1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
9 #include <linux/stddef.h>
10 #include <asm/tlbflush.h>
11 #endif /* __ASSEMBLY__ */
13 #ifdef CONFIG_PPC_64K_PAGES
14 #include <asm/pgtable-64k.h>
16 #include <asm/pgtable-4k.h>
19 #define FIRST_USER_ADDRESS 0
22 * Size of EA range mapped by our pagetables.
24 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
26 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
28 #if TASK_SIZE_USER64 > PGTABLE_RANGE
29 #error TASK_SIZE_USER64 exceeds pagetable range
32 #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
33 #error TASK_SIZE_USER64 exceeds user VSID range
38 * Define the address range of the vmalloc VM area.
40 #define VMALLOC_START ASM_CONST(0xD000000000000000)
41 #define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
42 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
45 * Define the address ranges for MMIO and IO space :
47 * ISA_IO_BASE = VMALLOC_END, 64K reserved area
48 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
49 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
51 #define FULL_IO_SIZE 0x80000000ul
52 #define ISA_IO_BASE (VMALLOC_END)
53 #define ISA_IO_END (VMALLOC_END + 0x10000ul)
54 #define PHB_IO_BASE (ISA_IO_END)
55 #define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
56 #define IOREMAP_BASE (PHB_IO_END)
57 #define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
62 #define REGION_SHIFT 60UL
63 #define REGION_MASK (0xfUL << REGION_SHIFT)
64 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
66 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
67 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
68 #define VMEMMAP_REGION_ID (0xfUL)
69 #define USER_REGION_ID (0UL)
72 * Defines the address of the vmemap area, in its own region
74 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
75 #define vmemmap ((struct page *)VMEMMAP_BASE)
79 * Common bits in a linux-style PTE. These match the bits in the
80 * (hardware-defined) PowerPC PTE as closely as possible. Additional
81 * bits may be defined in pgtable-*.h
83 #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
84 #define _PAGE_USER 0x0002 /* matches one of the PP bits */
85 #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
86 #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
87 #define _PAGE_GUARDED 0x0008
88 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
89 #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
90 #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
91 #define _PAGE_DIRTY 0x0080 /* C: page changed */
92 #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
93 #define _PAGE_RW 0x0200 /* software: user write access allowed */
94 #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
95 #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
97 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
99 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
101 /* __pgprot defined in asm-powerpc/page.h */
102 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
104 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
105 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
106 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
107 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
108 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
109 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
110 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
111 #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
112 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
113 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
115 #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
116 #define HAVE_PAGE_AGP
119 #define _PTEIDX_SECONDARY 0x8
120 #define _PTEIDX_GROUP_IX 0x7
124 * POWER4 and newer have per page execute protection, older chips can only
125 * do this on a segment (256MB) basis.
127 * Also, write permissions imply read permissions.
128 * This is the closest we can get..
130 * Note due to the way vm flags are laid out, the bits are XWR
132 #define __P000 PAGE_NONE
133 #define __P001 PAGE_READONLY
134 #define __P010 PAGE_COPY
135 #define __P011 PAGE_COPY
136 #define __P100 PAGE_READONLY_X
137 #define __P101 PAGE_READONLY_X
138 #define __P110 PAGE_COPY_X
139 #define __P111 PAGE_COPY_X
141 #define __S000 PAGE_NONE
142 #define __S001 PAGE_READONLY
143 #define __S010 PAGE_SHARED
144 #define __S011 PAGE_SHARED
145 #define __S100 PAGE_READONLY_X
146 #define __S101 PAGE_READONLY_X
147 #define __S110 PAGE_SHARED_X
148 #define __S111 PAGE_SHARED_X
150 #ifdef CONFIG_HUGETLB_PAGE
152 #define HAVE_ARCH_UNMAPPED_AREA
153 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
160 * Conversion functions: convert a page and protection to a page entry,
161 * and a page entry and page directory to the page they refer to.
163 * mk_pte takes a (struct page *) as input
165 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
167 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
172 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
176 #define pte_modify(_pte, newprot) \
177 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
179 #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
180 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
182 /* pte_clear moved to later in this file */
184 #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
185 #define pte_page(x) pfn_to_page(pte_pfn(x))
187 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
188 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
190 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
191 #define pmd_none(pmd) (!pmd_val(pmd))
192 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
193 || (pmd_val(pmd) & PMD_BAD_BITS))
194 #define pmd_present(pmd) (pmd_val(pmd) != 0)
195 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
196 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
197 #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
199 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
200 #define pud_none(pud) (!pud_val(pud))
201 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
202 || (pud_val(pud) & PUD_BAD_BITS))
203 #define pud_present(pud) (pud_val(pud) != 0)
204 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
205 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
206 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
208 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
211 * Find an entry in a page-table-directory. We combine the address region
212 * (the high order N bits) and the pgd portion of the address.
