2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
33 #include "fsyscall_gtod_data.h"
35 static cycle_t itc_get_cycles(void);
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38 .lock = SEQLOCK_UNLOCKED,
41 struct itc_jitter_data_t itc_jitter_data;
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
45 #ifdef CONFIG_IA64_DEBUG_IRQ
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
52 #ifdef CONFIG_PARAVIRT
54 paravirt_clocksource_resume(void)
56 if (pv_time_ops.clocksource_resume)
57 pv_time_ops.clocksource_resume();
61 static struct clocksource clocksource_itc = {
64 .read = itc_get_cycles,
65 .mask = CLOCKSOURCE_MASK(64),
66 .mult = 0, /*to be calculated*/
68 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
69 #ifdef CONFIG_PARAVIRT
70 .resume = paravirt_clocksource_resume,
73 static struct clocksource *itc_clocksource;
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
77 #include <linux/kernel_stat.h>
79 extern cputime_t cycle_to_cputime(u64 cyc);
82 * Called from the context switch with interrupts disabled, to charge all
83 * accumulated times to the current process, and to prepare accounting on
86 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
88 struct thread_info *pi = task_thread_info(prev);
89 struct thread_info *ni = task_thread_info(next);
90 cputime_t delta_stime, delta_utime;
95 delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
96 account_system_time(prev, 0, delta_stime);
97 account_system_time_scaled(prev, delta_stime);
100 delta_utime = cycle_to_cputime(pi->ac_utime);
101 account_user_time(prev, delta_utime);
102 account_user_time_scaled(prev, delta_utime);
105 pi->ac_stamp = ni->ac_stamp = now;
106 ni->ac_stime = ni->ac_utime = 0;
110 * Account time for a transition between system, hard irq or soft irq state.
111 * Note that this function is called with interrupts enabled.
113 void account_system_vtime(struct task_struct *tsk)
115 struct thread_info *ti = task_thread_info(tsk);
117 cputime_t delta_stime;
120 local_irq_save(flags);
122 now = ia64_get_itc();
124 delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
125 account_system_time(tsk, 0, delta_stime);
126 account_system_time_scaled(tsk, delta_stime);
131 local_irq_restore(flags);
133 EXPORT_SYMBOL_GPL(account_system_vtime);
136 * Called from the timer interrupt handler to charge accumulated user time
137 * to the current process. Must be called with interrupts disabled.
139 void account_process_tick(struct task_struct *p, int user_tick)
141 struct thread_info *ti = task_thread_info(p);
142 cputime_t delta_utime;
145 delta_utime = cycle_to_cputime(ti->ac_utime);
146 account_user_time(p, delta_utime);
147 account_user_time_scaled(p, delta_utime);
152 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
155 timer_interrupt (int irq, void *dev_id)
157 unsigned long new_itm;
159 if (unlikely(cpu_is_offline(smp_processor_id()))) {
163 platform_timer_interrupt(irq, dev_id);
165 new_itm = local_cpu_data->itm_next;
167 if (!time_after(ia64_get_itc(), new_itm))
168 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
169 ia64_get_itc(), new_itm);
171 profile_tick(CPU_PROFILING);
173 if (paravirt_do_steal_accounting(&new_itm))
174 goto skip_process_time_accounting;
177 update_process_times(user_mode(get_irq_regs()));
179 new_itm += local_cpu_data->itm_delta;
181 if (smp_processor_id() == time_keeper_id) {
183 * Here we are in the timer irq handler. We have irqs locally
184 * disabled, but we don't know if the timer_bh is running on
185 * another CPU. We need to avoid to SMP race by acquiring the
188 write_seqlock(&xtime_lock);
190 local_cpu_data->itm_next = new_itm;
191 write_sequnlock(&xtime_lock);
193 local_cpu_data->itm_next = new_itm;
195 if (time_after(new_itm, ia64_get_itc()))
199 * Allow IPIs to interrupt the timer loop.
205 skip_process_time_accounting:
209 * If we're too close to the next clock tick for
210 * comfort, we increase the safety margin by
211 * intentionally dropping the next tick(s). We do NOT
212 * update itm.next because that would force us to call
213 * do_timer() which in turn would let our clock run
214 * too fast (with the potentially devastating effect
215 * of losing monotony of time).
217 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
218 new_itm += local_cpu_data->itm_delta;
219 ia64_set_itm(new_itm);
220 /* double check, in case we got hit by a (slow) PMI: */
221 } while (time_after_eq(ia64_get_itc(), new_itm));
226 * Encapsulate access to the itm structure for SMP.
