear, then
3129 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3130 * result. Determine what devices, if any, are on the channel
3131 * by looking at the device 0/1 error register. Look at the signature
3132 * stored in each device's taskfile registers, to determine if
3133 * the device is ATA or ATAPI.
3136 * PCI/etc. bus probe sem.
3137 * Obtains host lock.
3140 * Sets ATA_FLAG_DISABLED if bus reset fails.
3143 void ata_bus_reset(struct ata_port *ap)
3145 struct ata_ioports *ioaddr = &ap->ioaddr;
3146 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3148 unsigned int dev0, dev1 = 0, devmask = 0;
3151 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3153 /* determine if device 0/1 are present */
3154 if (ap->flags & ATA_FLAG_SATA_RESET)
3157 dev0 = ata_devchk(ap, 0);
3159 dev1 = ata_devchk(ap, 1);
3163 devmask |= (1 << 0);
3165 devmask |= (1 << 1);
3167 /* select device 0 again */
3168 ap->ops->dev_select(ap, 0);
3170 /* issue bus reset */
3171 if (ap->flags & ATA_FLAG_SRST) {
3172 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3173 if (rc && rc != -ENODEV)
3178 * determine by signature whether we have ATA or ATAPI devices
3180 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3181 if ((slave_possible) && (err != 0x81))
3182 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3184 /* is double-select really necessary? */
3185 if (ap->device[1].class != ATA_DEV_NONE)
3186 ap->ops->dev_select(ap, 1);
3187 if (ap->device[0].class != ATA_DEV_NONE)
3188 ap->ops->dev_select(ap, 0);
3190 /* if no devices were detected, disable this port */
3191 if ((ap->device[0].class == ATA_DEV_NONE) &&
3192 (ap->device[1].class == ATA_DEV_NONE))
3195 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3196 /* set up device control for ATA_FLAG_SATA_RESET */
3197 iowrite8(ap->ctl, ioaddr->ctl_addr);
3204 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3205 ap->ops->port_disable(ap);
3211 * sata_phy_debounce - debounce SATA phy status
3212 * @ap: ATA port to debounce SATA phy status for
3213 * @params: timing parameters { interval, duratinon, timeout } in msec
3214 * @deadline: deadline jiffies for the operation
3216 * Make sure SStatus of @ap reaches stable state, determined by
3217 * holding the same value where DET is not 1 for @duration polled
3218 * every @interval, before @timeout. Timeout constraints the
3219 * beginning of the stable state. Because DET gets stuck at 1 on
3220 * some controllers after hot unplugging, this functions waits
3221 * until timeout then returns 0 if DET is stable at 1.
3223 * @timeout is further limited by @deadline. The sooner of the
3227 * Kernel thread context (may sleep)
3230 * 0 on success, -errno on failure.
3232 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3233 unsigned long deadline)
3235 unsigned long interval_msec = params[0];
3236 unsigned long duration = msecs_to_jiffies(params[1]);
3237 unsigned long last_jiffies, t;
3241 t = jiffies + msecs_to_jiffies(params[2]);
3242 if (time_before(t, deadline))
3245 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3250 last_jiffies = jiffies;
3253 msleep(interval_msec);
3254 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3260 if (cur == 1 && time_before(jiffies, deadline))
3262 if (time_after(jiffies, last_jiffies + duration))
3267 /* unstable, start over */
3269 last_jiffies = jiffies;
3271 /* Check deadline. If debouncing failed, return
3272 * -EPIPE to tell upper layer to lower link speed.
3274 if (time_after(jiffies, deadline))
3280 * sata_phy_resume - resume SATA phy
3281 * @ap: ATA port to resume SATA phy for
3282 * @params: timing parameters { interval, duratinon, timeout } in msec
3283 * @deadline: deadline jiffies for the operation
3285 * Resume SATA phy of @ap and debounce it.
3288 * Kernel thread context (may sleep)
3291 * 0 on success, -errno on failure.
3293 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3294 unsigned long deadline)
3299 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3302 scontrol = (scontrol & 0x0f0) | 0x300;
3304 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3307 /* Some PHYs react badly if SStatus is pounded immediately
3308 * after resuming. Delay 200ms before debouncing.
3312 return sata_phy_debounce(ap, params, deadline);
3316 * ata_std_prereset - prepare for reset
3317 * @ap: ATA port to be reset
3318 * @deadline: deadline jiffies for the operation
3320 * @ap is about to be reset. Initialize it. Failure from
3321 * prereset makes libata abort whole reset sequence and give up
3322 * that port, so prereset should be best-effort. It does its
3323 * best to prepare for reset sequence but if things go wrong, it
3324 * should just whine, not fail.
3327 * Kernel thread context (may sleep)
3330 * 0 on success, -errno otherwise.
3332 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3334 struct ata_eh_context *ehc = &ap->eh_context;
3335 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3338 /* handle link resume */
3339 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3340 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3341 ehc->i.action |= ATA_EH_HARDRESET;
3343 /* if we're about to do hardreset, nothing more to do */
3344 if (ehc->i.action & ATA_EH_HARDRESET)
3347 /* if SATA, resume phy */
3348 if (ap->flags & ATA_FLAG_SATA) {
3349 rc = sata_phy_resume(ap, timing, deadline);
3350 /* whine about phy resume failure but proceed */
3351 if (rc && rc != -EOPNOTSUPP)
3352 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3353 "link for reset (errno=%d)\n", rc);
3356 /* Wait for !BSY if the controller can wait for the first D2H
3357 * Reg FIS and we don't know that no device is attached.
3359 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3360 rc = ata_wait_ready(ap, deadline);
3361 if (rc && rc != -ENODEV) {
3362 ata_port_printk(ap, KERN_WARNING, "device not ready "
3363 "(errno=%d), forcing hardreset\n", rc);
3364 ehc->i.action |= ATA_EH_HARDRESET;
3372 * ata_std_softreset - reset host port via ATA SRST
3373 * @ap: port to reset
3374 * @classes: resulting classes of attached devices
3375 * @deadline: deadline jiffies for the operation
3377 * Reset host port using ATA SRST.
3380 * Kernel thread context (may sleep)
3383 * 0 on success, -errno otherwise.
3385 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3386 unsigned long deadline)
3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3389 unsigned int devmask = 0;
3395 if (ata_port_offline(ap)) {
3396 classes[0] = ATA_DEV_NONE;
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
3411 rc = ata_bus_softreset(ap, devmask, deadline);
3412 /* if link is occupied, -ENODEV too is an error */
3413 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3414 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3429 * sata_port_hardreset - reset port via SATA phy reset
3430 * @ap: port to reset
3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
3432 * @deadline: deadline jiffies for the operation
3434 * SATA phy-reset host port using DET bits of SControl register.
3437 * Kernel thread context (may sleep)
3440 * 0 on success, -errno otherwise.
3442 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3443 unsigned long deadline)
3450 if (sata_set_spd_needed(ap)) {
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3459 scontrol = (scontrol & 0x0f0) | 0x304;
3461 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3467 /* issue phy wake/reset */
3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3471 scontrol = (scontrol & 0x0f0) | 0x301;
3473 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3477 * 10.4.2 says at least 1 ms.
3481 /* bring phy back */
3482 rc = sata_phy_resume(ap, timing, deadline);
3484 DPRINTK("EXIT, rc=%d\n", rc);
3489 * sata_std_hardreset - reset host port via SATA phy reset
3490 * @ap: port to reset
3491 * @class: resulting class of attached device
3492 * @deadline: deadline jiffies for the operation
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3498 * Kernel thread context (may sleep)
3501 * 0 on success, -errno otherwise.
3503 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3504 unsigned long deadline)
3506 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3512 rc = sata_port_hardreset(ap, timing, deadline);
3514 ata_port_printk(ap, KERN_ERR,
3515 "COMRESET failed (errno=%d)\n", rc);
3519 /* TODO: phy layer with polling, timeouts, etc. */
3520 if (ata_port_offline(ap)) {
3521 *class = ATA_DEV_NONE;
3522 DPRINTK("EXIT, link offline\n");
3526 /* wait a while before checking status, see SRST for more info */
3529 rc = ata_wait_ready(ap, deadline);
3530 /* link occupied, -ENODEV too is an error */
3532 ata_port_printk(ap, KERN_ERR,
3533 "COMRESET failed (errno=%d)\n", rc);
3537 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3539 *class = ata_dev_try_classify(ap, 0, NULL);
3541 DPRINTK("EXIT, class=%u\n", *class);
3546 * ata_std_postreset - standard postreset callback
3547 * @ap: the target ata_port
3548 * @classes: classes of attached devices
3550 * This function is invoked after a successful reset. Note that
3551 * the device might have been reset more than once using
3552 * different reset methods before postreset is invoked.
3555 * Kernel thread context (may sleep)
3557 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3563 /* print link status */
3564 sata_print_link_status(ap);
3567 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3568 sata_scr_write(ap, SCR_ERROR, serror);
3570 /* is double-select really necessary? */
3571 if (classes[0] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 1);
3573 if (classes[1] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 0);
3576 /* bail out if no device is present */
3577 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3578 DPRINTK("EXIT, no device\n");
3582 /* set up device control */
3583 if (ap->ioaddr.ctl_addr)
3584 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3590 * ata_dev_same_device - Determine whether new ID matches configured device
3591 * @dev: device to compare against
3592 * @new_class: class of the new device
3593 * @new_id: IDENTIFY page of the new device
3595 * Compare @new_class and @new_id against @dev and determine
3596 * whether @dev is the device indicated by @new_class and
3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3605 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3608 const u16 *old_id = dev->id;
3609 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3612 if (dev->class != new_class) {
3613 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3614 dev->class, new_class);
3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3623 if (strcmp(model[0], model[1])) {
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
3629 if (strcmp(serial[0], serial[1])) {
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
3639 * ata_dev_reread_id - Re-read IDENTIFY data
3640 * @dev: target ATA device
3641 * @readid_flags: read ID flags
3643 * Re-read IDENTIFY page and make sure @dev is still attached to
3647 * Kernel thread context (may sleep)
3650 * 0 on success, negative errno otherwise
3652 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3654 unsigned int class = dev->class;
3655 u16 *id = (void *)dev->ap->sector_buf;
3659 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3663 /* is the device still there? */
3664 if (!ata_dev_same_device(dev, class, id))
3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3672 * ata_dev_revalidate - Revalidate ATA device
3673 * @dev: device to revalidate
3674 * @readid_flags: read ID flags
3676 * Re-read IDENTIFY page, make sure @dev is still attached to the
3677 * port and reconfigure it according to the new IDENTIFY page.
