2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 static inline struct task_struct *task_of(struct sched_entity *se)
82 return container_of(se, struct task_struct, se);
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
122 return cfs_rq->tg->cfs_rq[this_cpu];
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
129 /* Do the two (enqueued) entities belong to the same group ? */
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
133 if (se->cfs_rq == pse->cfs_rq)
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
144 #else /* CONFIG_FAIR_GROUP_SCHED */
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
148 return container_of(cfs_rq, struct rq, cfs);
151 #define entity_is_task(se) 1
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
158 return &task_rq(p)->cfs;
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
177 return &cpu_rq(this_cpu)->cfs;
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
203 s64 delta = (s64)(vruntime - min_vruntime);
205 min_vruntime = vruntime;
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
212 s64 delta = (s64)(vruntime - min_vruntime);
214 min_vruntime = vruntime;
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
221 return se->vruntime - cfs_rq->min_vruntime;
225 * Enqueue an entity into the rb-tree:
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
236 * Find the right place in the rbtree:
240 entry = rb_entry(parent, struct sched_entity, run_node);
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
248 link = &parent->rb_right;
254 * Maintain a cache of leftmost tree entries (it is frequently
258 cfs_rq->rb_leftmost = &se->run_node;
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
289 if (cfs_rq->next == se)
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
297 return cfs_rq->rb_leftmost;
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
312 return rb_entry(last, struct sched_entity, run_node);
315 /**************************************************************
316 * Scheduling class statistics methods:
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta, struct sched_entity *se)
342 for_each_sched_entity(se) {
343 delta = calc_delta_mine(delta,
344 se->load.weight, &cfs_rq_of(se)->load);
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta, struct sched_entity *se)
356 for_each_sched_entity(se) {
357 delta = calc_delta_mine(delta,
358 cfs_rq_of(se)->load.weight, &se->load);
365 * The idea is to set a period in which each task runs once.
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
370 * p = (nr <= nl) ? l : l*nr/nl
372 static u64 __sched_period(unsigned long nr_running)
374 u64 period = sysctl_sched_latency;
375 unsigned long nr_latency = sched_nr_latency;
377 if (unlikely(nr_running > nr_latency)) {
378 period = sysctl_sched_min_granularity;
379 period *= nr_running;
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
391 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
397 * We calculate the vruntime slice of a to be inserted task
401 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
403 unsigned long nr_running = cfs_rq->nr_running;
408 return __sched_period(nr_running);
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
423 calc_delta_asym(unsigned long delta, struct sched_entity *se)
425 struct load_weight lw = {
426 .weight = NICE_0_LOAD,
427 .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
430 for_each_sched_entity(se) {
431 struct load_weight *se_lw = &se->load;
433 #ifdef CONFIG_FAIR_SCHED_GROUP
434 struct cfs_rq *cfs_rq = se->my_q;
435 struct task_group *tg = NULL
440 if (tg && tg->shares < NICE_0_LOAD) {
442 * scale shares to what it would have been had
443 * tg->weight been NICE_0_LOAD:
445 * weight = 1024 * shares / tg->weight
447 lw.weight *= se->load.weight;
448 lw.weight /= tg->shares;
456 if (se->load.weight < NICE_0_LOAD)
459 delta = calc_delta_mine(delta,
460 cfs_rq_of(se)->load.weight, se_lw);
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
471 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
472 unsigned long delta_exec)
474 unsigned long delta_exec_weighted;
476 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
478 curr->sum_exec_runtime += delta_exec;
479 schedstat_add(cfs_rq, exec_clock, delta_exec);
480 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
