2 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
5 * This modules exists as an interface between a Linux secondary partition
6 * running on an iSeries and the primary partition's Virtual Service
7 * Processor (VSP) object. The VSP has final authority over powering on/off
8 * all partitions in the iSeries. It also provides miscellaneous low-level
9 * machine facility type operations.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 #include <linux/types.h>
28 #include <linux/errno.h>
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/bcd.h>
37 #include <asm/uaccess.h>
39 #include <asm/iSeries/vio.h>
40 #include <asm/iSeries/mf.h>
41 #include <asm/iSeries/HvLpConfig.h>
42 #include <asm/iSeries/ItLpQueue.h>
46 extern int piranha_simulator;
49 * This is the structure layout for the Machine Facilites LPAR event
59 u64 state; /* GetStateOut */
60 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
61 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
62 u64 page[4]; /* GetSrcHistoryIn */
63 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
64 SetAutoIplWhenPrimaryIplsIn,
65 WhiteButtonPowerOffIn,
66 Function08FastPowerOffIn,
67 IsSpcnRackPowerIncompleteOut */
74 } kern; /* SetKernelImageIn, GetKernelImageIn,
75 SetKernelCmdLineIn, GetKernelCmdLineIn */
76 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
82 struct completion com;
83 struct vsp_cmd_data *response;
97 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
99 struct ce_msg_comp_data {
100 ce_msg_comp_hdlr handler;
107 struct ce_msg_comp_data *completion;
110 struct io_mf_lp_event {
111 struct HvLpEvent hp_lp_event;
112 u16 subtype_result_code;
116 struct alloc_data alloc;
117 struct ce_msg_data ce_msg;
118 struct vsp_cmd_data vsp_cmd;
122 #define subtype_data(a, b, c, d) \
123 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
126 * All outgoing event traffic is kept on a FIFO queue. The first
127 * pointer points to the one that is outstanding, and all new
128 * requests get stuck on the end. Also, we keep a certain number of
129 * preallocated pending events so that we can operate very early in
130 * the boot up sequence (before kmalloc is ready).
132 struct pending_event {
133 struct pending_event *next;
134 struct io_mf_lp_event event;
135 MFCompleteHandler hdlr;
137 unsigned dma_data_length;
138 unsigned remote_address;
140 static spinlock_t pending_event_spinlock;
141 static struct pending_event *pending_event_head;
142 static struct pending_event *pending_event_tail;
143 static struct pending_event *pending_event_avail;
144 static struct pending_event pending_event_prealloc[16];
147 * Put a pending event onto the available queue, so it can get reused.
148 * Attention! You must have the pending_event_spinlock before calling!
150 static void free_pending_event(struct pending_event *ev)
153 ev->next = pending_event_avail;
154 pending_event_avail = ev;
159 * Enqueue the outbound event onto the stack. If the queue was
160 * empty to begin with, we must also issue it via the Hypervisor
161 * interface. There is a section of code below that will touch
162 * the first stack pointer without the protection of the pending_event_spinlock.
163 * This is OK, because we know that nobody else will be modifying
164 * the first pointer when we do this.
166 static int signal_event(struct pending_event *ev)
171 struct pending_event *ev1;
174 /* enqueue the event */
177 spin_lock_irqsave(&pending_event_spinlock, flags);
178 if (pending_event_head == NULL)
179 pending_event_head = ev;
182 pending_event_tail->next = ev;
184 pending_event_tail = ev;
185 spin_unlock_irqrestore(&pending_event_spinlock, flags);
192 /* any DMA data to send beforehand? */
193 if (pending_event_head->dma_data_length > 0)
194 HvCallEvent_dmaToSp(pending_event_head->dma_data,
195 pending_event_head->remote_address,
196 pending_event_head->dma_data_length,
197 HvLpDma_Direction_LocalToRemote);
199 hv_rc = HvCallEvent_signalLpEvent(
200 &pending_event_head->event.hp_lp_event);
201 if (hv_rc != HvLpEvent_Rc_Good) {
202 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
203 "failed with %d\n", (int)hv_rc);
205 spin_lock_irqsave(&pending_event_spinlock, flags);
206 ev1 = pending_event_head;
207 pending_event_head = pending_event_head->next;
208 if (pending_event_head != NULL)
210 spin_unlock_irqrestore(&pending_event_spinlock, flags);
214 else if (ev1->hdlr != NULL)
215 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
217 spin_lock_irqsave(&pending_event_spinlock, flags);
218 free_pending_event(ev1);
219 spin_unlock_irqrestore(&pending_event_spinlock, flags);
227 * Allocate a new pending_event structure, and initialize it.