3680 * Kernel thread context (may sleep)
3683 * 0 on success, negative errno otherwise
3685 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3687 u64 n_sectors = dev->n_sectors;
3690 if (!ata_dev_enabled(dev))
3694 rc = ata_dev_reread_id(dev, readid_flags);
3698 /* configure device according to the new ID */
3699 rc = ata_dev_configure(dev);
3703 /* verify n_sectors hasn't changed */
3704 if (dev->class == ATA_DEV_ATA && n_sectors &&
3705 dev->n_sectors != n_sectors) {
3706 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3708 (unsigned long long)n_sectors,
3709 (unsigned long long)dev->n_sectors);
3711 /* restore original n_sectors */
3712 dev->n_sectors = n_sectors;
3721 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3725 struct ata_blacklist_entry {
3726 const char *model_num;
3727 const char *model_rev;
3728 unsigned long horkage;
3731 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3732 /* Devices with DMA related problems under Linux */
3733 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3739 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3740 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3746 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3747 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3751 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3752 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3753 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3754 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3755 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3756 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3758 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3759 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3760 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3761 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3762 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3763 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3764 { "IOMEGA ZIP 250 ATAPI Floppy",
3765 NULL, ATA_HORKAGE_NODMA },
3767 /* Weird ATAPI devices */
3768 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3770 /* Devices we expect to fail diagnostics */
3772 /* Devices where NCQ should be avoided */
3774 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3775 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3776 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3778 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3779 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3780 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3781 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3782 ATA_HORKAGE_NONCQ },
3783 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3784 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3785 /* Blacklist entries taken from Silicon Image 3124/3132
3786 Windows driver .inf file - also several Linux problem reports */
3787 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3790 /* Drives which do spurious command completion */
3791 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3792 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3793 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3794 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3795 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3796 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3797 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3799 /* devices which puke on READ_NATIVE_MAX */
3800 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3801 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3802 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3803 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3809 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3811 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3812 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3813 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3815 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3816 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3818 while (ad->model_num) {
3819 if (!strcmp(ad->model_num, model_num)) {
3820 if (ad->model_rev == NULL)
3822 if (!strcmp(ad->model_rev, model_rev))
3830 static int ata_dma_blacklisted(const struct ata_device *dev)
3832 /* We don't support polling DMA.
3833 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3834 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3837 (dev->flags & ATA_DFLAG_CDB_INTR))
3839 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3843 * ata_dev_xfermask - Compute supported xfermask of the given device
3844 * @dev: Device to compute xfermask for
3846 * Compute supported xfermask of @dev and store it in
3847 * dev->*_mask. This function is responsible for applying all
3848 * known limits including host controller limits, device
3854 static void ata_dev_xfermask(struct ata_device *dev)
3856 struct ata_port *ap = dev->ap;
3857 struct ata_host *host = ap->host;
3858 unsigned long xfer_mask;
3860 /* controller modes available */
3861 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3862 ap->mwdma_mask, ap->udma_mask);
3864 /* drive modes available */
3865 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3866 dev->mwdma_mask, dev->udma_mask);
3867 xfer_mask &= ata_id_xfermask(dev->id);
3870 * CFA Advanced TrueIDE timings are not allowed on a shared
3873 if (ata_dev_pair(dev)) {
3874 /* No PIO5 or PIO6 */
3875 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3876 /* No MWDMA3 or MWDMA 4 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3880 if (ata_dma_blacklisted(dev)) {
3881 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3882 ata_dev_printk(dev, KERN_WARNING,
3883 "device is on DMA blacklist, disabling DMA\n");
3886 if ((host->flags & ATA_HOST_SIMPLEX) &&
3887 host->simplex_claimed && host->simplex_claimed != ap) {
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3889 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3890 "other device, disabling DMA\n");
3893 if (ap->flags & ATA_FLAG_NO_IORDY)
3894 xfer_mask &= ata_pio_mask_no_iordy(dev);
3896 if (ap->ops->mode_filter)
3897 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3899 /* Apply cable rule here. Don't apply it early because when
3900 * we handle hot plug the cable type can itself change.
3901 * Check this last so that we know if the transfer rate was
3902 * solely limited by the cable.
3903 * Unknown or 80 wire cables reported host side are checked
3904 * drive side as well. Cases where we know a 40wire cable
3905 * is used safely for 80 are not checked here.
3907 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3908 /* UDMA/44 or higher would be available */
3909 if((ap->cbl == ATA_CBL_PATA40) ||
3910 (ata_drive_40wire(dev->id) &&
3911 (ap->cbl == ATA_CBL_PATA_UNK ||
3912 ap->cbl == ATA_CBL_PATA80))) {
3913 ata_dev_printk(dev, KERN_WARNING,
3914 "limited to UDMA/33 due to 40-wire cable\n");
3915 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3919 &dev->mwdma_mask, &dev->udma_mask);
3923 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3924 * @dev: Device to which command will be sent
3926 * Issue SET FEATURES - XFER MODE command to device @dev
3930 * PCI/etc. bus probe sem.
3933 * 0 on success, AC_ERR_* mask otherwise.
3936 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3938 struct ata_taskfile tf;
3939 unsigned int err_mask;
3941 /* set up set-features taskfile */
3942 DPRINTK("set features - xfer mode\n");
3944 /* Some controllers and ATAPI devices show flaky interrupt
3945 * behavior after setting xfer mode. Use polling instead.
3947 ata_tf_init(dev, &tf);
3948 tf.command = ATA_CMD_SET_FEATURES;
3949 tf.feature = SETFEATURES_XFER;
3950 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3951 tf.protocol = ATA_PROT_NODATA;
3952 tf.nsect = dev->xfer_mode;
3954 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3956 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3961 * ata_dev_init_params - Issue INIT DEV PARAMS command
3962 * @dev: Device to which command will be sent
3963 * @heads: Number of heads (taskfile parameter)
3964 * @sectors: Number of sectors (taskfile parameter)
3967 * Kernel thread context (may sleep)
3970 * 0 on success, AC_ERR_* mask otherwise.
3972 static unsigned int ata_dev_init_params(struct ata_device *dev,
3973 u16 heads, u16 sectors)
3975 struct ata_taskfile tf;
3976 unsigned int err_mask;
3978 /* Number of sectors per track 1-255. Number of heads 1-16 */
3979 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3980 return AC_ERR_INVALID;
3982 /* set up init dev params taskfile */
3983 DPRINTK("init dev params \n");
3985 ata_tf_init(dev, &tf);
3986 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3987 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3988 tf.protocol = ATA_PROT_NODATA;
3990 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3993 /* A clean abort indicates an original or just out of spec drive
3994 and we should continue as we issue the setup based on the
3995 drive reported working geometry */
3996 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
3999 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4004 * ata_sg_clean - Unmap DMA memory associated with command
4005 * @qc: Command containing DMA memory to be released
4007 * Unmap all mapped DMA memory associated with this command.
4010 * spin_lock_irqsave(host lock)
4012 void ata_sg_clean(struct ata_queued_cmd *qc)
4014 struct ata_port *ap = qc->ap;
4015 struct scatterlist *sg = qc->__sg;
4016 int dir = qc->dma_dir;
4017 void *pad_buf = NULL;
4019 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4020 WARN_ON(sg == NULL);
4022 if (qc->flags & ATA_QCFLAG_SINGLE)
4023 WARN_ON(qc->n_elem > 1);
4025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4027 /* if we padded the buffer out to 32-bit bound, and data
4028 * xfer direction is from-device, we must copy from the
4029 * pad buffer back into the supplied buffer
4031 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4032 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4034 if (qc->flags & ATA_QCFLAG_SG) {
4036 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4037 /* restore last sg */
4038 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4040 struct scatterlist *psg = &qc->pad_sgent;
4041 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4042 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4043 kunmap_atomic(addr, KM_IRQ0);
4047 dma_unmap_single(ap->dev,
4048 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4051 sg->length += qc->pad_len;
4053 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4054 pad_buf, qc->pad_len);
4057 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4062 * ata_fill_sg - Fill PCI IDE PRD table
4063 * @qc: Metadata associated with taskfile to be transferred
4065 * Fill PCI IDE PRD (scatter-gather) table with segments
4066 * associated with the current disk command.
4069 * spin_lock_irqsave(host lock)
4072 static void ata_fill_sg(struct ata_queued_cmd *qc)
4074 struct ata_port *ap = qc->ap;
4075 struct scatterlist *sg;
4078 WARN_ON(qc->__sg == NULL);
4079 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4082 ata_for_each_sg(sg, qc) {
4086 /* determine if physical DMA addr spans 64K boundary.
4087 * Note h/w doesn't support 64-bit, so we unconditionally
4088 * truncate dma_addr_t to u32.
4090 addr = (u32) sg_dma_address(sg);
4091 sg_len = sg_dma_len(sg);
4094 offset = addr & 0xffff;
4096 if ((offset + sg_len) > 0x10000)
4097 len = 0x10000 - offset;
4099 ap->prd[idx].addr = cpu_to_le32(addr);
4100 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4101 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4110 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4114 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4115 * @qc: Metadata associated with taskfile to be transferred
4117 * Fill PCI IDE PRD (scatter-gather) table with segments
4118 * associated with the current disk command. Perform the fill
4119 * so that we avoid writing any length 64K records for
4120 * controllers that don't follow the spec.
4123 * spin_lock_irqsave(host lock)
4126 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4128 struct ata_port *ap = qc->ap;
4129 struct scatterlist *sg;
4132 WARN_ON(qc->__sg == NULL);
4133 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4136 ata_for_each_sg(sg, qc) {
4138 u32 sg_len, len, blen;
4140 /* determine if physical DMA addr spans 64K boundary.
4141 * Note h/w doesn't support 64-bit, so we unconditionally
4142 * truncate dma_addr_t to u32.
4144 addr = (u32) sg_dma_address(sg);
4145 sg_len = sg_dma_len(sg);
4148 offset = addr & 0xffff;
4150 if ((offset + sg_len) > 0x10000)
4151 len = 0x10000 - offset;
4153 blen = len & 0xffff;
4154 ap->prd[idx].addr = cpu_to_le32(addr);
4156 /* Some PATA chipsets like the CS5530 can't
4157 cope with 0x0000 meaning 64K as the spec says */
4158 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4160 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4162 ap->prd[idx].flags_len = cpu_to_le32(blen);
4163 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4172 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4176 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4177 * @qc: Metadata associated with taskfile to check
4179 * Allow low-level driver to filter ATA PACKET commands, returning
4180 * a status indicating whether or not it is OK to use DMA for the
4181 * supplied PACKET command.