481 curr->vruntime += delta_exec_weighted;
484 static void update_curr(struct cfs_rq *cfs_rq)
486 struct sched_entity *curr = cfs_rq->curr;
487 u64 now = rq_of(cfs_rq)->clock;
488 unsigned long delta_exec;
494 * Get the amount of time the current task was running
495 * since the last time we changed load (this cannot
496 * overflow on 32 bits):
498 delta_exec = (unsigned long)(now - curr->exec_start);
500 __update_curr(cfs_rq, curr, delta_exec);
501 curr->exec_start = now;
503 if (entity_is_task(curr)) {
504 struct task_struct *curtask = task_of(curr);
506 cpuacct_charge(curtask, delta_exec);
511 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
513 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
517 * Task is being enqueued - update stats:
519 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
522 * Are we enqueueing a waiting task? (for current tasks
523 * a dequeue/enqueue event is a NOP)
525 if (se != cfs_rq->curr)
526 update_stats_wait_start(cfs_rq, se);
530 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 schedstat_set(se->wait_max, max(se->wait_max,
533 rq_of(cfs_rq)->clock - se->wait_start));
534 schedstat_set(se->wait_count, se->wait_count + 1);
535 schedstat_set(se->wait_sum, se->wait_sum +
536 rq_of(cfs_rq)->clock - se->wait_start);
537 schedstat_set(se->wait_start, 0);
541 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 * Mark the end of the wait period if dequeueing a
547 if (se != cfs_rq->curr)
548 update_stats_wait_end(cfs_rq, se);
552 * We are picking a new current task - update its stats:
555 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 * We are starting a new run period:
560 se->exec_start = rq_of(cfs_rq)->clock;
563 /**************************************************
564 * Scheduling class queueing methods:
568 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 update_load_add(&cfs_rq->load, se->load.weight);
571 cfs_rq->nr_running++;
573 list_add(&se->group_node, &cfs_rq->tasks);
577 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 update_load_sub(&cfs_rq->load, se->load.weight);
580 cfs_rq->nr_running--;
582 list_del_init(&se->group_node);
585 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 #ifdef CONFIG_SCHEDSTATS
588 if (se->sleep_start) {
589 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
590 struct task_struct *tsk = task_of(se);
595 if (unlikely(delta > se->sleep_max))
596 se->sleep_max = delta;
599 se->sum_sleep_runtime += delta;
601 account_scheduler_latency(tsk, delta >> 10, 1);
603 if (se->block_start) {
604 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
605 struct task_struct *tsk = task_of(se);
610 if (unlikely(delta > se->block_max))
611 se->block_max = delta;
614 se->sum_sleep_runtime += delta;
617 * Blocking time is in units of nanosecs, so shift by 20 to
618 * get a milliseconds-range estimation of the amount of
619 * time that the task spent sleeping:
621 if (unlikely(prof_on == SLEEP_PROFILING)) {
623 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
626 account_scheduler_latency(tsk, delta >> 10, 0);
631 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 #ifdef CONFIG_SCHED_DEBUG
634 s64 d = se->vruntime - cfs_rq->min_vruntime;
639 if (d > 3*sysctl_sched_latency)
640 schedstat_inc(cfs_rq, nr_spread_over);
645 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
649 if (first_fair(cfs_rq)) {
650 vruntime = min_vruntime(cfs_rq->min_vruntime,
651 __pick_next_entity(cfs_rq)->vruntime);
653 vruntime = cfs_rq->min_vruntime;
656 * The 'current' period is already promised to the current tasks,
657 * however the extra weight of the new task will slow them down a
658 * little, place the new task so that it fits in the slot that
659 * stays open at the end.
661 if (initial && sched_feat(START_DEBIT))
662 vruntime += sched_vslice_add(cfs_rq, se);
665 /* sleeps upto a single latency don't count. */
666 if (sched_feat(NEW_FAIR_SLEEPERS)) {
667 unsigned long thresh = sysctl_sched_latency;
670 * convert the sleeper threshold into virtual time
672 if (sched_feat(NORMALIZED_SLEEPER))
673 thresh = calc_delta_fair(thresh, se);
678 /* ensure we never gain time by being placed backwards. */
679 vruntime = max_vruntime(se->vruntime, vruntime);
682 se->vruntime = vruntime;
686 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
689 * Update run-time statistics of the 'current'.
