Merge git://git.infradead.org/mtd-2.6
[linux-2.6] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/sections.h>
30 #include <asm/irq.h>
31 #include <asm/setup.h>
32 #include <asm/clock.h>
33 #include <asm/mmu_context.h>
34
35 extern void * __rd_start, * __rd_end;
36
37 /*
38  * Machine setup..
39  */
40
41 /*
42  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
43  * This value will be used at the very early stage of serial setup.
44  * The bigger value means no problem.
45  */
46 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
47         [0] = {
48                 .type                   = CPU_SH_NONE,
49                 .loops_per_jiffy        = 10000000,
50         },
51 };
52 EXPORT_SYMBOL(cpu_data);
53
54 /*
55  * The machine vector. First entry in .machvec.init, or clobbered by
56  * sh_mv= on the command line, prior to .machvec.init teardown.
57  */
58 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
59
60 #ifdef CONFIG_VT
61 struct screen_info screen_info;
62 #endif
63
64 extern int root_mountflags;
65
66 /*
67  * This is set up by the setup-routine at boot-time
68  */
69 #define PARAM   ((unsigned char *)empty_zero_page)
70
71 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
72 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
73 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
74 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
75 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
76 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
77 /* ... */
78 #define COMMAND_LINE ((char *) (PARAM+0x100))
79
80 #define RAMDISK_IMAGE_START_MASK        0x07FF
81 #define RAMDISK_PROMPT_FLAG             0x8000
82 #define RAMDISK_LOAD_FLAG               0x4000
83
84 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
85
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91
92 unsigned long memory_end;
93 EXPORT_SYMBOL(memory_end);
94
95 static int __init early_parse_mem(char *p)
96 {
97         unsigned long size;
98
99         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
100         size = memparse(p, &p);
101         memory_end = memory_start + size;
102
103         return 0;
104 }
105 early_param("mem", early_parse_mem);
106
107 /*
108  * Register fully available low RAM pages with the bootmem allocator.
109  */
110 static void __init register_bootmem_low_pages(void)
111 {
112         unsigned long curr_pfn, last_pfn, pages;
113
114         /*
115          * We are rounding up the start address of usable memory:
116          */
117         curr_pfn = PFN_UP(__MEMORY_START);
118
119         /*
120          * ... and at the end of the usable range downwards:
121          */
122         last_pfn = PFN_DOWN(__pa(memory_end));
123
124         if (last_pfn > max_low_pfn)
125                 last_pfn = max_low_pfn;
126
127         pages = last_pfn - curr_pfn;
128         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
129 }
130
131 void __init setup_bootmem_allocator(unsigned long free_pfn)
132 {
133         unsigned long bootmap_size;
134
135         /*
136          * Find a proper area for the bootmem bitmap. After this
137          * bootstrap step all allocations (until the page allocator
138          * is intact) must be done via bootmem_alloc().
139          */
140         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
141                                          min_low_pfn, max_low_pfn);
142
143         add_active_range(0, min_low_pfn, max_low_pfn);
144         register_bootmem_low_pages();
145
146         node_set_online(0);
147
148         /*
149          * Reserve the kernel text and
150          * Reserve the bootmem bitmap. We do this in two steps (first step
151          * was init_bootmem()), because this catches the (definitely buggy)
152          * case of us accidentally initializing the bootmem allocator with
153          * an invalid RAM area.
154          */
155         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
156                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
157
158         /*
159          * reserve physical page 0 - it's a special BIOS page on many boxes,
160          * enabling clean reboots, SMP operation, laptop functions.
161          */
162         reserve_bootmem(__MEMORY_START, PAGE_SIZE);
163
164         sparse_memory_present_with_active_regions(0);
165
166 #ifdef CONFIG_BLK_DEV_INITRD
167         ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
168         if (&__rd_start != &__rd_end) {
169                 LOADER_TYPE = 1;
170                 INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
171                                         __MEMORY_START;
172                 INITRD_SIZE = (unsigned long)&__rd_end -
173                               (unsigned long)&__rd_start;
174         }
175
176         if (LOADER_TYPE && INITRD_START) {
177                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
178                         reserve_bootmem(INITRD_START + __MEMORY_START,
179                                         INITRD_SIZE);
180                         initrd_start = INITRD_START + PAGE_OFFSET +
181                                         __MEMORY_START;
182                         initrd_end = initrd_start + INITRD_SIZE;
183                 } else {
184                         printk("initrd extends beyond end of memory "
185                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
186                                     INITRD_START + INITRD_SIZE,
187                                     max_low_pfn << PAGE_SHIFT);
188                         initrd_start = 0;
189                 }
190         }
191 #endif
192 #ifdef CONFIG_KEXEC
193         if (crashk_res.start != crashk_res.end)
194                 reserve_bootmem(crashk_res.start,
195                         crashk_res.end - crashk_res.start + 1);
196 #endif
197 }
198
199 #ifndef CONFIG_NEED_MULTIPLE_NODES
200 static void __init setup_memory(void)
201 {
202         unsigned long start_pfn;
203
204         /*
205          * Partially used pages are not usable - thus
206          * we are rounding upwards:
207          */
208         start_pfn = PFN_UP(__pa(_end));
209         setup_bootmem_allocator(start_pfn);
210 }
211 #else
212 extern void __init setup_memory(void);
213 #endif
214
215 void __init setup_arch(char **cmdline_p)
216 {
217         enable_mmu();
218
219         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
220
221 #ifdef CONFIG_BLK_DEV_RAM
222         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