4184 * spin_lock_irqsave(host lock)
4186 * RETURNS: 0 when ATAPI DMA can be used
4189 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4191 struct ata_port *ap = qc->ap;
4193 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4194 * few ATAPI devices choke on such DMA requests.
4196 if (unlikely(qc->nbytes & 15))
4199 if (ap->ops->check_atapi_dma)
4200 return ap->ops->check_atapi_dma(qc);
4206 * ata_qc_prep - Prepare taskfile for submission
4207 * @qc: Metadata associated with taskfile to be prepared
4209 * Prepare ATA taskfile for submission.
4212 * spin_lock_irqsave(host lock)
4214 void ata_qc_prep(struct ata_queued_cmd *qc)
4216 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4223 * ata_dumb_qc_prep - Prepare taskfile for submission
4224 * @qc: Metadata associated with taskfile to be prepared
4226 * Prepare ATA taskfile for submission.
4229 * spin_lock_irqsave(host lock)
4231 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4233 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4236 ata_fill_sg_dumb(qc);
4239 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4242 * ata_sg_init_one - Associate command with memory buffer
4243 * @qc: Command to be associated
4244 * @buf: Memory buffer
4245 * @buflen: Length of memory buffer, in bytes.
4247 * Initialize the data-related elements of queued_cmd @qc
4248 * to point to a single memory buffer, @buf of byte length @buflen.
4251 * spin_lock_irqsave(host lock)
4254 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4256 qc->flags |= ATA_QCFLAG_SINGLE;
4258 qc->__sg = &qc->sgent;
4260 qc->orig_n_elem = 1;
4262 qc->nbytes = buflen;
4264 sg_init_one(&qc->sgent, buf, buflen);
4268 * ata_sg_init - Associate command with scatter-gather table.
4269 * @qc: Command to be associated
4270 * @sg: Scatter-gather table.
4271 * @n_elem: Number of elements in s/g table.
4273 * Initialize the data-related elements of queued_cmd @qc
4274 * to point to a scatter-gather table @sg, containing @n_elem
4278 * spin_lock_irqsave(host lock)
4281 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4282 unsigned int n_elem)
4284 qc->flags |= ATA_QCFLAG_SG;
4286 qc->n_elem = n_elem;
4287 qc->orig_n_elem = n_elem;
4291 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4292 * @qc: Command with memory buffer to be mapped.
4294 * DMA-map the memory buffer associated with queued_cmd @qc.
4297 * spin_lock_irqsave(host lock)
4300 * Zero on success, negative on error.
4303 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4305 struct ata_port *ap = qc->ap;
4306 int dir = qc->dma_dir;
4307 struct scatterlist *sg = qc->__sg;
4308 dma_addr_t dma_address;
4311 /* we must lengthen transfers to end on a 32-bit boundary */
4312 qc->pad_len = sg->length & 3;
4314 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4315 struct scatterlist *psg = &qc->pad_sgent;
4317 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4319 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4321 if (qc->tf.flags & ATA_TFLAG_WRITE)
4322 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4328 sg->length -= qc->pad_len;
4329 if (sg->length == 0)
4332 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4333 sg->length, qc->pad_len);
4341 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4343 if (dma_mapping_error(dma_address)) {
4345 sg->length += qc->pad_len;
4349 sg_dma_address(sg) = dma_address;
4350 sg_dma_len(sg) = sg->length;
4353 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4354 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4360 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4361 * @qc: Command with scatter-gather table to be mapped.
4363 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4366 * spin_lock_irqsave(host lock)
4369 * Zero on success, negative on error.
4373 static int ata_sg_setup(struct ata_queued_cmd *qc)
4375 struct ata_port *ap = qc->ap;
4376 struct scatterlist *sg = qc->__sg;
4377 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4378 int n_elem, pre_n_elem, dir, trim_sg = 0;
4380 VPRINTK("ENTER, ata%u\n", ap->print_id);
4381 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4383 /* we must lengthen transfers to end on a 32-bit boundary */
4384 qc->pad_len = lsg->length & 3;
4386 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4387 struct scatterlist *psg = &qc->pad_sgent;
4388 unsigned int offset;
4390 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4392 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4395 * psg->page/offset are used to copy to-be-written
4396 * data in this function or read data in ata_sg_clean.
4398 offset = lsg->offset + lsg->length - qc->pad_len;
4399 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4400 psg->offset = offset_in_page(offset);
4402 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4403 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4404 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4405 kunmap_atomic(addr, KM_IRQ0);
4408 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4409 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4411 lsg->length -= qc->pad_len;
4412 if (lsg->length == 0)
4415 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4416 qc->n_elem - 1, lsg->length, qc->pad_len);
4419 pre_n_elem = qc->n_elem;
4420 if (trim_sg && pre_n_elem)
4429 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4431 /* restore last sg */
4432 lsg->length += qc->pad_len;
4436 DPRINTK("%d sg elements mapped\n", n_elem);
4439 qc->n_elem = n_elem;
4445 * swap_buf_le16 - swap halves of 16-bit words in place
4446 * @buf: Buffer to swap
4447 * @buf_words: Number of 16-bit words in buffer.
4449 * Swap halves of 16-bit words if needed to convert from
4450 * little-endian byte order to native cpu byte order, or
4454 * Inherited from caller.
4456 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4461 for (i = 0; i < buf_words; i++)
4462 buf[i] = le16_to_cpu(buf[i]);
4463 #endif /* __BIG_ENDIAN */
4467 * ata_data_xfer - Transfer data by PIO
4468 * @adev: device to target
4470 * @buflen: buffer length
4471 * @write_data: read/write
4473 * Transfer data from/to the device data register by PIO.
4476 * Inherited from caller.
4478 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4479 unsigned int buflen, int write_data)
4481 struct ata_port *ap = adev->ap;
4482 unsigned int words = buflen >> 1;
4484 /* Transfer multiple of 2 bytes */
4486 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4488 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4490 /* Transfer trailing 1 byte, if any. */
4491 if (unlikely(buflen & 0x01)) {
4492 u16 align_buf[1] = { 0 };
4493 unsigned char *trailing_buf = buf + buflen - 1;
4496 memcpy(align_buf, trailing_buf, 1);
4497 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4499 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4500 memcpy(trailing_buf, align_buf, 1);
4506 * ata_data_xfer_noirq - Transfer data by PIO
4507 * @adev: device to target
4509 * @buflen: buffer length
4510 * @write_data: read/write
4512 * Transfer data from/to the device data register by PIO. Do the
4513 * transfer with interrupts disabled.
4516 * Inherited from caller.
4518 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4519 unsigned int buflen, int write_data)
4521 unsigned long flags;
4522 local_irq_save(flags);
4523 ata_data_xfer(adev, buf, buflen, write_data);
4524 local_irq_restore(flags);
4529 * ata_pio_sector - Transfer a sector of data.
4530 * @qc: Command on going
4532 * Transfer qc->sect_size bytes of data from/to the ATA device.
4535 * Inherited from caller.
4538 static void ata_pio_sector(struct ata_queued_cmd *qc)
4540 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4541 struct scatterlist *sg = qc->__sg;
4542 struct ata_port *ap = qc->ap;
4544 unsigned int offset;
4547 if (qc->curbytes == qc->nbytes - qc->sect_size)
4548 ap->hsm_task_state = HSM_ST_LAST;
4550 page = sg[qc->cursg].page;
4551 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4553 /* get the current page and offset */
4554 page = nth_page(page, (offset >> PAGE_SHIFT));
4555 offset %= PAGE_SIZE;
4557 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4559 if (PageHighMem(page)) {
4560 unsigned long flags;
4562 /* FIXME: use a bounce buffer */
4563 local_irq_save(flags);
4564 buf = kmap_atomic(page, KM_IRQ0);
4566 /* do the actual data transfer */
4567 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4569 kunmap_atomic(buf, KM_IRQ0);
4570 local_irq_restore(flags);
4572 buf = page_address(page);
4573 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4576 qc->curbytes += qc->sect_size;
4577 qc->cursg_ofs += qc->sect_size;
4579 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4586 * ata_pio_sectors - Transfer one or many sectors.
4587 * @qc: Command on going
4589 * Transfer one or many sectors of data from/to the
4590 * ATA device for the DRQ request.
4593 * Inherited from caller.
4596 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4598 if (is_multi_taskfile(&qc->tf)) {
4599 /* READ/WRITE MULTIPLE */
4602 WARN_ON(qc->dev->multi_count == 0);
4604 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4605 qc->dev->multi_count);
4613 * atapi_send_cdb - Write CDB bytes to hardware
4614 * @ap: Port to which ATAPI device is attached.
4615 * @qc: Taskfile currently active
4617 * When device has indicated its readiness to accept
4618 * a CDB, this function is called. Send the CDB.
4624 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4627 DPRINTK("send cdb\n");
4628 WARN_ON(qc->dev->cdb_len < 12);
4630 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4631 ata_altstatus(ap); /* flush */
4633 switch (qc->tf.protocol) {
4634 case ATA_PROT_ATAPI:
4635 ap->hsm_task_state = HSM_ST;
4637 case ATA_PROT_ATAPI_NODATA:
4638 ap->hsm_task_state = HSM_ST_LAST;
4640 case ATA_PROT_ATAPI_DMA:
4641 ap->hsm_task_state = HSM_ST_LAST;
4642 /* initiate bmdma */
4643 ap->ops->bmdma_start(qc);
4649 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4650 * @qc: Command on going
4651 * @bytes: number of bytes
4653 * Transfer Transfer data from/to the ATAPI device.
4656 * Inherited from caller.
4660 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4663 struct scatterlist *sg = qc->__sg;
4664 struct ata_port *ap = qc->ap;
4667 unsigned int offset, count;
4669 if (qc->curbytes + bytes >= qc->nbytes)
4670 ap->hsm_task_state = HSM_ST_LAST;
4673 if (unlikely(qc->cursg >= qc->n_elem)) {
4675 * The end of qc->sg is reached and the device expects
4676 * more data to transfer. In order not to overrun qc->sg
4677 * and fulfill length specified in the byte count register,
4678 * - for read case, discard trailing data from the device
4679 * - for write case, padding zero data to the device
4681 u16 pad_buf[1] = { 0 };
4682 unsigned int words = bytes >> 1;
4685 if (words) /* warning if bytes > 1 */
4686 ata_dev_printk(qc->dev, KERN_WARNING,
4687 "%u bytes trailing data\n", bytes);
4689 for (i = 0; i < words; i++)
4690 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4692 ap->hsm_task_state = HSM_ST_LAST;
4696 sg = &qc->__sg[qc->cursg];
4699 offset = sg->offset + qc->cursg_ofs;
4701 /* get the current page and offset */
4702 page = nth_page(page, (offset >> PAGE_SHIFT));
4703 offset %= PAGE_SIZE;
4705 /* don't overrun current sg */
4706 count = min(sg->length - qc->cursg_ofs, bytes);
4708 /* don't cross page boundaries */
4709 count = min(count, (unsigned int)PAGE_SIZE - offset);
4711 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4713 if (PageHighMem(page)) {
4714 unsigned long flags;
4716 /* FIXME: use bounce buffer */
4717 local_irq_save(flags);
4718 buf = kmap_atomic(page, KM_IRQ0);
4720 /* do the actual data transfer */
4721 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4723 kunmap_atomic(buf, KM_IRQ0);
4724 local_irq_restore(flags);
4726 buf = page_address(page);
4727 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4731 qc->curbytes += count;
4732 qc->cursg_ofs += count;
4734 if (qc->cursg_ofs == sg->length) {
4744 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4745 * @qc: Command on going
4747 * Transfer Transfer data from/to the ATAPI device.