692 account_entity_enqueue(cfs_rq, se);
695 place_entity(cfs_rq, se, 0);
696 enqueue_sleeper(cfs_rq, se);
699 update_stats_enqueue(cfs_rq, se);
700 check_spread(cfs_rq, se);
701 if (se != cfs_rq->curr)
702 __enqueue_entity(cfs_rq, se);
705 static void update_avg(u64 *avg, u64 sample)
707 s64 diff = sample - *avg;
711 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
713 if (!se->last_wakeup)
716 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
721 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
724 * Update run-time statistics of the 'current'.
728 update_stats_dequeue(cfs_rq, se);
730 update_avg_stats(cfs_rq, se);
731 #ifdef CONFIG_SCHEDSTATS
732 if (entity_is_task(se)) {
733 struct task_struct *tsk = task_of(se);
735 if (tsk->state & TASK_INTERRUPTIBLE)
736 se->sleep_start = rq_of(cfs_rq)->clock;
737 if (tsk->state & TASK_UNINTERRUPTIBLE)
738 se->block_start = rq_of(cfs_rq)->clock;
743 if (se != cfs_rq->curr)
744 __dequeue_entity(cfs_rq, se);
745 account_entity_dequeue(cfs_rq, se);
749 * Preempt the current task with a newly woken task if needed:
752 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
754 unsigned long ideal_runtime, delta_exec;
756 ideal_runtime = sched_slice(cfs_rq, curr);
757 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
758 if (delta_exec > ideal_runtime)
759 resched_task(rq_of(cfs_rq)->curr);
763 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 /* 'current' is not kept within the tree. */
768 * Any task has to be enqueued before it get to execute on
769 * a CPU. So account for the time it spent waiting on the
772 update_stats_wait_end(cfs_rq, se);
773 __dequeue_entity(cfs_rq, se);
776 update_stats_curr_start(cfs_rq, se);
778 #ifdef CONFIG_SCHEDSTATS
780 * Track our maximum slice length, if the CPU's load is at
781 * least twice that of our own weight (i.e. dont track it
782 * when there are only lesser-weight tasks around):
784 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
785 se->slice_max = max(se->slice_max,
786 se->sum_exec_runtime - se->prev_sum_exec_runtime);
789 se->prev_sum_exec_runtime = se->sum_exec_runtime;
793 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
795 static struct sched_entity *
796 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
801 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
807 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
809 struct sched_entity *se = NULL;
811 if (first_fair(cfs_rq)) {
812 se = __pick_next_entity(cfs_rq);
813 se = pick_next(cfs_rq, se);
814 set_next_entity(cfs_rq, se);
820 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
823 * If still on the runqueue then deactivate_task()
824 * was not called and update_curr() has to be done:
829 check_spread(cfs_rq, prev);
831 update_stats_wait_start(cfs_rq, prev);
832 /* Put 'current' back into the tree. */
833 __enqueue_entity(cfs_rq, prev);
839 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
842 * Update run-time statistics of the 'current'.
846 #ifdef CONFIG_SCHED_HRTICK
848 * queued ticks are scheduled to match the slice, so don't bother
849 * validating it and just reschedule.
852 resched_task(rq_of(cfs_rq)->curr);
856 * don't let the period tick interfere with the hrtick preemption
858 if (!sched_feat(DOUBLE_TICK) &&
859 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
863 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
864 check_preempt_tick(cfs_rq, curr);
867 /**************************************************
868 * CFS operations on tasks:
871 #ifdef CONFIG_SCHED_HRTICK
872 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
874 int requeue = rq->curr == p;
875 struct sched_entity *se = &p->se;
876 struct cfs_rq *cfs_rq = cfs_rq_of(se);
878 WARN_ON(task_rq(p) != rq);
880 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
881 u64 slice = sched_slice(cfs_rq, se);
882 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
883 s64 delta = slice - ran;
892 * Don't schedule slices shorter than 10000ns, that just
893 * doesn't make sense. Rely on vruntime for fairness.
