1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define cas_skb_release(x) netif_receive_skb(x)
111 #define cas_skb_release(x) netif_rx(x)
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.6"
146 #define DRV_MODULE_RELDATE "21 May 2008"
148 #define CAS_DEF_MSG_ENABLE \
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 * Value in seconds, for user input.
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 static int link_transition_timeout;
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246 static void cas_set_link_modes(struct cas *cp);
248 static inline void cas_lock_tx(struct cas *cp)
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
256 static inline void cas_lock_all(struct cas *cp)
258 spin_lock_irq(&cp->lock);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
270 #define cas_lock_all_save(cp, flags) \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
277 static inline void cas_unlock_tx(struct cas *cp)
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
285 static inline void cas_unlock_all(struct cas *cp)
288 spin_unlock_irq(&cp->lock);
291 #define cas_unlock_all_restore(cp, flags) \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
298 static void cas_disable_irq(struct cas *cp, const int ring)
300 /* Make sure we won't get any more interrupts */
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
331 static inline void cas_mask_intr(struct cas *cp)
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
339 static void cas_enable_irq(struct cas *cp, const int ring)
341 if (ring == 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
346 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
348 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
358 writel(INTRN_MASK_RX_EN, cp->regs +
359 REG_PLUS_INTRN_MASK(ring));
368 static inline void cas_unmask_intr(struct cas *cp)
372 for (i = 0; i < N_RX_COMP_RINGS; i++)
373 cas_enable_irq(cp, i);
376 static inline void cas_entropy_gather(struct cas *cp)
378 #ifdef USE_ENTROPY_DEV
379 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
382 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383 readl(cp->regs + REG_ENTROPY_IV),
388 static inline void cas_entropy_reset(struct cas *cp)
390 #ifdef USE_ENTROPY_DEV
391 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
394 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395 cp->regs + REG_BIM_LOCAL_DEV_EN);
396 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
405 /* access to the phy. the following assumes that we've initialized the MIF to
406 * be in frame rather than bit-bang mode
408 static u16 cas_phy_read(struct cas *cp, int reg)
411 int limit = STOP_TRIES_PHY;
413 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416 cmd |= MIF_FRAME_TURN_AROUND_MSB;
417 writel(cmd, cp->regs + REG_MIF_FRAME);
419 /* poll for completion */
420 while (limit-- > 0) {
422 cmd = readl(cp->regs + REG_MIF_FRAME);
423 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424 return (cmd & MIF_FRAME_DATA_MASK);
426 return 0xFFFF; /* -1 */
429 static int cas_phy_write(struct cas *cp, int reg, u16 val)
431 int limit = STOP_TRIES_PHY;
434 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437 cmd |= MIF_FRAME_TURN_AROUND_MSB;
438 cmd |= val & MIF_FRAME_DATA_MASK;
439 writel(cmd, cp->regs + REG_MIF_FRAME);
441 /* poll for completion */
442 while (limit-- > 0) {
444 cmd = readl(cp->regs + REG_MIF_FRAME);
445 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
451 static void cas_phy_powerup(struct cas *cp)
453 u16 ctl = cas_phy_read(cp, MII_BMCR);
455 if ((ctl & BMCR_PDOWN) == 0)
458 cas_phy_write(cp, MII_BMCR, ctl);
461 static void cas_phy_powerdown(struct cas *cp)
463 u16 ctl = cas_phy_read(cp, MII_BMCR);
465 if (ctl & BMCR_PDOWN)
468 cas_phy_write(cp, MII_BMCR, ctl);
471 /* cp->lock held. note: the last put_page will free the buffer */
472 static int cas_page_free(struct cas *cp, cas_page_t *page)
474 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
476 __free_pages(page->buffer, cp->page_order);
481 #ifdef RX_COUNT_BUFFERS
482 #define RX_USED_ADD(x, y) ((x)->used += (y))
483 #define RX_USED_SET(x, y) ((x)->used = (y))
485 #define RX_USED_ADD(x, y)
486 #define RX_USED_SET(x, y)
489 /* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
492 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
496 page = kmalloc(sizeof(cas_page_t), flags);
500 INIT_LIST_HEAD(&page->list);
501 RX_USED_SET(page, 0);
502 page->buffer = alloc_pages(flags, cp->page_order);
505 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506 cp->page_size, PCI_DMA_FROMDEVICE);
514 /* initialize spare pool of rx buffers, but allocate during the open */
515 static void cas_spare_init(struct cas *cp)
517 spin_lock(&cp->rx_inuse_lock);
518 INIT_LIST_HEAD(&cp->rx_inuse_list);
519 spin_unlock(&cp->rx_inuse_lock);
521 spin_lock(&cp->rx_spare_lock);
522 INIT_LIST_HEAD(&cp->rx_spare_list);
523 cp->rx_spares_needed = RX_SPARE_COUNT;
524 spin_unlock(&cp->rx_spare_lock);
527 /* used on close. free all the spare buffers. */
528 static void cas_spare_free(struct cas *cp)
530 struct list_head list, *elem, *tmp;
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list);
534 spin_lock(&cp->rx_spare_lock);
535 list_splice_init(&cp->rx_spare_list, &list);
536 spin_unlock(&cp->rx_spare_lock);
537 list_for_each_safe(elem, tmp, &list) {
538 cas_page_free(cp, list_entry(elem, cas_page_t, list));
541 INIT_LIST_HEAD(&list);
544 * Looks like Adrian had protected this with a different
545 * lock than used everywhere else to manipulate this list.
547 spin_lock(&cp->rx_inuse_lock);
548 list_splice_init(&cp->rx_inuse_list, &list);
549 spin_unlock(&cp->rx_inuse_lock);
551 spin_lock(&cp->rx_spare_lock);
552 list_splice_init(&cp->rx_inuse_list, &list);
553 spin_unlock(&cp->rx_spare_lock);
555 list_for_each_safe(elem, tmp, &list) {
556 cas_page_free(cp, list_entry(elem, cas_page_t, list));
560 /* replenish spares if needed */
561 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
563 struct list_head list, *elem, *tmp;
566 /* check inuse list. if we don't need any more free buffers,
570 /* make a local copy of the list */
571 INIT_LIST_HEAD(&list);
572 spin_lock(&cp->rx_inuse_lock);
573 list_splice_init(&cp->rx_inuse_list, &list);
574 spin_unlock(&cp->rx_inuse_lock);
576 list_for_each_safe(elem, tmp, &list) {
577 cas_page_t *page = list_entry(elem, cas_page_t, list);
580 * With the lockless pagecache, cassini buffering scheme gets
581 * slightly less accurate: we might find that a page has an
582 * elevated reference count here, due to a speculative ref,
583 * and skip it as in-use. Ideally we would be able to reclaim
584 * it. However this would be such a rare case, it doesn't
585 * matter too much as we should pick it up the next time round.
587 * Importantly, if we find that the page has a refcount of 1
588 * here (our refcount), then we know it is definitely not inuse
589 * so we can reuse it.
591 if (page_count(page->buffer) > 1)
595 spin_lock(&cp->rx_spare_lock);
596 if (cp->rx_spares_needed > 0) {
597 list_add(elem, &cp->rx_spare_list);
598 cp->rx_spares_needed--;
599 spin_unlock(&cp->rx_spare_lock);
601 spin_unlock(&cp->rx_spare_lock);
602 cas_page_free(cp, page);
606 /* put any inuse buffers back on the list */
607 if (!list_empty(&list)) {
608 spin_lock(&cp->rx_inuse_lock);
609 list_splice(&list, &cp->rx_inuse_list);
610 spin_unlock(&cp->rx_inuse_lock);
613 spin_lock(&cp->rx_spare_lock);
614 needed = cp->rx_spares_needed;
615 spin_unlock(&cp->rx_spare_lock);
619 /* we still need spares, so try to allocate some */
620 INIT_LIST_HEAD(&list);
623 cas_page_t *spare = cas_page_alloc(cp, flags);
626 list_add(&spare->list, &list);
630 spin_lock(&cp->rx_spare_lock);
631 list_splice(&list, &cp->rx_spare_list);
632 cp->rx_spares_needed -= i;
633 spin_unlock(&cp->rx_spare_lock);
636 /* pull a page from the list. */
637 static cas_page_t *cas_page_dequeue(struct cas *cp)
639 struct list_head *entry;
642 spin_lock(&cp->rx_spare_lock);
643 if (list_empty(&cp->rx_spare_list)) {
644 /* try to do a quick recovery */
645 spin_unlock(&cp->rx_spare_lock);
646 cas_spare_recover(cp, GFP_ATOMIC);
647 spin_lock(&cp->rx_spare_lock);
648 if (list_empty(&cp->rx_spare_list)) {
649 if (netif_msg_rx_err(cp))
650 printk(KERN_ERR "%s: no spare buffers "
651 "available.\n", cp->dev->name);
652 spin_unlock(&cp->rx_spare_lock);
657 entry = cp->rx_spare_list.next;
659 recover = ++cp->rx_spares_needed;
660 spin_unlock(&cp->rx_spare_lock);
662 /* trigger the timer to do the recovery */
663 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
665 atomic_inc(&cp->reset_task_pending);
666 atomic_inc(&cp->reset_task_pending_spare);
667 schedule_work(&cp->reset_task);
669 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
670 schedule_work(&cp->reset_task);
673 return list_entry(entry, cas_page_t, list);
677 static void cas_mif_poll(struct cas *cp, const int enable)
681 cfg = readl(cp->regs + REG_MIF_CFG);
682 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
684 if (cp->phy_type & CAS_PHY_MII_MDIO1)
685 cfg |= MIF_CFG_PHY_SELECT;
687 /* poll and interrupt on link status change. */
689 cfg |= MIF_CFG_POLL_EN;
690 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
691 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
693 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
694 cp->regs + REG_MIF_MASK);
695 writel(cfg, cp->regs + REG_MIF_CFG);
698 /* Must be invoked under cp->lock */
699 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
705 int oldstate = cp->lstate;
706 int link_was_not_down = !(oldstate == link_down);
708 /* Setup link parameters */
711 lcntl = cp->link_cntl;
712 if (ep->autoneg == AUTONEG_ENABLE)
713 cp->link_cntl = BMCR_ANENABLE;
716 if (ep->speed == SPEED_100)
717 cp->link_cntl |= BMCR_SPEED100;
718 else if (ep->speed == SPEED_1000)
719 cp->link_cntl |= CAS_BMCR_SPEED1000;
720 if (ep->duplex == DUPLEX_FULL)
721 cp->link_cntl |= BMCR_FULLDPLX;
724 changed = (lcntl != cp->link_cntl);
727 if (cp->lstate == link_up) {
728 printk(KERN_INFO "%s: PCS link down.\n",
732 printk(KERN_INFO "%s: link configuration changed\n",
736 cp->lstate = link_down;
737 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
742 * WTZ: If the old state was link_up, we turn off the carrier
743 * to replicate everything we do elsewhere on a link-down
744 * event when we were already in a link-up state..
746 if (oldstate == link_up)
747 netif_carrier_off(cp->dev);
748 if (changed && link_was_not_down) {
750 * WTZ: This branch will simply schedule a full reset after
751 * we explicitly changed link modes in an ioctl. See if this
752 * fixes the link-problems we were having for forced mode.
