2 * This file contains the light-weight system call handlers (fsyscall-handlers).
4 * Copyright (C) 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 25-Sep-03 davidm Implement fsys_rt_sigprocmask().
8 * 18-Feb-03 louisk Implement fsys_gettimeofday().
9 * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more,
10 * probably broke it along the way... ;-)
11 * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make
12 * it capable of using memory based clocks without falling back to C code.
13 * 08-Feb-07 Fenghua Yu Implement fsys_getcpu.
17 #include <asm/asmmacro.h>
18 #include <asm/errno.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/percpu.h>
21 #include <asm/thread_info.h>
23 #include <asm/signal.h>
24 #include <asm/system.h>
25 #include <asm/unistd.h>
30 * See Documentation/ia64/fsys.txt for details on fsyscalls.
32 * On entry to an fsyscall handler:
33 * r10 = 0 (i.e., defaults to "successful syscall return")
34 * r11 = saved ar.pfs (a user-level value)
35 * r15 = system call number
36 * r16 = "current" task pointer (in normal kernel-mode, this is in r13)
37 * r32-r39 = system call arguments
38 * b6 = return address (a user-level value)
39 * ar.pfs = previous frame-state (a user-level value)
40 * PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
41 * all other registers may contain values passed in from user-mode
43 * On return from an fsyscall handler:
44 * r11 = saved ar.pfs (as passed into the fsyscall handler)
45 * r15 = system call number (as passed into the fsyscall handler)
46 * r32-r39 = system call arguments (as passed into the fsyscall handler)
47 * b6 = return address (as passed into the fsyscall handler)
48 * ar.pfs = previous frame-state (as passed into the fsyscall handler)
51 ENTRY(fsys_ni_syscall)
64 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
67 add r8=IA64_TASK_TGID_OFFSET,r16
69 and r9=TIF_ALLWORK_MASK,r9
70 ld4 r8=[r8] // r8 = current->tgid
73 (p8) br.spnt.many fsys_fallback_syscall
81 add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16
83 ld8 r17=[r17] // r17 = current->group_leader
84 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
88 add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = ¤t->group_leader->real_parent
90 and r9=TIF_ALLWORK_MASK,r9
92 1: ld8 r18=[r17] // r18 = current->group_leader->real_parent
95 add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = ¤t->group_leader->real_parent->tgid
99 * The .acq is needed to ensure that the read of tgid has returned its data before
100 * we re-check "real_parent".
102 ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid
105 * Re-read current->group_leader->real_parent.
107 ld8 r19=[r17] // r19 = current->group_leader->real_parent
108 (p8) br.spnt.many fsys_fallback_syscall
110 cmp.ne p6,p0=r18,r19 // did real_parent change?
111 mov r19=0 // i must not leak kernel bits...
112 (p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check
114 mov r17=0 // i must not leak kernel bits...
115 mov r18=0 // i must not leak kernel bits...
117 mov r17=0 // i must not leak kernel bits...
118 mov r18=0 // i must not leak kernel bits...
119 mov r19=0 // i must not leak kernel bits...
124 ENTRY(fsys_set_tid_address)
128 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
131 tnat.z p6,p7=r32 // check argument register for being NaT
133 and r9=TIF_ALLWORK_MASK,r9
134 add r8=IA64_TASK_PID_OFFSET,r16
135 add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16
143 (p8) br.spnt.many fsys_fallback_syscall
145 mov r17=0 // i must not leak kernel bits...
146 mov r18=0 // i must not leak kernel bits...