896 delta = max(10000LL, delta);
898 hrtick_start(rq, delta, requeue);
903 hrtick_start_fair(struct rq *rq, struct task_struct *p)
909 * The enqueue_task method is called before nr_running is
910 * increased. Here we update the fair scheduling stats and
911 * then put the task into the rbtree:
913 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
915 struct cfs_rq *cfs_rq;
916 struct sched_entity *se = &p->se;
918 for_each_sched_entity(se) {
921 cfs_rq = cfs_rq_of(se);
922 enqueue_entity(cfs_rq, se, wakeup);
926 hrtick_start_fair(rq, rq->curr);
930 * The dequeue_task method is called before nr_running is
931 * decreased. We remove the task from the rbtree and
932 * update the fair scheduling stats:
934 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
936 struct cfs_rq *cfs_rq;
937 struct sched_entity *se = &p->se;
939 for_each_sched_entity(se) {
940 cfs_rq = cfs_rq_of(se);
941 dequeue_entity(cfs_rq, se, sleep);
942 /* Don't dequeue parent if it has other entities besides us */
943 if (cfs_rq->load.weight)
948 hrtick_start_fair(rq, rq->curr);
952 * sched_yield() support is very simple - we dequeue and enqueue.
954 * If compat_yield is turned on then we requeue to the end of the tree.
956 static void yield_task_fair(struct rq *rq)
958 struct task_struct *curr = rq->curr;
959 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
960 struct sched_entity *rightmost, *se = &curr->se;
963 * Are we the only task in the tree?
965 if (unlikely(cfs_rq->nr_running == 1))
968 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
971 * Update run-time statistics of the 'current'.
978 * Find the rightmost entry in the rbtree:
980 rightmost = __pick_last_entity(cfs_rq);
982 * Already in the rightmost position?
984 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
988 * Minimally necessary key value to be last in the tree:
989 * Upon rescheduling, sched_class::put_prev_task() will place
990 * 'current' within the tree based on its new key value.
992 se->vruntime = rightmost->vruntime + 1;
996 * wake_idle() will wake a task on an idle cpu if task->cpu is
997 * not idle and an idle cpu is available. The span of cpus to
998 * search starts with cpus closest then further out as needed,
999 * so we always favor a closer, idle cpu.
1001 * Returns the CPU we should wake onto.
1003 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1004 static int wake_idle(int cpu, struct task_struct *p)
1007 struct sched_domain *sd;
1011 * If it is idle, then it is the best cpu to run this task.
1013 * This cpu is also the best, if it has more than one task already.
1014 * Siblings must be also busy(in most cases) as they didn't already
1015 * pickup the extra load from this cpu and hence we need not check
1016 * sibling runqueue info. This will avoid the checks and cache miss
1017 * penalities associated with that.
1019 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1022 for_each_domain(cpu, sd) {
1023 if ((sd->flags & SD_WAKE_IDLE)
1024 || ((sd->flags & SD_WAKE_IDLE_FAR)
1025 && !task_hot(p, task_rq(p)->clock, sd))) {
1026 cpus_and(tmp, sd->span, p->cpus_allowed);
1027 for_each_cpu_mask(i, tmp) {
1029 if (i != task_cpu(p)) {
1031 se.nr_wakeups_idle);
1043 static inline int wake_idle(int cpu, struct task_struct *p)
1051 static const struct sched_class fair_sched_class;
1054 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1055 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1056 int idx, unsigned long load, unsigned long this_load,
1057 unsigned int imbalance)
1059 struct task_struct *curr = this_rq->curr;
1060 unsigned long tl = this_load;
1061 unsigned long tl_per_task;
1064 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1068 * If sync wakeup then subtract the (maximum possible)
1069 * effect of the currently running task from the load
1070 * of the current CPU:
1073 tl -= current->se.load.weight;
1075 balanced = 100*(tl + p->se.load.weight) <= imbalance*load;
1078 * If the currently running task will sleep within
1079 * a reasonable amount of time then attract this newly
1082 if (sync && balanced && curr->sched_class == &fair_sched_class) {
1083 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1084 p->se.avg_overlap < sysctl_sched_migration_cost)
1088 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1089 tl_per_task = cpu_avg_load_per_task(this_cpu);
1091 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1094 * This domain has SD_WAKE_AFFINE and
1095 * p is cache cold in this domain, and
1096 * there is no bad imbalance.