754 atomic_inc(&cp->reset_task_pending);
755 atomic_inc(&cp->reset_task_pending_all);
756 schedule_work(&cp->reset_task);
758 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
762 if (cp->phy_type & CAS_PHY_SERDES) {
763 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
765 if (cp->link_cntl & BMCR_ANENABLE) {
766 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
767 cp->lstate = link_aneg;
769 if (cp->link_cntl & BMCR_FULLDPLX)
770 val |= PCS_MII_CTRL_DUPLEX;
771 val &= ~PCS_MII_AUTONEG_EN;
772 cp->lstate = link_force_ok;
774 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
775 writel(val, cp->regs + REG_PCS_MII_CTRL);
779 ctl = cas_phy_read(cp, MII_BMCR);
780 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
781 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
782 ctl |= cp->link_cntl;
783 if (ctl & BMCR_ANENABLE) {
784 ctl |= BMCR_ANRESTART;
785 cp->lstate = link_aneg;
787 cp->lstate = link_force_ok;
789 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
790 cas_phy_write(cp, MII_BMCR, ctl);
795 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
798 /* Must be invoked under cp->lock. */
799 static int cas_reset_mii_phy(struct cas *cp)
801 int limit = STOP_TRIES_PHY;
804 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
807 val = cas_phy_read(cp, MII_BMCR);
808 if ((val & BMCR_RESET) == 0)
815 static void cas_saturn_firmware_load(struct cas *cp)
817 cas_saturn_patch_t *patch = cas_saturn_patch;
819 cas_phy_powerdown(cp);
821 /* expanded memory access mode */
822 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
824 /* pointer configuration for new firmware */
825 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
826 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
827 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
828 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
829 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
830 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
832 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
834 /* download new firmware */
835 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
836 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
837 while (patch->addr) {
838 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
842 /* enable firmware */
843 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
844 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
848 /* phy initialization */
849 static void cas_phy_init(struct cas *cp)
853 /* if we're in MII/GMII mode, set up phy */
854 if (CAS_PHY_MII(cp->phy_type)) {
855 writel(PCS_DATAPATH_MODE_MII,
856 cp->regs + REG_PCS_DATAPATH_MODE);
859 cas_reset_mii_phy(cp); /* take out of isolate mode */
861 if (PHY_LUCENT_B0 == cp->phy_id) {
862 /* workaround link up/down issue with lucent */
863 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
864 cas_phy_write(cp, MII_BMCR, 0x00f1);
865 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
867 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
868 /* workarounds for broadcom phy */
869 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
870 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
871 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
872 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
873 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
874 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
875 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
876 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
877 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
878 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
879 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
881 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
882 val = cas_phy_read(cp, BROADCOM_MII_REG4);
883 val = cas_phy_read(cp, BROADCOM_MII_REG4);
885 /* link workaround */
886 cas_phy_write(cp, BROADCOM_MII_REG4,
890 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
891 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
892 SATURN_PCFG_FSI : 0x0,
893 cp->regs + REG_SATURN_PCFG);
895 /* load firmware to address 10Mbps auto-negotiation
896 * issue. NOTE: this will need to be changed if the
897 * default firmware gets fixed.
899 if (PHY_NS_DP83065 == cp->phy_id) {
900 cas_saturn_firmware_load(cp);
905 /* advertise capabilities */
906 val = cas_phy_read(cp, MII_BMCR);
907 val &= ~BMCR_ANENABLE;
908 cas_phy_write(cp, MII_BMCR, val);
911 cas_phy_write(cp, MII_ADVERTISE,
912 cas_phy_read(cp, MII_ADVERTISE) |
913 (ADVERTISE_10HALF | ADVERTISE_10FULL |
914 ADVERTISE_100HALF | ADVERTISE_100FULL |
915 CAS_ADVERTISE_PAUSE |
916 CAS_ADVERTISE_ASYM_PAUSE));
918 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
919 /* make sure that we don't advertise half
920 * duplex to avoid a chip issue
922 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
923 val &= ~CAS_ADVERTISE_1000HALF;
924 val |= CAS_ADVERTISE_1000FULL;
925 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
929 /* reset pcs for serdes */
933 writel(PCS_DATAPATH_MODE_SERDES,
934 cp->regs + REG_PCS_DATAPATH_MODE);
936 /* enable serdes pins on saturn */
937 if (cp->cas_flags & CAS_FLAG_SATURN)
938 writel(0, cp->regs + REG_SATURN_PCFG);
940 /* Reset PCS unit. */
941 val = readl(cp->regs + REG_PCS_MII_CTRL);
942 val |= PCS_MII_RESET;
943 writel(val, cp->regs + REG_PCS_MII_CTRL);
946 while (limit-- > 0) {
948 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
953 printk(KERN_WARNING "%s: PCS reset bit would not "
954 "clear [%08x].\n", cp->dev->name,
955 readl(cp->regs + REG_PCS_STATE_MACHINE));
957 /* Make sure PCS is disabled while changing advertisement
960 writel(0x0, cp->regs + REG_PCS_CFG);
962 /* Advertise all capabilities except half-duplex. */
963 val = readl(cp->regs + REG_PCS_MII_ADVERT);
964 val &= ~PCS_MII_ADVERT_HD;
965 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
966 PCS_MII_ADVERT_ASYM_PAUSE);
967 writel(val, cp->regs + REG_PCS_MII_ADVERT);
970 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
972 /* pcs workaround: enable sync detect */
973 writel(PCS_SERDES_CTRL_SYNCD_EN,
974 cp->regs + REG_PCS_SERDES_CTRL);
979 static int cas_pcs_link_check(struct cas *cp)
981 u32 stat, state_machine;
984 /* The link status bit latches on zero, so you must
985 * read it twice in such a case to see a transition
986 * to the link being up.
988 stat = readl(cp->regs + REG_PCS_MII_STATUS);
989 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
990 stat = readl(cp->regs + REG_PCS_MII_STATUS);
992 /* The remote-fault indication is only valid
993 * when autoneg has completed.
995 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
996 PCS_MII_STATUS_REMOTE_FAULT)) ==
997 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
998 if (netif_msg_link(cp))
999 printk(KERN_INFO "%s: PCS RemoteFault\n",
1003 /* work around link detection issue by querying the PCS state
1006 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1007 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1008 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1009 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1010 stat |= PCS_MII_STATUS_LINK_STATUS;
1013 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1014 if (cp->lstate != link_up) {
1016 cp->lstate = link_up;
1017 cp->link_transition = LINK_TRANSITION_LINK_UP;
1019 cas_set_link_modes(cp);
1020 netif_carrier_on(cp->dev);
1023 } else if (cp->lstate == link_up) {
1024 cp->lstate = link_down;
1025 if (link_transition_timeout != 0 &&
1026 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1027 !cp->link_transition_jiffies_valid) {
1029 * force a reset, as a workaround for the
1030 * link-failure problem. May want to move this to a
1031 * point a bit earlier in the sequence. If we had
1032 * generated a reset a short time ago, we'll wait for
1033 * the link timer to check the status until a
1034 * timer expires (link_transistion_jiffies_valid is
1035 * true when the timer is running.) Instead of using
1036 * a system timer, we just do a check whenever the
1037 * link timer is running - this clears the flag after
1041 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1042 cp->link_transition_jiffies = jiffies;
1043 cp->link_transition_jiffies_valid = 1;
1045 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1047 netif_carrier_off(cp->dev);
1048 if (cp->opened && netif_msg_link(cp)) {
1049 printk(KERN_INFO "%s: PCS link down.\n",
1053 /* Cassini only: if you force a mode, there can be
1054 * sync problems on link down. to fix that, the following
1055 * things need to be checked:
1056 * 1) read serialink state register
1057 * 2) read pcs status register to verify link down.
1058 * 3) if link down and serial link == 0x03, then you need
1059 * to global reset the chip.
1061 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1062 /* should check to see if we're in a forced mode */
1063 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1067 } else if (cp->lstate == link_down) {
1068 if (link_transition_timeout != 0 &&
1069 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1070 !cp->link_transition_jiffies_valid) {
1071 /* force a reset, as a workaround for the
1072 * link-failure problem. May want to move
1073 * this to a point a bit earlier in the
1077 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1078 cp->link_transition_jiffies = jiffies;
1079 cp->link_transition_jiffies_valid = 1;
1081 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1088 static int cas_pcs_interrupt(struct net_device *dev,
1089 struct cas *cp, u32 status)
1091 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1093 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1095 return cas_pcs_link_check(cp);
1098 static int cas_txmac_interrupt(struct net_device *dev,
1099 struct cas *cp, u32 status)
1101 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1106 if (netif_msg_intr(cp))
1107 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1108 cp->dev->name, txmac_stat);
1110 /* Defer timer expiration is quite normal,
1111 * don't even log the event.
1113 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1114 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1117 spin_lock(&cp->stat_lock[0]);
1118 if (txmac_stat & MAC_TX_UNDERRUN) {
1119 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1121 cp->net_stats[0].tx_fifo_errors++;
1124 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1125 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1127 cp->net_stats[0].tx_errors++;
1130 /* The rest are all cases of one of the 16-bit TX
1131 * counters expiring.
1133 if (txmac_stat & MAC_TX_COLL_NORMAL)
1134 cp->net_stats[0].collisions += 0x10000;
1136 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1137 cp->net_stats[0].tx_aborted_errors += 0x10000;
1138 cp->net_stats[0].collisions += 0x10000;
1141 if (txmac_stat & MAC_TX_COLL_LATE) {
1142 cp->net_stats[0].tx_aborted_errors += 0x10000;
1143 cp->net_stats[0].collisions += 0x10000;
1145 spin_unlock(&cp->stat_lock[0]);
1147 /* We do not keep track of MAC_TX_COLL_FIRST and
1148 * MAC_TX_PEAK_ATTEMPTS events.
1153 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1155 cas_hp_inst_t *inst;
1160 while ((inst = firmware) && inst->note) {
1161 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1163 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1164 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1165 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1167 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1168 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1169 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1170 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1171 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1172 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1173 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1174 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1176 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1177 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1178 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1179 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1180 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1186 static void cas_init_rx_dma(struct cas *cp)
1188 u64 desc_dma = cp->block_dvma;
1192 /* rx free descriptors */
1193 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1194 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1195 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1196 if ((N_RX_DESC_RINGS > 1) &&
1197 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1198 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1199 writel(val, cp->regs + REG_RX_CFG);
1201 val = (unsigned long) cp->init_rxds[0] -
1202 (unsigned long) cp->init_block;
1203 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1204 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1205 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1207 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1208 /* rx desc 2 is for IPSEC packets. however,
1209 * we don't it that for that purpose.
1211 val = (unsigned long) cp->init_rxds[1] -
1212 (unsigned long) cp->init_block;
1213 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1214 writel((desc_dma + val) & 0xffffffff, cp->regs +
1215 REG_PLUS_RX_DB1_LOW);
1216 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1220 /* rx completion registers */
1221 val = (unsigned long) cp->init_rxcs[0] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1224 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1226 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1228 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1229 val = (unsigned long) cp->init_rxcs[i] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs +
1232 REG_PLUS_RX_CBN_HI(i));
1233 writel((desc_dma + val) & 0xffffffff, cp->regs +
1234 REG_PLUS_RX_CBN_LOW(i));
1238 /* read selective clear regs to prevent spurious interrupts
1239 * on reset because complete == kick.
1240 * selective clear set up to prevent interrupts on resets
1242 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1243 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 for (i = 1; i < N_RX_COMP_RINGS; i++)
1246 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1248 /* 2 is different from 3 and 4 */
1249 if (N_RX_COMP_RINGS > 1)
1250 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1251 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1253 for (i = 2; i < N_RX_COMP_RINGS; i++)
1254 writel(INTR_RX_DONE_ALT,
1255 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1258 /* set up pause thresholds */
1259 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1260 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1261 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1262 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1263 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1265 /* zero out dma reassembly buffers */
1266 for (i = 0; i < 64; i++) {
1267 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1268 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1269 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1270 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1273 /* make sure address register is 0 for normal operation */
1274 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1275 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1277 /* interrupt mitigation */
1279 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1280 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1281 writel(val, cp->regs + REG_RX_BLANK);
1283 writel(0x0, cp->regs + REG_RX_BLANK);
1286 /* interrupt generation as a function of low water marks for
1287 * free desc and completion entries. these are used to trigger
1288 * housekeeping for rx descs. we don't use the free interrupt
1289 * as it's not very useful
1291 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1292 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1293 writel(val, cp->regs + REG_RX_AE_THRESH);
1294 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1295 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1296 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1299 /* Random early detect registers. useful for congestion avoidance.
1300 * this should be tunable.