148 END(fsys_set_tid_address)
150 #if IA64_GTOD_LOCK_OFFSET !=0
151 #error fsys_gettimeofday incompatible with changes to struct fsyscall_gtod_data_t
153 #if IA64_ITC_JITTER_OFFSET !=0
154 #error fsys_gettimeofday incompatible with changes to struct itc_jitter_data_t
156 #define CLOCK_REALTIME 0
157 #define CLOCK_MONOTONIC 1
158 #define CLOCK_DIVIDE_BY_1000 0x4000
159 #define CLOCK_ADD_MONOTONIC 0x8000
161 ENTRY(fsys_gettimeofday)
166 tnat.nz p6,p0 = r33 // guard against NaT argument
167 (p6) br.cond.spnt.few .fail_einval
168 mov r30 = CLOCK_DIVIDE_BY_1000
172 // Incoming r31 = pointer to address where to place result
173 // r30 = flags determining how time is processed
174 // r2,r3 = temp r4-r7 preserved
175 // r8 = result nanoseconds
176 // r9 = result seconds
177 // r10 = temporary storage for clock difference
178 // r11 = preserved: saved ar.pfs
179 // r12 = preserved: memory stack
180 // r13 = preserved: thread pointer
181 // r14 = address of mask / mask value
182 // r15 = preserved: system call number
183 // r16 = preserved: current task pointer
186 // r19 = address of itc_lastcycle
187 // r20 = struct fsyscall_gtod_data (= address of gtod_lock.sequence)
188 // r21 = address of mmio_ptr
189 // r22 = address of wall_time or monotonic_time
190 // r23 = address of shift / value
191 // r24 = address mult factor / cycle_last value
192 // r25 = itc_lastcycle value
193 // r26 = address clocksource cycle_last
195 // r28 = sequence number at the beginning of critcal section
196 // r29 = address of itc_jitter
197 // r30 = time processing flags / memory address
198 // r31 = pointer to result
200 // p6,p7 short term use
201 // p8 = timesource ar.itc
202 // p9 = timesource mmio64
203 // p10 = timesource mmio32 - not used
204 // p11 = timesource not to be handled by asm code
205 // p12 = memory time source ( = p9 | p10) - not used
206 // p13 = do cmpxchg with itc_lastcycle
207 // p14 = Divide by 1000
208 // p15 = Add monotonic
210 // Note that instructions are optimized for McKinley. McKinley can
211 // process two bundles simultaneously and therefore we continuously
212 // try to feed the CPU two bundles and then a stop.
214 // Additional note that code has changed a lot. Optimization is TBD.
215 // Comments begin with "?" are maybe outdated.
216 tnat.nz p6,p0 = r31 // ? branch deferred to fit later bundle
217 mov pr = r30,0xc000 // Set predicates according to function
218 add r2 = TI_FLAGS+IA64_TASK_SIZE,r16
219 movl r20 = fsyscall_gtod_data // load fsyscall gettimeofday data address
221 movl r29 = itc_jitter_data // itc_jitter
222 add r22 = IA64_GTOD_WALL_TIME_OFFSET,r20 // wall_time
223 ld4 r2 = [r2] // process work pending flags
225 (p15) add r22 = IA64_GTOD_MONO_TIME_OFFSET,r20 // monotonic_time
226 add r21 = IA64_CLKSRC_MMIO_OFFSET,r20
227 add r19 = IA64_ITC_LASTCYCLE_OFFSET,r29
228 and r2 = TIF_ALLWORK_MASK,r2
229 (p6) br.cond.spnt.few .fail_einval // ? deferred branch
231 add r26 = IA64_CLKSRC_CYCLE_LAST_OFFSET,r20 // clksrc_cycle_last
232 cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled
233 (p6) br.cond.spnt.many fsys_fallback_syscall
235 // Begin critical section
237 ld4.acq r28 = [r20] // gtod_lock.sequence, Must take first
239 and r28 = ~1,r28 // And make sequence even to force retry if odd
241 ld8 r30 = [r21] // clocksource->mmio_ptr
242 add r24 = IA64_CLKSRC_MULT_OFFSET,r20
243 ld4 r2 = [r29] // itc_jitter value
244 add r23 = IA64_CLKSRC_SHIFT_OFFSET,r20
245 add r14 = IA64_CLKSRC_MASK_OFFSET,r20
247 ld4 r3 = [r24] // clocksource mult value
248 ld8 r14 = [r14] // clocksource mask value
249 cmp.eq p8,p9 = 0,r30 // use cpu timer if no mmio_ptr
251 setf.sig f7 = r3 // Setup for mult scaling of counter
252 (p8) cmp.ne p13,p0 = r2,r0 // need itc_jitter compensation, set p13
253 ld4 r23 = [r23] // clocksource shift value
254 ld8 r24 = [r26] // get clksrc_cycle_last value
255 (p9) cmp.eq p13,p0 = 0,r30 // if mmio_ptr, clear p13 jitter control
257 .pred.rel.mutex p8,p9
258 (p8) mov r2 = ar.itc // CPU_TIMER. 36 clocks latency!!!