4750 * Inherited from caller.
4753 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4755 struct ata_port *ap = qc->ap;
4756 struct ata_device *dev = qc->dev;
4757 unsigned int ireason, bc_lo, bc_hi, bytes;
4758 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4760 /* Abuse qc->result_tf for temp storage of intermediate TF
4761 * here to save some kernel stack usage.
4762 * For normal completion, qc->result_tf is not relevant. For
4763 * error, qc->result_tf is later overwritten by ata_qc_complete().
4764 * So, the correctness of qc->result_tf is not affected.
4766 ap->ops->tf_read(ap, &qc->result_tf);
4767 ireason = qc->result_tf.nsect;
4768 bc_lo = qc->result_tf.lbam;
4769 bc_hi = qc->result_tf.lbah;
4770 bytes = (bc_hi << 8) | bc_lo;
4772 /* shall be cleared to zero, indicating xfer of data */
4773 if (ireason & (1 << 0))
4776 /* make sure transfer direction matches expected */
4777 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4778 if (do_write != i_write)
4781 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4783 __atapi_pio_bytes(qc, bytes);
4788 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4789 qc->err_mask |= AC_ERR_HSM;
4790 ap->hsm_task_state = HSM_ST_ERR;
4794 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4795 * @ap: the target ata_port
4799 * 1 if ok in workqueue, 0 otherwise.
4802 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4804 if (qc->tf.flags & ATA_TFLAG_POLLING)
4807 if (ap->hsm_task_state == HSM_ST_FIRST) {
4808 if (qc->tf.protocol == ATA_PROT_PIO &&
4809 (qc->tf.flags & ATA_TFLAG_WRITE))
4812 if (is_atapi_taskfile(&qc->tf) &&
4813 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4821 * ata_hsm_qc_complete - finish a qc running on standard HSM
4822 * @qc: Command to complete
4823 * @in_wq: 1 if called from workqueue, 0 otherwise
4825 * Finish @qc which is running on standard HSM.
4828 * If @in_wq is zero, spin_lock_irqsave(host lock).
4829 * Otherwise, none on entry and grabs host lock.
4831 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4833 struct ata_port *ap = qc->ap;
4834 unsigned long flags;
4836 if (ap->ops->error_handler) {
4838 spin_lock_irqsave(ap->lock, flags);
4840 /* EH might have kicked in while host lock is
4843 qc = ata_qc_from_tag(ap, qc->tag);
4845 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4846 ap->ops->irq_on(ap);
4847 ata_qc_complete(qc);
4849 ata_port_freeze(ap);
4852 spin_unlock_irqrestore(ap->lock, flags);
4854 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4855 ata_qc_complete(qc);
4857 ata_port_freeze(ap);
4861 spin_lock_irqsave(ap->lock, flags);
4862 ap->ops->irq_on(ap);
4863 ata_qc_complete(qc);
4864 spin_unlock_irqrestore(ap->lock, flags);
4866 ata_qc_complete(qc);
4871 * ata_hsm_move - move the HSM to the next state.
4872 * @ap: the target ata_port
4874 * @status: current device status
4875 * @in_wq: 1 if called from workqueue, 0 otherwise
4878 * 1 when poll next status needed, 0 otherwise.
4880 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4881 u8 status, int in_wq)
4883 unsigned long flags = 0;
4886 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4888 /* Make sure ata_qc_issue_prot() does not throw things
4889 * like DMA polling into the workqueue. Notice that
4890 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4892 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4895 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4896 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4898 switch (ap->hsm_task_state) {
4900 /* Send first data block or PACKET CDB */
4902 /* If polling, we will stay in the work queue after
4903 * sending the data. Otherwise, interrupt handler
4904 * takes over after sending the data.
4906 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4908 /* check device status */
4909 if (unlikely((status & ATA_DRQ) == 0)) {
4910 /* handle BSY=0, DRQ=0 as error */
4911 if (likely(status & (ATA_ERR | ATA_DF)))
4912 /* device stops HSM for abort/error */
4913 qc->err_mask |= AC_ERR_DEV;
4915 /* HSM violation. Let EH handle this */
4916 qc->err_mask |= AC_ERR_HSM;
4918 ap->hsm_task_state = HSM_ST_ERR;
4922 /* Device should not ask for data transfer (DRQ=1)
4923 * when it finds something wrong.
4924 * We ignore DRQ here and stop the HSM by
4925 * changing hsm_task_state to HSM_ST_ERR and
4926 * let the EH abort the command or reset the device.
4928 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4929 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4930 "error, dev_stat 0x%X\n", status);
4931 qc->err_mask |= AC_ERR_HSM;
4932 ap->hsm_task_state = HSM_ST_ERR;
4936 /* Send the CDB (atapi) or the first data block (ata pio out).
4937 * During the state transition, interrupt handler shouldn't
4938 * be invoked before the data transfer is complete and
4939 * hsm_task_state is changed. Hence, the following locking.
4942 spin_lock_irqsave(ap->lock, flags);
4944 if (qc->tf.protocol == ATA_PROT_PIO) {
4945 /* PIO data out protocol.
4946 * send first data block.
4949 /* ata_pio_sectors() might change the state
4950 * to HSM_ST_LAST. so, the state is changed here
4951 * before ata_pio_sectors().
4953 ap->hsm_task_state = HSM_ST;
4954 ata_pio_sectors(qc);
4955 ata_altstatus(ap); /* flush */
4958 atapi_send_cdb(ap, qc);
4961 spin_unlock_irqrestore(ap->lock, flags);
4963 /* if polling, ata_pio_task() handles the rest.
4964 * otherwise, interrupt handler takes over from here.
4969 /* complete command or read/write the data register */
4970 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4971 /* ATAPI PIO protocol */
4972 if ((status & ATA_DRQ) == 0) {
4973 /* No more data to transfer or device error.
4974 * Device error will be tagged in HSM_ST_LAST.
4976 ap->hsm_task_state = HSM_ST_LAST;
4980 /* Device should not ask for data transfer (DRQ=1)
4981 * when it finds something wrong.
4982 * We ignore DRQ here and stop the HSM by
4983 * changing hsm_task_state to HSM_ST_ERR and
4984 * let the EH abort the command or reset the device.
4986 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4987 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4988 "device error, dev_stat 0x%X\n",
4990 qc->err_mask |= AC_ERR_HSM;
4991 ap->hsm_task_state = HSM_ST_ERR;
4995 atapi_pio_bytes(qc);
4997 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4998 /* bad ireason reported by device */
5002 /* ATA PIO protocol */
5003 if (unlikely((status & ATA_DRQ) == 0)) {
5004 /* handle BSY=0, DRQ=0 as error */
5005 if (likely(status & (ATA_ERR | ATA_DF)))
5006 /* device stops HSM for abort/error */
5007 qc->err_mask |= AC_ERR_DEV;
5009 /* HSM violation. Let EH handle this.
5010 * Phantom devices also trigger this
5011 * condition. Mark hint.
5013 qc->err_mask |= AC_ERR_HSM |
5016 ap->hsm_task_state = HSM_ST_ERR;
5020 /* For PIO reads, some devices may ask for
5021 * data transfer (DRQ=1) alone with ERR=1.
5022 * We respect DRQ here and transfer one
5023 * block of junk data before changing the
5024 * hsm_task_state to HSM_ST_ERR.
5026 * For PIO writes, ERR=1 DRQ=1 doesn't make
5027 * sense since the data block has been
5028 * transferred to the device.
5030 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5031 /* data might be corrputed */
5032 qc->err_mask |= AC_ERR_DEV;
5034 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5035 ata_pio_sectors(qc);
5037 status = ata_wait_idle(ap);
5040 if (status & (ATA_BUSY | ATA_DRQ))
5041 qc->err_mask |= AC_ERR_HSM;
5043 /* ata_pio_sectors() might change the
5044 * state to HSM_ST_LAST. so, the state
5045 * is changed after ata_pio_sectors().
5047 ap->hsm_task_state = HSM_ST_ERR;
5051 ata_pio_sectors(qc);
5053 if (ap->hsm_task_state == HSM_ST_LAST &&
5054 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5057 status = ata_wait_idle(ap);
5062 ata_altstatus(ap); /* flush */
5067 if (unlikely(!ata_ok(status))) {
5068 qc->err_mask |= __ac_err_mask(status);
5069 ap->hsm_task_state = HSM_ST_ERR;
5073 /* no more data to transfer */
5074 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5075 ap->print_id, qc->dev->devno, status);
5077 WARN_ON(qc->err_mask);
5079 ap->hsm_task_state = HSM_ST_IDLE;
5081 /* complete taskfile transaction */
5082 ata_hsm_qc_complete(qc, in_wq);
5088 /* make sure qc->err_mask is available to
5089 * know what's wrong and recover
5091 WARN_ON(qc->err_mask == 0);
5093 ap->hsm_task_state = HSM_ST_IDLE;
5095 /* complete taskfile transaction */
5096 ata_hsm_qc_complete(qc, in_wq);
5108 static void ata_pio_task(struct work_struct *work)
5110 struct ata_port *ap =
5111 container_of(work, struct ata_port, port_task.work);
5112 struct ata_queued_cmd *qc = ap->port_task_data;
5117 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5120 * This is purely heuristic. This is a fast path.
5121 * Sometimes when we enter, BSY will be cleared in
5122 * a chk-status or two. If not, the drive is probably seeking
5123 * or something. Snooze for a couple msecs, then
5124 * chk-status again. If still busy, queue delayed work.
