2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/config.h>
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
31 #include <asm/processor.h>
32 #include <asm/system.h>
33 #include <asm/uaccess.h>
34 #include <asm/pgtable.h>
35 #include <asm/pgalloc.h>
37 #include <asm/fixmap.h>
41 #include <asm/mmu_context.h>
42 #include <asm/proto.h>
44 #include <asm/sections.h>
50 struct dma_mapping_ops* dma_ops;
51 EXPORT_SYMBOL(dma_ops);
53 static unsigned long dma_reserve __initdata;
55 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
58 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
59 * physical space so we can cache the place of the first one and move
60 * around without checking the pgd every time.
65 long i, total = 0, reserved = 0;
66 long shared = 0, cached = 0;
70 printk(KERN_INFO "Mem-info:\n");
72 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
74 for_each_online_pgdat(pgdat) {
75 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
76 page = pfn_to_page(pgdat->node_start_pfn + i);
78 if (PageReserved(page))
80 else if (PageSwapCache(page))
82 else if (page_count(page))
83 shared += page_count(page) - 1;
86 printk(KERN_INFO "%lu pages of RAM\n", total);
87 printk(KERN_INFO "%lu reserved pages\n",reserved);
88 printk(KERN_INFO "%lu pages shared\n",shared);
89 printk(KERN_INFO "%lu pages swap cached\n",cached);
94 static __init void *spp_getpage(void)
98 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
100 ptr = alloc_bootmem_pages(PAGE_SIZE);
101 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
102 panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
104 Dprintk("spp_getpage %p\n", ptr);
108 static __init void set_pte_phys(unsigned long vaddr,
109 unsigned long phys, pgprot_t prot)
116 Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
118 pgd = pgd_offset_k(vaddr);
119 if (pgd_none(*pgd)) {
120 printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
123 pud = pud_offset(pgd, vaddr);
124 if (pud_none(*pud)) {
125 pmd = (pmd_t *) spp_getpage();
126 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
127 if (pmd != pmd_offset(pud, 0)) {
128 printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
132 pmd = pmd_offset(pud, vaddr);
133 if (pmd_none(*pmd)) {
134 pte = (pte_t *) spp_getpage();
135 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
136 if (pte != pte_offset_kernel(pmd, 0)) {
137 printk("PAGETABLE BUG #02!\n");
141 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
143 pte = pte_offset_kernel(pmd, vaddr);
144 if (!pte_none(*pte) &&
145 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
147 set_pte(pte, new_pte);
150 * It's enough to flush this one mapping.
151 * (PGE mappings get flushed as well)
153 __flush_tlb_one(vaddr);
156 /* NOTE: this is meant to be run only at boot */
158 __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
160 unsigned long address = __fix_to_virt(idx);
162 if (idx >= __end_of_fixed_addresses) {
163 printk("Invalid __set_fixmap\n");
166 set_pte_phys(address, phys, prot);
169 unsigned long __initdata table_start, table_end;
171 extern pmd_t temp_boot_pmds[];
173 static struct temp_map {
177 } temp_mappings[] __initdata = {
178 { &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) },
179 { &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) },
183 static __meminit void *alloc_low_page(int *index, unsigned long *phys)
187 unsigned long pfn = table_end++, paddr;
191 adr = (void *)get_zeroed_page(GFP_ATOMIC);
197 panic("alloc_low_page: ran out of memory");
198 for (i = 0; temp_mappings[i].allocated; i++) {
199 if (!temp_mappings[i].pmd)
200 panic("alloc_low_page: ran out of temp mappings");
202 ti = &temp_mappings[i];
203 paddr = (pfn << PAGE_SHIFT) & PMD_MASK;
204 set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE));
207 adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK);
208 memset(adr, 0, PAGE_SIZE);
210 *phys = pfn * PAGE_SIZE;
214 static __meminit void unmap_low_page(int i)
221 ti = &temp_mappings[i];
222 set_pmd(ti->pmd, __pmd(0));
226 /* Must run before zap_low_mappings */
227 __init void *early_ioremap(unsigned long addr, unsigned long size)
229 unsigned long map = round_down(addr, LARGE_PAGE_SIZE);
231 /* actually usually some more */
232 if (size >= LARGE_PAGE_SIZE) {
233 printk("SMBIOS area too long %lu\n", size);
236 set_pmd(temp_mappings[0].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE));
237 map += LARGE_PAGE_SIZE;
238 set_pmd(temp_mappings[1].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE));
240 return temp_mappings[0].address + (addr & (LARGE_PAGE_SIZE-1));
243 /* To avoid virtual aliases later */