259 (p9) ld8 r2 = [r30] // MMIO_TIMER. Could also have latency issues..
260 (p13) ld8 r25 = [r19] // get itc_lastcycle value
261 ;; // ? could be removed by moving the last add upward
262 ld8 r9 = [r22],IA64_TIMESPEC_TV_NSEC_OFFSET // tv_sec
264 ld8 r8 = [r22],-IA64_TIMESPEC_TV_NSEC_OFFSET // tv_nsec
265 (p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm)
267 (p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared
268 sub r10 = r2,r24 // current_cycle - last_cycle
270 (p6) sub r10 = r25,r24 // time we got was less than last_cycle
271 (p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg
273 (p7) cmpxchg8.rel r3 = [r19],r2,ar.ccv
275 (p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful
277 (p7) sub r10 = r3,r24 // then use new last_cycle instead
279 and r10 = r10,r14 // Apply mask
284 // fault check takes 5 cycles and we have spare time
285 EX(.fail_efault, probe.w.fault r31, 3)
286 xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter)
288 // ? simulate tbit.nz.or p7,p0 = r28,0
292 ld4 r10 = [r20] // gtod_lock.sequence
293 shr.u r2 = r2,r23 // shift by factor
294 ;; // ? overloaded 3 bundles!
295 add r8 = r8,r2 // Add xtime.nsecs
296 cmp4.ne p7,p0 = r28,r10
297 (p7) br.cond.dpnt.few .time_redo // sequence number changed, redo
298 // End critical section.
299 // Now r8=tv->tv_nsec and r9=tv->tv_sec
302 add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31
303 (p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack
308 (p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting time
310 (p14) setf.sig f8 = r20
312 (p6) add r9 = 1,r9 // two nops before the branch.
313 (p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod
314 (p6) br.cond.dpnt.few .time_normalize
316 // Divided by 8 though shift. Now divide by 125
317 // The compiler was able to do that with a multiply
318 // and a shift and we do the same
319 EX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles
320 (p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it
323 (p14) getf.sig r2 = f8
325 (p14) shr.u r21 = r2, 4
327 EX(.fail_efault, st8 [r31] = r9)
328 EX(.fail_efault, st8 [r23] = r21)
338 END(fsys_gettimeofday)
340 ENTRY(fsys_clock_gettime)
344 cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32
345 // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC
346 (p6) br.spnt.few fsys_fallback_syscall
350 END(fsys_clock_gettime)
353 * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize).
356 # error Sorry, fsys_rt_sigprocmask() needs to be updated for _NSIG_WORDS != 1.
358 ENTRY(fsys_rt_sigprocmask)
363 add r2=IA64_TASK_BLOCKED_OFFSET,r16
364 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
365 cmp4.ltu p6,p0=SIG_SETMASK,r32
367 cmp.ne p15,p0=r0,r34 // oset != NULL?
369 add r31=IA64_TASK_SIGHAND_OFFSET,r16
371 ld8 r3=[r2] // read/prefetch current->blocked
375 cmp.ne.or p6,p0=_NSIG_WORDS*8,r35
377 (p6) br.spnt.few .fail_einval // fail with EINVAL
380 ld8 r31=[r31] // r31 <- current->sighand
382 and r9=TIF_ALLWORK_MASK,r9
386 cmp.eq p6,p0=r0,r33 // set == NULL?
387 add r31=IA64_SIGHAND_SIGLOCK_OFFSET,r31 // r31 <- current->sighand->siglock
388 (p8) br.spnt.few .fail_efault // fail with EFAULT
389 (p7) br.spnt.many fsys_fallback_syscall // got pending kernel work...