1302 writel(0x0, cp->regs + REG_RX_RED);
1304 /* receive page sizes. default == 2K (0x800) */
1306 if (cp->page_size == 0x1000)
1308 else if (cp->page_size == 0x2000)
1310 else if (cp->page_size == 0x4000)
1313 /* round mtu + offset. constrain to page size. */
1314 size = cp->dev->mtu + 64;
1315 if (size > cp->page_size)
1316 size = cp->page_size;
1320 else if (size <= 0x800)
1322 else if (size <= 0x1000)
1327 cp->mtu_stride = 1 << (i + 10);
1328 val = CAS_BASE(RX_PAGE_SIZE, val);
1329 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1330 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1331 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1332 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1334 /* enable the header parser if desired */
1335 if (CAS_HP_FIRMWARE == cas_prog_null)
1338 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1339 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1340 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1341 writel(val, cp->regs + REG_HP_CFG);
1344 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1346 memset(rxc, 0, sizeof(*rxc));
1347 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1350 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1351 * flipping is protected by the fact that the chip will not
1352 * hand back the same page index while it's being processed.
1354 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1356 cas_page_t *page = cp->rx_pages[1][index];
1359 if (page_count(page->buffer) == 1)
1362 new = cas_page_dequeue(cp);
1364 spin_lock(&cp->rx_inuse_lock);
1365 list_add(&page->list, &cp->rx_inuse_list);
1366 spin_unlock(&cp->rx_inuse_lock);
1371 /* this needs to be changed if we actually use the ENC RX DESC ring */
1372 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1375 cas_page_t **page0 = cp->rx_pages[0];
1376 cas_page_t **page1 = cp->rx_pages[1];
1378 /* swap if buffer is in use */
1379 if (page_count(page0[index]->buffer) > 1) {
1380 cas_page_t *new = cas_page_spare(cp, index);
1382 page1[index] = page0[index];
1386 RX_USED_SET(page0[index], 0);
1387 return page0[index];
1390 static void cas_clean_rxds(struct cas *cp)
1392 /* only clean ring 0 as ring 1 is used for spare buffers */
1393 struct cas_rx_desc *rxd = cp->init_rxds[0];
1396 /* release all rx flows */
1397 for (i = 0; i < N_RX_FLOWS; i++) {
1398 struct sk_buff *skb;
1399 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1400 cas_skb_release(skb);
1404 /* initialize descriptors */
1405 size = RX_DESC_RINGN_SIZE(0);
1406 for (i = 0; i < size; i++) {
1407 cas_page_t *page = cas_page_swap(cp, 0, i);
1408 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1409 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1410 CAS_BASE(RX_INDEX_RING, 0));
1413 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1415 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1418 static void cas_clean_rxcs(struct cas *cp)
1422 /* take ownership of rx comp descriptors */
1423 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1424 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1425 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1426 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1427 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1428 cas_rxc_init(rxc + j);
1434 /* When we get a RX fifo overflow, the RX unit is probably hung
1435 * so we do the following.
1437 * If any part of the reset goes wrong, we return 1 and that causes the
1438 * whole chip to be reset.
1440 static int cas_rxmac_reset(struct cas *cp)
1442 struct net_device *dev = cp->dev;
1446 /* First, reset MAC RX. */
1447 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1448 for (limit = 0; limit < STOP_TRIES; limit++) {
1449 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1453 if (limit == STOP_TRIES) {
1454 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1455 "chip.\n", dev->name);
1459 /* Second, disable RX DMA. */
1460 writel(0, cp->regs + REG_RX_CFG);
1461 for (limit = 0; limit < STOP_TRIES; limit++) {
1462 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1466 if (limit == STOP_TRIES) {
1467 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1468 "chip.\n", dev->name);
1474 /* Execute RX reset command. */
1475 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1476 for (limit = 0; limit < STOP_TRIES; limit++) {
1477 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1481 if (limit == STOP_TRIES) {
1482 printk(KERN_ERR "%s: RX reset command will not execute, "
1483 "resetting whole chip.\n", dev->name);
1487 /* reset driver rx state */
1491 /* Now, reprogram the rest of RX unit. */
1492 cas_init_rx_dma(cp);
1495 val = readl(cp->regs + REG_RX_CFG);
1496 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1497 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1498 val = readl(cp->regs + REG_MAC_RX_CFG);
1499 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1504 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1507 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1512 if (netif_msg_intr(cp))
1513 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1514 cp->dev->name, stat);
1516 /* these are all rollovers */
1517 spin_lock(&cp->stat_lock[0]);
1518 if (stat & MAC_RX_ALIGN_ERR)
1519 cp->net_stats[0].rx_frame_errors += 0x10000;
1521 if (stat & MAC_RX_CRC_ERR)
1522 cp->net_stats[0].rx_crc_errors += 0x10000;
1524 if (stat & MAC_RX_LEN_ERR)
1525 cp->net_stats[0].rx_length_errors += 0x10000;
1527 if (stat & MAC_RX_OVERFLOW) {
1528 cp->net_stats[0].rx_over_errors++;
1529 cp->net_stats[0].rx_fifo_errors++;
1532 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1535 spin_unlock(&cp->stat_lock[0]);
1539 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1542 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1547 if (netif_msg_intr(cp))
1548 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1549 cp->dev->name, stat);
1551 /* This interrupt is just for pause frame and pause
1552 * tracking. It is useful for diagnostics and debug
1553 * but probably by default we will mask these events.
1555 if (stat & MAC_CTRL_PAUSE_STATE)
1556 cp->pause_entered++;
1558 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1559 cp->pause_last_time_recvd = (stat >> 16);
1565 /* Must be invoked under cp->lock. */
1566 static inline int cas_mdio_link_not_up(struct cas *cp)
1570 switch (cp->lstate) {
1571 case link_force_ret:
1572 if (netif_msg_link(cp))
1573 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1574 " forced mode\n", cp->dev->name);
1575 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1576 cp->timer_ticks = 5;
1577 cp->lstate = link_force_ok;
1578 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1582 val = cas_phy_read(cp, MII_BMCR);
1584 /* Try forced modes. we try things in the following order:
1585 * 1000 full -> 100 full/half -> 10 half
1587 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1588 val |= BMCR_FULLDPLX;
1589 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1590 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1591 cas_phy_write(cp, MII_BMCR, val);
1592 cp->timer_ticks = 5;
1593 cp->lstate = link_force_try;
1594 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1597 case link_force_try:
1598 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1599 val = cas_phy_read(cp, MII_BMCR);
1600 cp->timer_ticks = 5;
1601 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1602 val &= ~CAS_BMCR_SPEED1000;
1603 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1604 cas_phy_write(cp, MII_BMCR, val);
1608 if (val & BMCR_SPEED100) {
1609 if (val & BMCR_FULLDPLX) /* fd failed */
1610 val &= ~BMCR_FULLDPLX;
1611 else { /* 100Mbps failed */
1612 val &= ~BMCR_SPEED100;
1614 cas_phy_write(cp, MII_BMCR, val);
1624 /* must be invoked with cp->lock held */
1625 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1629 if (bmsr & BMSR_LSTATUS) {
1630 /* Ok, here we got a link. If we had it due to a forced
1631 * fallback, and we were configured for autoneg, we
1632 * retry a short autoneg pass. If you know your hub is
1633 * broken, use ethtool ;)
1635 if ((cp->lstate == link_force_try) &&
1636 (cp->link_cntl & BMCR_ANENABLE)) {
1637 cp->lstate = link_force_ret;
1638 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1639 cas_mif_poll(cp, 0);
1640 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1641 cp->timer_ticks = 5;
1642 if (cp->opened && netif_msg_link(cp))
1643 printk(KERN_INFO "%s: Got link after fallback, retrying"
1644 " autoneg once...\n", cp->dev->name);
1645 cas_phy_write(cp, MII_BMCR,
1646 cp->link_fcntl | BMCR_ANENABLE |
1648 cas_mif_poll(cp, 1);
1650 } else if (cp->lstate != link_up) {
1651 cp->lstate = link_up;
1652 cp->link_transition = LINK_TRANSITION_LINK_UP;
1655 cas_set_link_modes(cp);
1656 netif_carrier_on(cp->dev);
1662 /* link not up. if the link was previously up, we restart the
1666 if (cp->lstate == link_up) {
1667 cp->lstate = link_down;
1668 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1670 netif_carrier_off(cp->dev);
1671 if (cp->opened && netif_msg_link(cp))
1672 printk(KERN_INFO "%s: Link down\n",
1676 } else if (++cp->timer_ticks > 10)
1677 cas_mdio_link_not_up(cp);
1682 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1685 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1688 /* check for a link change */
1689 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1692 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1693 return cas_mii_link_check(cp, bmsr);
1696 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1699 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1704 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1705 readl(cp->regs + REG_BIM_DIAG));
1707 /* cassini+ has this reserved */
1708 if ((stat & PCI_ERR_BADACK) &&
1709 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1710 printk("<No ACK64# during ABS64 cycle> ");
1712 if (stat & PCI_ERR_DTRTO)
1713 printk("<Delayed transaction timeout> ");
1714 if (stat & PCI_ERR_OTHER)
1716 if (stat & PCI_ERR_BIM_DMA_WRITE)
1717 printk("<BIM DMA 0 write req> ");
1718 if (stat & PCI_ERR_BIM_DMA_READ)
1719 printk("<BIM DMA 0 read req> ");
1722 if (stat & PCI_ERR_OTHER) {
1725 /* Interrogate PCI config space for the
1728 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1729 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1731 if (cfg & PCI_STATUS_PARITY)
1732 printk(KERN_ERR "%s: PCI parity error detected.\n",
1734 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1735 printk(KERN_ERR "%s: PCI target abort.\n",
1737 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1738 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1740 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1741 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1742 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1743 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1745 if (cfg & PCI_STATUS_DETECTED_PARITY)
1746 printk(KERN_ERR "%s: PCI parity error.\n",
1749 /* Write the error bits back to clear them. */
1750 cfg &= (PCI_STATUS_PARITY |
1751 PCI_STATUS_SIG_TARGET_ABORT |
1752 PCI_STATUS_REC_TARGET_ABORT |
1753 PCI_STATUS_REC_MASTER_ABORT |
1754 PCI_STATUS_SIG_SYSTEM_ERROR |
1755 PCI_STATUS_DETECTED_PARITY);
1756 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1759 /* For all PCI errors, we should reset the chip. */
1763 /* All non-normal interrupt conditions get serviced here.
1764 * Returns non-zero if we should just exit the interrupt
1765 * handler right now (ie. if we reset the card which invalidates
1766 * all of the other original irq status bits).