229 static struct pending_event *new_pending_event(void)
231 struct pending_event *ev = NULL;
232 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
234 struct HvLpEvent *hev;
236 spin_lock_irqsave(&pending_event_spinlock, flags);
237 if (pending_event_avail != NULL) {
238 ev = pending_event_avail;
239 pending_event_avail = pending_event_avail->next;
241 spin_unlock_irqrestore(&pending_event_spinlock, flags);
243 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
245 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
246 sizeof(struct pending_event));
250 memset(ev, 0, sizeof(struct pending_event));
251 hev = &ev->event.hp_lp_event;
252 hev->xFlags.xValid = 1;
253 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
254 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
255 hev->xFlags.xFunction = HvLpEvent_Function_Int;
256 hev->xType = HvLpEvent_Type_MachineFac;
257 hev->xSourceLp = HvLpConfig_getLpIndex();
258 hev->xTargetLp = primary_lp;
259 hev->xSizeMinus1 = sizeof(ev->event) - 1;
260 hev->xRc = HvLpEvent_Rc_Good;
261 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
262 HvLpEvent_Type_MachineFac);
263 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
264 HvLpEvent_Type_MachineFac);
269 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
271 struct pending_event *ev = new_pending_event();
273 struct vsp_rsp_data response;
278 init_completion(&response.com);
279 response.response = vsp_cmd;
280 ev->event.hp_lp_event.xSubtype = 6;
281 ev->event.hp_lp_event.x.xSubtypeData =
282 subtype_data('M', 'F', 'V', 'I');
283 ev->event.data.vsp_cmd.token = (u64)&response;
284 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
285 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
286 ev->event.data.vsp_cmd.result_code = 0xFF;
287 ev->event.data.vsp_cmd.reserved = 0;
288 memcpy(&(ev->event.data.vsp_cmd.sub_data),
289 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
292 rc = signal_event(ev);
294 wait_for_completion(&response.com);
300 * Send a 12-byte CE message to the primary partition VSP object
302 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
304 struct pending_event *ev = new_pending_event();
309 ev->event.hp_lp_event.xSubtype = 0;
310 ev->event.hp_lp_event.x.xSubtypeData =
311 subtype_data('M', 'F', 'C', 'E');
312 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
313 ev->event.data.ce_msg.completion = completion;
314 return signal_event(ev);
318 * Send a 12-byte CE message (with no data) to the primary partition VSP object
320 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
324 memset(ce_msg, 0, sizeof(ce_msg));
326 return signal_ce_msg(ce_msg, completion);
330 * Send a 12-byte CE message and DMA data to the primary partition VSP object
332 static int dma_and_signal_ce_msg(char *ce_msg,
333 struct ce_msg_comp_data *completion, void *dma_data,
334 unsigned dma_data_length, unsigned remote_address)
336 struct pending_event *ev = new_pending_event();
341 ev->event.hp_lp_event.xSubtype = 0;
342 ev->event.hp_lp_event.x.xSubtypeData =
343 subtype_data('M', 'F', 'C', 'E');
344 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
345 ev->event.data.ce_msg.completion = completion;
346 memcpy(ev->dma_data, dma_data, dma_data_length);
347 ev->dma_data_length = dma_data_length;
348 ev->remote_address = remote_address;
349 return signal_event(ev);
353 * Initiate a nice (hopefully) shutdown of Linux. We simply are
354 * going to try and send the init process a SIGINT signal. If
355 * this fails (why?), we'll simply force it off in a not-so-nice
358 static int shutdown(void)
360 int rc = kill_proc(1, SIGINT, 1);
363 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
364 "hard shutdown commencing\n", rc);
367 printk(KERN_INFO "mf.c: init has been successfully notified "
368 "to proceed with shutdown\n");
373 * The primary partition VSP object is sending us a new
374 * event flow. Handle it...