390 (p6) br.dpnt.many .store_mask // -> short-circuit to just reading the signal mask
392 /* Argh, we actually have to do some work and _update_ the signal mask: */
394 EX(.fail_efault, probe.r.fault r33, 3) // verify user has read-access to *set
395 EX(.fail_efault, ld8 r14=[r33]) // r14 <- *set
396 mov r17=(1 << (SIGKILL - 1)) | (1 << (SIGSTOP - 1))
399 rsm psr.i // mask interrupt delivery
401 andcm r14=r14,r17 // filter out SIGKILL & SIGSTOP
406 cmpxchg4.acq r18=[r31],r17,ar.ccv // try to acquire the lock
407 mov r8=EINVAL // default to EINVAL
409 ld8 r3=[r2] // re-read current->blocked now that we hold the lock
411 (p6) br.cond.spnt.many .lock_contention
414 ld8 r3=[r2] // re-read current->blocked now that we hold the lock
415 mov r8=EINVAL // default to EINVAL
417 add r18=IA64_TASK_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r16
418 add r19=IA64_TASK_SIGNAL_OFFSET,r16
419 cmp4.eq p6,p0=SIG_BLOCK,r32
421 ld8 r19=[r19] // r19 <- current->signal
422 cmp4.eq p7,p0=SIG_UNBLOCK,r32
423 cmp4.eq p8,p0=SIG_SETMASK,r32
425 ld8 r18=[r18] // r18 <- current->pending.signal
426 .pred.rel.mutex p6,p7,p8
427 (p6) or r14=r3,r14 // SIG_BLOCK
428 (p7) andcm r14=r3,r14 // SIG_UNBLOCK
430 (p8) mov r14=r14 // SIG_SETMASK
431 (p6) mov r8=0 // clear error code
432 // recalc_sigpending()
433 add r17=IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,r19
435 add r19=IA64_SIGNAL_SHARED_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r19
437 ld4 r17=[r17] // r17 <- current->signal->group_stop_count
438 (p7) mov r8=0 // clear error code
440 ld8 r19=[r19] // r19 <- current->signal->shared_pending
442 cmp4.gt p6,p7=r17,r0 // p6/p7 <- (current->signal->group_stop_count > 0)?
443 (p8) mov r8=0 // clear error code
445 or r18=r18,r19 // r18 <- current->pending | current->signal->shared_pending
447 // r18 <- (current->pending | current->signal->shared_pending) & ~current->blocked:
449 add r9=TI_FLAGS+IA64_TASK_SIZE,r16
452 (p7) cmp.ne.or.andcm p6,p7=r18,r0 // p6/p7 <- signal pending
453 mov r19=0 // i must not leak kernel bits...
454 (p6) br.cond.dpnt.many .sig_pending
457 1: ld4 r17=[r9] // r17 <- current->thread_info->flags
460 and r18=~_TIF_SIGPENDING,r17 // r18 <- r17 & ~(1 << TIF_SIGPENDING)
463 st8 [r2]=r14 // update current->blocked with new mask
464 cmpxchg4.acq r8=[r9],r18,ar.ccv // current->thread_info->flags <- r18
466 cmp.ne p6,p0=r17,r8 // update failed?
467 (p6) br.cond.spnt.few 1b // yes -> retry
470 st4.rel [r31]=r0 // release the lock
475 srlz.d // ensure psr.i is set again
476 mov r18=0 // i must not leak kernel bits...
479 EX(.fail_efault, (p15) probe.w.fault r34, 3) // verify user has write-access to *oset
480 EX(.fail_efault, (p15) st8 [r34]=r3)
481 mov r2=0 // i must not leak kernel bits...
482 mov r3=0 // i must not leak kernel bits...
484 mov r9=0 // i must not leak kernel bits...
485 mov r14=0 // i must not leak kernel bits...
486 mov r17=0 // i must not leak kernel bits...
487 mov r31=0 // i must not leak kernel bits...
492 st4.rel [r31]=r0 // release the lock
497 br.sptk.many fsys_fallback_syscall // with signal pending, do the heavy-weight syscall
501 /* Rather than spinning here, fall back on doing a heavy-weight syscall. */
505 br.sptk.many fsys_fallback_syscall
507 END(fsys_rt_sigprocmask)
510 * fsys_getcpu doesn't use the third parameter in this implementation. It reads
511 * current_thread_info()->cpu and corresponding node in cpu_to_node_map.
