5 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6 * exclusively use the autovector interrupts (the 'generic level0-level7'
7 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
10 * - slot 0: one second interrupt (CA2)
11 * - slot 1: VBlank (CA1)
12 * - slot 2: ADB data ready (SR full)
13 * - slot 3: ADB data (CB2)
14 * - slot 4: ADB clock (CB1)
17 * - slot 7: status of IRQ; signals 'any enabled int.'
20 * - slot 0: SCSI DRQ (CA2)
21 * - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22 * - slot 2: /EXP IRQ (only on IIci)
23 * - slot 3: SCSI IRQ (CB2)
24 * - slot 4: ASC IRQ (CB1)
25 * - slot 5: timer 2 (not on IIci)
26 * - slot 6: timer 1 (not on IIci)
27 * - slot 7: status of IRQ; signals 'any enabled int.'
29 * 2 - OSS (IIfx only?)
30 * - slot 0: SCSI interrupt
31 * - slot 1: Sound interrupt
33 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
37 * 4 - SCC (slot number determined by reading RR3 on the SSC itself)
38 * - slot 1: SCC channel A
39 * - slot 2: SCC channel B
42 * [serial errors or special conditions seem to raise level 6
43 * interrupts on some models (LC4xx?)]
47 * For OSS Macintoshes (IIfx only at this point):
58 * - slot 1: SCC channel A
59 * - slot 2: SCC channel B
65 * For PSC Macintoshes (660AV, 840AV):
71 * - slot 1: SCC channel A interrupt
72 * - slot 2: SCC channel B interrupt
79 * Finally we have good 'ole level 7, the non-maskable interrupt:
81 * 7 - NMI (programmer's switch on the back of some Macs)
82 * Also RAM parity error on models which support it (IIc, IIfx?)
84 * The current interrupt logic looks something like this:
86 * - We install dispatchers for the autovector interrupts (1-7). These
87 * dispatchers are responsible for querying the hardware (the
88 * VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89 * this information a machspec interrupt number is generated by placing the
90 * index of the interrupt hardware into the low three bits and the original
91 * autovector interrupt number in the upper 5 bits. The handlers for the
92 * resulting machspec interrupt are then called.
94 * - Nubus is a special case because its interrupts are hidden behind two
95 * layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96 * which translates to IRQ number 17. In this spot we install _another_
97 * dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98 * then forms a new machspec interrupt number as above with the slot number
99 * minus 9 in the low three bits and the pseudo-level 7 in the upper five
100 * bits. The handlers for this new machspec interrupt number are then
101 * called. This puts Nubus interrupts into the range 56-62.
103 * - The Baboon interrupts (used on some PowerBooks) are an even more special
104 * case. They're hidden behind the Nubus slot $C interrupt thus adding a
105 * third layer of indirection. Why oh why did the Apple engineers do that?
107 * - We support "fast" and "slow" handlers, just like the Amiga port. The
108 * fast handlers are called first and with all interrupts disabled. They
109 * are expected to execute quickly (hence the name). The slow handlers are
110 * called last with interrupts enabled and the interrupt level restored.
111 * They must therefore be reentrant.
117 #include <linux/module.h>
118 #include <linux/types.h>
119 #include <linux/kernel.h>
120 #include <linux/sched.h>
121 #include <linux/kernel_stat.h>
122 #include <linux/interrupt.h> /* for intr_count */
123 #include <linux/delay.h>
124 #include <linux/seq_file.h>
126 #include <asm/system.h>
128 #include <asm/traps.h>
129 #include <asm/bootinfo.h>
130 #include <asm/machw.h>
131 #include <asm/macintosh.h>
132 #include <asm/mac_via.h>
133 #include <asm/mac_psc.h>
134 #include <asm/hwtest.h>
135 #include <asm/errno.h>
136 #include <asm/macints.h>
137 #include <asm/irq_regs.h>
139 #define DEBUG_SPURIOUS
142 /* SCC interrupt mask */
150 extern void via_init(void);
151 extern void via_register_interrupts(void);
152 extern void via_irq_enable(int);
153 extern void via_irq_disable(int);
154 extern void via_irq_clear(int);
155 extern int via_irq_pending(int);
161 extern int oss_present;
163 extern void oss_init(void);
164 extern void oss_register_interrupts(void);
165 extern void oss_irq_enable(int);
166 extern void oss_irq_disable(int);
167 extern void oss_irq_clear(int);
168 extern int oss_irq_pending(int);
174 extern int psc_present;
176 extern void psc_init(void);
177 extern void psc_register_interrupts(void);
178 extern void psc_irq_enable(int);
179 extern void psc_irq_disable(int);
180 extern void psc_irq_clear(int);
181 extern int psc_irq_pending(int);
187 extern void iop_register_interrupts(void);
193 extern int baboon_present;
195 extern void baboon_init(void);
196 extern void baboon_register_interrupts(void);
197 extern void baboon_irq_enable(int);
198 extern void baboon_irq_disable(int);
199 extern void baboon_irq_clear(int);
200 extern int baboon_irq_pending(int);
203 * SCC interrupt routines
206 static void scc_irq_enable(unsigned int);
207 static void scc_irq_disable(unsigned int);
210 * console_loglevel determines NMI handler function
213 irqreturn_t mac_nmi_handler(int, void *);
214 irqreturn_t mac_debug_handler(int, void *);
216 /* #define DEBUG_MACINTS */
218 static void mac_enable_irq(unsigned int irq);
219 static void mac_disable_irq(unsigned int irq);
221 static struct irq_controller mac_irq_controller = {
223 .lock = __SPIN_LOCK_UNLOCKED(mac_irq_controller.lock),
224 .enable = mac_enable_irq,
225 .disable = mac_disable_irq,
228 void __init mac_init_IRQ(void)
231 printk("mac_init_IRQ(): Setting things up...\n");
235 m68k_setup_irq_controller(&mac_irq_controller, IRQ_USER,
236 NUM_MAC_SOURCES - IRQ_USER);
237 /* Make sure the SONIC interrupt is cleared or things get ugly */
239 printk("Killing onboard sonic... ");
240 /* This address should hopefully be mapped already */
241 if (hwreg_present((void*)(0x50f0a000))) {
242 *(long *)(0x50f0a014) = 0x7fffL;
243 *(long *)(0x50f0a010) = 0L;
246 #endif /* SHUTUP_SONIC */
249 * Now register the handlers for the master IRQ handlers
250 * at levels 1-7. Most of the work is done elsewhere.