5126 status = ata_busy_wait(ap, ATA_BUSY, 5);
5127 if (status & ATA_BUSY) {
5129 status = ata_busy_wait(ap, ATA_BUSY, 10);
5130 if (status & ATA_BUSY) {
5131 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5137 poll_next = ata_hsm_move(ap, qc, status, 1);
5139 /* another command or interrupt handler
5140 * may be running at this point.
5147 * ata_qc_new - Request an available ATA command, for queueing
5148 * @ap: Port associated with device @dev
5149 * @dev: Device from whom we request an available command structure
5155 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5157 struct ata_queued_cmd *qc = NULL;
5160 /* no command while frozen */
5161 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5164 /* the last tag is reserved for internal command. */
5165 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5166 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5167 qc = __ata_qc_from_tag(ap, i);
5178 * ata_qc_new_init - Request an available ATA command, and initialize it
5179 * @dev: Device from whom we request an available command structure
5185 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5187 struct ata_port *ap = dev->ap;
5188 struct ata_queued_cmd *qc;
5190 qc = ata_qc_new(ap);
5203 * ata_qc_free - free unused ata_queued_cmd
5204 * @qc: Command to complete
5206 * Designed to free unused ata_queued_cmd object
5207 * in case something prevents using it.
5210 * spin_lock_irqsave(host lock)
5212 void ata_qc_free(struct ata_queued_cmd *qc)
5214 struct ata_port *ap = qc->ap;
5217 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5221 if (likely(ata_tag_valid(tag))) {
5222 qc->tag = ATA_TAG_POISON;
5223 clear_bit(tag, &ap->qc_allocated);
5227 void __ata_qc_complete(struct ata_queued_cmd *qc)
5229 struct ata_port *ap = qc->ap;
5231 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5232 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5234 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5237 /* command should be marked inactive atomically with qc completion */
5238 if (qc->tf.protocol == ATA_PROT_NCQ)
5239 ap->sactive &= ~(1 << qc->tag);
5241 ap->active_tag = ATA_TAG_POISON;
5243 /* atapi: mark qc as inactive to prevent the interrupt handler
5244 * from completing the command twice later, before the error handler
5245 * is called. (when rc != 0 and atapi request sense is needed)
5247 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5248 ap->qc_active &= ~(1 << qc->tag);
5250 /* call completion callback */
5251 qc->complete_fn(qc);
5254 static void fill_result_tf(struct ata_queued_cmd *qc)
5256 struct ata_port *ap = qc->ap;
5258 qc->result_tf.flags = qc->tf.flags;
5259 ap->ops->tf_read(ap, &qc->result_tf);
5263 * ata_qc_complete - Complete an active ATA command
5264 * @qc: Command to complete
5265 * @err_mask: ATA Status register contents
5267 * Indicate to the mid and upper layers that an ATA
5268 * command has completed, with either an ok or not-ok status.
5271 * spin_lock_irqsave(host lock)
5273 void ata_qc_complete(struct ata_queued_cmd *qc)
5275 struct ata_port *ap = qc->ap;
5277 /* XXX: New EH and old EH use different mechanisms to
5278 * synchronize EH with regular execution path.
5280 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5281 * Normal execution path is responsible for not accessing a
5282 * failed qc. libata core enforces the rule by returning NULL
5283 * from ata_qc_from_tag() for failed qcs.
5285 * Old EH depends on ata_qc_complete() nullifying completion
5286 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5287 * not synchronize with interrupt handler. Only PIO task is
5290 if (ap->ops->error_handler) {
5291 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5293 if (unlikely(qc->err_mask))
5294 qc->flags |= ATA_QCFLAG_FAILED;
5296 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5297 if (!ata_tag_internal(qc->tag)) {
5298 /* always fill result TF for failed qc */
5300 ata_qc_schedule_eh(qc);
5305 /* read result TF if requested */
5306 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5309 __ata_qc_complete(qc);
5311 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5314 /* read result TF if failed or requested */
5315 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5318 __ata_qc_complete(qc);
5323 * ata_qc_complete_multiple - Complete multiple qcs successfully
5324 * @ap: port in question
5325 * @qc_active: new qc_active mask
5326 * @finish_qc: LLDD callback invoked before completing a qc
5328 * Complete in-flight commands. This functions is meant to be
5329 * called from low-level driver's interrupt routine to complete
5330 * requests normally. ap->qc_active and @qc_active is compared
5331 * and commands are completed accordingly.
5334 * spin_lock_irqsave(host lock)
5337 * Number of completed commands on success, -errno otherwise.
5339 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5340 void (*finish_qc)(struct ata_queued_cmd *))
5346 done_mask = ap->qc_active ^ qc_active;
5348 if (unlikely(done_mask & qc_active)) {
5349 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5350 "(%08x->%08x)\n", ap->qc_active, qc_active);
5354 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5355 struct ata_queued_cmd *qc;
5357 if (!(done_mask & (1 << i)))
5360 if ((qc = ata_qc_from_tag(ap, i))) {
5363 ata_qc_complete(qc);
5371 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5373 struct ata_port *ap = qc->ap;
5375 switch (qc->tf.protocol) {
5378 case ATA_PROT_ATAPI_DMA:
5381 case ATA_PROT_ATAPI:
5383 if (ap->flags & ATA_FLAG_PIO_DMA)
5396 * ata_qc_issue - issue taskfile to device
5397 * @qc: command to issue to device
5399 * Prepare an ATA command to submission to device.
5400 * This includes mapping the data into a DMA-able
5401 * area, filling in the S/G table, and finally
5402 * writing the taskfile to hardware, starting the command.
5405 * spin_lock_irqsave(host lock)
5407 void ata_qc_issue(struct ata_queued_cmd *qc)
5409 struct ata_port *ap = qc->ap;
5411 /* Make sure only one non-NCQ command is outstanding. The
5412 * check is skipped for old EH because it reuses active qc to
5413 * request ATAPI sense.
5415 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5417 if (qc->tf.protocol == ATA_PROT_NCQ) {
5418 WARN_ON(ap->sactive & (1 << qc->tag));
5419 ap->sactive |= 1 << qc->tag;
5421 WARN_ON(ap->sactive);
5422 ap->active_tag = qc->tag;
5425 qc->flags |= ATA_QCFLAG_ACTIVE;
5426 ap->qc_active |= 1 << qc->tag;
5428 if (ata_should_dma_map(qc)) {
5429 if (qc->flags & ATA_QCFLAG_SG) {
5430 if (ata_sg_setup(qc))
5432 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5433 if (ata_sg_setup_one(qc))
5437 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5440 ap->ops->qc_prep(qc);
5442 qc->err_mask |= ap->ops->qc_issue(qc);
5443 if (unlikely(qc->err_mask))
5448 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5449 qc->err_mask |= AC_ERR_SYSTEM;
5451 ata_qc_complete(qc);
5455 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5456 * @qc: command to issue to device
5458 * Using various libata functions and hooks, this function
5459 * starts an ATA command. ATA commands are grouped into
5460 * classes called "protocols", and issuing each type of protocol
5461 * is slightly different.
5463 * May be used as the qc_issue() entry in ata_port_operations.
5466 * spin_lock_irqsave(host lock)
5469 * Zero on success, AC_ERR_* mask on failure
5472 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5474 struct ata_port *ap = qc->ap;
5476 /* Use polling pio if the LLD doesn't handle
5477 * interrupt driven pio and atapi CDB interrupt.
5479 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5480 switch (qc->tf.protocol) {
5482 case ATA_PROT_NODATA:
5483 case ATA_PROT_ATAPI:
5484 case ATA_PROT_ATAPI_NODATA:
5485 qc->tf.flags |= ATA_TFLAG_POLLING;
5487 case ATA_PROT_ATAPI_DMA:
5488 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5489 /* see ata_dma_blacklisted() */
5497 /* select the device */
5498 ata_dev_select(ap, qc->dev->devno, 1, 0);
5500 /* start the command */
5501 switch (qc->tf.protocol) {
5502 case ATA_PROT_NODATA:
5503 if (qc->tf.flags & ATA_TFLAG_POLLING)
5504 ata_qc_set_polling(qc);
5506 ata_tf_to_host(ap, &qc->tf);
5507 ap->hsm_task_state = HSM_ST_LAST;
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5515 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5517 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5518 ap->ops->bmdma_setup(qc); /* set up bmdma */
5519 ap->ops->bmdma_start(qc); /* initiate bmdma */
5520 ap->hsm_task_state = HSM_ST_LAST;
5524 if (qc->tf.flags & ATA_TFLAG_POLLING)
5525 ata_qc_set_polling(qc);
5527 ata_tf_to_host(ap, &qc->tf);
5529 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5530 /* PIO data out protocol */
5531 ap->hsm_task_state = HSM_ST_FIRST;
5532 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5534 /* always send first data block using
5535 * the ata_pio_task() codepath.
5538 /* PIO data in protocol */
5539 ap->hsm_task_state = HSM_ST;
5541 if (qc->tf.flags & ATA_TFLAG_POLLING)
5542 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5544 /* if polling, ata_pio_task() handles the rest.
5545 * otherwise, interrupt handler takes over from here.
5551 case ATA_PROT_ATAPI:
5552 case ATA_PROT_ATAPI_NODATA:
5553 if (qc->tf.flags & ATA_TFLAG_POLLING)
5554 ata_qc_set_polling(qc);
5556 ata_tf_to_host(ap, &qc->tf);
5558 ap->hsm_task_state = HSM_ST_FIRST;
5560 /* send cdb by polling if no cdb interrupt */
5561 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5562 (qc->tf.flags & ATA_TFLAG_POLLING))
5563 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5566 case ATA_PROT_ATAPI_DMA:
5567 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5569 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5570 ap->ops->bmdma_setup(qc); /* set up bmdma */
5571 ap->hsm_task_state = HSM_ST_FIRST;
5573 /* send cdb by polling if no cdb interrupt */
5574 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5575 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5580 return AC_ERR_SYSTEM;
5587 * ata_host_intr - Handle host interrupt for given (port, task)
5588 * @ap: Port on which interrupt arrived (possibly...)
5589 * @qc: Taskfile currently active in engine
5591 * Handle host interrupt for given queued command. Currently,
5592 * only DMA interrupts are handled. All other commands are
5593 * handled via polling with interrupts disabled (nIEN bit).
5596 * spin_lock_irqsave(host lock)
5599 * One if interrupt was handled, zero if not (shared irq).
5602 inline unsigned int ata_host_intr (struct ata_port *ap,
5603 struct ata_queued_cmd *qc)
5605 struct ata_eh_info *ehi = &ap->eh_info;
5606 u8 status, host_stat = 0;
5608 VPRINTK("ata%u: protocol %d task_state %d\n",
5609 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5611 /* Check whether we are expecting interrupt in this state */
5612 switch (ap->hsm_task_state) {
5614 /* Some pre-ATAPI-4 devices assert INTRQ
5615 * at this state when ready to receive CDB.