518 add r2=TI_FLAGS+IA64_TASK_SIZE,r16
519 tnat.nz p6,p0 = r32 // guard against NaT argument
520 add r3=TI_CPU+IA64_TASK_SIZE,r16
522 ld4 r3=[r3] // M r3 = thread_info->cpu
523 ld4 r2=[r2] // M r2 = thread_info->flags
524 (p6) br.cond.spnt.few .fail_einval // B
526 tnat.nz p7,p0 = r33 // I guard against NaT argument
527 (p7) br.cond.spnt.few .fail_einval // B
529 movl r17=cpu_to_node_map
531 EX(.fail_efault, probe.w.fault r32, 3) // M This takes 5 cycles
532 EX(.fail_efault, probe.w.fault r33, 3) // M This takes 5 cycles
535 ld2 r20=[r18] // r20 = cpu_to_node_map[cpu]
536 and r2 = TIF_ALLWORK_MASK,r2
539 (p8) br.spnt.many fsys_fallback_syscall
542 EX(.fail_efault, st4 [r32] = r3)
543 EX(.fail_efault, st2 [r33] = r20)
547 EX(.fail_efault, probe.w.fault r32, 3) // M This takes 5 cycles
548 EX(.fail_efault, probe.w.fault r33, 3) // M This takes 5 cycles
549 and r2 = TIF_ALLWORK_MASK,r2
552 (p8) br.spnt.many fsys_fallback_syscall
554 EX(.fail_efault, st4 [r32] = r3)
555 EX(.fail_efault, st2 [r33] = r0)
562 ENTRY(fsys_fallback_syscall)
567 * We only get here from light-weight syscall handlers. Thus, we already
568 * know that r15 contains a valid syscall number. No need to re-check.
571 movl r14=sys_call_table
576 ld8 r18=[r18] // load normal (heavy-weight) syscall entry-point
577 mov r29=psr // read psr (12 cyc load latency)
581 END(fsys_fallback_syscall)
583 GLOBAL_ENTRY(fsys_bubble_down)
588 * We get here for syscalls that don't have a lightweight
589 * handler. For those, we need to bubble down into the kernel
590 * and that requires setting up a minimal pt_regs structure,
591 * and initializing the CPU state more or less as if an
592 * interruption had occurred. To make syscall-restarts work,
593 * we setup pt_regs such that cr_iip points to the second
594 * instruction in syscall_via_break. Decrementing the IP
595 * hence will restart the syscall via break and not
596 * decrementing IP will return us to the caller, as usual.
597 * Note that we preserve the value of psr.pp rather than
598 * initializing it from dcr.pp. This makes it possible to
599 * distinguish fsyscall execution from other privileged
603 * - normal fsyscall handler register usage, except
605 * - r18: address of syscall entry point
611 * We used to clear some PSR bits here but that requires slow
612 * serialization. Fortuntely, that isn't really necessary.
613 * The rationale is as follows: we used to clear bits
614 * ~PSR_PRESERVED_BITS in PSR.L. Since
615 * PSR_PRESERVED_BITS==PSR.{UP,MFL,MFH,PK,DT,PP,SP,RT,IC}, we
616 * ended up clearing PSR.{BE,AC,I,DFL,DFH,DI,DB,SI,TB}.
619 * PSR.BE : already is turned off in __kernel_syscall_via_epc()
620 * PSR.AC : don't care (kernel normally turns PSR.AC on)
621 * PSR.I : already turned off by the time fsys_bubble_down gets
623 * PSR.DFL: always 0 (kernel never turns it on)
624 * PSR.DFH: don't care --- kernel never touches f32-f127 on its own
626 * PSR.DI : always 0 (kernel never turns it on)
627 * PSR.SI : always 0 (kernel never turns it on)
628 * PSR.DB : don't care --- kernel never enables kernel-level
630 * PSR.TB : must be 0 already; if it wasn't zero on entry to
631 * __kernel_syscall_via_epc, the branch to fsys_bubble_down
632 * will trigger a taken branch; the taken-trap-handler then
633 * converts the syscall into a break-based system-call.