244 __init void early_iounmap(void *addr, unsigned long size)
246 if ((void *)round_down((unsigned long)addr, LARGE_PAGE_SIZE) != temp_mappings[0].address)
247 printk("early_iounmap: bad address %p\n", addr);
248 set_pmd(temp_mappings[0].pmd, __pmd(0));
249 set_pmd(temp_mappings[1].pmd, __pmd(0));
253 static void __meminit
254 phys_pmd_init(pmd_t *pmd, unsigned long address, unsigned long end)
258 for (i = 0; i < PTRS_PER_PMD; pmd++, i++, address += PMD_SIZE) {
261 if (address >= end) {
263 for (; i < PTRS_PER_PMD; i++, pmd++)
264 set_pmd(pmd, __pmd(0));
267 entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address;
268 entry &= __supported_pte_mask;
269 set_pmd(pmd, __pmd(entry));
273 static void __meminit
274 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
276 pmd_t *pmd = pmd_offset(pud, (unsigned long)__va(address));
278 if (pmd_none(*pmd)) {
279 spin_lock(&init_mm.page_table_lock);
280 phys_pmd_init(pmd, address, end);
281 spin_unlock(&init_mm.page_table_lock);
286 static void __meminit phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
288 long i = pud_index(address);
292 if (after_bootmem && pud_val(*pud)) {
293 phys_pmd_update(pud, address, end);
297 for (; i < PTRS_PER_PUD; pud++, i++) {
299 unsigned long paddr, pmd_phys;
302 paddr = (address & PGDIR_MASK) + i*PUD_SIZE;
306 if (!after_bootmem && !e820_any_mapped(paddr, paddr+PUD_SIZE, 0)) {
307 set_pud(pud, __pud(0));
311 pmd = alloc_low_page(&map, &pmd_phys);
312 spin_lock(&init_mm.page_table_lock);
313 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
314 phys_pmd_init(pmd, paddr, end);
315 spin_unlock(&init_mm.page_table_lock);
321 static void __init find_early_table_space(unsigned long end)
323 unsigned long puds, pmds, tables, start;
325 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
326 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
327 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
328 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
330 /* RED-PEN putting page tables only on node 0 could
331 cause a hotspot and fill up ZONE_DMA. The page tables
332 need roughly 0.5KB per GB. */
334 table_start = find_e820_area(start, end, tables);
335 if (table_start == -1UL)
336 panic("Cannot find space for the kernel page tables");
338 table_start >>= PAGE_SHIFT;
339 table_end = table_start;
341 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
342 end, table_start << PAGE_SHIFT,
343 (table_start << PAGE_SHIFT) + tables);
346 /* Setup the direct mapping of the physical memory at PAGE_OFFSET.
347 This runs before bootmem is initialized and gets pages directly from the
348 physical memory. To access them they are temporarily mapped. */
349 void __meminit init_memory_mapping(unsigned long start, unsigned long end)
353 Dprintk("init_memory_mapping\n");
356 * Find space for the kernel direct mapping tables.
357 * Later we should allocate these tables in the local node of the memory
358 * mapped. Unfortunately this is done currently before the nodes are
362 find_early_table_space(end);
364 start = (unsigned long)__va(start);
365 end = (unsigned long)__va(end);
367 for (; start < end; start = next) {
369 unsigned long pud_phys;
370 pgd_t *pgd = pgd_offset_k(start);
374 pud = pud_offset(pgd, start & PGDIR_MASK);
376 pud = alloc_low_page(&map, &pud_phys);
378 next = start + PGDIR_SIZE;
381 phys_pud_init(pud, __pa(start), __pa(next));
383 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
388 asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features));
392 void __cpuinit zap_low_mappings(int cpu)
395 pgd_t *pgd = pgd_offset_k(0UL);
399 * For AP's, zap the low identity mappings by changing the cr3
400 * to init_level4_pgt and doing local flush tlb all
402 asm volatile("movq %0,%%cr3" :: "r" (__pa_symbol(&init_level4_pgt)));
407 /* Compute zone sizes for the DMA and DMA32 zones in a node. */
409 size_zones(unsigned long *z, unsigned long *h,
410 unsigned long start_pfn, unsigned long end_pfn)
415 for (i = 0; i < MAX_NR_ZONES; i++)
418 if (start_pfn < MAX_DMA_PFN)
419 z[ZONE_DMA] = MAX_DMA_PFN - start_pfn;
420 if (start_pfn < MAX_DMA32_PFN) {
421 unsigned long dma32_pfn = MAX_DMA32_PFN;
422 if (dma32_pfn > end_pfn)
424 z[ZONE_DMA32] = dma32_pfn - start_pfn;
426 z[ZONE_NORMAL] = end_pfn - start_pfn;
428 /* Remove lower zones from higher ones. */
430 for (i = 0; i < MAX_NR_ZONES; i++) {
438 for (i = 0; i < MAX_NR_ZONES; i++) {
441 h[i] = e820_hole_size(s, w);
444 /* Add the space pace needed for mem_map to the holes too. */
445 for (i = 0; i < MAX_NR_ZONES; i++)
446 h[i] += (z[i] * sizeof(struct page)) / PAGE_SIZE;
448 /* The 16MB DMA zone has the kernel and other misc mappings.