1098 schedstat_inc(this_sd, ttwu_move_affine);
1099 schedstat_inc(p, se.nr_wakeups_affine);
1106 static int select_task_rq_fair(struct task_struct *p, int sync)
1108 struct sched_domain *sd, *this_sd = NULL;
1109 int prev_cpu, this_cpu, new_cpu;
1110 unsigned long load, this_load;
1111 struct rq *rq, *this_rq;
1112 unsigned int imbalance;
1115 prev_cpu = task_cpu(p);
1117 this_cpu = smp_processor_id();
1118 this_rq = cpu_rq(this_cpu);
1122 * 'this_sd' is the first domain that both
1123 * this_cpu and prev_cpu are present in:
1125 for_each_domain(this_cpu, sd) {
1126 if (cpu_isset(prev_cpu, sd->span)) {
1132 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1136 * Check for affine wakeup and passive balancing possibilities.
1141 idx = this_sd->wake_idx;
1143 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1145 load = source_load(prev_cpu, idx);
1146 this_load = target_load(this_cpu, idx);
1148 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1149 load, this_load, imbalance))
1152 if (prev_cpu == this_cpu)
1156 * Start passive balancing when half the imbalance_pct
1159 if (this_sd->flags & SD_WAKE_BALANCE) {
1160 if (imbalance*this_load <= 100*load) {
1161 schedstat_inc(this_sd, ttwu_move_balance);
1162 schedstat_inc(p, se.nr_wakeups_passive);
1168 return wake_idle(new_cpu, p);
1170 #endif /* CONFIG_SMP */
1172 static unsigned long wakeup_gran(struct sched_entity *se)
1174 unsigned long gran = sysctl_sched_wakeup_granularity;
1177 * More easily preempt - nice tasks, while not making it harder for
1180 if (sched_feat(ASYM_GRAN))
1181 gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1183 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1189 * Should 'se' preempt 'curr'.
1203 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1205 s64 gran, vdiff = curr->vruntime - se->vruntime;
1210 gran = wakeup_gran(curr);
1217 /* return depth at which a sched entity is present in the hierarchy */
1218 static inline int depth_se(struct sched_entity *se)
1222 for_each_sched_entity(se)
1229 * Preempt the current task with a newly woken task if needed:
1231 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1233 struct task_struct *curr = rq->curr;
1234 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1235 struct sched_entity *se = &curr->se, *pse = &p->se;
1236 int se_depth, pse_depth;
1238 if (unlikely(rt_prio(p->prio))) {
1239 update_rq_clock(rq);
1240 update_curr(cfs_rq);
1245 se->last_wakeup = se->sum_exec_runtime;
1246 if (unlikely(se == pse))
1249 cfs_rq_of(pse)->next = pse;
1252 * Batch tasks do not preempt (their preemption is driven by
1255 if (unlikely(p->policy == SCHED_BATCH))
1258 if (!sched_feat(WAKEUP_PREEMPT))
1262 * preemption test can be made between sibling entities who are in the
1263 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1264 * both tasks until we find their ancestors who are siblings of common
1268 /* First walk up until both entities are at same depth */
1269 se_depth = depth_se(se);
1270 pse_depth = depth_se(pse);
1272 while (se_depth > pse_depth) {
1274 se = parent_entity(se);
1277 while (pse_depth > se_depth) {
1279 pse = parent_entity(pse);
1282 while (!is_same_group(se, pse)) {
1283 se = parent_entity(se);
1284 pse = parent_entity(pse);
1287 if (wakeup_preempt_entity(se, pse) == 1)
1291 static struct task_struct *pick_next_task_fair(struct rq *rq)
1293 struct task_struct *p;
1294 struct cfs_rq *cfs_rq = &rq->cfs;
1295 struct sched_entity *se;
1297 if (unlikely(!cfs_rq->nr_running))
1301 se = pick_next_entity(cfs_rq);
1302 cfs_rq = group_cfs_rq(se);
1306 hrtick_start_fair(rq, p);
1312 * Account for a descheduled task:
1314 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1316 struct sched_entity *se = &prev->se;
1317 struct cfs_rq *cfs_rq;
1319 for_each_sched_entity(se) {