5618 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5619 * The flag was turned on only for atapi devices.
5620 * No need to check is_atapi_taskfile(&qc->tf) again.
5622 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5626 if (qc->tf.protocol == ATA_PROT_DMA ||
5627 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5628 /* check status of DMA engine */
5629 host_stat = ap->ops->bmdma_status(ap);
5630 VPRINTK("ata%u: host_stat 0x%X\n",
5631 ap->print_id, host_stat);
5633 /* if it's not our irq... */
5634 if (!(host_stat & ATA_DMA_INTR))
5637 /* before we do anything else, clear DMA-Start bit */
5638 ap->ops->bmdma_stop(qc);
5640 if (unlikely(host_stat & ATA_DMA_ERR)) {
5641 /* error when transfering data to/from memory */
5642 qc->err_mask |= AC_ERR_HOST_BUS;
5643 ap->hsm_task_state = HSM_ST_ERR;
5653 /* check altstatus */
5654 status = ata_altstatus(ap);
5655 if (status & ATA_BUSY)
5658 /* check main status, clearing INTRQ */
5659 status = ata_chk_status(ap);
5660 if (unlikely(status & ATA_BUSY))
5663 /* ack bmdma irq events */
5664 ap->ops->irq_clear(ap);
5666 ata_hsm_move(ap, qc, status, 0);
5668 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5669 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5670 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5672 return 1; /* irq handled */
5675 ap->stats.idle_irq++;
5678 if ((ap->stats.idle_irq % 1000) == 0) {
5679 ap->ops->irq_ack(ap, 0); /* debug trap */
5680 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5684 return 0; /* irq not handled */
5688 * ata_interrupt - Default ATA host interrupt handler
5689 * @irq: irq line (unused)
5690 * @dev_instance: pointer to our ata_host information structure
5692 * Default interrupt handler for PCI IDE devices. Calls
5693 * ata_host_intr() for each port that is not disabled.
5696 * Obtains host lock during operation.
5699 * IRQ_NONE or IRQ_HANDLED.
5702 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5704 struct ata_host *host = dev_instance;
5706 unsigned int handled = 0;
5707 unsigned long flags;
5709 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5710 spin_lock_irqsave(&host->lock, flags);
5712 for (i = 0; i < host->n_ports; i++) {
5713 struct ata_port *ap;
5715 ap = host->ports[i];
5717 !(ap->flags & ATA_FLAG_DISABLED)) {
5718 struct ata_queued_cmd *qc;
5720 qc = ata_qc_from_tag(ap, ap->active_tag);
5721 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5722 (qc->flags & ATA_QCFLAG_ACTIVE))
5723 handled |= ata_host_intr(ap, qc);
5727 spin_unlock_irqrestore(&host->lock, flags);
5729 return IRQ_RETVAL(handled);
5733 * sata_scr_valid - test whether SCRs are accessible
5734 * @ap: ATA port to test SCR accessibility for
5736 * Test whether SCRs are accessible for @ap.
5742 * 1 if SCRs are accessible, 0 otherwise.
5744 int sata_scr_valid(struct ata_port *ap)
5746 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5750 * sata_scr_read - read SCR register of the specified port
5751 * @ap: ATA port to read SCR for
5753 * @val: Place to store read value
5755 * Read SCR register @reg of @ap into *@val. This function is
5756 * guaranteed to succeed if the cable type of the port is SATA
5757 * and the port implements ->scr_read.
5763 * 0 on success, negative errno on failure.
5765 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5767 if (sata_scr_valid(ap))
5768 return ap->ops->scr_read(ap, reg, val);
5773 * sata_scr_write - write SCR register of the specified port
5774 * @ap: ATA port to write SCR for
5775 * @reg: SCR to write
5776 * @val: value to write
5778 * Write @val to SCR register @reg of @ap. This function is
5779 * guaranteed to succeed if the cable type of the port is SATA
5780 * and the port implements ->scr_read.
5786 * 0 on success, negative errno on failure.
5788 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5790 if (sata_scr_valid(ap))
5791 return ap->ops->scr_write(ap, reg, val);
5796 * sata_scr_write_flush - write SCR register of the specified port and flush
5797 * @ap: ATA port to write SCR for
5798 * @reg: SCR to write
5799 * @val: value to write
5801 * This function is identical to sata_scr_write() except that this
5802 * function performs flush after writing to the register.
5808 * 0 on success, negative errno on failure.
5810 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5814 if (sata_scr_valid(ap)) {
5815 rc = ap->ops->scr_write(ap, reg, val);
5817 rc = ap->ops->scr_read(ap, reg, &val);
5824 * ata_port_online - test whether the given port is online
5825 * @ap: ATA port to test
5827 * Test whether @ap is online. Note that this function returns 0
5828 * if online status of @ap cannot be obtained, so
5829 * ata_port_online(ap) != !ata_port_offline(ap).
5835 * 1 if the port online status is available and online.
5837 int ata_port_online(struct ata_port *ap)
5841 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5847 * ata_port_offline - test whether the given port is offline
5848 * @ap: ATA port to test
5850 * Test whether @ap is offline. Note that this function returns
5851 * 0 if offline status of @ap cannot be obtained, so
5852 * ata_port_online(ap) != !ata_port_offline(ap).
5858 * 1 if the port offline status is available and offline.
5860 int ata_port_offline(struct ata_port *ap)
5864 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5869 int ata_flush_cache(struct ata_device *dev)
5871 unsigned int err_mask;
5874 if (!ata_try_flush_cache(dev))
5877 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5878 cmd = ATA_CMD_FLUSH_EXT;
5880 cmd = ATA_CMD_FLUSH;
5882 err_mask = ata_do_simple_cmd(dev, cmd);
5884 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5892 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5893 unsigned int action, unsigned int ehi_flags,
5896 unsigned long flags;
5899 for (i = 0; i < host->n_ports; i++) {
5900 struct ata_port *ap = host->ports[i];
5902 /* Previous resume operation might still be in
5903 * progress. Wait for PM_PENDING to clear.
5905 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5906 ata_port_wait_eh(ap);
5907 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5910 /* request PM ops to EH */
5911 spin_lock_irqsave(ap->lock, flags);
5916 ap->pm_result = &rc;
5919 ap->pflags |= ATA_PFLAG_PM_PENDING;
5920 ap->eh_info.action |= action;
5921 ap->eh_info.flags |= ehi_flags;
5923 ata_port_schedule_eh(ap);
5925 spin_unlock_irqrestore(ap->lock, flags);
5927 /* wait and check result */
5929 ata_port_wait_eh(ap);
5930 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5940 * ata_host_suspend - suspend host
5941 * @host: host to suspend
5944 * Suspend @host. Actual operation is performed by EH. This
5945 * function requests EH to perform PM operations and waits for EH
5949 * Kernel thread context (may sleep).
5952 * 0 on success, -errno on failure.
5954 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5958 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5960 host->dev->power.power_state = mesg;
5965 * ata_host_resume - resume host
5966 * @host: host to resume
5968 * Resume @host. Actual operation is performed by EH. This
5969 * function requests EH to perform PM operations and returns.
5970 * Note that all resume operations are performed parallely.
5973 * Kernel thread context (may sleep).
5975 void ata_host_resume(struct ata_host *host)
5977 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5978 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5979 host->dev->power.power_state = PMSG_ON;
5984 * ata_port_start - Set port up for dma.
5985 * @ap: Port to initialize
5987 * Called just after data structures for each port are
5988 * initialized. Allocates space for PRD table.
5990 * May be used as the port_start() entry in ata_port_operations.
5993 * Inherited from caller.
5995 int ata_port_start(struct ata_port *ap)
5997 struct device *dev = ap->dev;
6000 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6005 rc = ata_pad_alloc(ap, dev);
6009 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6010 (unsigned long long)ap->prd_dma);
6015 * ata_dev_init - Initialize an ata_device structure
6016 * @dev: Device structure to initialize
6018 * Initialize @dev in preparation for probing.
6021 * Inherited from caller.
6023 void ata_dev_init(struct ata_device *dev)
6025 struct ata_port *ap = dev->ap;
6026 unsigned long flags;
6028 /* SATA spd limit is bound to the first device */
6029 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6032 /* High bits of dev->flags are used to record warm plug
6033 * requests which occur asynchronously. Synchronize using
6036 spin_lock_irqsave(ap->lock, flags);
6037 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6039 spin_unlock_irqrestore(ap->lock, flags);
6041 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6042 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6043 dev->pio_mask = UINT_MAX;
6044 dev->mwdma_mask = UINT_MAX;
6045 dev->udma_mask = UINT_MAX;
6049 * ata_port_alloc - allocate and initialize basic ATA port resources
6050 * @host: ATA host this allocated port belongs to
6052 * Allocate and initialize basic ATA port resources.
6055 * Allocate ATA port on success, NULL on failure.
6058 * Inherited from calling layer (may sleep).
6060 struct ata_port *ata_port_alloc(struct ata_host *host)
6062 struct ata_port *ap;
6067 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6071 ap->pflags |= ATA_PFLAG_INITIALIZING;
6072 ap->lock = &host->lock;
6073 ap->flags = ATA_FLAG_DISABLED;
6075 ap->ctl = ATA_DEVCTL_OBS;
6077 ap->dev = host->dev;
6079 ap->hw_sata_spd_limit = UINT_MAX;
6080 ap->active_tag = ATA_TAG_POISON;
6081 ap->last_ctl = 0xFF;
6083 #if defined(ATA_VERBOSE_DEBUG)
6084 /* turn on all debugging levels */
6085 ap->msg_enable = 0x00FF;
6086 #elif defined(ATA_DEBUG)
6087 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6089 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6092 INIT_DELAYED_WORK(&ap->port_task, NULL);
6093 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6094 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6095 INIT_LIST_HEAD(&ap->eh_done_q);
6096 init_waitqueue_head(&ap->eh_wait_q);
6097 init_timer_deferrable(&ap->fastdrain_timer);
6098 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6099 ap->fastdrain_timer.data = (unsigned long)ap;
6101 ap->cbl = ATA_CBL_NONE;
6103 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6104 struct ata_device *dev = &ap->device[i];
6111 ap->stats.unhandled_irq = 1;
6112 ap->stats.idle_irq = 1;
6117 static void ata_host_release(struct device *gendev, void *res)
6119 struct ata_host *host = dev_get_drvdata(gendev);
6122 for (i = 0; i < host->n_ports; i++) {
6123 struct ata_port *ap = host->ports[i];
6128 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6129 ap->ops->port_stop(ap);
6132 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6133 host->ops->host_stop(host);
6135 for (i = 0; i < host->n_ports; i++) {
6136 struct ata_port *ap = host->ports[i];
6142 scsi_host_put(ap->scsi_host);
6145 host->ports[i] = NULL;
6148 dev_set_drvdata(gendev, NULL);
6152 * ata_host_alloc - allocate and init basic ATA host resources
6153 * @dev: generic device this host is associated with
6154 * @max_ports: maximum number of ATA ports associated with this host
6156 * Allocate and initialize basic ATA host resources. LLD calls
6157 * this function to allocate a host, initializes it fully and
6158 * attaches it using ata_host_register().