254 oss_register_interrupts();
256 via_register_interrupts();
258 psc_register_interrupts();
260 baboon_register_interrupts();
261 iop_register_interrupts();
262 request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
265 printk("mac_init_IRQ(): Done!\n");
270 * mac_enable_irq - enable an interrupt source
271 * mac_disable_irq - disable an interrupt source
272 * mac_clear_irq - clears a pending interrupt
273 * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
275 * These routines are just dispatchers to the VIA/OSS/PSC routines.
278 static void mac_enable_irq(unsigned int irq)
280 int irq_src = IRQ_SRC(irq);
299 else if (oss_present)
301 else if (irq_src == 4)
306 baboon_irq_enable(irq);
311 static void mac_disable_irq(unsigned int irq)
313 int irq_src = IRQ_SRC(irq);
317 via_irq_disable(irq);
322 oss_irq_disable(irq);
324 via_irq_disable(irq);
331 psc_irq_disable(irq);
332 else if (oss_present)
333 oss_irq_disable(irq);
334 else if (irq_src == 4)
335 scc_irq_disable(irq);
339 baboon_irq_disable(irq);
344 void mac_clear_irq(unsigned int irq)
346 switch(IRQ_SRC(irq)) {
363 else if (oss_present)
368 baboon_irq_clear(irq);
373 int mac_irq_pending(unsigned int irq)
375 switch(IRQ_SRC(irq)) {
377 return via_irq_pending(irq);
381 return oss_irq_pending(irq);
383 return via_irq_pending(irq);
389 return psc_irq_pending(irq);
390 else if (oss_present)
391 return oss_irq_pending(irq);
395 EXPORT_SYMBOL(mac_irq_pending);
397 static int num_debug[8];
399 irqreturn_t mac_debug_handler(int irq, void *dev_id)
401 if (num_debug[irq] < 10) {
402 printk("DEBUG: Unexpected IRQ %d\n", irq);
409 static volatile int nmi_hold;
411 irqreturn_t mac_nmi_handler(int irq, void *dev_id)
415 * generate debug output on NMI switch if 'debug' kernel option given
416 * (only works with Penguin!)
420 for (i=0; i<100; i++)
425 printk("... pausing, press NMI to resume ...");
433 while (nmi_hold == 1)
436 if (console_loglevel >= 8) {
438 struct pt_regs *fp = get_irq_regs();
440 printk("PC: %08lx\nSR: %04x SP: %p\n", fp->pc, fp->sr, fp);
441 printk("d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n",
442 fp->d0, fp->d1, fp->d2, fp->d3);
443 printk("d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n",
444 fp->d4, fp->d5, fp->a0, fp->a1);
446 if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
447 printk("Corrupted stack page\n");
448 printk("Process %s (pid: %d, stackpage=%08lx)\n",
449 current->comm, current->pid, current->kernel_stack_page);
451 dump_stack((struct frame *)fp);
453 /* printk("NMI "); */
461 * Simple routines for masking and unmasking
462 * SCC interrupts in cases where this can't be
463 * done in hardware (only the PSC can do that.)
466 static void scc_irq_enable(unsigned int irq)
468 int irq_idx = IRQ_IDX(irq);
470 scc_mask |= (1 << irq_idx);
473 static void scc_irq_disable(unsigned int irq)
475 int irq_idx = IRQ_IDX(irq);
477 scc_mask &= ~(1 << irq_idx);
481 * SCC master interrupt handler. We have to do a bit of magic here
482 * to figure out what channel gave us the interrupt; putting this
483 * here is cleaner than hacking it into drivers/char/macserial.c.
486 void mac_scc_dispatch(int irq, void *dev_id)
488 volatile unsigned char *scc = (unsigned char *) mac_bi_data.sccbase + 2;
492 /* Read RR3 from the chip. Always do this on channel A */
493 /* This must be an atomic operation so disable irqs. */
495 local_irq_save(flags);
498 local_irq_restore(flags);
500 /* Now dispatch. Bits 0-2 are for channel B and */
501 /* bits 3-5 are for channel A. We can safely */
502 /* ignore the remaining bits here. */
504 /* Note that we're ignoring scc_mask for now. */
505 /* If we actually mask the ints then we tend to */
506 /* get hammered by very persistent SCC irqs, */
507 /* and since they're autovector interrupts they */
508 /* pretty much kill the system. */
511 m68k_handle_int(IRQ_SCCA);
513 m68k_handle_int(IRQ_SCCB);