1320 cfs_rq = cfs_rq_of(se);
1321 put_prev_entity(cfs_rq, se);
1326 /**************************************************
1327 * Fair scheduling class load-balancing methods:
1331 * Load-balancing iterator. Note: while the runqueue stays locked
1332 * during the whole iteration, the current task might be
1333 * dequeued so the iterator has to be dequeue-safe. Here we
1334 * achieve that by always pre-iterating before returning
1337 static struct task_struct *
1338 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1340 struct task_struct *p = NULL;
1341 struct sched_entity *se;
1343 while (next != &cfs_rq->tasks) {
1344 se = list_entry(next, struct sched_entity, group_node);
1347 /* Skip over entities that are not tasks */
1348 if (entity_is_task(se)) {
1354 cfs_rq->balance_iterator = next;
1358 static struct task_struct *load_balance_start_fair(void *arg)
1360 struct cfs_rq *cfs_rq = arg;
1362 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1365 static struct task_struct *load_balance_next_fair(void *arg)
1367 struct cfs_rq *cfs_rq = arg;
1369 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1372 #ifdef CONFIG_FAIR_GROUP_SCHED
1373 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1375 struct sched_entity *curr;
1376 struct task_struct *p;
1378 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1381 curr = cfs_rq->curr;
1383 curr = __pick_next_entity(cfs_rq);
1391 static unsigned long
1392 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1393 unsigned long max_load_move,
1394 struct sched_domain *sd, enum cpu_idle_type idle,
1395 int *all_pinned, int *this_best_prio)
1397 struct cfs_rq *busy_cfs_rq;
1398 long rem_load_move = max_load_move;
1399 struct rq_iterator cfs_rq_iterator;
1401 cfs_rq_iterator.start = load_balance_start_fair;
1402 cfs_rq_iterator.next = load_balance_next_fair;
1404 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1405 #ifdef CONFIG_FAIR_GROUP_SCHED
1406 struct cfs_rq *this_cfs_rq;
1408 unsigned long maxload;
1410 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1412 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1413 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1417 /* Don't pull more than imbalance/2 */
1419 maxload = min(rem_load_move, imbalance);
1421 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1423 # define maxload rem_load_move
1426 * pass busy_cfs_rq argument into
1427 * load_balance_[start|next]_fair iterators
1429 cfs_rq_iterator.arg = busy_cfs_rq;
1430 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1431 maxload, sd, idle, all_pinned,
1435 if (rem_load_move <= 0)
1439 return max_load_move - rem_load_move;
1443 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1444 struct sched_domain *sd, enum cpu_idle_type idle)
1446 struct cfs_rq *busy_cfs_rq;
1447 struct rq_iterator cfs_rq_iterator;
1449 cfs_rq_iterator.start = load_balance_start_fair;
1450 cfs_rq_iterator.next = load_balance_next_fair;
1452 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1454 * pass busy_cfs_rq argument into
1455 * load_balance_[start|next]_fair iterators
1457 cfs_rq_iterator.arg = busy_cfs_rq;
1458 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1468 * scheduler tick hitting a task of our scheduling class:
1470 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1472 struct cfs_rq *cfs_rq;
1473 struct sched_entity *se = &curr->se;
1475 for_each_sched_entity(se) {
1476 cfs_rq = cfs_rq_of(se);
1477 entity_tick(cfs_rq, se, queued);
1481 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1484 * Share the fairness runtime between parent and child, thus the
1485 * total amount of pressure for CPU stays equal - new tasks
1486 * get a chance to run but frequent forkers are not allowed to
1487 * monopolize the CPU. Note: the parent runqueue is locked,
1488 * the child is not running yet.
