Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / arch / arm / kernel / process.c
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/a.out.h>
23 #include <linux/delay.h>
24 #include <linux/reboot.h>
25 #include <linux/interrupt.h>
26 #include <linux/kallsyms.h>
27 #include <linux/init.h>
28 #include <linux/cpu.h>
29 #include <linux/elfcore.h>
30 #include <linux/pm.h>
31
32 #include <asm/leds.h>
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/thread_notify.h>
36 #include <asm/uaccess.h>
37 #include <asm/mach/time.h>
38
39 extern const char *processor_modes[];
40 extern void setup_mm_for_reboot(char mode);
41
42 static volatile int hlt_counter;
43
44 #include <asm/arch/system.h>
45
46 void disable_hlt(void)
47 {
48         hlt_counter++;
49 }
50
51 EXPORT_SYMBOL(disable_hlt);
52
53 void enable_hlt(void)
54 {
55         hlt_counter--;
56 }
57
58 EXPORT_SYMBOL(enable_hlt);
59
60 static int __init nohlt_setup(char *__unused)
61 {
62         hlt_counter = 1;
63         return 1;
64 }
65
66 static int __init hlt_setup(char *__unused)
67 {
68         hlt_counter = 0;
69         return 1;
70 }
71
72 __setup("nohlt", nohlt_setup);
73 __setup("hlt", hlt_setup);
74
75 void arm_machine_restart(char mode)
76 {
77         /*
78          * Clean and disable cache, and turn off interrupts
79          */
80         cpu_proc_fin();
81
82         /*
83          * Tell the mm system that we are going to reboot -
84          * we may need it to insert some 1:1 mappings so that
85          * soft boot works.
86          */
87         setup_mm_for_reboot(mode);
88
89         /*
90          * Now call the architecture specific reboot code.
91          */
92         arch_reset(mode);
93
94         /*
95          * Whoops - the architecture was unable to reboot.
96          * Tell the user!
97          */
98         mdelay(1000);
99         printk("Reboot failed -- System halted\n");
100         while (1);
101 }
102
103 /*
104  * Function pointers to optional machine specific functions
105  */
106 void (*pm_idle)(void);
107 EXPORT_SYMBOL(pm_idle);
108
109 void (*pm_power_off)(void);
110 EXPORT_SYMBOL(pm_power_off);
111
112 void (*arm_pm_restart)(char str) = arm_machine_restart;
113 EXPORT_SYMBOL_GPL(arm_pm_restart);
114
115
116 /*
117  * This is our default idle handler.  We need to disable
118  * interrupts here to ensure we don't miss a wakeup call.
119  */
120 static void default_idle(void)
121 {
122         if (hlt_counter)
123                 cpu_relax();
124         else {
125                 local_irq_disable();
126                 if (!need_resched()) {
127                         timer_dyn_reprogram();
128                         arch_idle();
129                 }
130                 local_irq_enable();
131         }
132 }
133
134 /*
135  * The idle thread.  We try to conserve power, while trying to keep
136  * overall latency low.  The architecture specific idle is passed
137  * a value to indicate the level of "idleness" of the system.