636 * Reading psr.l gives us only bits 0-31, psr.it, and psr.mc.
637 * The rest we have to synthesize.
639 # define PSR_ONE_BITS ((3 << IA64_PSR_CPL0_BIT) \
640 | (0x1 << IA64_PSR_RI_BIT) \
641 | IA64_PSR_BN | IA64_PSR_I)
644 movl r14=ia64_ret_from_syscall // X
647 movl r28=__kernel_syscall_via_break // X create cr.iip
650 mov r2=r16 // A get task addr to addl-addressable register
651 adds r16=IA64_TASK_THREAD_ON_USTACK_OFFSET,r16 // A
652 mov r31=pr // I0 save pr (2 cyc)
654 st1 [r16]=r0 // M2|3 clear current->thread.on_ustack flag
655 addl r22=IA64_RBS_OFFSET,r2 // A compute base of RBS
656 add r3=TI_FLAGS+IA64_TASK_SIZE,r2 // A
658 ld4 r3=[r3] // M0|1 r3 = current_thread_info()->flags
659 lfetch.fault.excl.nt1 [r22] // M0|1 prefetch register backing-store
662 mov ar.rsc=0 // M2 set enforced lazy mode, pl 0, LE, loadrs=0
666 mov r23=ar.bspstore // M2 (12 cyc) save ar.bspstore
667 mov.m r24=ar.rnat // M2 (5 cyc) read ar.rnat (dual-issues!)
670 mov ar.bspstore=r22 // M2 (6 cyc) switch to kernel RBS
671 movl r8=PSR_ONE_BITS // X
673 mov r25=ar.unat // M2 (5 cyc) save ar.unat
674 mov r19=b6 // I0 save b6 (2 cyc)
675 mov r20=r1 // A save caller's gp in r20
677 or r29=r8,r29 // A construct cr.ipsr value to save
678 mov b6=r18 // I0 copy syscall entry-point to b6 (7 cyc)
679 addl r1=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 // A compute base of memory stack
681 mov r18=ar.bsp // M2 save (kernel) ar.bsp (12 cyc)
682 cmp.ne pKStk,pUStk=r0,r0 // A set pKStk <- 0, pUStk <- 1
683 br.call.sptk.many b7=ia64_syscall_setup // B
685 mov ar.rsc=0x3 // M2 set eager mode, pl 0, LE, loadrs=0
686 mov rp=r14 // I0 set the real return addr
687 and r3=_TIF_SYSCALL_TRACEAUDIT,r3 // A
689 ssm psr.i // M2 we're on kernel stacks now, reenable irqs
690 cmp.eq p8,p0=r3,r0 // A
691 (p10) br.cond.spnt.many ia64_ret_from_syscall // B return if bad call-frame or r15 is a NaT
694 (p8) br.call.sptk.many b6=b6 // B (ignore return address)
695 br.cond.spnt ia64_trace_syscall // B
696 END(fsys_bubble_down)
700 .globl fsyscall_table
702 data8 fsys_bubble_down
704 data8 fsys_ni_syscall
705 data8 0 // exit // 1025
710 data8 0 // creat // 1030
715 data8 0 // fchdir // 1035
720 data8 0 // lseek // 1040
721 data8 fsys_getpid // getpid
722 data8 fsys_getppid // getppid
725 data8 0 // setuid // 1045
730 data8 0 // sync // 1050
735 data8 0 // mkdir // 1055
740 data8 0 // brk // 1060
745 data8 0 // ioctl // 1065
750 data8 0 // dup2 // 1070
755 data8 0 // getresgid // 1075
760 data8 0 // setpgid // 1080
763 data8 0 // sethostname
765 data8 0 // getrlimit // 1085
767 data8 fsys_gettimeofday // gettimeofday
768 data8 0 // settimeofday
770 data8 0 // poll // 1090
775 data8 0 // swapoff // 1095
780 data8 0 // fchown // 1100
781 data8 0 // getpriority
782 data8 0 // setpriority
785 data8 0 // gettid // 1105
790 data8 0 // msgsnd // 1110
795 data8 0 // shmdt // 1115
805 data8 0 // remap_file_pages // 1125
809 data8 0 // setdomainname
810 data8 0 // newuname // 1130
813 data8 0 // init_module