1490 static void task_new_fair(struct rq *rq, struct task_struct *p)
1492 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1493 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1494 int this_cpu = smp_processor_id();
1496 sched_info_queued(p);
1498 update_curr(cfs_rq);
1499 place_entity(cfs_rq, se, 1);
1501 /* 'curr' will be NULL if the child belongs to a different group */
1502 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1503 curr && curr->vruntime < se->vruntime) {
1505 * Upon rescheduling, sched_class::put_prev_task() will place
1506 * 'current' within the tree based on its new key value.
1508 swap(curr->vruntime, se->vruntime);
1511 enqueue_task_fair(rq, p, 0);
1512 resched_task(rq->curr);
1516 * Priority of the task has changed. Check to see if we preempt
1519 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1520 int oldprio, int running)
1523 * Reschedule if we are currently running on this runqueue and
1524 * our priority decreased, or if we are not currently running on
1525 * this runqueue and our priority is higher than the current's
1528 if (p->prio > oldprio)
1529 resched_task(rq->curr);
1531 check_preempt_curr(rq, p);
1535 * We switched to the sched_fair class.
1537 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1541 * We were most likely switched from sched_rt, so
1542 * kick off the schedule if running, otherwise just see
1543 * if we can still preempt the current task.
1546 resched_task(rq->curr);
1548 check_preempt_curr(rq, p);
1551 /* Account for a task changing its policy or group.
1553 * This routine is mostly called to set cfs_rq->curr field when a task
1554 * migrates between groups/classes.
1556 static void set_curr_task_fair(struct rq *rq)
1558 struct sched_entity *se = &rq->curr->se;
1560 for_each_sched_entity(se)
1561 set_next_entity(cfs_rq_of(se), se);
1564 #ifdef CONFIG_FAIR_GROUP_SCHED
1565 static void moved_group_fair(struct task_struct *p)
1567 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1569 update_curr(cfs_rq);
1570 place_entity(cfs_rq, &p->se, 1);
1575 * All the scheduling class methods:
1577 static const struct sched_class fair_sched_class = {
1578 .next = &idle_sched_class,
1579 .enqueue_task = enqueue_task_fair,
1580 .dequeue_task = dequeue_task_fair,
1581 .yield_task = yield_task_fair,
1583 .select_task_rq = select_task_rq_fair,
1584 #endif /* CONFIG_SMP */
1586 .check_preempt_curr = check_preempt_wakeup,
1588 .pick_next_task = pick_next_task_fair,
1589 .put_prev_task = put_prev_task_fair,
1592 .load_balance = load_balance_fair,
1593 .move_one_task = move_one_task_fair,
1596 .set_curr_task = set_curr_task_fair,
1597 .task_tick = task_tick_fair,
1598 .task_new = task_new_fair,
1600 .prio_changed = prio_changed_fair,
1601 .switched_to = switched_to_fair,
1603 #ifdef CONFIG_FAIR_GROUP_SCHED
1604 .moved_group = moved_group_fair,
1608 #ifdef CONFIG_SCHED_DEBUG
1609 static void print_cfs_stats(struct seq_file *m, int cpu)
1611 struct cfs_rq *cfs_rq;
1614 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1615 print_cfs_rq(m, cpu, cfs_rq);