138  */
139 void cpu_idle(void)
140 {
141         local_fiq_enable();
142
143         /* endless idle loop with no priority at all */
144         while (1) {
145                 void (*idle)(void) = pm_idle;
146
147 #ifdef CONFIG_HOTPLUG_CPU
148                 if (cpu_is_offline(smp_processor_id())) {
149                         leds_event(led_idle_start);
150                         cpu_die();
151                 }
152 #endif
153
154                 if (!idle)
155                         idle = default_idle;
156                 leds_event(led_idle_start);
157                 while (!need_resched())
158                         idle();
159                 leds_event(led_idle_end);
160                 preempt_enable_no_resched();
161                 schedule();
162                 preempt_disable();
163         }
164 }
165
166 static char reboot_mode = 'h';
167
168 int __init reboot_setup(char *str)
169 {
170         reboot_mode = str[0];
171         return 1;
172 }
173
174 __setup("reboot=", reboot_setup);
175
176 void machine_halt(void)
177 {
178 }
179
180
181 void machine_power_off(void)
182 {
183         if (pm_power_off)
184                 pm_power_off();
185 }
186
187 void machine_restart(char * __unused)
188 {
189         arm_pm_restart(reboot_mode);
190 }
191
192 void __show_regs(struct pt_regs *regs)
193 {
194         unsigned long flags = condition_codes(regs);
195
196         printk("CPU: %d\n", smp_processor_id());
197         print_symbol("PC is at %s\n", instruction_pointer(regs));
198         print_symbol("LR is at %s\n", regs->ARM_lr);
199         printk("pc : [<%08lx>]    lr : [<%08lx>]    %s\n"
200                "sp : %08lx  ip : %08lx  fp : %08lx\n",
201                 instruction_pointer(regs),
202                 regs->ARM_lr, print_tainted(), regs->ARM_sp,
203                 regs->ARM_ip, regs->ARM_fp);
204         printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
205                 regs->ARM_r10, regs->ARM_r9,
206                 regs->ARM_r8);
207         printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
208                 regs->ARM_r7, regs->ARM_r6,
209                 regs->ARM_r5, regs->ARM_r4);
210         printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
211                 regs->ARM_r3, regs->ARM_r2,
212                 regs->ARM_r1, regs->ARM_r0);
213         printk("Flags: %c%c%c%c",
214                 flags & PSR_N_BIT ? 'N' : 'n',
215                 flags & PSR_Z_BIT ? 'Z' : 'z',
216                 flags & PSR_C_BIT ? 'C' : 'c',
217                 flags & PSR_V_BIT ? 'V' : 'v');
218         printk("  IRQs o%s  FIQs o%s  Mode %s%s  Segment %s\n",
219                 interrupts_enabled(regs) ? "n" : "ff",
220                 fast_interrupts_enabled(regs) ? "n" : "ff",
221                 processor_modes[processor_mode(regs)],
222                 thumb_mode(regs) ? " (T)" : "",
223                 get_fs() == get_ds() ? "kernel" : "user");
224 #if CONFIG_CPU_CP15
225         {
226                 unsigned int ctrl;
227                   __asm__ (
228                 "       mrc p15, 0, %0, c1, c0\n"
229                 : "=r" (ctrl));
230                 printk("Control: %04X\n", ctrl);
231         }
232 #ifdef CONFIG_CPU_CP15_MMU
233         {
234                 unsigned int transbase, dac;
235                   __asm__ (
236                 "       mrc p15, 0, %0, c2, c0\n"
237                 "       mrc p15, 0, %1, c3, c0\n"
238                 : "=r" (transbase), "=r" (dac));
239                 printk("Table: %08X  DAC: %08X\n",
240                         transbase, dac);
241         }
242 #endif
243 #endif
244 }
245
246 void show_regs(struct pt_regs * regs)
247 {
248         printk("\n");
249         printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
250         __show_regs(regs);
251         __backtrace();
252 }
253
254 void show_fpregs(struct user_fp *regs)
255 {
256         int i;
257
258         for (i = 0; i < 8; i++) {
259                 unsigned long *p;
260                 char type;
261
262                 p = (unsigned long *)(regs->fpregs + i);
263
264                 switch (regs->ftype[i]) {
265                         case 1: type = 'f'; break;
266                         case 2: type = 'd'; break;
267                         case 3: type = 'e'; break;
268                         default: type = '?'; break;
269                 }
270                 if (regs->init_flag)
271                         type = '?';
272
273                 printk("  f%d(%c): %08lx %08lx %08lx%c",
274                         i, type, p[0], p[1], p[2], i & 1 ? '\n' : ' ');
275         }
276                         
277
278         printk("FPSR: %08lx FPCR: %08lx\n",
279                 (unsigned long)regs->fpsr,
280                 (unsigned long)regs->fpcr);
281 }
282
283 /*
284  * Free current thread data structures etc..
285  */
286 void exit_thread(void)
287 {
288 }
289
290 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
291
292 EXPORT_SYMBOL_GPL(thread_notify_head);
293
294 void flush_thread(void)
295 {
296         struct thread_info *thread = current_thread_info();
297         struct task_struct *tsk = current;
298
299         memset(thread->used_cp, 0, sizeof(thread->used_cp));
300         memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
301         memset(&thread->fpstate, 0, sizeof(union fp_state));
302
303         thread_notify(THREAD_NOTIFY_FLUSH, thread);
304 }
305
306 void release_thread(struct task_struct *dead_task)
307 {
308         struct thread_info *thread = task_thread_info(dead_task);
309
310         thread_notify(THREAD_NOTIFY_RELEASE, thread);
311 }
312
313 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
314
315 int
316 copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start,
317             unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
318 {
319         struct thread_info *thread = task_thread_info(p);
320         struct pt_regs *childregs = task_pt_regs(p);
321
322         *childregs = *regs;
323         childregs->ARM_r0 = 0;
324         childregs->ARM_sp = stack_start;
325
326         memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
327         thread->cpu_context.sp = (unsigned long)childregs;
328         thread->cpu_context.pc = (unsigned long)ret_from_fork;
329
330         if (clone_flags & CLONE_SETTLS)
331                 thread->tp_value = regs->ARM_r3;
332
333         return 0;
334 }
335
336 /*
337  * fill in the fpe structure for a core dump...
338  */
339 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
340 {
341         struct thread_info *thread = current_thread_info();
342         int used_math = thread->used_cp[1] | thread->used_cp[2];
343
344         if (used_math)
345                 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
346
347         return used_math != 0;
348 }
349 EXPORT_SYMBOL(dump_fpu);
350
351 /*
352  * fill in the user structure for a core dump..
353  */
354 void dump_thread(struct pt_regs * regs, struct user * dump)
355 {
356         struct task_struct *tsk = current;
357
358         dump->magic = CMAGIC;
359         dump->start_code = tsk->mm->start_code;
360         dump->start_stack = regs->ARM_sp & ~(PAGE_SIZE - 1);
361
362         dump->u_tsize = (tsk->mm->end_code - tsk->mm->start_code) >> PAGE_SHIFT;
363         dump->u_dsize = (tsk->mm->brk - tsk->mm->start_data + PAGE_SIZE - 1) >> PAGE_SHIFT;
364         dump->u_ssize = 0;
365
366         dump->u_debugreg[0] = tsk->thread.debug.bp[0].address;
367         dump->u_debugreg[1] = tsk->thread.debug.bp[1].address;
368         dump->u_debugreg[2] = tsk->thread.debug.bp[0].insn.arm;
369         dump->u_debugreg[3] = tsk->thread.debug.bp[1].insn.arm;
370         dump->u_debugreg[4] = tsk->thread.debug.nsaved;
371
372         if (dump->start_stack < 0x04000000)
373                 dump->u_ssize = (0x04000000 - dump->start_stack) >> PAGE_SHIFT;
374
375         dump->regs = *regs;
376         dump->u_fpvalid = dump_fpu (regs, &dump->u_fp);
377 }
378 EXPORT_SYMBOL(dump_thread);
379
380 /*
381  * Shuffle the argument into the correct register before calling the
382  * thread function.  r1 is the thread argument, r2 is the pointer to
383  * the thread function, and r3 points to the exit function.
384  */
385 extern void kernel_thread_helper(void);
386 asm(    ".section .text\n"
387 "       .align\n"
388 "       .type   kernel_thread_helper, #function\n"
389 "kernel_thread_helper:\n"
390 "       mov     r0, r1\n"
391 "       mov     lr, r3\n"
392 "       mov     pc, r2\n"
393 "       .size   kernel_thread_helper, . - kernel_thread_helper\n"
394 "       .previous");
395
396 /*
397  * Create a kernel thread.
398  */
399 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
400 {
401         struct pt_regs regs;
402
403         memset(&regs, 0, sizeof(regs));
404
405         regs.ARM_r1 = (unsigned long)arg;
406         regs.ARM_r2 = (unsigned long)fn;
407         regs.ARM_r3 = (unsigned long)do_exit;
408         regs.ARM_pc = (unsigned long)kernel_thread_helper;
409         regs.ARM_cpsr = SVC_MODE;
410
411         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
412 }
413 EXPORT_SYMBOL(kernel_thread);
414
415 unsigned long get_wchan(struct task_struct *p)
416 {
417         unsigned long fp, lr;
418         unsigned long stack_start, stack_end;
419         int count = 0;
420         if (!p || p == current || p->state == TASK_RUNNING)
421                 return 0;
422
423         stack_start = (unsigned long)end_of_stack(p);
424         stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE;
425
426         fp = thread_saved_fp(p);
427         do {
428                 if (fp < stack_start || fp > stack_end)
429                         return 0;
430                 lr = pc_pointer (((unsigned long *)fp)[-1]);
431                 if (!in_sched_functions(lr))
432                         return lr;
433                 fp = *(unsigned long *) (fp - 12);
434         } while (count ++ < 16);
435         return 0;
436 }