1768 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1771 if (status & INTR_RX_TAG_ERROR) {
1772 /* corrupt RX tag framing */
1773 if (netif_msg_rx_err(cp))
1774 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1776 spin_lock(&cp->stat_lock[0]);
1777 cp->net_stats[0].rx_errors++;
1778 spin_unlock(&cp->stat_lock[0]);
1782 if (status & INTR_RX_LEN_MISMATCH) {
1783 /* length mismatch. */
1784 if (netif_msg_rx_err(cp))
1785 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1787 spin_lock(&cp->stat_lock[0]);
1788 cp->net_stats[0].rx_errors++;
1789 spin_unlock(&cp->stat_lock[0]);
1793 if (status & INTR_PCS_STATUS) {
1794 if (cas_pcs_interrupt(dev, cp, status))
1798 if (status & INTR_TX_MAC_STATUS) {
1799 if (cas_txmac_interrupt(dev, cp, status))
1803 if (status & INTR_RX_MAC_STATUS) {
1804 if (cas_rxmac_interrupt(dev, cp, status))
1808 if (status & INTR_MAC_CTRL_STATUS) {
1809 if (cas_mac_interrupt(dev, cp, status))
1813 if (status & INTR_MIF_STATUS) {
1814 if (cas_mif_interrupt(dev, cp, status))
1818 if (status & INTR_PCI_ERROR_STATUS) {
1819 if (cas_pci_interrupt(dev, cp, status))
1826 atomic_inc(&cp->reset_task_pending);
1827 atomic_inc(&cp->reset_task_pending_all);
1828 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1830 schedule_work(&cp->reset_task);
1832 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1834 schedule_work(&cp->reset_task);
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840 * determining whether to do a netif_stop/wakeup
1842 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1847 unsigned long off = addr + len;
1849 if (CAS_TABORT(cp) == 1)
1851 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853 return TX_TARGET_ABORT_LEN;
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 struct cas_tx_desc *txds;
1859 struct sk_buff **skbs;
1860 struct net_device *dev = cp->dev;
1863 spin_lock(&cp->tx_lock[ring]);
1864 txds = cp->init_txds[ring];
1865 skbs = cp->tx_skbs[ring];
1866 entry = cp->tx_old[ring];
1868 count = TX_BUFF_COUNT(ring, entry, limit);
1869 while (entry != limit) {
1870 struct sk_buff *skb = skbs[entry];
1876 /* this should never occur */
1877 entry = TX_DESC_NEXT(ring, entry);
1881 /* however, we might get only a partial skb release. */
1882 count -= skb_shinfo(skb)->nr_frags +
1883 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1887 if (netif_msg_tx_done(cp))
1888 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1889 cp->dev->name, ring, entry);
1892 cp->tx_tiny_use[ring][entry].nbufs = 0;
1894 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895 struct cas_tx_desc *txd = txds + entry;
1897 daddr = le64_to_cpu(txd->buffer);
1898 dlen = CAS_VAL(TX_DESC_BUFLEN,
1899 le64_to_cpu(txd->control));
1900 pci_unmap_page(cp->pdev, daddr, dlen,
1902 entry = TX_DESC_NEXT(ring, entry);
1904 /* tiny buffer may follow */
1905 if (cp->tx_tiny_use[ring][entry].used) {
1906 cp->tx_tiny_use[ring][entry].used = 0;
1907 entry = TX_DESC_NEXT(ring, entry);
1911 spin_lock(&cp->stat_lock[ring]);
1912 cp->net_stats[ring].tx_packets++;
1913 cp->net_stats[ring].tx_bytes += skb->len;
1914 spin_unlock(&cp->stat_lock[ring]);
1915 dev_kfree_skb_irq(skb);
1917 cp->tx_old[ring] = entry;
1919 /* this is wrong for multiple tx rings. the net device needs
1920 * multiple queues for this to do the right thing. we wait
1921 * for 2*packets to be available when using tiny buffers
1923 if (netif_queue_stopped(dev) &&
1924 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925 netif_wake_queue(dev);
1926 spin_unlock(&cp->tx_lock[ring]);
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1933 #ifdef USE_TX_COMPWB
1934 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1936 if (netif_msg_intr(cp))
1937 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1938 cp->dev->name, status, (unsigned long long)compwb);
1939 /* process all the rings */
1940 for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942 /* use the completion writeback registers */
1943 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944 CAS_VAL(TX_COMPWB_LSB, compwb);
1945 compwb = TX_COMPWB_NEXT(compwb);
1947 limit = readl(cp->regs + REG_TX_COMPN(ring));
1949 if (cp->tx_old[ring] != limit)
1950 cas_tx_ringN(cp, ring, limit);
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956 int entry, const u64 *words,
1957 struct sk_buff **skbref)
1959 int dlen, hlen, len, i, alloclen;
1960 int off, swivel = RX_SWIVEL_OFF_VAL;
1961 struct cas_page *page;
1962 struct sk_buff *skb;
1963 void *addr, *crcaddr;
1967 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1971 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1974 alloclen = max(hlen, RX_COPY_MIN);
1976 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1981 skb_reserve(skb, swivel);
1984 addr = crcaddr = NULL;
1985 if (hlen) { /* always copy header pages */
1986 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1992 if (!dlen) /* attach FCS */
1994 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1995 PCI_DMA_FROMDEVICE);
1996 addr = cas_page_map(page->buffer);
1997 memcpy(p, addr + off, i);
1998 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1999 PCI_DMA_FROMDEVICE);
2000 cas_page_unmap(addr);
2001 RX_USED_ADD(page, 0x100);
2007 if (alloclen < (hlen + dlen)) {
2008 skb_frag_t *frag = skb_shinfo(skb)->frags;
2010 /* normal or jumbo packets. we use frags */
2011 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2015 hlen = min(cp->page_size - off, dlen);
2017 if (netif_msg_rx_err(cp)) {
2018 printk(KERN_DEBUG "%s: rx page overflow: "
2019 "%d\n", cp->dev->name, hlen);
2021 dev_kfree_skb_irq(skb);
2025 if (i == dlen) /* attach FCS */
2027 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2028 PCI_DMA_FROMDEVICE);
2030 /* make sure we always copy a header */
2032 if (p == (char *) skb->data) { /* not split */
2033 addr = cas_page_map(page->buffer);
2034 memcpy(p, addr + off, RX_COPY_MIN);
2035 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2036 PCI_DMA_FROMDEVICE);
2037 cas_page_unmap(addr);
2039 swivel = RX_COPY_MIN;
2040 RX_USED_ADD(page, cp->mtu_stride);
2042 RX_USED_ADD(page, hlen);
2044 skb_put(skb, alloclen);
2046 skb_shinfo(skb)->nr_frags++;
2047 skb->data_len += hlen - swivel;
2048 skb->truesize += hlen - swivel;
2049 skb->len += hlen - swivel;
2051 get_page(page->buffer);
2052 frag->page = page->buffer;
2053 frag->page_offset = off;
2054 frag->size = hlen - swivel;
2056 /* any more data? */
2057 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2061 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2062 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2063 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2064 hlen + cp->crc_size,
2065 PCI_DMA_FROMDEVICE);
2066 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2067 hlen + cp->crc_size,
2068 PCI_DMA_FROMDEVICE);
2070 skb_shinfo(skb)->nr_frags++;
2071 skb->data_len += hlen;
2075 get_page(page->buffer);
2076 frag->page = page->buffer;
2077 frag->page_offset = 0;
2079 RX_USED_ADD(page, hlen + cp->crc_size);
2083 addr = cas_page_map(page->buffer);
2084 crcaddr = addr + off + hlen;
2088 /* copying packet */
2092 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2093 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2094 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2095 hlen = min(cp->page_size - off, dlen);
2097 if (netif_msg_rx_err(cp)) {
2098 printk(KERN_DEBUG "%s: rx page overflow: "
2099 "%d\n", cp->dev->name, hlen);
2101 dev_kfree_skb_irq(skb);
2105 if (i == dlen) /* attach FCS */
2107 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2108 PCI_DMA_FROMDEVICE);
2109 addr = cas_page_map(page->buffer);
2110 memcpy(p, addr + off, i);
2111 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2112 PCI_DMA_FROMDEVICE);
2113 cas_page_unmap(addr);
2114 if (p == (char *) skb->data) /* not split */
2115 RX_USED_ADD(page, cp->mtu_stride);
2117 RX_USED_ADD(page, i);
2119 /* any more data? */
2120 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2122 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2123 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2124 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2125 dlen + cp->crc_size,
2126 PCI_DMA_FROMDEVICE);
2127 addr = cas_page_map(page->buffer);
2128 memcpy(p, addr, dlen + cp->crc_size);
2129 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2130 dlen + cp->crc_size,
2131 PCI_DMA_FROMDEVICE);
2132 cas_page_unmap(addr);
2133 RX_USED_ADD(page, dlen + cp->crc_size);
2138 crcaddr = skb->data + alloclen;
2140 skb_put(skb, alloclen);
2143 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2145 /* checksum includes FCS. strip it out. */
2146 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2147 csum_unfold(csum)));
2149 cas_page_unmap(addr);
2151 skb->protocol = eth_type_trans(skb, cp->dev);
2152 if (skb->protocol == htons(ETH_P_IP)) {
2153 skb->csum = csum_unfold(~csum);
2154 skb->ip_summed = CHECKSUM_COMPLETE;
2156 skb->ip_summed = CHECKSUM_NONE;
2161 /* we can handle up to 64 rx flows at a time. we do the same thing
2162 * as nonreassm except that we batch up the buffers.
2163 * NOTE: we currently just treat each flow as a bunch of packets that
2164 * we pass up. a better way would be to coalesce the packets
2165 * into a jumbo packet. to do that, we need to do the following:
2166 * 1) the first packet will have a clean split between header and
2168 * 2) each time the next flow packet comes in, extend the
2169 * data length and merge the checksums.
2170 * 3) on flow release, fix up the header.
2171 * 4) make sure the higher layer doesn't care.
2172 * because packets get coalesced, we shouldn't run into fragment count
2175 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2176 struct sk_buff *skb)
2178 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2179 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2181 /* this is protected at a higher layer, so no need to
2182 * do any additional locking here. stick the buffer
2185 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2186 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2187 while ((skb = __skb_dequeue(flow))) {
2188 cas_skb_release(skb);
2193 /* put rx descriptor back on ring. if a buffer is in use by a higher
2194 * layer, this will need to put in a replacement.
2196 static void cas_post_page(struct cas *cp, const int ring, const int index)
2201 entry = cp->rx_old[ring];
2203 new = cas_page_swap(cp, ring, index);
2204 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2205 cp->init_rxds[ring][entry].index =
2206 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2207 CAS_BASE(RX_INDEX_RING, ring));
2209 entry = RX_DESC_ENTRY(ring, entry + 1);
2210 cp->rx_old[ring] = entry;
2216 writel(entry, cp->regs + REG_RX_KICK);
2217 else if ((N_RX_DESC_RINGS > 1) &&
2218 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2219 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2223 /* only when things are bad */
2224 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2226 unsigned int entry, last, count, released;
2228 cas_page_t **page = cp->rx_pages[ring];
2230 entry = cp->rx_old[ring];
2232 if (netif_msg_intr(cp))
2233 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2234 cp->dev->name, ring, entry);
2237 count = entry & 0x3;
2238 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2240 while (entry != last) {
2241 /* make a new buffer if it's still in use */
2242 if (page_count(page[entry]->buffer) > 1) {
2243 cas_page_t *new = cas_page_dequeue(cp);
2245 /* let the timer know that we need to
2248 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2249 if (!timer_pending(&cp->link_timer))
2250 mod_timer(&cp->link_timer, jiffies +
2251 CAS_LINK_FAST_TIMEOUT);
2252 cp->rx_old[ring] = entry;
2253 cp->rx_last[ring] = num ? num - released : 0;
2256 spin_lock(&cp->rx_inuse_lock);
2257 list_add(&page[entry]->list, &cp->rx_inuse_list);
2258 spin_unlock(&cp->rx_inuse_lock);
2259 cp->init_rxds[ring][entry].buffer =
2260 cpu_to_le64(new->dma_addr);
2270 entry = RX_DESC_ENTRY(ring, entry + 1);
2272 cp->rx_old[ring] = entry;
2278 writel(cluster, cp->regs + REG_RX_KICK);
2279 else if ((N_RX_DESC_RINGS > 1) &&
2280 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2281 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2286 /* process a completion ring. packets are set up in three basic ways:
2287 * small packets: should be copied header + data in single buffer.
2288 * large packets: header and data in a single buffer.
2289 * split packets: header in a separate buffer from data.
2290 * data may be in multiple pages. data may be > 256
2291 * bytes but in a single page.
2293 * NOTE: RX page posting is done in this routine as well. while there's
2294 * the capability of using multiple RX completion rings, it isn't
2295 * really worthwhile due to the fact that the page posting will
2296 * force serialization on the single descriptor ring.