376 static void handle_int(struct io_mf_lp_event *event)
378 struct ce_msg_data *ce_msg_data;
379 struct ce_msg_data *pce_msg_data;
381 struct pending_event *pev;
383 /* ack the interrupt */
384 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
385 HvCallEvent_ackLpEvent(&event->hp_lp_event);
387 /* process interrupt */
388 switch (event->hp_lp_event.xSubtype) {
389 case 0: /* CE message */
390 ce_msg_data = &event->data.ce_msg;
391 switch (ce_msg_data->ce_msg[3]) {
392 case 0x5B: /* power control notification */
393 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
394 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
396 signal_ce_msg_simple(0xDB, NULL);
399 case 0xC0: /* get time */
400 spin_lock_irqsave(&pending_event_spinlock, flags);
401 pev = pending_event_head;
403 pending_event_head = pending_event_head->next;
404 spin_unlock_irqrestore(&pending_event_spinlock, flags);
407 pce_msg_data = &pev->event.data.ce_msg;
408 if (pce_msg_data->ce_msg[3] != 0x40)
410 if (pce_msg_data->completion != NULL) {
411 ce_msg_comp_hdlr handler =
412 pce_msg_data->completion->handler;
413 void *token = pce_msg_data->completion->token;
416 (*handler)(token, ce_msg_data);
418 spin_lock_irqsave(&pending_event_spinlock, flags);
419 free_pending_event(pev);
420 spin_unlock_irqrestore(&pending_event_spinlock, flags);
421 /* send next waiting event */
422 if (pending_event_head != NULL)
427 case 1: /* IT sys shutdown */
428 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
435 * The primary partition VSP object is acknowledging the receipt
436 * of a flow we sent to them. If there are other flows queued
437 * up, we must send another one now...
439 static void handle_ack(struct io_mf_lp_event *event)
442 struct pending_event *two = NULL;
443 unsigned long free_it = 0;
444 struct ce_msg_data *ce_msg_data;
445 struct ce_msg_data *pce_msg_data;
446 struct vsp_rsp_data *rsp;
448 /* handle current event */
449 if (pending_event_head == NULL) {
450 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
454 switch (event->hp_lp_event.xSubtype) {
456 ce_msg_data = &event->data.ce_msg;
457 if (ce_msg_data->ce_msg[3] != 0x40) {
461 if (ce_msg_data->ce_msg[2] == 0)
464 pce_msg_data = &pending_event_head->event.data.ce_msg;
465 if (pce_msg_data->completion != NULL) {
466 ce_msg_comp_hdlr handler =
467 pce_msg_data->completion->handler;
468 void *token = pce_msg_data->completion->token;
471 (*handler)(token, ce_msg_data);
474 case 4: /* allocate */
475 case 5: /* deallocate */
476 if (pending_event_head->hdlr != NULL)
477 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
482 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
484 printk(KERN_ERR "mf.c: no rsp\n");
487 if (rsp->response != NULL)
488 memcpy(rsp->response, &event->data.vsp_cmd,
489 sizeof(event->data.vsp_cmd));
494 /* remove from queue */
495 spin_lock_irqsave(&pending_event_spinlock, flags);
496 if ((pending_event_head != NULL) && (free_it == 1)) {
497 struct pending_event *oldHead = pending_event_head;
499 pending_event_head = pending_event_head->next;
500 two = pending_event_head;
501 free_pending_event(oldHead);
503 spin_unlock_irqrestore(&pending_event_spinlock, flags);
505 /* send next waiting event */
511 * This is the generic event handler we are registering with
512 * the Hypervisor. Ensure the flows are for us, and then
513 * parse it enough to know if it is an interrupt or an
516 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
518 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
519 switch(event->xFlags.xFunction) {
520 case HvLpEvent_Function_Ack:
521 handle_ack((struct io_mf_lp_event *)event);
523 case HvLpEvent_Function_Int:
524 handle_int((struct io_mf_lp_event *)event);
527 printk(KERN_ERR "mf.c: non ack/int event received\n");
531 printk(KERN_ERR "mf.c: alien event received\n");
535 * Global kernel interface to allocate and seed events into the
538 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
539 unsigned size, unsigned count, MFCompleteHandler hdlr,
542 struct pending_event *ev = new_pending_event();
548 ev->event.hp_lp_event.xSubtype = 4;
549 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
550 ev->event.hp_lp_event.x.xSubtypeData =