451 h[ZONE_DMA] += dma_reserve;
452 if (h[ZONE_DMA] >= z[ZONE_DMA]) {
454 "Kernel too large and filling up ZONE_DMA?\n");
455 h[ZONE_DMA] = z[ZONE_DMA];
461 void __init paging_init(void)
463 unsigned long zones[MAX_NR_ZONES], holes[MAX_NR_ZONES];
465 memory_present(0, 0, end_pfn);
467 size_zones(zones, holes, 0, end_pfn);
468 free_area_init_node(0, NODE_DATA(0), zones,
469 __pa(PAGE_OFFSET) >> PAGE_SHIFT, holes);
473 /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
474 from the CPU leading to inconsistent cache lines. address and size
475 must be aligned to 2MB boundaries.
476 Does nothing when the mapping doesn't exist. */
477 void __init clear_kernel_mapping(unsigned long address, unsigned long size)
479 unsigned long end = address + size;
481 BUG_ON(address & ~LARGE_PAGE_MASK);
482 BUG_ON(size & ~LARGE_PAGE_MASK);
484 for (; address < end; address += LARGE_PAGE_SIZE) {
485 pgd_t *pgd = pgd_offset_k(address);
490 pud = pud_offset(pgd, address);
493 pmd = pmd_offset(pud, address);
494 if (!pmd || pmd_none(*pmd))
496 if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
497 /* Could handle this, but it should not happen currently. */
499 "clear_kernel_mapping: mapping has been split. will leak memory\n");
502 set_pmd(pmd, __pmd(0));
508 * Memory hotplug specific functions
510 void online_page(struct page *page)
512 ClearPageReserved(page);
513 init_page_count(page);
519 #ifdef CONFIG_MEMORY_HOTPLUG
521 * XXX: memory_add_physaddr_to_nid() is to find node id from physical address
522 * via probe interface of sysfs. If acpi notifies hot-add event, then it
523 * can tell node id by searching dsdt. But, probe interface doesn't have
524 * node id. So, return 0 as node id at this time.
527 int memory_add_physaddr_to_nid(u64 start)
534 * Memory is added always to NORMAL zone. This means you will never get
535 * additional DMA/DMA32 memory.
537 int arch_add_memory(int nid, u64 start, u64 size)
539 struct pglist_data *pgdat = NODE_DATA(nid);
540 struct zone *zone = pgdat->node_zones + MAX_NR_ZONES-2;
541 unsigned long start_pfn = start >> PAGE_SHIFT;
542 unsigned long nr_pages = size >> PAGE_SHIFT;
545 ret = __add_pages(zone, start_pfn, nr_pages);
549 init_memory_mapping(start, (start + size -1));
553 printk("%s: Problem encountered in __add_pages!\n", __func__);
556 EXPORT_SYMBOL_GPL(arch_add_memory);
558 int remove_memory(u64 start, u64 size)
562 EXPORT_SYMBOL_GPL(remove_memory);
564 #else /* CONFIG_MEMORY_HOTPLUG */
566 * Memory Hotadd without sparsemem. The mem_maps have been allocated in advance,
567 * just online the pages.