814 data8 0 // delete_module
820 data8 0 // personality // 1140
821 data8 0 // afs_syscall
825 data8 0 // flock // 1145
830 data8 0 // sysctl // 1150
835 data8 0 // mprotect // 1155
839 data8 0 // munlockall
840 data8 0 // sched_getparam // 1160
841 data8 0 // sched_setparam
842 data8 0 // sched_getscheduler
843 data8 0 // sched_setscheduler
844 data8 0 // sched_yield
845 data8 0 // sched_get_priority_max // 1165
846 data8 0 // sched_get_priority_min
847 data8 0 // sched_rr_get_interval
849 data8 0 // nfsservctl
850 data8 0 // prctl // 1170
851 data8 0 // getpagesize
853 data8 0 // pciconfig_read
854 data8 0 // pciconfig_write
855 data8 0 // perfmonctl // 1175
856 data8 0 // sigaltstack
857 data8 0 // rt_sigaction
858 data8 0 // rt_sigpending
859 data8 fsys_rt_sigprocmask // rt_sigprocmask
860 data8 0 // rt_sigqueueinfo // 1180
861 data8 0 // rt_sigreturn
862 data8 0 // rt_sigsuspend
863 data8 0 // rt_sigtimedwait
865 data8 0 // capget // 1185
870 data8 0 // socket // 1190
875 data8 0 // getsockname // 1195
876 data8 0 // getpeername
877 data8 0 // socketpair
880 data8 0 // recv // 1200
883 data8 0 // setsockopt
884 data8 0 // getsockopt
885 data8 0 // sendmsg // 1205
887 data8 0 // pivot_root
890 data8 0 // newstat // 1210
894 data8 0 // getdents64
895 data8 0 // getunwind // 1215
900 data8 0 // getxattr // 1220
904 data8 0 // llistxattr
905 data8 0 // flistxattr // 1225
906 data8 0 // removexattr
907 data8 0 // lremovexattr
908 data8 0 // fremovexattr
910 data8 0 // futex // 1230
911 data8 0 // sched_setaffinity
912 data8 0 // sched_getaffinity
913 data8 fsys_set_tid_address // set_tid_address
914 data8 0 // fadvise64_64
915 data8 0 // tgkill // 1235
916 data8 0 // exit_group
917 data8 0 // lookup_dcookie
919 data8 0 // io_destroy
920 data8 0 // io_getevents // 1240
923 data8 0 // epoll_create
925 data8 0 // epoll_wait // 1245
926 data8 0 // restart_syscall
927 data8 0 // semtimedop
928 data8 0 // timer_create
929 data8 0 // timer_settime
930 data8 0 // timer_gettime // 1250
931 data8 0 // timer_getoverrun
932 data8 0 // timer_delete
933 data8 0 // clock_settime
934 data8 fsys_clock_gettime // clock_gettime
935 data8 0 // clock_getres // 1255
936 data8 0 // clock_nanosleep
940 data8 0 // get_mempolicy // 1260
941 data8 0 // set_mempolicy
944 data8 0 // mq_timedsend
945 data8 0 // mq_timedreceive // 1265
947 data8 0 // mq_getsetattr
948 data8 0 // kexec_load
950 data8 0 // waitid // 1270
952 data8 0 // request_key
954 data8 0 // ioprio_set
955 data8 0 // ioprio_get // 1275
956 data8 0 // move_pages
957 data8 0 // inotify_init
958 data8 0 // inotify_add_watch
959 data8 0 // inotify_rm_watch
960 data8 0 // migrate_pages // 1280
965 data8 0 // futimesat // 1285
966 data8 0 // newfstatat
970 data8 0 // symlinkat // 1290
971 data8 0 // readlinkat
978 data8 0 // set_robust_list
979 data8 0 // get_robust_list
980 data8 0 // sync_file_range // 1300
984 data8 fsys_getcpu // getcpu // 1304
986 // fill in zeros for the remaining entries
988 .space fsyscall_table + 8*NR_syscalls - .zero, 0