6160 * @max_ports ports are allocated and host->n_ports is
6161 * initialized to @max_ports. The caller is allowed to decrease
6162 * host->n_ports before calling ata_host_register(). The unused
6163 * ports will be automatically freed on registration.
6166 * Allocate ATA host on success, NULL on failure.
6169 * Inherited from calling layer (may sleep).
6171 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6173 struct ata_host *host;
6179 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6182 /* alloc a container for our list of ATA ports (buses) */
6183 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6184 /* alloc a container for our list of ATA ports (buses) */
6185 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6189 devres_add(dev, host);
6190 dev_set_drvdata(dev, host);
6192 spin_lock_init(&host->lock);
6194 host->n_ports = max_ports;
6196 /* allocate ports bound to this host */
6197 for (i = 0; i < max_ports; i++) {
6198 struct ata_port *ap;
6200 ap = ata_port_alloc(host);
6205 host->ports[i] = ap;
6208 devres_remove_group(dev, NULL);
6212 devres_release_group(dev, NULL);
6217 * ata_host_alloc_pinfo - alloc host and init with port_info array
6218 * @dev: generic device this host is associated with
6219 * @ppi: array of ATA port_info to initialize host with
6220 * @n_ports: number of ATA ports attached to this host
6222 * Allocate ATA host and initialize with info from @ppi. If NULL
6223 * terminated, @ppi may contain fewer entries than @n_ports. The
6224 * last entry will be used for the remaining ports.
6227 * Allocate ATA host on success, NULL on failure.
6230 * Inherited from calling layer (may sleep).
6232 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6233 const struct ata_port_info * const * ppi,
6236 const struct ata_port_info *pi;
6237 struct ata_host *host;
6240 host = ata_host_alloc(dev, n_ports);
6244 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6245 struct ata_port *ap = host->ports[i];
6250 ap->pio_mask = pi->pio_mask;
6251 ap->mwdma_mask = pi->mwdma_mask;
6252 ap->udma_mask = pi->udma_mask;
6253 ap->flags |= pi->flags;
6254 ap->ops = pi->port_ops;
6256 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6257 host->ops = pi->port_ops;
6258 if (!host->private_data && pi->private_data)
6259 host->private_data = pi->private_data;
6266 * ata_host_start - start and freeze ports of an ATA host
6267 * @host: ATA host to start ports for
6269 * Start and then freeze ports of @host. Started status is
6270 * recorded in host->flags, so this function can be called
6271 * multiple times. Ports are guaranteed to get started only
6272 * once. If host->ops isn't initialized yet, its set to the
6273 * first non-dummy port ops.
6276 * Inherited from calling layer (may sleep).
6279 * 0 if all ports are started successfully, -errno otherwise.
6281 int ata_host_start(struct ata_host *host)
6285 if (host->flags & ATA_HOST_STARTED)
6288 for (i = 0; i < host->n_ports; i++) {
6289 struct ata_port *ap = host->ports[i];
6291 if (!host->ops && !ata_port_is_dummy(ap))
6292 host->ops = ap->ops;
6294 if (ap->ops->port_start) {
6295 rc = ap->ops->port_start(ap);
6297 ata_port_printk(ap, KERN_ERR, "failed to "
6298 "start port (errno=%d)\n", rc);
6303 ata_eh_freeze_port(ap);
6306 host->flags |= ATA_HOST_STARTED;
6311 struct ata_port *ap = host->ports[i];
6313 if (ap->ops->port_stop)
6314 ap->ops->port_stop(ap);
6320 * ata_sas_host_init - Initialize a host struct
6321 * @host: host to initialize
6322 * @dev: device host is attached to
6323 * @flags: host flags
6327 * PCI/etc. bus probe sem.
6330 /* KILLME - the only user left is ipr */
6331 void ata_host_init(struct ata_host *host, struct device *dev,
6332 unsigned long flags, const struct ata_port_operations *ops)
6334 spin_lock_init(&host->lock);
6336 host->flags = flags;
6341 * ata_host_register - register initialized ATA host
6342 * @host: ATA host to register
6343 * @sht: template for SCSI host
6345 * Register initialized ATA host. @host is allocated using
6346 * ata_host_alloc() and fully initialized by LLD. This function
6347 * starts ports, registers @host with ATA and SCSI layers and
6348 * probe registered devices.
6351 * Inherited from calling layer (may sleep).
6354 * 0 on success, -errno otherwise.
6356 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6360 /* host must have been started */
6361 if (!(host->flags & ATA_HOST_STARTED)) {
6362 dev_printk(KERN_ERR, host->dev,
6363 "BUG: trying to register unstarted host\n");
6368 /* Blow away unused ports. This happens when LLD can't
6369 * determine the exact number of ports to allocate at
6372 for (i = host->n_ports; host->ports[i]; i++)
6373 kfree(host->ports[i]);
6375 /* give ports names and add SCSI hosts */
6376 for (i = 0; i < host->n_ports; i++)
6377 host->ports[i]->print_id = ata_print_id++;
6379 rc = ata_scsi_add_hosts(host, sht);
6383 /* associate with ACPI nodes */
6384 ata_acpi_associate(host);
6386 /* set cable, sata_spd_limit and report */
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6391 unsigned long xfer_mask;
6393 /* set SATA cable type if still unset */
6394 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6395 ap->cbl = ATA_CBL_SATA;
6397 /* init sata_spd_limit to the current value */
6398 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6399 int spd = (scontrol >> 4) & 0xf;
6401 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6403 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6405 /* report the secondary IRQ for second channel legacy */
6406 irq_line = host->irq;
6407 if (i == 1 && host->irq2)
6408 irq_line = host->irq2;
6410 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6413 /* print per-port info to dmesg */
6414 if (!ata_port_is_dummy(ap))
6415 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6416 "ctl 0x%p bmdma 0x%p irq %d\n",
6417 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6418 ata_mode_string(xfer_mask),
6419 ap->ioaddr.cmd_addr,
6420 ap->ioaddr.ctl_addr,
6421 ap->ioaddr.bmdma_addr,
6424 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6427 /* perform each probe synchronously */
6428 DPRINTK("probe begin\n");
6429 for (i = 0; i < host->n_ports; i++) {
6430 struct ata_port *ap = host->ports[i];
6434 if (ap->ops->error_handler) {
6435 struct ata_eh_info *ehi = &ap->eh_info;
6436 unsigned long flags;
6440 /* kick EH for boot probing */
6441 spin_lock_irqsave(ap->lock, flags);
6443 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6444 ehi->action |= ATA_EH_SOFTRESET;
6445 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6447 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6448 ap->pflags |= ATA_PFLAG_LOADING;
6449 ata_port_schedule_eh(ap);
6451 spin_unlock_irqrestore(ap->lock, flags);
6453 /* wait for EH to finish */
6454 ata_port_wait_eh(ap);
6456 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6457 rc = ata_bus_probe(ap);
6458 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6461 /* FIXME: do something useful here?
6462 * Current libata behavior will
6463 * tear down everything when
6464 * the module is removed
6465 * or the h/w is unplugged.
6471 /* probes are done, now scan each port's disk(s) */
6472 DPRINTK("host probe begin\n");
6473 for (i = 0; i < host->n_ports; i++) {
6474 struct ata_port *ap = host->ports[i];
6476 ata_scsi_scan_host(ap, 1);
6483 * ata_host_activate - start host, request IRQ and register it
6484 * @host: target ATA host
6485 * @irq: IRQ to request
6486 * @irq_handler: irq_handler used when requesting IRQ
6487 * @irq_flags: irq_flags used when requesting IRQ
6488 * @sht: scsi_host_template to use when registering the host
6490 * After allocating an ATA host and initializing it, most libata
6491 * LLDs perform three steps to activate the host - start host,
6492 * request IRQ and register it. This helper takes necessasry
6493 * arguments and performs the three steps in one go.
6496 * Inherited from calling layer (may sleep).
6499 * 0 on success, -errno otherwise.
6501 int ata_host_activate(struct ata_host *host, int irq,
6502 irq_handler_t irq_handler, unsigned long irq_flags,
6503 struct scsi_host_template *sht)
6507 rc = ata_host_start(host);
6511 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6512 dev_driver_string(host->dev), host);
6516 /* Used to print device info at probe */
6519 rc = ata_host_register(host, sht);
6520 /* if failed, just free the IRQ and leave ports alone */
6522 devm_free_irq(host->dev, irq, host);
6528 * ata_port_detach - Detach ATA port in prepration of device removal
6529 * @ap: ATA port to be detached
6531 * Detach all ATA devices and the associated SCSI devices of @ap;
6532 * then, remove the associated SCSI host. @ap is guaranteed to
6533 * be quiescent on return from this function.
6536 * Kernel thread context (may sleep).
6538 void ata_port_detach(struct ata_port *ap)
6540 unsigned long flags;
6543 if (!ap->ops->error_handler)
6546 /* tell EH we're leaving & flush EH */
6547 spin_lock_irqsave(ap->lock, flags);
6548 ap->pflags |= ATA_PFLAG_UNLOADING;
6549 spin_unlock_irqrestore(ap->lock, flags);
6551 ata_port_wait_eh(ap);
6553 /* EH is now guaranteed to see UNLOADING, so no new device
6554 * will be attached. Disable all existing devices.
6556 spin_lock_irqsave(ap->lock, flags);
6558 for (i = 0; i < ATA_MAX_DEVICES; i++)
6559 ata_dev_disable(&ap->device[i]);
6561 spin_unlock_irqrestore(ap->lock, flags);
6563 /* Final freeze & EH. All in-flight commands are aborted. EH
6564 * will be skipped and retrials will be terminated with bad
6567 spin_lock_irqsave(ap->lock, flags);
6568 ata_port_freeze(ap); /* won't be thawed */
6569 spin_unlock_irqrestore(ap->lock, flags);
6571 ata_port_wait_eh(ap);
6572 cancel_rearming_delayed_work(&ap->hotplug_task);
6575 /* remove the associated SCSI host */
6576 scsi_remove_host(ap->scsi_host);
6580 * ata_host_detach - Detach all ports of an ATA host
6581 * @host: Host to detach
6583 * Detach all ports of @host.