569 int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)
573 unsigned long total = 0, mem = 0;
574 for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) {
575 if (pfn_valid(pfn)) {
576 online_page(pfn_to_page(pfn));
583 z->spanned_pages += total;
584 z->present_pages += mem;
585 z->zone_pgdat->node_spanned_pages += total;
586 z->zone_pgdat->node_present_pages += mem;
590 #endif /* CONFIG_MEMORY_HOTPLUG */
592 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
595 void __init mem_init(void)
597 long codesize, reservedpages, datasize, initsize;
601 /* How many end-of-memory variables you have, grandma! */
602 max_low_pfn = end_pfn;
604 num_physpages = end_pfn;
605 high_memory = (void *) __va(end_pfn * PAGE_SIZE);
607 /* clear the zero-page */
608 memset(empty_zero_page, 0, PAGE_SIZE);
612 /* this will put all low memory onto the freelists */
614 totalram_pages = numa_free_all_bootmem();
616 totalram_pages = free_all_bootmem();
618 reservedpages = end_pfn - totalram_pages - e820_hole_size(0, end_pfn);
622 codesize = (unsigned long) &_etext - (unsigned long) &_text;
623 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
624 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
626 /* Register memory areas for /proc/kcore */
627 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
628 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
629 VMALLOC_END-VMALLOC_START);
630 kclist_add(&kcore_kernel, &_stext, _end - _stext);
631 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
632 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
633 VSYSCALL_END - VSYSCALL_START);
635 printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
636 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
637 end_pfn << (PAGE_SHIFT-10),
639 reservedpages << (PAGE_SHIFT-10),
645 * Sync boot_level4_pgt mappings with the init_level4_pgt
646 * except for the low identity mappings which are already zapped
647 * in init_level4_pgt. This sync-up is essential for AP's bringup
649 memcpy(boot_level4_pgt+1, init_level4_pgt+1, (PTRS_PER_PGD-1)*sizeof(pgd_t));
653 void free_init_pages(char *what, unsigned long begin, unsigned long end)
660 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
661 for (addr = begin; addr < end; addr += PAGE_SIZE) {
662 ClearPageReserved(virt_to_page(addr));
663 init_page_count(virt_to_page(addr));
664 memset((void *)(addr & ~(PAGE_SIZE-1)),
665 POISON_FREE_INITMEM, PAGE_SIZE);
671 void free_initmem(void)
673 memset(__initdata_begin, POISON_FREE_INITDATA,
674 __initdata_end - __initdata_begin);
675 free_init_pages("unused kernel memory",
676 (unsigned long)(&__init_begin),
677 (unsigned long)(&__init_end));
680 #ifdef CONFIG_DEBUG_RODATA
682 extern char __start_rodata, __end_rodata;
683 void mark_rodata_ro(void)
685 unsigned long addr = (unsigned long)&__start_rodata;
687 for (; addr < (unsigned long)&__end_rodata; addr += PAGE_SIZE)
688 change_page_attr_addr(addr, 1, PAGE_KERNEL_RO);
690 printk ("Write protecting the kernel read-only data: %luk\n",
691 (&__end_rodata - &__start_rodata) >> 10);
694 * change_page_attr_addr() requires a global_flush_tlb() call after it.
695 * We do this after the printk so that if something went wrong in the
696 * change, the printk gets out at least to give a better debug hint
697 * of who is the culprit.
703 #ifdef CONFIG_BLK_DEV_INITRD
704 void free_initrd_mem(unsigned long start, unsigned long end)
706 free_init_pages("initrd memory", start, end);
710 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
712 /* Should check here against the e820 map to avoid double free */
714 int nid = phys_to_nid(phys);
715 reserve_bootmem_node(NODE_DATA(nid), phys, len);
717 reserve_bootmem(phys, len);
719 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE)
720 dma_reserve += len / PAGE_SIZE;
723 int kern_addr_valid(unsigned long addr)
725 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
731 if (above != 0 && above != -1UL)
734 pgd = pgd_offset_k(addr);
738 pud = pud_offset(pgd, addr);
742 pmd = pmd_offset(pud, addr);
746 return pfn_valid(pmd_pfn(*pmd));
748 pte = pte_offset_kernel(pmd, addr);
751 return pfn_valid(pte_pfn(*pte));
755 #include <linux/sysctl.h>
757 extern int exception_trace, page_fault_trace;
759 static ctl_table debug_table2[] = {
760 { 99, "exception-trace", &exception_trace, sizeof(int), 0644, NULL,
765 static ctl_table debug_root_table2[] = {
766 { .ctl_name = CTL_DEBUG, .procname = "debug", .mode = 0555,
767 .child = debug_table2 },
771 static __init int x8664_sysctl_init(void)
773 register_sysctl_table(debug_root_table2, 1);
776 __initcall(x8664_sysctl_init);
779 /* A pseudo VMAs to allow ptrace access for the vsyscall page. This only
780 covers the 64bit vsyscall page now. 32bit has a real VMA now and does
781 not need special handling anymore. */
783 static struct vm_area_struct gate_vma = {
784 .vm_start = VSYSCALL_START,
785 .vm_end = VSYSCALL_END,
786 .vm_page_prot = PAGE_READONLY
789 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
791 #ifdef CONFIG_IA32_EMULATION
792 if (test_tsk_thread_flag(tsk, TIF_IA32))
798 int in_gate_area(struct task_struct *task, unsigned long addr)
800 struct vm_area_struct *vma = get_gate_vma(task);
803 return (addr >= vma->vm_start) && (addr < vma->vm_end);
806 /* Use this when you have no reliable task/vma, typically from interrupt
807 * context. It is less reliable than using the task's vma and may give
810 int in_gate_area_no_task(unsigned long addr)
812 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);