2298 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2300 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2304 if (netif_msg_intr(cp))
2305 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2306 cp->dev->name, ring,
2307 readl(cp->regs + REG_RX_COMP_HEAD),
2310 entry = cp->rx_new[ring];
2313 struct cas_rx_comp *rxc = rxcs + entry;
2314 struct sk_buff *skb;
2319 words[0] = le64_to_cpu(rxc->word1);
2320 words[1] = le64_to_cpu(rxc->word2);
2321 words[2] = le64_to_cpu(rxc->word3);
2322 words[3] = le64_to_cpu(rxc->word4);
2324 /* don't touch if still owned by hw */
2325 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2329 /* hw hasn't cleared the zero bit yet */
2330 if (words[3] & RX_COMP4_ZERO) {
2334 /* get info on the packet */
2335 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2336 spin_lock(&cp->stat_lock[ring]);
2337 cp->net_stats[ring].rx_errors++;
2338 if (words[3] & RX_COMP4_LEN_MISMATCH)
2339 cp->net_stats[ring].rx_length_errors++;
2340 if (words[3] & RX_COMP4_BAD)
2341 cp->net_stats[ring].rx_crc_errors++;
2342 spin_unlock(&cp->stat_lock[ring]);
2344 /* We'll just return it to Cassini. */
2346 spin_lock(&cp->stat_lock[ring]);
2347 ++cp->net_stats[ring].rx_dropped;
2348 spin_unlock(&cp->stat_lock[ring]);
2352 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2358 /* see if it's a flow re-assembly or not. the driver
2359 * itself handles release back up.
2361 if (RX_DONT_BATCH || (type == 0x2)) {
2362 /* non-reassm: these always get released */
2363 cas_skb_release(skb);
2365 cas_rx_flow_pkt(cp, words, skb);
2368 spin_lock(&cp->stat_lock[ring]);
2369 cp->net_stats[ring].rx_packets++;
2370 cp->net_stats[ring].rx_bytes += len;
2371 spin_unlock(&cp->stat_lock[ring]);
2372 cp->dev->last_rx = jiffies;
2377 /* should it be released? */
2378 if (words[0] & RX_COMP1_RELEASE_HDR) {
2379 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2380 dring = CAS_VAL(RX_INDEX_RING, i);
2381 i = CAS_VAL(RX_INDEX_NUM, i);
2382 cas_post_page(cp, dring, i);
2385 if (words[0] & RX_COMP1_RELEASE_DATA) {
2386 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2387 dring = CAS_VAL(RX_INDEX_RING, i);
2388 i = CAS_VAL(RX_INDEX_NUM, i);
2389 cas_post_page(cp, dring, i);
2392 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2393 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2394 dring = CAS_VAL(RX_INDEX_RING, i);
2395 i = CAS_VAL(RX_INDEX_NUM, i);
2396 cas_post_page(cp, dring, i);
2399 /* skip to the next entry */
2400 entry = RX_COMP_ENTRY(ring, entry + 1 +
2401 CAS_VAL(RX_COMP1_SKIP, words[0]));
2403 if (budget && (npackets >= budget))
2407 cp->rx_new[ring] = entry;
2410 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2416 /* put completion entries back on the ring */
2417 static void cas_post_rxcs_ringN(struct net_device *dev,
2418 struct cas *cp, int ring)
2420 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2423 last = cp->rx_cur[ring];
2424 entry = cp->rx_new[ring];
2425 if (netif_msg_intr(cp))
2426 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2427 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2430 /* zero and re-mark descriptors */
2431 while (last != entry) {
2432 cas_rxc_init(rxc + last);
2433 last = RX_COMP_ENTRY(ring, last + 1);
2435 cp->rx_cur[ring] = last;
2438 writel(last, cp->regs + REG_RX_COMP_TAIL);
2439 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2440 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2445 /* cassini can use all four PCI interrupts for the completion ring.
2446 * rings 3 and 4 are identical
2448 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2449 static inline void cas_handle_irqN(struct net_device *dev,
2450 struct cas *cp, const u32 status,
2453 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2454 cas_post_rxcs_ringN(dev, cp, ring);
2457 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2459 struct net_device *dev = dev_id;
2460 struct cas *cp = netdev_priv(dev);
2461 unsigned long flags;
2463 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2465 /* check for shared irq */
2469 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2470 spin_lock_irqsave(&cp->lock, flags);
2471 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2474 netif_rx_schedule(dev, &cp->napi);
2476 cas_rx_ringN(cp, ring, 0);
2478 status &= ~INTR_RX_DONE_ALT;
2482 cas_handle_irqN(dev, cp, status, ring);
2483 spin_unlock_irqrestore(&cp->lock, flags);
2489 /* everything but rx packets */
2490 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2492 if (status & INTR_RX_BUF_UNAVAIL_1) {
2493 /* Frame arrived, no free RX buffers available.
2494 * NOTE: we can get this on a link transition. */
2495 cas_post_rxds_ringN(cp, 1, 0);
2496 spin_lock(&cp->stat_lock[1]);
2497 cp->net_stats[1].rx_dropped++;
2498 spin_unlock(&cp->stat_lock[1]);
2501 if (status & INTR_RX_BUF_AE_1)
2502 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2503 RX_AE_FREEN_VAL(1));
2505 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2506 cas_post_rxcs_ringN(cp, 1);
2509 /* ring 2 handles a few more events than 3 and 4 */
2510 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2512 struct net_device *dev = dev_id;
2513 struct cas *cp = netdev_priv(dev);
2514 unsigned long flags;
2515 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2517 /* check for shared interrupt */
2521 spin_lock_irqsave(&cp->lock, flags);
2522 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2525 netif_rx_schedule(dev, &cp->napi);
2527 cas_rx_ringN(cp, 1, 0);
2529 status &= ~INTR_RX_DONE_ALT;
2532 cas_handle_irq1(cp, status);
2533 spin_unlock_irqrestore(&cp->lock, flags);
2538 static inline void cas_handle_irq(struct net_device *dev,
2539 struct cas *cp, const u32 status)
2541 /* housekeeping interrupts */
2542 if (status & INTR_ERROR_MASK)
2543 cas_abnormal_irq(dev, cp, status);
2545 if (status & INTR_RX_BUF_UNAVAIL) {
2546 /* Frame arrived, no free RX buffers available.
2547 * NOTE: we can get this on a link transition.
2549 cas_post_rxds_ringN(cp, 0, 0);
2550 spin_lock(&cp->stat_lock[0]);
2551 cp->net_stats[0].rx_dropped++;
2552 spin_unlock(&cp->stat_lock[0]);
2553 } else if (status & INTR_RX_BUF_AE) {
2554 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2555 RX_AE_FREEN_VAL(0));
2558 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2559 cas_post_rxcs_ringN(dev, cp, 0);
2562 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2564 struct net_device *dev = dev_id;
2565 struct cas *cp = netdev_priv(dev);
2566 unsigned long flags;
2567 u32 status = readl(cp->regs + REG_INTR_STATUS);
2572 spin_lock_irqsave(&cp->lock, flags);
2573 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2574 cas_tx(dev, cp, status);
2575 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2578 if (status & INTR_RX_DONE) {
2581 netif_rx_schedule(dev, &cp->napi);
2583 cas_rx_ringN(cp, 0, 0);
2585 status &= ~INTR_RX_DONE;
2589 cas_handle_irq(dev, cp, status);
2590 spin_unlock_irqrestore(&cp->lock, flags);
2596 static int cas_poll(struct napi_struct *napi, int budget)
2598 struct cas *cp = container_of(napi, struct cas, napi);
2599 struct net_device *dev = cp->dev;
2600 int i, enable_intr, credits;
2601 u32 status = readl(cp->regs + REG_INTR_STATUS);
2602 unsigned long flags;
2604 spin_lock_irqsave(&cp->lock, flags);
2605 cas_tx(dev, cp, status);
2606 spin_unlock_irqrestore(&cp->lock, flags);
2608 /* NAPI rx packets. we spread the credits across all of the
2611 * to make sure we're fair with the work we loop through each
2612 * ring N_RX_COMP_RING times with a request of
2613 * budget / N_RX_COMP_RINGS
2617 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2619 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2620 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2621 if (credits >= budget) {
2629 /* final rx completion */
2630 spin_lock_irqsave(&cp->lock, flags);
2632 cas_handle_irq(dev, cp, status);
2635 if (N_RX_COMP_RINGS > 1) {
2636 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2638 cas_handle_irq1(dev, cp, status);
2643 if (N_RX_COMP_RINGS > 2) {
2644 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2646 cas_handle_irqN(dev, cp, status, 2);
2651 if (N_RX_COMP_RINGS > 3) {
2652 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2654 cas_handle_irqN(dev, cp, status, 3);
2657 spin_unlock_irqrestore(&cp->lock, flags);
2659 netif_rx_complete(dev, napi);
2660 cas_unmask_intr(cp);
2666 #ifdef CONFIG_NET_POLL_CONTROLLER
2667 static void cas_netpoll(struct net_device *dev)
2669 struct cas *cp = netdev_priv(dev);
2671 cas_disable_irq(cp, 0);
2672 cas_interrupt(cp->pdev->irq, dev);
2673 cas_enable_irq(cp, 0);
2676 if (N_RX_COMP_RINGS > 1) {
2677 /* cas_interrupt1(); */
2681 if (N_RX_COMP_RINGS > 2) {
2682 /* cas_interruptN(); */
2686 if (N_RX_COMP_RINGS > 3) {
2687 /* cas_interruptN(); */
2693 static void cas_tx_timeout(struct net_device *dev)
2695 struct cas *cp = netdev_priv(dev);
2697 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2698 if (!cp->hw_running) {
2699 printk("%s: hrm.. hw not running!\n", dev->name);
2703 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2704 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2706 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2707 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2709 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2710 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2712 readl(cp->regs + REG_TX_CFG),
2713 readl(cp->regs + REG_MAC_TX_STATUS),
2714 readl(cp->regs + REG_MAC_TX_CFG),
2715 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2716 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2717 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2718 readl(cp->regs + REG_TX_SM_1),
2719 readl(cp->regs + REG_TX_SM_2));
2721 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2723 readl(cp->regs + REG_RX_CFG),
2724 readl(cp->regs + REG_MAC_RX_STATUS),
2725 readl(cp->regs + REG_MAC_RX_CFG));
2727 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2729 readl(cp->regs + REG_HP_STATE_MACHINE),
2730 readl(cp->regs + REG_HP_STATUS0),
2731 readl(cp->regs + REG_HP_STATUS1),
2732 readl(cp->regs + REG_HP_STATUS2));
2735 atomic_inc(&cp->reset_task_pending);
2736 atomic_inc(&cp->reset_task_pending_all);
2737 schedule_work(&cp->reset_task);
2739 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2740 schedule_work(&cp->reset_task);
2744 static inline int cas_intme(int ring, int entry)
2746 /* Algorithm: IRQ every 1/2 of descriptors. */
2747 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2753 static void cas_write_txd(struct cas *cp, int ring, int entry,
2754 dma_addr_t mapping, int len, u64 ctrl, int last)
2756 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2758 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2759 if (cas_intme(ring, entry))
2760 ctrl |= TX_DESC_INTME;
2762 ctrl |= TX_DESC_EOF;
2763 txd->control = cpu_to_le64(ctrl);
2764 txd->buffer = cpu_to_le64(mapping);
2767 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2770 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2773 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2774 const int entry, const int tentry)
2776 cp->tx_tiny_use[ring][tentry].nbufs++;
2777 cp->tx_tiny_use[ring][entry].used = 1;
2778 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2781 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2782 struct sk_buff *skb)
2784 struct net_device *dev = cp->dev;
2785 int entry, nr_frags, frag, tabort, tentry;
2787 unsigned long flags;
2791 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2793 /* This is a hard error, log it. */
2794 if (TX_BUFFS_AVAIL(cp, ring) <=
2795 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2796 netif_stop_queue(dev);
2797 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2798 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2799 "queue awake!\n", dev->name);
2804 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2805 const u64 csum_start_off = skb_transport_offset(skb);
2806 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2808 ctrl = TX_DESC_CSUM_EN |
2809 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2810 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2813 entry = cp->tx_new[ring];
2814 cp->tx_skbs[ring][entry] = skb;
2816 nr_frags = skb_shinfo(skb)->nr_frags;
2817 len = skb_headlen(skb);
2818 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2819 offset_in_page(skb->data), len,
2823 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2824 if (unlikely(tabort)) {
2825 /* NOTE: len is always > tabort */
2826 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2827 ctrl | TX_DESC_SOF, 0);
2828 entry = TX_DESC_NEXT(ring, entry);
2830 skb_copy_from_linear_data_offset(skb, len - tabort,
2831 tx_tiny_buf(cp, ring, entry), tabort);
2832 mapping = tx_tiny_map(cp, ring, entry, tentry);
2833 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2836 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2837 TX_DESC_SOF, (nr_frags == 0));
2839 entry = TX_DESC_NEXT(ring, entry);
2841 for (frag = 0; frag < nr_frags; frag++) {
2842 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2845 mapping = pci_map_page(cp->pdev, fragp->page,
2846 fragp->page_offset, len,
2849 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2850 if (unlikely(tabort)) {
2853 /* NOTE: len is always > tabort */
2854 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2856 entry = TX_DESC_NEXT(ring, entry);
2858 addr = cas_page_map(fragp->page);
2859 memcpy(tx_tiny_buf(cp, ring, entry),
2860 addr + fragp->page_offset + len - tabort,
2862 cas_page_unmap(addr);
2863 mapping = tx_tiny_map(cp, ring, entry, tentry);
2867 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2868 (frag + 1 == nr_frags));
2869 entry = TX_DESC_NEXT(ring, entry);
2872 cp->tx_new[ring] = entry;
2873 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2874 netif_stop_queue(dev);
2876 if (netif_msg_tx_queued(cp))
2877 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2879 dev->name, ring, entry, skb->len,
2880 TX_BUFFS_AVAIL(cp, ring));
2881 writel(entry, cp->regs + REG_TX_KICKN(ring));
2882 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2886 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2888 struct cas *cp = netdev_priv(dev);
2890 /* this is only used as a load-balancing hint, so it doesn't
2891 * need to be SMP safe
2895 if (skb_padto(skb, cp->min_frame_size))
2898 /* XXX: we need some higher-level QoS hooks to steer packets to
2899 * individual queues.