6586 * Kernel thread context (may sleep).
6588 void ata_host_detach(struct ata_host *host)
6592 for (i = 0; i < host->n_ports; i++)
6593 ata_port_detach(host->ports[i]);
6597 * ata_std_ports - initialize ioaddr with standard port offsets.
6598 * @ioaddr: IO address structure to be initialized
6600 * Utility function which initializes data_addr, error_addr,
6601 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6602 * device_addr, status_addr, and command_addr to standard offsets
6603 * relative to cmd_addr.
6605 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6608 void ata_std_ports(struct ata_ioports *ioaddr)
6610 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6611 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6612 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6613 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6614 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6615 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6616 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6617 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6618 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6619 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6626 * ata_pci_remove_one - PCI layer callback for device removal
6627 * @pdev: PCI device that was removed
6629 * PCI layer indicates to libata via this hook that hot-unplug or
6630 * module unload event has occurred. Detach all ports. Resource
6631 * release is handled via devres.
6634 * Inherited from PCI layer (may sleep).
6636 void ata_pci_remove_one(struct pci_dev *pdev)
6638 struct device *dev = pci_dev_to_dev(pdev);
6639 struct ata_host *host = dev_get_drvdata(dev);
6641 ata_host_detach(host);
6644 /* move to PCI subsystem */
6645 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6647 unsigned long tmp = 0;
6649 switch (bits->width) {
6652 pci_read_config_byte(pdev, bits->reg, &tmp8);
6658 pci_read_config_word(pdev, bits->reg, &tmp16);
6664 pci_read_config_dword(pdev, bits->reg, &tmp32);
6675 return (tmp == bits->val) ? 1 : 0;
6679 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6681 pci_save_state(pdev);
6682 pci_disable_device(pdev);
6684 if (mesg.event == PM_EVENT_SUSPEND)
6685 pci_set_power_state(pdev, PCI_D3hot);
6688 int ata_pci_device_do_resume(struct pci_dev *pdev)
6692 pci_set_power_state(pdev, PCI_D0);
6693 pci_restore_state(pdev);
6695 rc = pcim_enable_device(pdev);
6697 dev_printk(KERN_ERR, &pdev->dev,
6698 "failed to enable device after resume (%d)\n", rc);
6702 pci_set_master(pdev);
6706 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6708 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6711 rc = ata_host_suspend(host, mesg);
6715 ata_pci_device_do_suspend(pdev, mesg);
6720 int ata_pci_device_resume(struct pci_dev *pdev)
6722 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6725 rc = ata_pci_device_do_resume(pdev);
6727 ata_host_resume(host);
6730 #endif /* CONFIG_PM */
6732 #endif /* CONFIG_PCI */
6735 static int __init ata_init(void)
6737 ata_probe_timeout *= HZ;
6738 ata_wq = create_workqueue("ata");
6742 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6744 destroy_workqueue(ata_wq);
6748 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6752 static void __exit ata_exit(void)
6754 destroy_workqueue(ata_wq);
6755 destroy_workqueue(ata_aux_wq);
6758 subsys_initcall(ata_init);
6759 module_exit(ata_exit);
6761 static unsigned long ratelimit_time;
6762 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6764 int ata_ratelimit(void)
6767 unsigned long flags;
6769 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6771 if (time_after(jiffies, ratelimit_time)) {
6773 ratelimit_time = jiffies + (HZ/5);
6777 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6783 * ata_wait_register - wait until register value changes
6784 * @reg: IO-mapped register
6785 * @mask: Mask to apply to read register value
6786 * @val: Wait condition
6787 * @interval_msec: polling interval in milliseconds
6788 * @timeout_msec: timeout in milliseconds
6790 * Waiting for some bits of register to change is a common
6791 * operation for ATA controllers. This function reads 32bit LE
6792 * IO-mapped register @reg and tests for the following condition.
6794 * (*@reg & mask) != val
6796 * If the condition is met, it returns; otherwise, the process is
6797 * repeated after @interval_msec until timeout.
6800 * Kernel thread context (may sleep)
6803 * The final register value.
6805 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6806 unsigned long interval_msec,
6807 unsigned long timeout_msec)
6809 unsigned long timeout;
6812 tmp = ioread32(reg);
6814 /* Calculate timeout _after_ the first read to make sure
6815 * preceding writes reach the controller before starting to
6816 * eat away the timeout.
6818 timeout = jiffies + (timeout_msec * HZ) / 1000;
6820 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6821 msleep(interval_msec);
6822 tmp = ioread32(reg);
6831 static void ata_dummy_noret(struct ata_port *ap) { }
6832 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6833 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6835 static u8 ata_dummy_check_status(struct ata_port *ap)
6840 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6842 return AC_ERR_SYSTEM;
6845 const struct ata_port_operations ata_dummy_port_ops = {
6846 .port_disable = ata_port_disable,
6847 .check_status = ata_dummy_check_status,
6848 .check_altstatus = ata_dummy_check_status,
6849 .dev_select = ata_noop_dev_select,
6850 .qc_prep = ata_noop_qc_prep,
6851 .qc_issue = ata_dummy_qc_issue,
6852 .freeze = ata_dummy_noret,
6853 .thaw = ata_dummy_noret,
6854 .error_handler = ata_dummy_noret,
6855 .post_internal_cmd = ata_dummy_qc_noret,
6856 .irq_clear = ata_dummy_noret,
6857 .port_start = ata_dummy_ret0,
6858 .port_stop = ata_dummy_noret,
6861 const struct ata_port_info ata_dummy_port_info = {
6862 .port_ops = &ata_dummy_port_ops,
6866 * libata is essentially a library of internal helper functions for
6867 * low-level ATA host controller drivers. As such, the API/ABI is
6868 * likely to change as new drivers are added and updated.
6869 * Do not depend on ABI/API stability.
6872 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6873 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6874 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6875 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6876 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6877 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6878 EXPORT_SYMBOL_GPL(ata_std_ports);
6879 EXPORT_SYMBOL_GPL(ata_host_init);
6880 EXPORT_SYMBOL_GPL(ata_host_alloc);
6881 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6882 EXPORT_SYMBOL_GPL(ata_host_start);
6883 EXPORT_SYMBOL_GPL(ata_host_register);
6884 EXPORT_SYMBOL_GPL(ata_host_activate);
6885 EXPORT_SYMBOL_GPL(ata_host_detach);
6886 EXPORT_SYMBOL_GPL(ata_sg_init);
6887 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6888 EXPORT_SYMBOL_GPL(ata_hsm_move);
6889 EXPORT_SYMBOL_GPL(ata_qc_complete);
6890 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6891 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6892 EXPORT_SYMBOL_GPL(ata_tf_load);
6893 EXPORT_SYMBOL_GPL(ata_tf_read);
6894 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6895 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6896 EXPORT_SYMBOL_GPL(sata_print_link_status);
6897 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6898 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6899 EXPORT_SYMBOL_GPL(ata_check_status);
6900 EXPORT_SYMBOL_GPL(ata_altstatus);
6901 EXPORT_SYMBOL_GPL(ata_exec_command);
6902 EXPORT_SYMBOL_GPL(ata_port_start);
6903 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6904 EXPORT_SYMBOL_GPL(ata_interrupt);
6905 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6906 EXPORT_SYMBOL_GPL(ata_data_xfer);
6907 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6908 EXPORT_SYMBOL_GPL(ata_qc_prep);
6909 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6910 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6911 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6912 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6913 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6914 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6915 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6916 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6917 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6918 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6919 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6920 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6921 EXPORT_SYMBOL_GPL(ata_port_probe);
6922 EXPORT_SYMBOL_GPL(ata_dev_disable);
6923 EXPORT_SYMBOL_GPL(sata_set_spd);
6924 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6925 EXPORT_SYMBOL_GPL(sata_phy_resume);
6926 EXPORT_SYMBOL_GPL(sata_phy_reset);
6927 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6928 EXPORT_SYMBOL_GPL(ata_bus_reset);
6929 EXPORT_SYMBOL_GPL(ata_std_prereset);
6930 EXPORT_SYMBOL_GPL(ata_std_softreset);
6931 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6932 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6933 EXPORT_SYMBOL_GPL(ata_std_postreset);
6934 EXPORT_SYMBOL_GPL(ata_dev_classify);
6935 EXPORT_SYMBOL_GPL(ata_dev_pair);
6936 EXPORT_SYMBOL_GPL(ata_port_disable);
6937 EXPORT_SYMBOL_GPL(ata_ratelimit);
6938 EXPORT_SYMBOL_GPL(ata_wait_register);
6939 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6940 EXPORT_SYMBOL_GPL(ata_wait_ready);
6941 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6942 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6943 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6944 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6945 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6946 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6947 EXPORT_SYMBOL_GPL(ata_host_intr);
6948 EXPORT_SYMBOL_GPL(sata_scr_valid);
6949 EXPORT_SYMBOL_GPL(sata_scr_read);
6950 EXPORT_SYMBOL_GPL(sata_scr_write);
6951 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6952 EXPORT_SYMBOL_GPL(ata_port_online);
6953 EXPORT_SYMBOL_GPL(ata_port_offline);
6955 EXPORT_SYMBOL_GPL(ata_host_suspend);
6956 EXPORT_SYMBOL_GPL(ata_host_resume);
6957 #endif /* CONFIG_PM */
6958 EXPORT_SYMBOL_GPL(ata_id_string);
6959 EXPORT_SYMBOL_GPL(ata_id_c_string);
6960 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6961 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6963 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6964 EXPORT_SYMBOL_GPL(ata_timing_compute);
6965 EXPORT_SYMBOL_GPL(ata_timing_merge);
6968 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6969 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
6970 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6971 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
6972 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6973 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6975 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6976 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6977 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6978 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6979 #endif /* CONFIG_PM */
6980 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6981 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6982 #endif /* CONFIG_PCI */
6984 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6985 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6986 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6987 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6988 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6989 EXPORT_SYMBOL_GPL(ata_port_abort);
6990 EXPORT_SYMBOL_GPL(ata_port_freeze);
6991 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6992 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6993 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6994 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6995 EXPORT_SYMBOL_GPL(ata_do_eh);
6996 EXPORT_SYMBOL_GPL(ata_irq_on);
6997 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6998 EXPORT_SYMBOL_GPL(ata_irq_ack);
6999 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
7000 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7002 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7003 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7004 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7005 EXPORT_SYMBOL_GPL(ata_cable_sata);