229 ia64_cpu_local_tick (void)
231 int cpu = smp_processor_id();
232 unsigned long shift = 0, delta;
234 /* arrange for the cycle counter to generate a timer interrupt: */
235 ia64_set_itv(IA64_TIMER_VECTOR);
237 delta = local_cpu_data->itm_delta;
239 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
243 unsigned long hi = 1UL << ia64_fls(cpu);
244 shift = (2*(cpu - hi) + 1) * delta/hi/2;
246 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
247 ia64_set_itm(local_cpu_data->itm_next);
252 static int __init nojitter_setup(char *str)
255 printk("Jitter checking for ITC timers disabled\n");
259 __setup("nojitter", nojitter_setup);
265 unsigned long platform_base_freq, itc_freq;
266 struct pal_freq_ratio itc_ratio, proc_ratio;
267 long status, platform_base_drift, itc_drift;
270 * According to SAL v2.6, we need to use a SAL call to determine the platform base
271 * frequency and then a PAL call to determine the frequency ratio between the ITC
272 * and the base frequency.
274 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
275 &platform_base_freq, &platform_base_drift);
277 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
279 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
281 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
284 /* invent "random" values */
286 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
287 platform_base_freq = 100000000;
288 platform_base_drift = -1; /* no drift info */
292 if (platform_base_freq < 40000000) {
293 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
295 platform_base_freq = 75000000;
296 platform_base_drift = -1;
299 proc_ratio.den = 1; /* avoid division by zero */
301 itc_ratio.den = 1; /* avoid division by zero */
303 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
305 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
306 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
307 "ITC freq=%lu.%03luMHz", smp_processor_id(),
308 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
309 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
311 if (platform_base_drift != -1) {
312 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
313 printk("+/-%ldppm\n", itc_drift);
319 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
320 local_cpu_data->itc_freq = itc_freq;
321 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
322 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
323 + itc_freq/2)/itc_freq;
325 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
327 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
328 * Jitter compensation requires a cmpxchg which may limit
329 * the scalability of the syscalls for retrieving time.
330 * The ITC synchronization is usually successful to within a few
331 * ITC ticks but this is not a sure thing. If you need to improve
332 * timer performance in SMP situations then boot the kernel with the
333 * "nojitter" option. However, doing so may result in time fluctuating (maybe
334 * even going backward) if the ITC offsets between the individual CPUs
338 itc_jitter_data.itc_jitter = 1;
342 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
343 * ITC values may fluctuate significantly between processors.
344 * Clock should not be used for hrtimers. Mark itc as only
345 * useful for boot and testing.
347 * Note that jitter compensation is off! There is no point of
348 * synchronizing ITCs since they may be large differentials
349 * that change over time.
351 * The only way to fix this would be to repeatedly sync the
352 * ITCs. Until that time we have to avoid ITC.
354 clocksource_itc.rating = 50;
356 paravirt_init_missing_ticks_accounting(smp_processor_id());
358 /* avoid softlock up message when cpu is unplug and plugged again. */
359 touch_softlockup_watchdog();
361 /* Setup the CPU local timer tick */
362 ia64_cpu_local_tick();
364 if (!itc_clocksource) {
365 /* Sort out mult/shift values: */
366 clocksource_itc.mult =
367 clocksource_hz2mult(local_cpu_data->itc_freq,
368 clocksource_itc.shift);
369 clocksource_register(&clocksource_itc);
370 itc_clocksource = &clocksource_itc;
374 static cycle_t itc_get_cycles(void)
376 u64 lcycle, now, ret;
378 if (!itc_jitter_data.itc_jitter)
381 lcycle = itc_jitter_data.itc_lastcycle;
383 if (lcycle && time_after(lcycle, now))
387 * Keep track of the last timer value returned.
388 * In an SMP environment, you could lose out in contention of
389 * cmpxchg. If so, your cmpxchg returns new value which the
390 * winner of contention updated to. Use the new value instead.
392 ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
393 if (unlikely(ret != lcycle))
400 static struct irqaction timer_irqaction = {
401 .handler = timer_interrupt,
402 .flags = IRQF_DISABLED | IRQF_IRQPOLL,
409 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
410 efi_gettimeofday(&xtime);
414 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
415 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
417 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
421 * Generic udelay assumes that if preemption is allowed and the thread
422 * migrates to another CPU, that the ITC values are synchronized across
426 ia64_itc_udelay (unsigned long usecs)
428 unsigned long start = ia64_get_itc();
429 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
431 while (time_before(ia64_get_itc(), end))
435 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
438 udelay (unsigned long usecs)
440 (*ia64_udelay)(usecs);
442 EXPORT_SYMBOL(udelay);
444 /* IA64 doesn't cache the timezone */
445 void update_vsyscall_tz(void)
449 void update_vsyscall(struct timespec *wall, struct clocksource *c)
453 write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
455 /* copy fsyscall clock data */
456 fsyscall_gtod_data.clk_mask = c->mask;
457 fsyscall_gtod_data.clk_mult = c->mult;
458 fsyscall_gtod_data.clk_shift = c->shift;
459 fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
460 fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
462 /* copy kernel time structures */
463 fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
464 fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
465 fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
467 fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
471 while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
472 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
473 fsyscall_gtod_data.monotonic_time.tv_sec++;
476 write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);