2901 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2903 dev->trans_start = jiffies;
2907 static void cas_init_tx_dma(struct cas *cp)
2909 u64 desc_dma = cp->block_dvma;
2914 /* set up tx completion writeback registers. must be 8-byte aligned */
2915 #ifdef USE_TX_COMPWB
2916 off = offsetof(struct cas_init_block, tx_compwb);
2917 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2918 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2921 /* enable completion writebacks, enable paced mode,
2922 * disable read pipe, and disable pre-interrupt compwbs
2924 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2925 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2926 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2927 TX_CFG_INTR_COMPWB_DIS;
2929 /* write out tx ring info and tx desc bases */
2930 for (i = 0; i < MAX_TX_RINGS; i++) {
2931 off = (unsigned long) cp->init_txds[i] -
2932 (unsigned long) cp->init_block;
2934 val |= CAS_TX_RINGN_BASE(i);
2935 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2936 writel((desc_dma + off) & 0xffffffff, cp->regs +
2938 /* don't zero out the kick register here as the system
2942 writel(val, cp->regs + REG_TX_CFG);
2944 /* program max burst sizes. these numbers should be different
2948 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2949 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2950 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2951 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2953 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2954 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2955 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2956 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2960 /* Must be invoked under cp->lock. */
2961 static inline void cas_init_dma(struct cas *cp)
2963 cas_init_tx_dma(cp);
2964 cas_init_rx_dma(cp);
2967 /* Must be invoked under cp->lock. */
2968 static u32 cas_setup_multicast(struct cas *cp)
2973 if (cp->dev->flags & IFF_PROMISC) {
2974 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2976 } else if (cp->dev->flags & IFF_ALLMULTI) {
2977 for (i=0; i < 16; i++)
2978 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2979 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2984 struct dev_mc_list *dmi = cp->dev->mc_list;
2987 /* use the alternate mac address registers for the
2988 * first 15 multicast addresses
2990 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2992 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2993 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2994 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2997 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2998 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2999 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3000 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3001 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3002 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3006 /* use hw hash table for the next series of
3007 * multicast addresses
3009 memset(hash_table, 0, sizeof(hash_table));
3011 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3013 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3016 for (i=0; i < 16; i++)
3017 writel(hash_table[i], cp->regs +
3018 REG_MAC_HASH_TABLEN(i));
3019 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3025 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3026 static void cas_clear_mac_err(struct cas *cp)
3028 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3029 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3030 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3031 writel(0, cp->regs + REG_MAC_COLL_LATE);
3032 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3033 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3034 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3035 writel(0, cp->regs + REG_MAC_LEN_ERR);
3036 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3037 writel(0, cp->regs + REG_MAC_FCS_ERR);
3038 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3042 static void cas_mac_reset(struct cas *cp)
3046 /* do both TX and RX reset */
3047 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3048 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3053 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3061 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3066 if (readl(cp->regs + REG_MAC_TX_RESET) |
3067 readl(cp->regs + REG_MAC_RX_RESET))
3068 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3069 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3070 readl(cp->regs + REG_MAC_RX_RESET),
3071 readl(cp->regs + REG_MAC_STATE_MACHINE));
3075 /* Must be invoked under cp->lock. */
3076 static void cas_init_mac(struct cas *cp)
3078 unsigned char *e = &cp->dev->dev_addr[0];
3080 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3085 /* setup core arbitration weight register */
3086 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3088 /* XXX Use pci_dma_burst_advice() */
3089 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3090 /* set the infinite burst register for chips that don't have
3093 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3094 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3097 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3099 writel(0x00, cp->regs + REG_MAC_IPG0);
3100 writel(0x08, cp->regs + REG_MAC_IPG1);
3101 writel(0x04, cp->regs + REG_MAC_IPG2);
3103 /* change later for 802.3z */
3104 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3106 /* min frame + FCS */
3107 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3109 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3110 * specify the maximum frame size to prevent RX tag errors on
3113 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3114 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3115 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3116 cp->regs + REG_MAC_FRAMESIZE_MAX);
3118 /* NOTE: crc_size is used as a surrogate for half-duplex.
3119 * workaround saturn half-duplex issue by increasing preamble
3122 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3123 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3125 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3126 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3127 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3128 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3130 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3132 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3133 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3134 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3135 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3136 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3138 /* setup mac address in perfect filter array */
3139 for (i = 0; i < 45; i++)
3140 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3142 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3143 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3144 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3146 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3147 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3148 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3150 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3151 cp->mac_rx_cfg = cas_setup_multicast(cp);
3153 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3154 * a writel does not seem to be necessary because Cassini
3155 * seems to preserve the configuration when we do the reset.
3156 * If the chip is in trouble, though, it is not clear if we
3157 * can really count on this behavior. cas_set_multicast uses
3158 * spin_lock_irqsave, but we are called only in cas_init_hw and
3159 * cas_init_hw is protected by cas_lock_all, which calls
3160 * spin_lock_irq (so it doesn't need to save the flags, and
3161 * we should be OK for the writel, as that is the only
3164 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3165 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3167 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3168 cas_clear_mac_err(cp);
3169 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3171 /* Setup MAC interrupts. We want to get all of the interesting
3172 * counter expiration events, but we do not want to hear about
3173 * normal rx/tx as the DMA engine tells us that.
3175 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3176 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3178 /* Don't enable even the PAUSE interrupts for now, we
3179 * make no use of those events other than to record them.
3181 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3184 /* Must be invoked under cp->lock. */
3185 static void cas_init_pause_thresholds(struct cas *cp)
3187 /* Calculate pause thresholds. Setting the OFF threshold to the
3188 * full RX fifo size effectively disables PAUSE generation
3190 if (cp->rx_fifo_size <= (2 * 1024)) {
3191 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3193 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3194 if (max_frame * 3 > cp->rx_fifo_size) {
3195 cp->rx_pause_off = 7104;
3196 cp->rx_pause_on = 960;
3198 int off = (cp->rx_fifo_size - (max_frame * 2));
3199 int on = off - max_frame;
3200 cp->rx_pause_off = off;
3201 cp->rx_pause_on = on;
3206 static int cas_vpd_match(const void __iomem *p, const char *str)
3208 int len = strlen(str) + 1;
3211 for (i = 0; i < len; i++) {
3212 if (readb(p + i) != str[i])
3219 /* get the mac address by reading the vpd information in the rom.
3220 * also get the phy type and determine if there's an entropy generator.
3221 * NOTE: this is a bit convoluted for the following reasons:
3222 * 1) vpd info has order-dependent mac addresses for multinic cards
3223 * 2) the only way to determine the nic order is to use the slot
3225 * 3) fiber cards don't have bridges, so their slot numbers don't
3227 * 4) we don't actually know we have a fiber card until after
3228 * the mac addresses are parsed.
3230 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3233 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3234 void __iomem *base, *kstart;
3237 #define VPD_FOUND_MAC 0x01
3238 #define VPD_FOUND_PHY 0x02
3240 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3243 /* give us access to the PROM */
3244 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3245 cp->regs + REG_BIM_LOCAL_DEV_EN);
3247 /* check for an expansion rom */
3248 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3249 goto use_random_mac_addr;
3251 /* search for beginning of vpd */
3253 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3254 /* check for PCIR */
3255 if ((readb(p + i + 0) == 0x50) &&
3256 (readb(p + i + 1) == 0x43) &&
3257 (readb(p + i + 2) == 0x49) &&
3258 (readb(p + i + 3) == 0x52)) {
3259 base = p + (readb(p + i + 8) |
3260 (readb(p + i + 9) << 8));
3265 if (!base || (readb(base) != 0x82))
3266 goto use_random_mac_addr;
3268 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3269 while (i < EXPANSION_ROM_SIZE) {
3270 if (readb(base + i) != 0x90) /* no vpd found */
3271 goto use_random_mac_addr;
3273 /* found a vpd field */
3274 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3276 /* extract keywords */
3277 kstart = base + i + 3;
3279 while ((p - kstart) < len) {
3280 int klen = readb(p + 2);
3286 /* look for the following things:
3287 * -- correct length == 29
3288 * 3 (type) + 2 (size) +
3289 * 18 (strlen("local-mac-address") + 1) +
3291 * -- VPD Instance 'I'
3292 * -- VPD Type Bytes 'B'
3293 * -- VPD data length == 6
3294 * -- property string == local-mac-address
3296 * -- correct length == 24
3297 * 3 (type) + 2 (size) +
3298 * 12 (strlen("entropy-dev") + 1) +
3299 * 7 (strlen("vms110") + 1)
3300 * -- VPD Instance 'I'
3301 * -- VPD Type String 'B'
3302 * -- VPD data length == 7
3303 * -- property string == entropy-dev
3305 * -- correct length == 18
3306 * 3 (type) + 2 (size) +
3307 * 9 (strlen("phy-type") + 1) +
3308 * 4 (strlen("pcs") + 1)
3309 * -- VPD Instance 'I'
3310 * -- VPD Type String 'S'
3311 * -- VPD data length == 4
3312 * -- property string == phy-type
3314 * -- correct length == 23
3315 * 3 (type) + 2 (size) +
3316 * 14 (strlen("phy-interface") + 1) +
3317 * 4 (strlen("pcs") + 1)
3318 * -- VPD Instance 'I'
3319 * -- VPD Type String 'S'
3320 * -- VPD data length == 4
3321 * -- property string == phy-interface
3323 if (readb(p) != 'I')
3326 /* finally, check string and length */
3327 type = readb(p + 3);
3329 if ((klen == 29) && readb(p + 4) == 6 &&
3330 cas_vpd_match(p + 5,
3331 "local-mac-address")) {
3332 if (mac_off++ > offset)
3335 /* set mac address */
3336 for (j = 0; j < 6; j++)
3346 #ifdef USE_ENTROPY_DEV
3348 cas_vpd_match(p + 5, "entropy-dev") &&
3349 cas_vpd_match(p + 17, "vms110")) {
3350 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3355 if (found & VPD_FOUND_PHY)
3358 if ((klen == 18) && readb(p + 4) == 4 &&
3359 cas_vpd_match(p + 5, "phy-type")) {
3360 if (cas_vpd_match(p + 14, "pcs")) {
3361 phy_type = CAS_PHY_SERDES;
3366 if ((klen == 23) && readb(p + 4) == 4 &&
3367 cas_vpd_match(p + 5, "phy-interface")) {
3368 if (cas_vpd_match(p + 19, "pcs")) {
3369 phy_type = CAS_PHY_SERDES;
3374 found |= VPD_FOUND_MAC;
3378 found |= VPD_FOUND_PHY;
3386 use_random_mac_addr:
3387 if (found & VPD_FOUND_MAC)
3390 /* Sun MAC prefix then 3 random bytes. */
3391 printk(PFX "MAC address not found in ROM VPD\n");
3395 get_random_bytes(dev_addr + 3, 3);
3398 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3402 /* check pci invariants */
3403 static void cas_check_pci_invariants(struct cas *cp)
3405 struct pci_dev *pdev = cp->pdev;
3408 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3409 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3410 if (pdev->revision >= CAS_ID_REVPLUS)
3411 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3412 if (pdev->revision < CAS_ID_REVPLUS02u)
3413 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3415 /* Original Cassini supports HW CSUM, but it's not
3416 * enabled by default as it can trigger TX hangs.