551 subtype_data('M', 'F', 'M', 'A');
552 ev->event.data.alloc.target_lp = target_lp;
553 ev->event.data.alloc.type = type;
554 ev->event.data.alloc.size = size;
555 ev->event.data.alloc.count = count;
557 rc = signal_event(ev);
559 if ((rc != 0) && (hdlr != NULL))
560 (*hdlr)(user_token, rc);
562 EXPORT_SYMBOL(mf_allocate_lp_events);
565 * Global kernel interface to unseed and deallocate events already in
568 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
569 unsigned count, MFCompleteHandler hdlr, void *user_token)
571 struct pending_event *ev = new_pending_event();
577 ev->event.hp_lp_event.xSubtype = 5;
578 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
579 ev->event.hp_lp_event.x.xSubtypeData =
580 subtype_data('M', 'F', 'M', 'D');
581 ev->event.data.alloc.target_lp = target_lp;
582 ev->event.data.alloc.type = type;
583 ev->event.data.alloc.count = count;
585 rc = signal_event(ev);
587 if ((rc != 0) && (hdlr != NULL))
588 (*hdlr)(user_token, rc);
590 EXPORT_SYMBOL(mf_deallocate_lp_events);
593 * Global kernel interface to tell the VSP object in the primary
594 * partition to power this partition off.
596 void mf_power_off(void)
598 printk(KERN_INFO "mf.c: Down it goes...\n");
599 signal_ce_msg_simple(0x4d, NULL);
605 * Global kernel interface to tell the VSP object in the primary
606 * partition to reboot this partition.
610 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
611 signal_ce_msg_simple(0x4e, NULL);
617 * Display a single word SRC onto the VSP control panel.
619 void mf_display_src(u32 word)
623 memset(ce, 0, sizeof(ce));
630 signal_ce_msg(ce, NULL);
634 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
636 void mf_display_progress(u16 value)
641 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
642 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
643 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
644 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
645 "\x00\x00\x00\x00PROGxxxx ",
648 src[7] = value & 255;
649 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
650 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
651 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
652 src[47] = "0123456789ABCDEF"[value & 15];
653 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
657 * Clear the VSP control panel. Used to "erase" an SRC that was
658 * previously displayed.
660 void mf_clear_src(void)
662 signal_ce_msg_simple(0x4b, NULL);
666 * Initialization code here.
673 spin_lock_init(&pending_event_spinlock);
675 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
677 free_pending_event(&pending_event_prealloc[i]);
678 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
680 /* virtual continue ack */
681 signal_ce_msg_simple(0x57, NULL);
683 /* initialization complete */
684 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
688 struct rtc_time_data {
689 struct completion com;
690 struct ce_msg_data ce_msg;
694 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
696 struct rtc_time_data *rtc = token;
698 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
703 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
718 if ((ce_msg[2] == 0xa9) ||
719 (ce_msg[2] == 0xaf)) {
720 /* TOD clock is not set */
758 int mf_get_rtc(struct rtc_time *tm)
760 struct ce_msg_comp_data ce_complete;
761 struct rtc_time_data rtc_data;
764 memset(&ce_complete, 0, sizeof(ce_complete));
765 memset(&rtc_data, 0, sizeof(rtc_data));
766 init_completion(&rtc_data.com);
767 ce_complete.handler = &get_rtc_time_complete;
768 ce_complete.token = &rtc_data;
769 rc = signal_ce_msg_simple(0x40, &ce_complete);
772 wait_for_completion(&rtc_data.com);
773 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
776 struct boot_rtc_time_data {
778 struct ce_msg_data ce_msg;
782 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
784 struct boot_rtc_time_data *rtc = token;
786 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
791 int mf_get_boot_rtc(struct rtc_time *tm)
793 struct ce_msg_comp_data ce_complete;
794 struct boot_rtc_time_data rtc_data;
797 memset(&ce_complete, 0, sizeof(ce_complete));
798 memset(&rtc_data, 0, sizeof(rtc_data));
800 ce_complete.handler = &get_boot_rtc_time_complete;