223         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
224         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
225 #endif
226
227         if (!MOUNT_ROOT_RDONLY)
228                 root_mountflags &= ~MS_RDONLY;
229         init_mm.start_code = (unsigned long) _text;
230         init_mm.end_code = (unsigned long) _etext;
231         init_mm.end_data = (unsigned long) _edata;
232         init_mm.brk = (unsigned long) _end;
233
234         code_resource.start = virt_to_phys(_text);
235         code_resource.end = virt_to_phys(_etext)-1;
236         data_resource.start = virt_to_phys(_etext);
237         data_resource.end = virt_to_phys(_edata)-1;
238
239         memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
240         memory_end = memory_start + __MEMORY_SIZE;
241
242 #ifdef CONFIG_CMDLINE_BOOL
243         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
244 #else
245         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
246 #endif
247
248         /* Save unparsed command line copy for /proc/cmdline */
249         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
250         *cmdline_p = command_line;
251
252         parse_early_param();
253
254         sh_mv_setup();
255
256         /*
257          * Find the highest page frame number we have available
258          */
259         max_pfn = PFN_DOWN(__pa(memory_end));
260
261         /*
262          * Determine low and high memory ranges:
263          */
264         max_low_pfn = max_pfn;
265         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
266
267         nodes_clear(node_online_map);
268
269         /* Setup bootmem with available RAM */
270         setup_memory();
271         sparse_init();
272
273 #ifdef CONFIG_DUMMY_CONSOLE
274         conswitchp = &dummy_con;
275 #endif
276
277         /* Perform the machine specific initialisation */
278         if (likely(sh_mv.mv_setup))
279                 sh_mv.mv_setup(cmdline_p);
280
281         paging_init();
282
283 #ifdef CONFIG_SMP
284         plat_smp_setup();
285 #endif
286 }
287
288 static const char *cpu_name[] = {
289         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
290         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
291         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
292         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
293         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
294         [CPU_SH7729]    = "SH7729",     [CPU_SH7750]    = "SH7750",
295         [CPU_SH7750S]   = "SH7750S",    [CPU_SH7750R]   = "SH7750R",
296         [CPU_SH7751]    = "SH7751",     [CPU_SH7751R]   = "SH7751R",
297         [CPU_SH7760]    = "SH7760",
298         [CPU_ST40RA]    = "ST40RA",     [CPU_ST40GX1]   = "ST40GX1",
299         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
300         [CPU_SH7770]    = "SH7770",     [CPU_SH7780]    = "SH7780",
301         [CPU_SH7781]    = "SH7781",     [CPU_SH7343]    = "SH7343",
302         [CPU_SH7785]    = "SH7785",     [CPU_SH7722]    = "SH7722",
303         [CPU_SHX3]      = "SH-X3",      [CPU_SH_NONE]   = "Unknown"
304 };
305
306 const char *get_cpu_subtype(struct sh_cpuinfo *c)
307 {
308         return cpu_name[c->type];
309 }
310
311 #ifdef CONFIG_PROC_FS
312 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
313 static const char *cpu_flags[] = {
314         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
315         "ptea", "llsc", "l2", "op32", NULL
316 };
317
318 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
319 {
320         unsigned long i;
321
322         seq_printf(m, "cpu flags\t:");
323
324         if (!c->flags) {
325                 seq_printf(m, " %s\n", cpu_flags[0]);
326                 return;
327         }
328
329         for (i = 0; cpu_flags[i]; i++)
330                 if ((c->flags & (1 << i)))
331                         seq_printf(m, " %s", cpu_flags[i+1]);
332
333         seq_printf(m, "\n");
334 }
335
336 static void show_cacheinfo(struct seq_file *m, const char *type,
337                            struct cache_info info)
338 {
339         unsigned int cache_size;
340
341         cache_size = info.ways * info.sets * info.linesz;
342
343         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
344                    type, cache_size >> 10, info.ways);
345 }
346
347 /*
348  *      Get CPU information for use by the procfs.
349  */
350 static int show_cpuinfo(struct seq_file *m, void *v)
351 {
352         struct sh_cpuinfo *c = v;
353         unsigned int cpu = c - cpu_data;
354
355         if (!cpu_online(cpu))
356                 return 0;
357
358         if (cpu == 0)
359                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
360
361         seq_printf(m, "processor\t: %d\n", cpu);
362         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
363         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
364
365         show_cpuflags(m, c);
366
367         seq_printf(m, "cache type\t: ");
368
369         /*
370          * Check for what type of cache we have, we support both the
371          * unified cache on the SH-2 and SH-3, as well as the harvard
372          * style cache on the SH-4.
373          */
374         if (c->icache.flags & SH_CACHE_COMBINED) {
375                 seq_printf(m, "unified\n");
376                 show_cacheinfo(m, "cache", c->icache);
377         } else {
378                 seq_printf(m, "split (harvard)\n");
379                 show_cacheinfo(m, "icache", c->icache);
380                 show_cacheinfo(m, "dcache", c->dcache);
381         }
382
383         /* Optional secondary cache */
384         if (c->flags & CPU_HAS_L2_CACHE)
385                 show_cacheinfo(m, "scache", c->scache);
386
387         seq_printf(m, "bogomips\t: %lu.%02lu\n",
388                      c->loops_per_jiffy/(500000/HZ),
389                      (c->loops_per_jiffy/(5000/HZ)) % 100);
390
391         return 0;
392 }
393
394 static void *c_start(struct seq_file *m, loff_t *pos)
395 {
396         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
397 }
398 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
399 {
400         ++*pos;
401         return c_start(m, pos);
402 }
403 static void c_stop(struct seq_file *m, void *v)
404 {
405 }
406 struct seq_operations cpuinfo_op = {
407         .start  = c_start,
408         .next   = c_next,
409         .stop   = c_stop,
410         .show   = show_cpuinfo,
411 };
412 #endif /* CONFIG_PROC_FS */