3418 if (pdev->revision < CAS_ID_REV2)
3419 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3421 /* Only sun has original cassini chips. */
3422 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3424 /* We use a flag because the same phy might be externally
3427 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3428 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3429 cp->cas_flags |= CAS_FLAG_SATURN;
3434 static int cas_check_invariants(struct cas *cp)
3436 struct pci_dev *pdev = cp->pdev;
3440 /* get page size for rx buffers. */
3442 #ifdef USE_PAGE_ORDER
3443 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3444 /* see if we can allocate larger pages */
3445 struct page *page = alloc_pages(GFP_ATOMIC,
3446 CAS_JUMBO_PAGE_SHIFT -
3449 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3450 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3452 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3456 cp->page_size = (PAGE_SIZE << cp->page_order);
3458 /* Fetch the FIFO configurations. */
3459 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3460 cp->rx_fifo_size = RX_FIFO_SIZE;
3462 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3463 * they're both connected.
3465 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3466 PCI_SLOT(pdev->devfn));
3467 if (cp->phy_type & CAS_PHY_SERDES) {
3468 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3469 return 0; /* no more checking needed */
3473 cfg = readl(cp->regs + REG_MIF_CFG);
3474 if (cfg & MIF_CFG_MDIO_1) {
3475 cp->phy_type = CAS_PHY_MII_MDIO1;
3476 } else if (cfg & MIF_CFG_MDIO_0) {
3477 cp->phy_type = CAS_PHY_MII_MDIO0;
3480 cas_mif_poll(cp, 0);
3481 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3483 for (i = 0; i < 32; i++) {
3487 for (j = 0; j < 3; j++) {
3489 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3490 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3491 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3492 cp->phy_id = phy_id;
3497 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3498 readl(cp->regs + REG_MIF_STATE_MACHINE));
3502 /* see if we can do gigabit */
3503 cfg = cas_phy_read(cp, MII_BMSR);
3504 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3505 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3506 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3510 /* Must be invoked under cp->lock. */
3511 static inline void cas_start_dma(struct cas *cp)
3518 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3519 writel(val, cp->regs + REG_TX_CFG);
3520 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3521 writel(val, cp->regs + REG_RX_CFG);
3523 /* enable the mac */
3524 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3525 writel(val, cp->regs + REG_MAC_TX_CFG);
3526 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3527 writel(val, cp->regs + REG_MAC_RX_CFG);
3531 val = readl(cp->regs + REG_MAC_TX_CFG);
3532 if ((val & MAC_TX_CFG_EN))
3536 if (i < 0) txfailed = 1;
3539 val = readl(cp->regs + REG_MAC_RX_CFG);
3540 if ((val & MAC_RX_CFG_EN)) {
3543 "%s: enabling mac failed [tx:%08x:%08x].\n",
3545 readl(cp->regs + REG_MIF_STATE_MACHINE),
3546 readl(cp->regs + REG_MAC_STATE_MACHINE));
3548 goto enable_rx_done;
3552 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3554 (txfailed? "tx,rx":"rx"),
3555 readl(cp->regs + REG_MIF_STATE_MACHINE),
3556 readl(cp->regs + REG_MAC_STATE_MACHINE));
3559 cas_unmask_intr(cp); /* enable interrupts */
3560 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3561 writel(0, cp->regs + REG_RX_COMP_TAIL);
3563 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3564 if (N_RX_DESC_RINGS > 1)
3565 writel(RX_DESC_RINGN_SIZE(1) - 4,
3566 cp->regs + REG_PLUS_RX_KICK1);
3568 for (i = 1; i < N_RX_COMP_RINGS; i++)
3569 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3573 /* Must be invoked under cp->lock. */
3574 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3577 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3578 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3579 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3580 if (val & PCS_MII_LPA_ASYM_PAUSE)
3585 /* Must be invoked under cp->lock. */
3586 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3595 /* use GMII registers */
3596 val = cas_phy_read(cp, MII_LPA);
3597 if (val & CAS_LPA_PAUSE)
3600 if (val & CAS_LPA_ASYM_PAUSE)
3603 if (val & LPA_DUPLEX)
3608 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3609 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3610 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3612 if (val & CAS_LPA_1000FULL)
3617 /* A link-up condition has occurred, initialize and enable the
3620 * Must be invoked under cp->lock.
3622 static void cas_set_link_modes(struct cas *cp)
3625 int full_duplex, speed, pause;
3631 if (CAS_PHY_MII(cp->phy_type)) {
3632 cas_mif_poll(cp, 0);
3633 val = cas_phy_read(cp, MII_BMCR);
3634 if (val & BMCR_ANENABLE) {
3635 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3638 if (val & BMCR_FULLDPLX)
3641 if (val & BMCR_SPEED100)
3643 else if (val & CAS_BMCR_SPEED1000)
3644 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3647 cas_mif_poll(cp, 1);
3650 val = readl(cp->regs + REG_PCS_MII_CTRL);
3651 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3652 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3653 if (val & PCS_MII_CTRL_DUPLEX)
3658 if (netif_msg_link(cp))
3659 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3660 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3662 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3663 if (CAS_PHY_MII(cp->phy_type)) {
3664 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3666 val |= MAC_XIF_DISABLE_ECHO;
3669 val |= MAC_XIF_FDPLX_LED;
3671 val |= MAC_XIF_GMII_MODE;
3672 writel(val, cp->regs + REG_MAC_XIF_CFG);
3674 /* deal with carrier and collision detect. */
3675 val = MAC_TX_CFG_IPG_EN;
3677 val |= MAC_TX_CFG_IGNORE_CARRIER;
3678 val |= MAC_TX_CFG_IGNORE_COLL;
3680 #ifndef USE_CSMA_CD_PROTO
3681 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3682 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3685 /* val now set up for REG_MAC_TX_CFG */
3687 /* If gigabit and half-duplex, enable carrier extension
3688 * mode. increase slot time to 512 bytes as well.
3689 * else, disable it and make sure slot time is 64 bytes.
3690 * also activate checksum bug workaround
3692 if ((speed == 1000) && !full_duplex) {
3693 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3694 cp->regs + REG_MAC_TX_CFG);
3696 val = readl(cp->regs + REG_MAC_RX_CFG);
3697 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3698 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3699 cp->regs + REG_MAC_RX_CFG);
3701 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3704 /* minimum size gigabit frame at half duplex */
3705 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3708 writel(val, cp->regs + REG_MAC_TX_CFG);
3710 /* checksum bug workaround. don't strip FCS when in
3713 val = readl(cp->regs + REG_MAC_RX_CFG);
3715 val |= MAC_RX_CFG_STRIP_FCS;
3717 cp->min_frame_size = CAS_MIN_MTU;
3719 val &= ~MAC_RX_CFG_STRIP_FCS;
3721 cp->min_frame_size = CAS_MIN_FRAME;
3723 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3724 cp->regs + REG_MAC_RX_CFG);
3725 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3728 if (netif_msg_link(cp)) {
3730 printk(KERN_INFO "%s: Pause is enabled "
3731 "(rxfifo: %d off: %d on: %d)\n",
3736 } else if (pause & 0x10) {
3737 printk(KERN_INFO "%s: TX pause enabled\n",
3740 printk(KERN_INFO "%s: Pause is disabled\n",
3745 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3746 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3747 if (pause) { /* symmetric or asymmetric pause */
3748 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3749 if (pause & 0x01) { /* symmetric pause */
3750 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3753 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3757 /* Must be invoked under cp->lock. */
3758 static void cas_init_hw(struct cas *cp, int restart_link)
3763 cas_init_pause_thresholds(cp);
3768 /* Default aneg parameters */
3769 cp->timer_ticks = 0;
3770 cas_begin_auto_negotiation(cp, NULL);
3771 } else if (cp->lstate == link_up) {
3772 cas_set_link_modes(cp);
3773 netif_carrier_on(cp->dev);
3777 /* Must be invoked under cp->lock. on earlier cassini boards,
3778 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3779 * let it settle out, and then restore pci state.
3781 static void cas_hard_reset(struct cas *cp)
3783 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3785 pci_restore_state(cp->pdev);
3789 static void cas_global_reset(struct cas *cp, int blkflag)
3793 /* issue a global reset. don't use RSTOUT. */
3794 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3795 /* For PCS, when the blkflag is set, we should set the
3796 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3797 * the last autonegotiation from being cleared. We'll
3798 * need some special handling if the chip is set into a
3801 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3802 cp->regs + REG_SW_RESET);
3804 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3807 /* need to wait at least 3ms before polling register */
3811 while (limit-- > 0) {
3812 u32 val = readl(cp->regs + REG_SW_RESET);
3813 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3817 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3820 /* enable various BIM interrupts */
3821 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3822 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3824 /* clear out pci error status mask for handled errors.
3825 * we don't deal with DMA counter overflows as they happen
3828 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3829 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3830 PCI_ERR_BIM_DMA_READ), cp->regs +
3831 REG_PCI_ERR_STATUS_MASK);
3833 /* set up for MII by default to address mac rx reset timeout
3836 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3839 static void cas_reset(struct cas *cp, int blkflag)
3844 cas_global_reset(cp, blkflag);
3846 cas_entropy_reset(cp);
3848 /* disable dma engines. */
3849 val = readl(cp->regs + REG_TX_CFG);
3850 val &= ~TX_CFG_DMA_EN;
3851 writel(val, cp->regs + REG_TX_CFG);
3853 val = readl(cp->regs + REG_RX_CFG);
3854 val &= ~RX_CFG_DMA_EN;
3855 writel(val, cp->regs + REG_RX_CFG);
3857 /* program header parser */
3858 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3859 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3860 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3862 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3865 /* clear out error registers */
3866 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3867 cas_clear_mac_err(cp);
3868 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3871 /* Shut down the chip, must be called with pm_mutex held. */
3872 static void cas_shutdown(struct cas *cp)
3874 unsigned long flags;
3876 /* Make us not-running to avoid timers respawning */
3879 del_timer_sync(&cp->link_timer);
3881 /* Stop the reset task */
3883 while (atomic_read(&cp->reset_task_pending_mtu) ||
3884 atomic_read(&cp->reset_task_pending_spare) ||
3885 atomic_read(&cp->reset_task_pending_all))
3889 while (atomic_read(&cp->reset_task_pending))
3892 /* Actually stop the chip */
3893 cas_lock_all_save(cp, flags);
3895 if (cp->cas_flags & CAS_FLAG_SATURN)
3896 cas_phy_powerdown(cp);
3897 cas_unlock_all_restore(cp, flags);
3900 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3902 struct cas *cp = netdev_priv(dev);
3904 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3908 if (!netif_running(dev) || !netif_device_present(dev))
3911 /* let the reset task handle it */
3913 atomic_inc(&cp->reset_task_pending);
3914 if ((cp->phy_type & CAS_PHY_SERDES)) {
3915 atomic_inc(&cp->reset_task_pending_all);
3917 atomic_inc(&cp->reset_task_pending_mtu);
3919 schedule_work(&cp->reset_task);
3921 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3922 CAS_RESET_ALL : CAS_RESET_MTU);
3923 printk(KERN_ERR "reset called in cas_change_mtu\n");
3924 schedule_work(&cp->reset_task);
3927 flush_scheduled_work();
3931 static void cas_clean_txd(struct cas *cp, int ring)
3933 struct cas_tx_desc *txd = cp->init_txds[ring];
3934 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3938 size = TX_DESC_RINGN_SIZE(ring);
3939 for (i = 0; i < size; i++) {
3942 if (skbs[i] == NULL)
3948 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3949 int ent = i & (size - 1);
3951 /* first buffer is never a tiny buffer and so
3952 * needs to be unmapped.