801 ce_complete.token = &rtc_data;
802 rc = signal_ce_msg_simple(0x40, &ce_complete);
805 /* We need to poll here as we are not yet taking interrupts */
806 while (rtc_data.busy) {
807 if (hvlpevent_is_pending())
808 process_hvlpevents(NULL);
810 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
813 int mf_set_rtc(struct rtc_time *tm)
816 u8 day, mon, hour, min, sec, y1, y2;
819 year = 1900 + tm->tm_year;
827 mon = tm->tm_mon + 1;
837 memset(ce_time, 0, sizeof(ce_time));
847 return signal_ce_msg(ce_time, NULL);
850 #ifdef CONFIG_PROC_FS
852 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
853 int count, int *eof, void *data)
857 struct vsp_cmd_data vsp_cmd;
861 /* The HV appears to return no more than 256 bytes of command line */
864 if ((off + count) > 256)
867 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
869 if (dma_mapping_error(dma_addr))
871 memset(page, 0, off + count);
872 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
874 vsp_cmd.sub_data.kern.token = dma_addr;
875 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
876 vsp_cmd.sub_data.kern.side = (u64)data;
877 vsp_cmd.sub_data.kern.length = off + count;
879 rc = signal_vsp_instruction(&vsp_cmd);
880 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
884 if (vsp_cmd.result_code != 0)
888 while (len < (off + count)) {
889 if ((*p == '\0') || (*p == '\n')) {
909 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
911 struct vsp_cmd_data vsp_cmd;
916 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
918 memset(buffer, 0, len);
919 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
921 vsp_cmd.sub_data.kern.token = dma_addr;
922 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
923 vsp_cmd.sub_data.kern.side = side;
924 vsp_cmd.sub_data.kern.offset = offset;
925 vsp_cmd.sub_data.kern.length = len;
927 rc = signal_vsp_instruction(&vsp_cmd);
929 if (vsp_cmd.result_code == 0)
930 *size = vsp_cmd.sub_data.length_out;
935 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
940 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
941 int count, int *eof, void *data)
943 int sizeToGet = count;
945 if (!capable(CAP_SYS_ADMIN))
948 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
949 if (sizeToGet != 0) {
961 static int proc_mf_dump_side(char *page, char **start, off_t off,
962 int count, int *eof, void *data)
965 char mf_current_side = ' ';
966 struct vsp_cmd_data vsp_cmd;
968 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
970 vsp_cmd.sub_data.ipl_type = 0;
973 if (signal_vsp_instruction(&vsp_cmd) == 0) {
974 if (vsp_cmd.result_code == 0) {
975 switch (vsp_cmd.sub_data.ipl_type) {
976 case 0: mf_current_side = 'A';
978 case 1: mf_current_side = 'B';
980 case 2: mf_current_side = 'C';
982 default: mf_current_side = 'D';
988 len = sprintf(page, "%c\n", mf_current_side);
990 if (len <= (off + count))
1001 static int proc_mf_change_side(struct file *file, const char __user *buffer,
1002 unsigned long count, void *data)
1006 struct vsp_cmd_data vsp_cmd;
1008 if (!capable(CAP_SYS_ADMIN))
1014 if (get_user(side, buffer))
1018 case 'A': newSide = 0;
1020 case 'B': newSide = 1;
1022 case 'C': newSide = 2;
1024 case 'D': newSide = 3;
1027 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1031 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1032 vsp_cmd.sub_data.ipl_type = newSide;
1035 (void)signal_vsp_instruction(&vsp_cmd);
1041 static void mf_getSrcHistory(char *buffer, int size)
1043 struct IplTypeReturnStuff return_stuff;
1044 struct pending_event *ev = new_pending_event();
1048 pages[0] = kmalloc(4096, GFP_ATOMIC);
1049 pages[1] = kmalloc(4096, GFP_ATOMIC);
1050 pages[2] = kmalloc(4096, GFP_ATOMIC);
1051 pages[3] = kmalloc(4096, GFP_ATOMIC);
1052 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1053 || (pages[2] == NULL) || (pages[3] == NULL))
1056 return_stuff.xType = 0;
1057 return_stuff.xRc = 0;
1058 return_stuff.xDone = 0;
1059 ev->event.hp_lp_event.xSubtype = 6;
1060 ev->event.hp_lp_event.x.xSubtypeData =
1061 subtype_data('M', 'F', 'V', 'I');
1062 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1063 ev->event.data.vsp_cmd.cmd = 4;
1064 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1065 ev->event.data.vsp_cmd.result_code = 0xFF;