214 /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
215 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
217 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
219 #define pmd_offset(pudp,addr) \
220 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
222 #define pte_offset_kernel(dir,addr) \
223 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
225 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
226 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
227 #define pte_unmap(pte) do { } while(0)
228 #define pte_unmap_nested(pte) do { } while(0)
230 /* to find an entry in a kernel page-table-directory */
231 /* This now only contains the vmalloc pages */
232 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
235 * The following only work if pte_present() is true.
236 * Undefined behaviour if not..
238 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
239 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
240 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
241 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
242 static inline int pte_special(pte_t pte) { return 0; }
244 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
245 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
247 static inline pte_t pte_wrprotect(pte_t pte) {
248 pte_val(pte) &= ~(_PAGE_RW); return pte; }
249 static inline pte_t pte_mkclean(pte_t pte) {
250 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
251 static inline pte_t pte_mkold(pte_t pte) {
252 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
253 static inline pte_t pte_mkwrite(pte_t pte) {
254 pte_val(pte) |= _PAGE_RW; return pte; }
255 static inline pte_t pte_mkdirty(pte_t pte) {
256 pte_val(pte) |= _PAGE_DIRTY; return pte; }
257 static inline pte_t pte_mkyoung(pte_t pte) {
258 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
259 static inline pte_t pte_mkhuge(pte_t pte) {
261 static inline pte_t pte_mkspecial(pte_t pte) {
264 /* Atomic PTE updates */
265 static inline unsigned long pte_update(struct mm_struct *mm,
267 pte_t *ptep, unsigned long clr,
270 unsigned long old, tmp;
272 __asm__ __volatile__(
273 "1: ldarx %0,0,%3 # pte_update\n\
279 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
280 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
283 if (old & _PAGE_HASHPTE)
284 hpte_need_flush(mm, addr, ptep, old, huge);
288 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
289 unsigned long addr, pte_t *ptep)
293 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
295 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
296 return (old & _PAGE_ACCESSED) != 0;
298 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
299 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
302 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
306 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
307 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
312 if ((pte_val(*ptep) & _PAGE_RW) == 0)
314 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
318 * We currently remove entries from the hashtable regardless of whether
319 * the entry was young or dirty. The generic routines only flush if the
320 * entry was young or dirty which is not good enough.
322 * We should be more intelligent about this but for the moment we override
323 * these functions and force a tlb flush unconditionally
325 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
326 #define ptep_clear_flush_young(__vma, __address, __ptep) \
328 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
333 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
334 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
335 unsigned long addr, pte_t *ptep)
337 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
341 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
344 pte_update(mm, addr, ptep, ~0UL, 0);
348 * set_pte stores a linux PTE into the linux page table.
350 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
353 if (pte_present(*ptep))
354 pte_clear(mm, addr, ptep);
355 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
359 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
360 * function doesn't need to flush the hash entry
362 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
363 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
365 unsigned long bits = pte_val(entry) &
366 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
367 unsigned long old, tmp;
369 __asm__ __volatile__(
376 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
377 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
380 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
382 int __changed = !pte_same(*(__ptep), __entry); \
384 __ptep_set_access_flags(__ptep, __entry, __dirty); \
385 flush_tlb_page_nohash(__vma, __address); \
391 * Macro to mark a page protection value as "uncacheable".
393 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
396 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
397 unsigned long size, pgprot_t vma_prot);
398 #define __HAVE_PHYS_MEM_ACCESS_PROT
400 #define __HAVE_ARCH_PTE_SAME
401 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
403 #define pte_ERROR(e) \
404 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
405 #define pmd_ERROR(e) \
406 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
407 #define pgd_ERROR(e) \
408 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
410 /* Encode and de-code a swap entry */
411 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
412 #define __swp_offset(entry) ((entry).val >> 8)
413 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
414 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
415 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
416 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
417 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
418 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
420 void pgtable_cache_init(void);
423 * find_linux_pte returns the address of a linux pte for a given
424 * effective address and directory. If not found, it returns zero.
425 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
432 pg = pgdir + pgd_index(ea);
433 if (!pgd_none(*pg)) {
434 pu = pud_offset(pg, ea);
435 if (!pud_none(*pu)) {
436 pm = pmd_offset(pu, ea);
437 if (pmd_present(*pm))
438 pt = pte_offset_kernel(pm, ea);
444 #endif /* __ASSEMBLY__ */
446 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */