[PATCH] zd1211rw: disable TX queue during stop
[linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20  *  enough at me, Linus for the original (flawed) idea, Matthew
21  *  Kirkwood for proof-of-concept implementation.
22  *
23  *  "The futexes are also cursed."
24  *  "But they come in a choice of three flavours!"
25  *
26  *  This program is free software; you can redistribute it and/or modify
27  *  it under the terms of the GNU General Public License as published by
28  *  the Free Software Foundation; either version 2 of the License, or
29  *  (at your option) any later version.
30  *
31  *  This program is distributed in the hope that it will be useful,
32  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  *  GNU General Public License for more details.
35  *
36  *  You should have received a copy of the GNU General Public License
37  *  along with this program; if not, write to the Free Software
38  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
52
53 #include "rtmutex_common.h"
54
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
56
57 /*
58  * Futexes are matched on equal values of this key.
59  * The key type depends on whether it's a shared or private mapping.
60  * Don't rearrange members without looking at hash_futex().
61  *
62  * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63  * We set bit 0 to indicate if it's an inode-based key.
64  */
65 union futex_key {
66         struct {
67                 unsigned long pgoff;
68                 struct inode *inode;
69                 int offset;
70         } shared;
71         struct {
72                 unsigned long address;
73                 struct mm_struct *mm;
74                 int offset;
75         } private;
76         struct {
77                 unsigned long word;
78                 void *ptr;
79                 int offset;
80         } both;
81 };
82
83 /*
84  * Priority Inheritance state:
85  */
86 struct futex_pi_state {
87         /*
88          * list of 'owned' pi_state instances - these have to be
89          * cleaned up in do_exit() if the task exits prematurely:
90          */
91         struct list_head list;
92
93         /*
94          * The PI object:
95          */
96         struct rt_mutex pi_mutex;
97
98         struct task_struct *owner;
99         atomic_t refcount;
100
101         union futex_key key;
102 };
103
104 /*
105  * We use this hashed waitqueue instead of a normal wait_queue_t, so
106  * we can wake only the relevant ones (hashed queues may be shared).
107  *
108  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109  * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110  * The order of wakup is always to make the first condition true, then
111  * wake up q->waiters, then make the second condition true.
112  */
113 struct futex_q {
114         struct list_head list;
115         wait_queue_head_t waiters;
116
117         /* Which hash list lock to use: */
118         spinlock_t *lock_ptr;
119
120         /* Key which the futex is hashed on: */
121         union futex_key key;
122
123         /* For fd, sigio sent using these: */
124         int fd;
125         struct file *filp;
126
127         /* Optional priority inheritance state: */
128         struct futex_pi_state *pi_state;
129         struct task_struct *task;
130 };
131
132 /*
133  * Split the global futex_lock into every hash list lock.
134  */
135 struct futex_hash_bucket {
136        spinlock_t              lock;
137        struct list_head       chain;
138 };
139
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
141
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
144
145 /*
146  * We hash on the keys returned from get_futex_key (see below).
147  */
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
149 {
150         u32 hash = jhash2((u32*)&key->both.word,
151                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152                           key->both.offset);
153         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154 }
155
156 /*
157  * Return 1 if two futex_keys are equal, 0 otherwise.
158  */
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
160 {
161         return (key1->both.word == key2->both.word
162                 && key1->both.ptr == key2->both.ptr
163                 && key1->both.offset == key2->both.offset);
164 }
165
166 /*
167  * Get parameters which are the keys for a futex.
168  *
169  * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
171  * We can usually work out the index without swapping in the page.
172  *
173  * Returns: 0, or negative error code.
174  * The key words are stored in *key on success.
175  *
176  * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
177  */
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
179 {
180         unsigned long address = (unsigned long)uaddr;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *vma;
183         struct page *page;
184         int err;
185
186         /*
187          * The futex address must be "naturally" aligned.
188          */
189         key->both.offset = address % PAGE_SIZE;
190         if (unlikely((key->both.offset % sizeof(u32)) != 0))
191                 return -EINVAL;
192         address -= key->both.offset;
193
194         /*
195          * The futex is hashed differently depending on whether
196          * it's in a shared or private mapping.  So check vma first.
197          */
198         vma = find_extend_vma(mm, address);
199         if (unlikely(!vma))
200                 return -EFAULT;
201
202         /*
203          * Permissions.
204          */
205         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
207
208         /*
209          * Private mappings are handled in a simple way.
210          *
211          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212          * it's a read-only handle, it's expected that futexes attach to
213          * the object not the particular process.  Therefore we use
214          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215          * mappings of _writable_ handles.
216          */
217         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218                 key->private.mm = mm;
219                 key->private.address = address;
220                 return 0;
221         }
222
223         /*
224          * Linear file mappings are also simple.
225          */
226         key->shared.inode = vma->vm_file->f_dentry->d_inode;
227         key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230                                      + vma->vm_pgoff);
231                 return 0;
232         }
233
234         /*
235          * We could walk the page table to read the non-linear
236          * pte, and get the page index without fetching the page
237          * from swap.  But that's a lot of code to duplicate here
238          * for a rare case, so we simply fetch the page.
239          */
240         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241         if (err >= 0) {
242                 key->shared.pgoff =
243                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244                 put_page(page);
245                 return 0;
246         }
247         return err;
248 }
249
250 /*
251  * Take a reference to the resource addressed by a key.
252  * Can be called while holding spinlocks.
253  *
254  * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255  * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
256  */
257 static inline void get_key_refs(union futex_key *key)
258 {
259         if (key->both.ptr != 0) {
260                 if (key->both.offset & 1)
261                         atomic_inc(&key->shared.inode->i_count);
262                 else
263                         atomic_inc(&key->private.mm->mm_count);
264         }
265 }
266
267 /*
268  * Drop a reference to the resource addressed by a key.
269  * The hash bucket spinlock must not be held.
270  */
271 static void drop_key_refs(union futex_key *key)
272 {
273         if (key->both.ptr != 0) {
274                 if (key->both.offset & 1)
275                         iput(key->shared.inode);
276                 else
277                         mmdrop(key->private.mm);
278         }
279 }
280
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
282 {
283         int ret;
284
285         inc_preempt_count();
286         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287         dec_preempt_count();
288
289         return ret ? -EFAULT : 0;
290 }
291
292 /*
293  * Fault handling. Called with current->mm->mmap_sem held.
294  */
295 static int futex_handle_fault(unsigned long address, int attempt)
296 {
297         struct vm_area_struct * vma;
298         struct mm_struct *mm = current->mm;
299
300         if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301             vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302                 return -EFAULT;
303
304         switch (handle_mm_fault(mm, vma, address, 1)) {
305         case VM_FAULT_MINOR:
306                 current->min_flt++;
307                 break;
308         case VM_FAULT_MAJOR:
309                 current->maj_flt++;
310                 break;
311         default:
312                 return -EFAULT;
313         }
314         return 0;
315 }
316
317 /*
318  * PI code:
319  */
320 static int refill_pi_state_cache(void)
321 {
322         struct futex_pi_state *pi_state;
323
324         if (likely(current->pi_state_cache))
325                 return 0;
326
327         pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
328
329         if (!pi_state)
330                 return -ENOMEM;
331
332         memset(pi_state, 0, sizeof(*pi_state));
333         INIT_LIST_HEAD(&pi_state->list);
334         /* pi_mutex gets initialized later */
335         pi_state->owner = NULL;
336         atomic_set(&pi_state->refcount, 1);
337
338         current->pi_state_cache = pi_state;
339
340         return 0;
341 }
342
343 static struct futex_pi_state * alloc_pi_state(void)
344 {
345         struct futex_pi_state *pi_state = current->pi_state_cache;
346
347         WARN_ON(!pi_state);
348         current->pi_state_cache = NULL;
349
350         return pi_state;
351 }
352
353 static void free_pi_state(struct futex_pi_state *pi_state)
354 {
355         if (!atomic_dec_and_test(&pi_state->refcount))
356                 return;
357
358         /*
359          * If pi_state->owner is NULL, the owner is most probably dying
360          * and has cleaned up the pi_state already
361          */
362         if (pi_state->owner) {
363                 spin_lock_irq(&pi_state->owner->pi_lock);
364                 list_del_init(&pi_state->list);
365                 spin_unlock_irq(&pi_state->owner->pi_lock);
366
367                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
368         }
369
370         if (current->pi_state_cache)
371                 kfree(pi_state);
372         else {
373                 /*
374                  * pi_state->list is already empty.
375                  * clear pi_state->owner.
376                  * refcount is at 0 - put it back to 1.
377                  */
378                 pi_state->owner = NULL;
379                 atomic_set(&pi_state->refcount, 1);
380                 current->pi_state_cache = pi_state;
381         }
382 }
383
384 /*
385  * Look up the task based on what TID userspace gave us.
386  * We dont trust it.
387  */
388 static struct task_struct * futex_find_get_task(pid_t pid)
389 {
390         struct task_struct *p;
391
392         read_lock(&tasklist_lock);
393         p = find_task_by_pid(pid);
394         if (!p)
395                 goto out_unlock;
396         if ((current->euid != p->euid) && (current->euid != p->uid)) {
397                 p = NULL;
398                 goto out_unlock;
399         }
400         if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401                 p = NULL;
402                 goto out_unlock;
403         }
404         get_task_struct(p);
405 out_unlock:
406         read_unlock(&tasklist_lock);
407
408         return p;
409 }
410
411 /*
412  * This task is holding PI mutexes at exit time => bad.
413  * Kernel cleans up PI-state, but userspace is likely hosed.
414  * (Robust-futex cleanup is separate and might save the day for userspace.)
415  */
416 void exit_pi_state_list(struct task_struct *curr)
417 {
418         struct futex_hash_bucket *hb;
419         struct list_head *next, *head = &curr->pi_state_list;
420         struct futex_pi_state *pi_state;
421         union futex_key key;
422
423         /*
424          * We are a ZOMBIE and nobody can enqueue itself on
425          * pi_state_list anymore, but we have to be careful
426          * versus waiters unqueueing themselfs
427          */
428         spin_lock_irq(&curr->pi_lock);
429         while (!list_empty(head)) {
430
431                 next = head->next;
432                 pi_state = list_entry(next, struct futex_pi_state, list);
433                 key = pi_state->key;
434                 spin_unlock_irq(&curr->pi_lock);
435
436                 hb = hash_futex(&key);
437                 spin_lock(&hb->lock);
438
439                 spin_lock_irq(&curr->pi_lock);
440                 if (head->next != next) {
441                         spin_unlock(&hb->lock);
442                         continue;
443                 }
444
445                 list_del_init(&pi_state->list);
446
447                 WARN_ON(pi_state->owner != curr);
448
449                 pi_state->owner = NULL;
450                 spin_unlock_irq(&curr->pi_lock);
451
452                 rt_mutex_unlock(&pi_state->pi_mutex);
453
454                 spin_unlock(&hb->lock);
455
456                 spin_lock_irq(&curr->pi_lock);
457         }
458         spin_unlock_irq(&curr->pi_lock);
459 }
460
461 static int
462 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
463 {
464         struct futex_pi_state *pi_state = NULL;
465         struct futex_q *this, *next;
466         struct list_head *head;
467         struct task_struct *p;
468         pid_t pid;
469
470         head = &hb->chain;
471
472         list_for_each_entry_safe(this, next, head, list) {
473                 if (match_futex (&this->key, &me->key)) {
474                         /*
475                          * Another waiter already exists - bump up
476                          * the refcount and return its pi_state:
477                          */
478                         pi_state = this->pi_state;
479                         atomic_inc(&pi_state->refcount);
480                         me->pi_state = pi_state;
481
482                         return 0;
483                 }
484         }
485
486         /*
487          * We are the first waiter - try to look up the real owner and
488          * attach the new pi_state to it:
489          */
490         pid = uval & FUTEX_TID_MASK;
491         p = futex_find_get_task(pid);
492         if (!p)
493                 return -ESRCH;
494
495         pi_state = alloc_pi_state();
496
497         /*
498          * Initialize the pi_mutex in locked state and make 'p'
499          * the owner of it:
500          */
501         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
502
503         /* Store the key for possible exit cleanups: */
504         pi_state->key = me->key;
505
506         spin_lock_irq(&p->pi_lock);
507         list_add(&pi_state->list, &p->pi_state_list);
508         pi_state->owner = p;
509         spin_unlock_irq(&p->pi_lock);
510
511         put_task_struct(p);
512
513         me->pi_state = pi_state;
514
515         return 0;
516 }
517
518 /*
519  * The hash bucket lock must be held when this is called.
520  * Afterwards, the futex_q must not be accessed.
521  */
522 static void wake_futex(struct futex_q *q)
523 {
524         list_del_init(&q->list);
525         if (q->filp)
526                 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
527         /*
528          * The lock in wake_up_all() is a crucial memory barrier after the
529          * list_del_init() and also before assigning to q->lock_ptr.
530          */
531         wake_up_all(&q->waiters);
532         /*
533          * The waiting task can free the futex_q as soon as this is written,
534          * without taking any locks.  This must come last.
535          *
536          * A memory barrier is required here to prevent the following store
537          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538          * at the end of wake_up_all() does not prevent this store from
539          * moving.
540          */
541         wmb();
542         q->lock_ptr = NULL;
543 }
544
545 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
546 {
547         struct task_struct *new_owner;
548         struct futex_pi_state *pi_state = this->pi_state;
549         u32 curval, newval;
550
551         if (!pi_state)
552                 return -EINVAL;
553
554         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
555
556         /*
557          * This happens when we have stolen the lock and the original
558          * pending owner did not enqueue itself back on the rt_mutex.
559          * Thats not a tragedy. We know that way, that a lock waiter
560          * is on the fly. We make the futex_q waiter the pending owner.
561          */
562         if (!new_owner)
563                 new_owner = this->task;
564
565         /*
566          * We pass it to the next owner. (The WAITERS bit is always
567          * kept enabled while there is PI state around. We must also
568          * preserve the owner died bit.)
569          */
570         newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
571
572         inc_preempt_count();
573         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574         dec_preempt_count();
575
576         if (curval == -EFAULT)
577                 return -EFAULT;
578         if (curval != uval)
579                 return -EINVAL;
580
581         list_del_init(&pi_state->owner->pi_state_list);
582         list_add(&pi_state->list, &new_owner->pi_state_list);
583         pi_state->owner = new_owner;
584         rt_mutex_unlock(&pi_state->pi_mutex);
585
586         return 0;
587 }
588
589 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
590 {
591         u32 oldval;
592
593         /*
594          * There is no waiter, so we unlock the futex. The owner died
595          * bit has not to be preserved here. We are the owner:
596          */
597         inc_preempt_count();
598         oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599         dec_preempt_count();
600
601         if (oldval == -EFAULT)
602                 return oldval;
603         if (oldval != uval)
604                 return -EAGAIN;
605
606         return 0;
607 }
608
609 /*
610  * Express the locking dependencies for lockdep:
611  */
612 static inline void
613 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
614 {
615         if (hb1 <= hb2) {
616                 spin_lock(&hb1->lock);
617                 if (hb1 < hb2)
618                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
619         } else { /* hb1 > hb2 */
620                 spin_lock(&hb2->lock);
621                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
622         }
623 }
624
625 /*
626  * Wake up all waiters hashed on the physical page that is mapped
627  * to this virtual address:
628  */
629 static int futex_wake(u32 __user *uaddr, int nr_wake)
630 {
631         struct futex_hash_bucket *hb;
632         struct futex_q *this, *next;
633         struct list_head *head;
634         union futex_key key;
635         int ret;
636
637         down_read(&current->mm->mmap_sem);
638
639         ret = get_futex_key(uaddr, &key);
640         if (unlikely(ret != 0))
641                 goto out;
642
643         hb = hash_futex(&key);
644         spin_lock(&hb->lock);
645         head = &hb->chain;
646
647         list_for_each_entry_safe(this, next, head, list) {
648                 if (match_futex (&this->key, &key)) {
649                         if (this->pi_state) {
650                                 ret = -EINVAL;
651                                 break;
652                         }
653                         wake_futex(this);
654                         if (++ret >= nr_wake)
655                                 break;
656                 }
657         }
658
659         spin_unlock(&hb->lock);
660 out:
661         up_read(&current->mm->mmap_sem);
662         return ret;
663 }
664
665 /*
666  * Wake up all waiters hashed on the physical page that is mapped
667  * to this virtual address:
668  */
669 static int
670 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
671               int nr_wake, int nr_wake2, int op)
672 {
673         union futex_key key1, key2;
674         struct futex_hash_bucket *hb1, *hb2;
675         struct list_head *head;
676         struct futex_q *this, *next;
677         int ret, op_ret, attempt = 0;
678
679 retryfull:
680         down_read(&current->mm->mmap_sem);
681
682         ret = get_futex_key(uaddr1, &key1);
683         if (unlikely(ret != 0))
684                 goto out;
685         ret = get_futex_key(uaddr2, &key2);
686         if (unlikely(ret != 0))
687                 goto out;
688
689         hb1 = hash_futex(&key1);
690         hb2 = hash_futex(&key2);
691
692 retry:
693         double_lock_hb(hb1, hb2);
694
695         op_ret = futex_atomic_op_inuser(op, uaddr2);
696         if (unlikely(op_ret < 0)) {
697                 u32 dummy;
698
699                 spin_unlock(&hb1->lock);
700                 if (hb1 != hb2)
701                         spin_unlock(&hb2->lock);
702
703 #ifndef CONFIG_MMU
704                 /*
705                  * we don't get EFAULT from MMU faults if we don't have an MMU,
706                  * but we might get them from range checking
707                  */
708                 ret = op_ret;
709                 goto out;
710 #endif
711
712                 if (unlikely(op_ret != -EFAULT)) {
713                         ret = op_ret;
714                         goto out;
715                 }
716
717                 /*
718                  * futex_atomic_op_inuser needs to both read and write
719                  * *(int __user *)uaddr2, but we can't modify it
720                  * non-atomically.  Therefore, if get_user below is not
721                  * enough, we need to handle the fault ourselves, while
722                  * still holding the mmap_sem.
723                  */
724                 if (attempt++) {
725                         if (futex_handle_fault((unsigned long)uaddr2,
726                                                attempt))
727                                 goto out;
728                         goto retry;
729                 }
730
731                 /*
732                  * If we would have faulted, release mmap_sem,
733                  * fault it in and start all over again.
734                  */
735                 up_read(&current->mm->mmap_sem);
736
737                 ret = get_user(dummy, uaddr2);
738                 if (ret)
739                         return ret;
740
741                 goto retryfull;
742         }
743
744         head = &hb1->chain;
745
746         list_for_each_entry_safe(this, next, head, list) {
747                 if (match_futex (&this->key, &key1)) {
748                         wake_futex(this);
749                         if (++ret >= nr_wake)
750                                 break;
751                 }
752         }
753
754         if (op_ret > 0) {
755                 head = &hb2->chain;
756
757                 op_ret = 0;
758                 list_for_each_entry_safe(this, next, head, list) {
759                         if (match_futex (&this->key, &key2)) {
760                                 wake_futex(this);
761                                 if (++op_ret >= nr_wake2)
762                                         break;
763                         }
764                 }
765                 ret += op_ret;
766         }
767
768         spin_unlock(&hb1->lock);
769         if (hb1 != hb2)
770                 spin_unlock(&hb2->lock);
771 out:
772         up_read(&current->mm->mmap_sem);
773         return ret;
774 }
775
776 /*
777  * Requeue all waiters hashed on one physical page to another
778  * physical page.
779  */
780 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
781                          int nr_wake, int nr_requeue, u32 *cmpval)
782 {
783         union futex_key key1, key2;
784         struct futex_hash_bucket *hb1, *hb2;
785         struct list_head *head1;
786         struct futex_q *this, *next;
787         int ret, drop_count = 0;
788
789  retry:
790         down_read(&current->mm->mmap_sem);
791
792         ret = get_futex_key(uaddr1, &key1);
793         if (unlikely(ret != 0))
794                 goto out;
795         ret = get_futex_key(uaddr2, &key2);
796         if (unlikely(ret != 0))
797                 goto out;
798
799         hb1 = hash_futex(&key1);
800         hb2 = hash_futex(&key2);
801
802         double_lock_hb(hb1, hb2);
803
804         if (likely(cmpval != NULL)) {
805                 u32 curval;
806
807                 ret = get_futex_value_locked(&curval, uaddr1);
808
809                 if (unlikely(ret)) {
810                         spin_unlock(&hb1->lock);
811                         if (hb1 != hb2)
812                                 spin_unlock(&hb2->lock);
813
814                         /*
815                          * If we would have faulted, release mmap_sem, fault
816                          * it in and start all over again.
817                          */
818                         up_read(&current->mm->mmap_sem);
819
820                         ret = get_user(curval, uaddr1);
821
822                         if (!ret)
823                                 goto retry;
824
825                         return ret;
826                 }
827                 if (curval != *cmpval) {
828                         ret = -EAGAIN;
829                         goto out_unlock;
830                 }
831         }
832
833         head1 = &hb1->chain;
834         list_for_each_entry_safe(this, next, head1, list) {
835                 if (!match_futex (&this->key, &key1))
836                         continue;
837                 if (++ret <= nr_wake) {
838                         wake_futex(this);
839                 } else {
840                         /*
841                          * If key1 and key2 hash to the same bucket, no need to
842                          * requeue.
843                          */
844                         if (likely(head1 != &hb2->chain)) {
845                                 list_move_tail(&this->list, &hb2->chain);
846                                 this->lock_ptr = &hb2->lock;
847                         }
848                         this->key = key2;
849                         get_key_refs(&key2);
850                         drop_count++;
851
852                         if (ret - nr_wake >= nr_requeue)
853                                 break;
854                 }
855         }
856
857 out_unlock:
858         spin_unlock(&hb1->lock);
859         if (hb1 != hb2)
860                 spin_unlock(&hb2->lock);
861
862         /* drop_key_refs() must be called outside the spinlocks. */
863         while (--drop_count >= 0)
864                 drop_key_refs(&key1);
865
866 out:
867         up_read(&current->mm->mmap_sem);
868         return ret;
869 }
870
871 /* The key must be already stored in q->key. */
872 static inline struct futex_hash_bucket *
873 queue_lock(struct futex_q *q, int fd, struct file *filp)
874 {
875         struct futex_hash_bucket *hb;
876
877         q->fd = fd;
878         q->filp = filp;
879
880         init_waitqueue_head(&q->waiters);
881
882         get_key_refs(&q->key);
883         hb = hash_futex(&q->key);
884         q->lock_ptr = &hb->lock;
885
886         spin_lock(&hb->lock);
887         return hb;
888 }
889
890 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
891 {
892         list_add_tail(&q->list, &hb->chain);
893         q->task = current;
894         spin_unlock(&hb->lock);
895 }
896
897 static inline void
898 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
899 {
900         spin_unlock(&hb->lock);
901         drop_key_refs(&q->key);
902 }
903
904 /*
905  * queue_me and unqueue_me must be called as a pair, each
906  * exactly once.  They are called with the hashed spinlock held.
907  */
908
909 /* The key must be already stored in q->key. */
910 static void queue_me(struct futex_q *q, int fd, struct file *filp)
911 {
912         struct futex_hash_bucket *hb;
913
914         hb = queue_lock(q, fd, filp);
915         __queue_me(q, hb);
916 }
917
918 /* Return 1 if we were still queued (ie. 0 means we were woken) */
919 static int unqueue_me(struct futex_q *q)
920 {
921         spinlock_t *lock_ptr;
922         int ret = 0;
923
924         /* In the common case we don't take the spinlock, which is nice. */
925  retry:
926         lock_ptr = q->lock_ptr;
927         if (lock_ptr != 0) {
928                 spin_lock(lock_ptr);
929                 /*
930                  * q->lock_ptr can change between reading it and
931                  * spin_lock(), causing us to take the wrong lock.  This
932                  * corrects the race condition.
933                  *
934                  * Reasoning goes like this: if we have the wrong lock,
935                  * q->lock_ptr must have changed (maybe several times)
936                  * between reading it and the spin_lock().  It can
937                  * change again after the spin_lock() but only if it was
938                  * already changed before the spin_lock().  It cannot,
939                  * however, change back to the original value.  Therefore
940                  * we can detect whether we acquired the correct lock.
941                  */
942                 if (unlikely(lock_ptr != q->lock_ptr)) {
943                         spin_unlock(lock_ptr);
944                         goto retry;
945                 }
946                 WARN_ON(list_empty(&q->list));
947                 list_del(&q->list);
948
949                 BUG_ON(q->pi_state);
950
951                 spin_unlock(lock_ptr);
952                 ret = 1;
953         }
954
955         drop_key_refs(&q->key);
956         return ret;
957 }
958
959 /*
960  * PI futexes can not be requeued and must remove themself from the
961  * hash bucket. The hash bucket lock is held on entry and dropped here.
962  */
963 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
964 {
965         WARN_ON(list_empty(&q->list));
966         list_del(&q->list);
967
968         BUG_ON(!q->pi_state);
969         free_pi_state(q->pi_state);
970         q->pi_state = NULL;
971
972         spin_unlock(&hb->lock);
973
974         drop_key_refs(&q->key);
975 }
976
977 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
978 {
979         struct task_struct *curr = current;
980         DECLARE_WAITQUEUE(wait, curr);
981         struct futex_hash_bucket *hb;
982         struct futex_q q;
983         u32 uval;
984         int ret;
985
986         q.pi_state = NULL;
987  retry:
988         down_read(&curr->mm->mmap_sem);
989
990         ret = get_futex_key(uaddr, &q.key);
991         if (unlikely(ret != 0))
992                 goto out_release_sem;
993
994         hb = queue_lock(&q, -1, NULL);
995
996         /*
997          * Access the page AFTER the futex is queued.
998          * Order is important:
999          *
1000          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1001          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1002          *
1003          * The basic logical guarantee of a futex is that it blocks ONLY
1004          * if cond(var) is known to be true at the time of blocking, for
1005          * any cond.  If we queued after testing *uaddr, that would open
1006          * a race condition where we could block indefinitely with
1007          * cond(var) false, which would violate the guarantee.
1008          *
1009          * A consequence is that futex_wait() can return zero and absorb
1010          * a wakeup when *uaddr != val on entry to the syscall.  This is
1011          * rare, but normal.
1012          *
1013          * We hold the mmap semaphore, so the mapping cannot have changed
1014          * since we looked it up in get_futex_key.
1015          */
1016         ret = get_futex_value_locked(&uval, uaddr);
1017
1018         if (unlikely(ret)) {
1019                 queue_unlock(&q, hb);
1020
1021                 /*
1022                  * If we would have faulted, release mmap_sem, fault it in and
1023                  * start all over again.
1024                  */
1025                 up_read(&curr->mm->mmap_sem);
1026
1027                 ret = get_user(uval, uaddr);
1028
1029                 if (!ret)
1030                         goto retry;
1031                 return ret;
1032         }
1033         ret = -EWOULDBLOCK;
1034         if (uval != val)
1035                 goto out_unlock_release_sem;
1036
1037         /* Only actually queue if *uaddr contained val.  */
1038         __queue_me(&q, hb);
1039
1040         /*
1041          * Now the futex is queued and we have checked the data, we
1042          * don't want to hold mmap_sem while we sleep.
1043          */
1044         up_read(&curr->mm->mmap_sem);
1045
1046         /*
1047          * There might have been scheduling since the queue_me(), as we
1048          * cannot hold a spinlock across the get_user() in case it
1049          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1050          * queueing ourselves into the futex hash.  This code thus has to
1051          * rely on the futex_wake() code removing us from hash when it
1052          * wakes us up.
1053          */
1054
1055         /* add_wait_queue is the barrier after __set_current_state. */
1056         __set_current_state(TASK_INTERRUPTIBLE);
1057         add_wait_queue(&q.waiters, &wait);
1058         /*
1059          * !list_empty() is safe here without any lock.
1060          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1061          */
1062         if (likely(!list_empty(&q.list)))
1063                 time = schedule_timeout(time);
1064         __set_current_state(TASK_RUNNING);
1065
1066         /*
1067          * NOTE: we don't remove ourselves from the waitqueue because
1068          * we are the only user of it.
1069          */
1070
1071         /* If we were woken (and unqueued), we succeeded, whatever. */
1072         if (!unqueue_me(&q))
1073                 return 0;
1074         if (time == 0)
1075                 return -ETIMEDOUT;
1076         /*
1077          * We expect signal_pending(current), but another thread may
1078          * have handled it for us already.
1079          */
1080         return -EINTR;
1081
1082  out_unlock_release_sem:
1083         queue_unlock(&q, hb);
1084
1085  out_release_sem:
1086         up_read(&curr->mm->mmap_sem);
1087         return ret;
1088 }
1089
1090 /*
1091  * Userspace tried a 0 -> TID atomic transition of the futex value
1092  * and failed. The kernel side here does the whole locking operation:
1093  * if there are waiters then it will block, it does PI, etc. (Due to
1094  * races the kernel might see a 0 value of the futex too.)
1095  */
1096 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1097                             struct hrtimer_sleeper *to)
1098 {
1099         struct task_struct *curr = current;
1100         struct futex_hash_bucket *hb;
1101         u32 uval, newval, curval;
1102         struct futex_q q;
1103         int ret, attempt = 0;
1104
1105         if (refill_pi_state_cache())
1106                 return -ENOMEM;
1107
1108         q.pi_state = NULL;
1109  retry:
1110         down_read(&curr->mm->mmap_sem);
1111
1112         ret = get_futex_key(uaddr, &q.key);
1113         if (unlikely(ret != 0))
1114                 goto out_release_sem;
1115
1116         hb = queue_lock(&q, -1, NULL);
1117
1118  retry_locked:
1119         /*
1120          * To avoid races, we attempt to take the lock here again
1121          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1122          * the locks. It will most likely not succeed.
1123          */
1124         newval = current->pid;
1125
1126         inc_preempt_count();
1127         curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1128         dec_preempt_count();
1129
1130         if (unlikely(curval == -EFAULT))
1131                 goto uaddr_faulted;
1132
1133         /* We own the lock already */
1134         if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1135                 if (!detect && 0)
1136                         force_sig(SIGKILL, current);
1137                 ret = -EDEADLK;
1138                 goto out_unlock_release_sem;
1139         }
1140
1141         /*
1142          * Surprise - we got the lock. Just return
1143          * to userspace:
1144          */
1145         if (unlikely(!curval))
1146                 goto out_unlock_release_sem;
1147
1148         uval = curval;
1149         newval = uval | FUTEX_WAITERS;
1150
1151         inc_preempt_count();
1152         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1153         dec_preempt_count();
1154
1155         if (unlikely(curval == -EFAULT))
1156                 goto uaddr_faulted;
1157         if (unlikely(curval != uval))
1158                 goto retry_locked;
1159
1160         /*
1161          * We dont have the lock. Look up the PI state (or create it if
1162          * we are the first waiter):
1163          */
1164         ret = lookup_pi_state(uval, hb, &q);
1165
1166         if (unlikely(ret)) {
1167                 /*
1168                  * There were no waiters and the owner task lookup
1169                  * failed. When the OWNER_DIED bit is set, then we
1170                  * know that this is a robust futex and we actually
1171                  * take the lock. This is safe as we are protected by
1172                  * the hash bucket lock. We also set the waiters bit
1173                  * unconditionally here, to simplify glibc handling of
1174                  * multiple tasks racing to acquire the lock and
1175                  * cleanup the problems which were left by the dead
1176                  * owner.
1177                  */
1178                 if (curval & FUTEX_OWNER_DIED) {
1179                         uval = newval;
1180                         newval = current->pid |
1181                                 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1182
1183                         inc_preempt_count();
1184                         curval = futex_atomic_cmpxchg_inatomic(uaddr,
1185                                                                uval, newval);
1186                         dec_preempt_count();
1187
1188                         if (unlikely(curval == -EFAULT))
1189                                 goto uaddr_faulted;
1190                         if (unlikely(curval != uval))
1191                                 goto retry_locked;
1192                         ret = 0;
1193                 }
1194                 goto out_unlock_release_sem;
1195         }
1196
1197         /*
1198          * Only actually queue now that the atomic ops are done:
1199          */
1200         __queue_me(&q, hb);
1201
1202         /*
1203          * Now the futex is queued and we have checked the data, we
1204          * don't want to hold mmap_sem while we sleep.
1205          */
1206         up_read(&curr->mm->mmap_sem);
1207
1208         WARN_ON(!q.pi_state);
1209         /*
1210          * Block on the PI mutex:
1211          */
1212         if (!trylock)
1213                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1214         else {
1215                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1216                 /* Fixup the trylock return value: */
1217                 ret = ret ? 0 : -EWOULDBLOCK;
1218         }
1219
1220         down_read(&curr->mm->mmap_sem);
1221         spin_lock(q.lock_ptr);
1222
1223         /*
1224          * Got the lock. We might not be the anticipated owner if we
1225          * did a lock-steal - fix up the PI-state in that case.
1226          */
1227         if (!ret && q.pi_state->owner != curr) {
1228                 u32 newtid = current->pid | FUTEX_WAITERS;
1229
1230                 /* Owner died? */
1231                 if (q.pi_state->owner != NULL) {
1232                         spin_lock_irq(&q.pi_state->owner->pi_lock);
1233                         list_del_init(&q.pi_state->list);
1234                         spin_unlock_irq(&q.pi_state->owner->pi_lock);
1235                 } else
1236                         newtid |= FUTEX_OWNER_DIED;
1237
1238                 q.pi_state->owner = current;
1239
1240                 spin_lock_irq(&current->pi_lock);
1241                 list_add(&q.pi_state->list, &current->pi_state_list);
1242                 spin_unlock_irq(&current->pi_lock);
1243
1244                 /* Unqueue and drop the lock */
1245                 unqueue_me_pi(&q, hb);
1246                 up_read(&curr->mm->mmap_sem);
1247                 /*
1248                  * We own it, so we have to replace the pending owner
1249                  * TID. This must be atomic as we have preserve the
1250                  * owner died bit here.
1251                  */
1252                 ret = get_user(uval, uaddr);
1253                 while (!ret) {
1254                         newval = (uval & FUTEX_OWNER_DIED) | newtid;
1255                         curval = futex_atomic_cmpxchg_inatomic(uaddr,
1256                                                                uval, newval);
1257                         if (curval == -EFAULT)
1258                                 ret = -EFAULT;
1259                         if (curval == uval)
1260                                 break;
1261                         uval = curval;
1262                 }
1263         } else {
1264                 /*
1265                  * Catch the rare case, where the lock was released
1266                  * when we were on the way back before we locked
1267                  * the hash bucket.
1268                  */
1269                 if (ret && q.pi_state->owner == curr) {
1270                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1271                                 ret = 0;
1272                 }
1273                 /* Unqueue and drop the lock */
1274                 unqueue_me_pi(&q, hb);
1275                 up_read(&curr->mm->mmap_sem);
1276         }
1277
1278         if (!detect && ret == -EDEADLK && 0)
1279                 force_sig(SIGKILL, current);
1280
1281         return ret;
1282
1283  out_unlock_release_sem:
1284         queue_unlock(&q, hb);
1285
1286  out_release_sem:
1287         up_read(&curr->mm->mmap_sem);
1288         return ret;
1289
1290  uaddr_faulted:
1291         /*
1292          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1293          * non-atomically.  Therefore, if get_user below is not
1294          * enough, we need to handle the fault ourselves, while
1295          * still holding the mmap_sem.
1296          */
1297         if (attempt++) {
1298                 if (futex_handle_fault((unsigned long)uaddr, attempt))
1299                         goto out_unlock_release_sem;
1300
1301                 goto retry_locked;
1302         }
1303
1304         queue_unlock(&q, hb);
1305         up_read(&curr->mm->mmap_sem);
1306
1307         ret = get_user(uval, uaddr);
1308         if (!ret && (uval != -EFAULT))
1309                 goto retry;
1310
1311         return ret;
1312 }
1313
1314 /*
1315  * Restart handler
1316  */
1317 static long futex_lock_pi_restart(struct restart_block *restart)
1318 {
1319         struct hrtimer_sleeper timeout, *to = NULL;
1320         int ret;
1321
1322         restart->fn = do_no_restart_syscall;
1323
1324         if (restart->arg2 || restart->arg3) {
1325                 to = &timeout;
1326                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1327                 hrtimer_init_sleeper(to, current);
1328                 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1329                         (u64) restart->arg0;
1330         }
1331
1332         pr_debug("lock_pi restart: %p, %d (%d)\n",
1333                  (u32 __user *)restart->arg0, current->pid);
1334
1335         ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1336                                0, to);
1337
1338         if (ret != -EINTR)
1339                 return ret;
1340
1341         restart->fn = futex_lock_pi_restart;
1342
1343         /* The other values are filled in */
1344         return -ERESTART_RESTARTBLOCK;
1345 }
1346
1347 /*
1348  * Called from the syscall entry below.
1349  */
1350 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1351                          long nsec, int trylock)
1352 {
1353         struct hrtimer_sleeper timeout, *to = NULL;
1354         struct restart_block *restart;
1355         int ret;
1356
1357         if (sec != MAX_SCHEDULE_TIMEOUT) {
1358                 to = &timeout;
1359                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1360                 hrtimer_init_sleeper(to, current);
1361                 to->timer.expires = ktime_set(sec, nsec);
1362         }
1363
1364         ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1365
1366         if (ret != -EINTR)
1367                 return ret;
1368
1369         pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1370
1371         restart = &current_thread_info()->restart_block;
1372         restart->fn = futex_lock_pi_restart;
1373         restart->arg0 = (unsigned long) uaddr;
1374         restart->arg1 = detect;
1375         if (to) {
1376                 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1377                 restart->arg3 = to->timer.expires.tv64 >> 32;
1378         } else
1379                 restart->arg2 = restart->arg3 = 0;
1380
1381         return -ERESTART_RESTARTBLOCK;
1382 }
1383
1384 /*
1385  * Userspace attempted a TID -> 0 atomic transition, and failed.
1386  * This is the in-kernel slowpath: we look up the PI state (if any),
1387  * and do the rt-mutex unlock.
1388  */
1389 static int futex_unlock_pi(u32 __user *uaddr)
1390 {
1391         struct futex_hash_bucket *hb;
1392         struct futex_q *this, *next;
1393         u32 uval;
1394         struct list_head *head;
1395         union futex_key key;
1396         int ret, attempt = 0;
1397
1398 retry:
1399         if (get_user(uval, uaddr))
1400                 return -EFAULT;
1401         /*
1402          * We release only a lock we actually own:
1403          */
1404         if ((uval & FUTEX_TID_MASK) != current->pid)
1405                 return -EPERM;
1406         /*
1407          * First take all the futex related locks:
1408          */
1409         down_read(&current->mm->mmap_sem);
1410
1411         ret = get_futex_key(uaddr, &key);
1412         if (unlikely(ret != 0))
1413                 goto out;
1414
1415         hb = hash_futex(&key);
1416         spin_lock(&hb->lock);
1417
1418 retry_locked:
1419         /*
1420          * To avoid races, try to do the TID -> 0 atomic transition
1421          * again. If it succeeds then we can return without waking
1422          * anyone else up:
1423          */
1424         inc_preempt_count();
1425         uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1426         dec_preempt_count();
1427
1428         if (unlikely(uval == -EFAULT))
1429                 goto pi_faulted;
1430         /*
1431          * Rare case: we managed to release the lock atomically,
1432          * no need to wake anyone else up:
1433          */
1434         if (unlikely(uval == current->pid))
1435                 goto out_unlock;
1436
1437         /*
1438          * Ok, other tasks may need to be woken up - check waiters
1439          * and do the wakeup if necessary:
1440          */
1441         head = &hb->chain;
1442
1443         list_for_each_entry_safe(this, next, head, list) {
1444                 if (!match_futex (&this->key, &key))
1445                         continue;
1446                 ret = wake_futex_pi(uaddr, uval, this);
1447                 /*
1448                  * The atomic access to the futex value
1449                  * generated a pagefault, so retry the
1450                  * user-access and the wakeup:
1451                  */
1452                 if (ret == -EFAULT)
1453                         goto pi_faulted;
1454                 goto out_unlock;
1455         }
1456         /*
1457          * No waiters - kernel unlocks the futex:
1458          */
1459         ret = unlock_futex_pi(uaddr, uval);
1460         if (ret == -EFAULT)
1461                 goto pi_faulted;
1462
1463 out_unlock:
1464         spin_unlock(&hb->lock);
1465 out:
1466         up_read(&current->mm->mmap_sem);
1467
1468         return ret;
1469
1470 pi_faulted:
1471         /*
1472          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1473          * non-atomically.  Therefore, if get_user below is not
1474          * enough, we need to handle the fault ourselves, while
1475          * still holding the mmap_sem.
1476          */
1477         if (attempt++) {
1478                 if (futex_handle_fault((unsigned long)uaddr, attempt))
1479                         goto out_unlock;
1480
1481                 goto retry_locked;
1482         }
1483
1484         spin_unlock(&hb->lock);
1485         up_read(&current->mm->mmap_sem);
1486
1487         ret = get_user(uval, uaddr);
1488         if (!ret && (uval != -EFAULT))
1489                 goto retry;
1490
1491         return ret;
1492 }
1493
1494 static int futex_close(struct inode *inode, struct file *filp)
1495 {
1496         struct futex_q *q = filp->private_data;
1497
1498         unqueue_me(q);
1499         kfree(q);
1500
1501         return 0;
1502 }
1503
1504 /* This is one-shot: once it's gone off you need a new fd */
1505 static unsigned int futex_poll(struct file *filp,
1506                                struct poll_table_struct *wait)
1507 {
1508         struct futex_q *q = filp->private_data;
1509         int ret = 0;
1510
1511         poll_wait(filp, &q->waiters, wait);
1512
1513         /*
1514          * list_empty() is safe here without any lock.
1515          * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1516          */
1517         if (list_empty(&q->list))
1518                 ret = POLLIN | POLLRDNORM;
1519
1520         return ret;
1521 }
1522
1523 static struct file_operations futex_fops = {
1524         .release        = futex_close,
1525         .poll           = futex_poll,
1526 };
1527
1528 /*
1529  * Signal allows caller to avoid the race which would occur if they
1530  * set the sigio stuff up afterwards.
1531  */
1532 static int futex_fd(u32 __user *uaddr, int signal)
1533 {
1534         struct futex_q *q;
1535         struct file *filp;
1536         int ret, err;
1537
1538         ret = -EINVAL;
1539         if (!valid_signal(signal))
1540                 goto out;
1541
1542         ret = get_unused_fd();
1543         if (ret < 0)
1544                 goto out;
1545         filp = get_empty_filp();
1546         if (!filp) {
1547                 put_unused_fd(ret);
1548                 ret = -ENFILE;
1549                 goto out;
1550         }
1551         filp->f_op = &futex_fops;
1552         filp->f_vfsmnt = mntget(futex_mnt);
1553         filp->f_dentry = dget(futex_mnt->mnt_root);
1554         filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1555
1556         if (signal) {
1557                 err = f_setown(filp, current->pid, 1);
1558                 if (err < 0) {
1559                         goto error;
1560                 }
1561                 filp->f_owner.signum = signal;
1562         }
1563
1564         q = kmalloc(sizeof(*q), GFP_KERNEL);
1565         if (!q) {
1566                 err = -ENOMEM;
1567                 goto error;
1568         }
1569         q->pi_state = NULL;
1570
1571         down_read(&current->mm->mmap_sem);
1572         err = get_futex_key(uaddr, &q->key);
1573
1574         if (unlikely(err != 0)) {
1575                 up_read(&current->mm->mmap_sem);
1576                 kfree(q);
1577                 goto error;
1578         }
1579
1580         /*
1581          * queue_me() must be called before releasing mmap_sem, because
1582          * key->shared.inode needs to be referenced while holding it.
1583          */
1584         filp->private_data = q;
1585
1586         queue_me(q, ret, filp);
1587         up_read(&current->mm->mmap_sem);
1588
1589         /* Now we map fd to filp, so userspace can access it */
1590         fd_install(ret, filp);
1591 out:
1592         return ret;
1593 error:
1594         put_unused_fd(ret);
1595         put_filp(filp);
1596         ret = err;
1597         goto out;
1598 }
1599
1600 /*
1601  * Support for robust futexes: the kernel cleans up held futexes at
1602  * thread exit time.
1603  *
1604  * Implementation: user-space maintains a per-thread list of locks it
1605  * is holding. Upon do_exit(), the kernel carefully walks this list,
1606  * and marks all locks that are owned by this thread with the
1607  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1608  * always manipulated with the lock held, so the list is private and
1609  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1610  * field, to allow the kernel to clean up if the thread dies after
1611  * acquiring the lock, but just before it could have added itself to
1612  * the list. There can only be one such pending lock.
1613  */
1614
1615 /**
1616  * sys_set_robust_list - set the robust-futex list head of a task
1617  * @head: pointer to the list-head
1618  * @len: length of the list-head, as userspace expects
1619  */
1620 asmlinkage long
1621 sys_set_robust_list(struct robust_list_head __user *head,
1622                     size_t len)
1623 {
1624         /*
1625          * The kernel knows only one size for now:
1626          */
1627         if (unlikely(len != sizeof(*head)))
1628                 return -EINVAL;
1629
1630         current->robust_list = head;
1631
1632         return 0;
1633 }
1634
1635 /**
1636  * sys_get_robust_list - get the robust-futex list head of a task
1637  * @pid: pid of the process [zero for current task]
1638  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1639  * @len_ptr: pointer to a length field, the kernel fills in the header size
1640  */
1641 asmlinkage long
1642 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1643                     size_t __user *len_ptr)
1644 {
1645         struct robust_list_head *head;
1646         unsigned long ret;
1647
1648         if (!pid)
1649                 head = current->robust_list;
1650         else {
1651                 struct task_struct *p;
1652
1653                 ret = -ESRCH;
1654                 read_lock(&tasklist_lock);
1655                 p = find_task_by_pid(pid);
1656                 if (!p)
1657                         goto err_unlock;
1658                 ret = -EPERM;
1659                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1660                                 !capable(CAP_SYS_PTRACE))
1661                         goto err_unlock;
1662                 head = p->robust_list;
1663                 read_unlock(&tasklist_lock);
1664         }
1665
1666         if (put_user(sizeof(*head), len_ptr))
1667                 return -EFAULT;
1668         return put_user(head, head_ptr);
1669
1670 err_unlock:
1671         read_unlock(&tasklist_lock);
1672
1673         return ret;
1674 }
1675
1676 /*
1677  * Process a futex-list entry, check whether it's owned by the
1678  * dying task, and do notification if so:
1679  */
1680 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1681 {
1682         u32 uval, nval;
1683
1684 retry:
1685         if (get_user(uval, uaddr))
1686                 return -1;
1687
1688         if ((uval & FUTEX_TID_MASK) == curr->pid) {
1689                 /*
1690                  * Ok, this dying thread is truly holding a futex
1691                  * of interest. Set the OWNER_DIED bit atomically
1692                  * via cmpxchg, and if the value had FUTEX_WAITERS
1693                  * set, wake up a waiter (if any). (We have to do a
1694                  * futex_wake() even if OWNER_DIED is already set -
1695                  * to handle the rare but possible case of recursive
1696                  * thread-death.) The rest of the cleanup is done in
1697                  * userspace.
1698                  */
1699                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1700                                                      uval | FUTEX_OWNER_DIED);
1701                 if (nval == -EFAULT)
1702                         return -1;
1703
1704                 if (nval != uval)
1705                         goto retry;
1706
1707                 if (uval & FUTEX_WAITERS)
1708                         futex_wake(uaddr, 1);
1709         }
1710         return 0;
1711 }
1712
1713 /*
1714  * Walk curr->robust_list (very carefully, it's a userspace list!)
1715  * and mark any locks found there dead, and notify any waiters.
1716  *
1717  * We silently return on any sign of list-walking problem.
1718  */
1719 void exit_robust_list(struct task_struct *curr)
1720 {
1721         struct robust_list_head __user *head = curr->robust_list;
1722         struct robust_list __user *entry, *pending;
1723         unsigned int limit = ROBUST_LIST_LIMIT;
1724         unsigned long futex_offset;
1725
1726         /*
1727          * Fetch the list head (which was registered earlier, via
1728          * sys_set_robust_list()):
1729          */
1730         if (get_user(entry, &head->list.next))
1731                 return;
1732         /*
1733          * Fetch the relative futex offset:
1734          */
1735         if (get_user(futex_offset, &head->futex_offset))
1736                 return;
1737         /*
1738          * Fetch any possibly pending lock-add first, and handle it
1739          * if it exists:
1740          */
1741         if (get_user(pending, &head->list_op_pending))
1742                 return;
1743         if (pending)
1744                 handle_futex_death((void *)pending + futex_offset, curr);
1745
1746         while (entry != &head->list) {
1747                 /*
1748                  * A pending lock might already be on the list, so
1749                  * don't process it twice:
1750                  */
1751                 if (entry != pending)
1752                         if (handle_futex_death((void *)entry + futex_offset,
1753                                                 curr))
1754                                 return;
1755                 /*
1756                  * Fetch the next entry in the list:
1757                  */
1758                 if (get_user(entry, &entry->next))
1759                         return;
1760                 /*
1761                  * Avoid excessively long or circular lists:
1762                  */
1763                 if (!--limit)
1764                         break;
1765
1766                 cond_resched();
1767         }
1768 }
1769
1770 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1771                 u32 __user *uaddr2, u32 val2, u32 val3)
1772 {
1773         int ret;
1774
1775         switch (op) {
1776         case FUTEX_WAIT:
1777                 ret = futex_wait(uaddr, val, timeout);
1778                 break;
1779         case FUTEX_WAKE:
1780                 ret = futex_wake(uaddr, val);
1781                 break;
1782         case FUTEX_FD:
1783                 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1784                 ret = futex_fd(uaddr, val);
1785                 break;
1786         case FUTEX_REQUEUE:
1787                 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1788                 break;
1789         case FUTEX_CMP_REQUEUE:
1790                 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1791                 break;
1792         case FUTEX_WAKE_OP:
1793                 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1794                 break;
1795         case FUTEX_LOCK_PI:
1796                 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1797                 break;
1798         case FUTEX_UNLOCK_PI:
1799                 ret = futex_unlock_pi(uaddr);
1800                 break;
1801         case FUTEX_TRYLOCK_PI:
1802                 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1803                 break;
1804         default:
1805                 ret = -ENOSYS;
1806         }
1807         return ret;
1808 }
1809
1810
1811 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1812                           struct timespec __user *utime, u32 __user *uaddr2,
1813                           u32 val3)
1814 {
1815         struct timespec t;
1816         unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1817         u32 val2 = 0;
1818
1819         if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1820                 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1821                         return -EFAULT;
1822                 if (!timespec_valid(&t))
1823                         return -EINVAL;
1824                 if (op == FUTEX_WAIT)
1825                         timeout = timespec_to_jiffies(&t) + 1;
1826                 else {
1827                         timeout = t.tv_sec;
1828                         val2 = t.tv_nsec;
1829                 }
1830         }
1831         /*
1832          * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1833          */
1834         if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1835                 val2 = (u32) (unsigned long) utime;
1836
1837         return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1838 }
1839
1840 static int futexfs_get_sb(struct file_system_type *fs_type,
1841                           int flags, const char *dev_name, void *data,
1842                           struct vfsmount *mnt)
1843 {
1844         return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1845 }
1846
1847 static struct file_system_type futex_fs_type = {
1848         .name           = "futexfs",
1849         .get_sb         = futexfs_get_sb,
1850         .kill_sb        = kill_anon_super,
1851 };
1852
1853 static int __init init(void)
1854 {
1855         unsigned int i;
1856
1857         register_filesystem(&futex_fs_type);
1858         futex_mnt = kern_mount(&futex_fs_type);
1859
1860         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1861                 INIT_LIST_HEAD(&futex_queues[i].chain);
1862                 spin_lock_init(&futex_queues[i].lock);
1863         }
1864         return 0;
1865 }
1866 __initcall(init);