1066 ev->event.data.vsp_cmd.reserved = 0;
1067 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1068 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1069 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1070 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1072 if (signal_event(ev) != 0)
1075 while (return_stuff.xDone != 1)
1077 if (return_stuff.xRc == 0)
1078 memcpy(buffer, pages[0], size);
1086 static int proc_mf_dump_src(char *page, char **start, off_t off,
1087 int count, int *eof, void *data)
1092 mf_getSrcHistory(page, count);
1101 *start = page + off;
1108 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1109 unsigned long count, void *data)
1113 if (!capable(CAP_SYS_ADMIN))
1116 if ((count < 4) && (count != 1)) {
1117 printk(KERN_ERR "mf_proc: invalid src\n");
1121 if (count > (sizeof(stkbuf) - 1))
1122 count = sizeof(stkbuf) - 1;
1123 if (copy_from_user(stkbuf, buffer, count))
1126 if ((count == 1) && (*stkbuf == '\0'))
1129 mf_display_src(*(u32 *)stkbuf);
1134 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1135 unsigned long count, void *data)
1137 struct vsp_cmd_data vsp_cmd;
1138 dma_addr_t dma_addr;
1142 if (!capable(CAP_SYS_ADMIN))
1146 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1153 if (copy_from_user(page, buffer, count))
1156 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1158 vsp_cmd.sub_data.kern.token = dma_addr;
1159 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1160 vsp_cmd.sub_data.kern.side = (u64)data;
1161 vsp_cmd.sub_data.kern.length = count;
1163 (void)signal_vsp_instruction(&vsp_cmd);
1167 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1172 static ssize_t proc_mf_change_vmlinux(struct file *file,
1173 const char __user *buf,
1174 size_t count, loff_t *ppos)
1176 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1178 dma_addr_t dma_addr;
1180 struct vsp_cmd_data vsp_cmd;
1183 if (!capable(CAP_SYS_ADMIN))
1187 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1191 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1195 if (copy_from_user(page, buf, count))
1198 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1200 vsp_cmd.sub_data.kern.token = dma_addr;
1201 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1202 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1203 vsp_cmd.sub_data.kern.offset = *ppos;
1204 vsp_cmd.sub_data.kern.length = count;
1206 rc = signal_vsp_instruction(&vsp_cmd);
1210 if (vsp_cmd.result_code != 0)
1216 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1221 static struct file_operations proc_vmlinux_operations = {
1222 .write = proc_mf_change_vmlinux,
1225 static int __init mf_proc_init(void)
1227 struct proc_dir_entry *mf_proc_root;
1228 struct proc_dir_entry *ent;
1229 struct proc_dir_entry *mf;
1233 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1238 for (i = 0; i < 4; i++) {
1240 mf = proc_mkdir(name, mf_proc_root);
1244 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1248 ent->data = (void *)(long)i;
1249 ent->read_proc = proc_mf_dump_cmdline;
1250 ent->write_proc = proc_mf_change_cmdline;
1252 if (i == 3) /* no vmlinux entry for 'D' */
1255 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1259 ent->data = (void *)(long)i;
1260 ent->proc_fops = &proc_vmlinux_operations;
1263 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1267 ent->data = (void *)0;
1268 ent->read_proc = proc_mf_dump_side;
1269 ent->write_proc = proc_mf_change_side;
1271 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1275 ent->data = (void *)0;
1276 ent->read_proc = proc_mf_dump_src;
1277 ent->write_proc = proc_mf_change_src;
1282 __initcall(mf_proc_init);
1284 #endif /* CONFIG_PROC_FS */
1287 * Get the RTC from the virtual service processor
1288 * This requires flowing LpEvents to the primary partition
1290 void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1292 if (piranha_simulator)
1300 * Set the RTC in the virtual service processor
1301 * This requires flowing LpEvents to the primary partition
1303 int iSeries_set_rtc_time(struct rtc_time *tm)
1309 void iSeries_get_boot_time(struct rtc_time *tm)
1311 if (piranha_simulator)
1314 mf_get_boot_rtc(tm);