3954 daddr = le64_to_cpu(txd[ent].buffer);
3955 dlen = CAS_VAL(TX_DESC_BUFLEN,
3956 le64_to_cpu(txd[ent].control));
3957 pci_unmap_page(cp->pdev, daddr, dlen,
3960 if (frag != skb_shinfo(skb)->nr_frags) {
3963 /* next buffer might by a tiny buffer.
3966 ent = i & (size - 1);
3967 if (cp->tx_tiny_use[ring][ent].used)
3971 dev_kfree_skb_any(skb);
3974 /* zero out tiny buf usage */
3975 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3978 /* freed on close */
3979 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3981 cas_page_t **page = cp->rx_pages[ring];
3984 size = RX_DESC_RINGN_SIZE(ring);
3985 for (i = 0; i < size; i++) {
3987 cas_page_free(cp, page[i]);
3993 static void cas_free_rxds(struct cas *cp)
3997 for (i = 0; i < N_RX_DESC_RINGS; i++)
3998 cas_free_rx_desc(cp, i);
4001 /* Must be invoked under cp->lock. */
4002 static void cas_clean_rings(struct cas *cp)
4006 /* need to clean all tx rings */
4007 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4008 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4009 for (i = 0; i < N_TX_RINGS; i++)
4010 cas_clean_txd(cp, i);
4012 /* zero out init block */
4013 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4018 /* allocated on open */
4019 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4021 cas_page_t **page = cp->rx_pages[ring];
4024 size = RX_DESC_RINGN_SIZE(ring);
4025 for (i = 0; i < size; i++) {
4026 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4032 static int cas_alloc_rxds(struct cas *cp)
4036 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4037 if (cas_alloc_rx_desc(cp, i) < 0) {
4045 static void cas_reset_task(struct work_struct *work)
4047 struct cas *cp = container_of(work, struct cas, reset_task);
4049 int pending = atomic_read(&cp->reset_task_pending);
4051 int pending_all = atomic_read(&cp->reset_task_pending_all);
4052 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4053 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4055 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4056 /* We can have more tasks scheduled than actually
4059 atomic_dec(&cp->reset_task_pending);
4063 /* The link went down, we reset the ring, but keep
4064 * DMA stopped. Use this function for reset
4067 if (cp->hw_running) {
4068 unsigned long flags;
4070 /* Make sure we don't get interrupts or tx packets */
4071 netif_device_detach(cp->dev);
4072 cas_lock_all_save(cp, flags);
4075 /* We call cas_spare_recover when we call cas_open.
4076 * but we do not initialize the lists cas_spare_recover
4077 * uses until cas_open is called.
4079 cas_spare_recover(cp, GFP_ATOMIC);
4082 /* test => only pending_spare set */
4083 if (!pending_all && !pending_mtu)
4086 if (pending == CAS_RESET_SPARE)
4089 /* when pending == CAS_RESET_ALL, the following
4090 * call to cas_init_hw will restart auto negotiation.
4091 * Setting the second argument of cas_reset to
4092 * !(pending == CAS_RESET_ALL) will set this argument
4093 * to 1 (avoiding reinitializing the PHY for the normal
4094 * PCS case) when auto negotiation is not restarted.
4097 cas_reset(cp, !(pending_all > 0));
4099 cas_clean_rings(cp);
4100 cas_init_hw(cp, (pending_all > 0));
4102 cas_reset(cp, !(pending == CAS_RESET_ALL));
4104 cas_clean_rings(cp);
4105 cas_init_hw(cp, pending == CAS_RESET_ALL);
4109 cas_unlock_all_restore(cp, flags);
4110 netif_device_attach(cp->dev);
4113 atomic_sub(pending_all, &cp->reset_task_pending_all);
4114 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4115 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4116 atomic_dec(&cp->reset_task_pending);
4118 atomic_set(&cp->reset_task_pending, 0);
4122 static void cas_link_timer(unsigned long data)
4124 struct cas *cp = (struct cas *) data;
4125 int mask, pending = 0, reset = 0;
4126 unsigned long flags;
4128 if (link_transition_timeout != 0 &&
4129 cp->link_transition_jiffies_valid &&
4130 ((jiffies - cp->link_transition_jiffies) >
4131 (link_transition_timeout))) {
4132 /* One-second counter so link-down workaround doesn't
4133 * cause resets to occur so fast as to fool the switch
4134 * into thinking the link is down.
4136 cp->link_transition_jiffies_valid = 0;
4139 if (!cp->hw_running)
4142 spin_lock_irqsave(&cp->lock, flags);
4144 cas_entropy_gather(cp);
4146 /* If the link task is still pending, we just
4147 * reschedule the link timer
4150 if (atomic_read(&cp->reset_task_pending_all) ||
4151 atomic_read(&cp->reset_task_pending_spare) ||
4152 atomic_read(&cp->reset_task_pending_mtu))
4155 if (atomic_read(&cp->reset_task_pending))
4159 /* check for rx cleaning */
4160 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4163 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4164 rmask = CAS_FLAG_RXD_POST(i);
4165 if ((mask & rmask) == 0)
4168 /* post_rxds will do a mod_timer */
4169 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4173 cp->cas_flags &= ~rmask;
4177 if (CAS_PHY_MII(cp->phy_type)) {
4179 cas_mif_poll(cp, 0);
4180 bmsr = cas_phy_read(cp, MII_BMSR);
4181 /* WTZ: Solaris driver reads this twice, but that
4182 * may be due to the PCS case and the use of a
4183 * common implementation. Read it twice here to be
4186 bmsr = cas_phy_read(cp, MII_BMSR);
4187 cas_mif_poll(cp, 1);
4188 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4189 reset = cas_mii_link_check(cp, bmsr);
4191 reset = cas_pcs_link_check(cp);
4197 /* check for tx state machine confusion */
4198 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4199 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4201 int tlm = CAS_VAL(MAC_SM_TLM, val);
4203 if (((tlm == 0x5) || (tlm == 0x3)) &&
4204 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4205 if (netif_msg_tx_err(cp))
4206 printk(KERN_DEBUG "%s: tx err: "
4207 "MAC_STATE[%08x]\n",
4208 cp->dev->name, val);
4213 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4214 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4215 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4216 if ((val == 0) && (wptr != rptr)) {
4217 if (netif_msg_tx_err(cp))
4218 printk(KERN_DEBUG "%s: tx err: "
4219 "TX_FIFO[%08x:%08x:%08x]\n",
4220 cp->dev->name, val, wptr, rptr);
4231 atomic_inc(&cp->reset_task_pending);
4232 atomic_inc(&cp->reset_task_pending_all);
4233 schedule_work(&cp->reset_task);
4235 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4236 printk(KERN_ERR "reset called in cas_link_timer\n");
4237 schedule_work(&cp->reset_task);
4242 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4244 spin_unlock_irqrestore(&cp->lock, flags);
4247 /* tiny buffers are used to avoid target abort issues with
4250 static void cas_tx_tiny_free(struct cas *cp)
4252 struct pci_dev *pdev = cp->pdev;
4255 for (i = 0; i < N_TX_RINGS; i++) {
4256 if (!cp->tx_tiny_bufs[i])
4259 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4260 cp->tx_tiny_bufs[i],
4261 cp->tx_tiny_dvma[i]);
4262 cp->tx_tiny_bufs[i] = NULL;
4266 static int cas_tx_tiny_alloc(struct cas *cp)
4268 struct pci_dev *pdev = cp->pdev;
4271 for (i = 0; i < N_TX_RINGS; i++) {
4272 cp->tx_tiny_bufs[i] =
4273 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4274 &cp->tx_tiny_dvma[i]);
4275 if (!cp->tx_tiny_bufs[i]) {
4276 cas_tx_tiny_free(cp);
4284 static int cas_open(struct net_device *dev)
4286 struct cas *cp = netdev_priv(dev);
4288 unsigned long flags;
4290 mutex_lock(&cp->pm_mutex);
4292 hw_was_up = cp->hw_running;
4294 /* The power-management mutex protects the hw_running
4295 * etc. state so it is safe to do this bit without cp->lock
4297 if (!cp->hw_running) {
4298 /* Reset the chip */
4299 cas_lock_all_save(cp, flags);
4300 /* We set the second arg to cas_reset to zero
4301 * because cas_init_hw below will have its second
4302 * argument set to non-zero, which will force
4303 * autonegotiation to start.
4307 cas_unlock_all_restore(cp, flags);
4310 if (cas_tx_tiny_alloc(cp) < 0)
4313 /* alloc rx descriptors */
4315 if (cas_alloc_rxds(cp) < 0)
4318 /* allocate spares */
4320 cas_spare_recover(cp, GFP_KERNEL);
4322 /* We can now request the interrupt as we know it's masked
4323 * on the controller. cassini+ has up to 4 interrupts
4324 * that can be used, but you need to do explicit pci interrupt
4325 * mapping to expose them
4327 if (request_irq(cp->pdev->irq, cas_interrupt,
4328 IRQF_SHARED, dev->name, (void *) dev)) {
4329 printk(KERN_ERR "%s: failed to request irq !\n",
4336 napi_enable(&cp->napi);
4339 cas_lock_all_save(cp, flags);
4340 cas_clean_rings(cp);
4341 cas_init_hw(cp, !hw_was_up);
4343 cas_unlock_all_restore(cp, flags);
4345 netif_start_queue(dev);
4346 mutex_unlock(&cp->pm_mutex);
4353 cas_tx_tiny_free(cp);
4354 mutex_unlock(&cp->pm_mutex);
4358 static int cas_close(struct net_device *dev)
4360 unsigned long flags;
4361 struct cas *cp = netdev_priv(dev);
4364 napi_disable(&cp->napi);
4366 /* Make sure we don't get distracted by suspend/resume */
4367 mutex_lock(&cp->pm_mutex);
4369 netif_stop_queue(dev);
4371 /* Stop traffic, mark us closed */
4372 cas_lock_all_save(cp, flags);
4376 cas_begin_auto_negotiation(cp, NULL);
4377 cas_clean_rings(cp);
4378 cas_unlock_all_restore(cp, flags);
4380 free_irq(cp->pdev->irq, (void *) dev);
4383 cas_tx_tiny_free(cp);
4384 mutex_unlock(&cp->pm_mutex);
4389 const char name[ETH_GSTRING_LEN];
4390 } ethtool_cassini_statnames[] = {
4397 {"rx_frame_errors"},
4398 {"rx_length_errors"},
4401 {"tx_aborted_errors"},
4408 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4411 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4412 } ethtool_register_table[] = {
4427 {REG_PCS_MII_STATUS},
4428 {REG_PCS_STATE_MACHINE},
4429 {REG_MAC_COLL_EXCESS},
4432 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4433 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4435 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4439 unsigned long flags;
4441 spin_lock_irqsave(&cp->lock, flags);
4442 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4445 if (ethtool_register_table[i].offsets < 0) {
4446 hval = cas_phy_read(cp,
4447 -ethtool_register_table[i].offsets);
4450 val= readl(cp->regs+ethtool_register_table[i].offsets);
4452 memcpy(p, (u8 *)&val, sizeof(u32));
4454 spin_unlock_irqrestore(&cp->lock, flags);
4457 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4459 struct cas *cp = netdev_priv(dev);
4460 struct net_device_stats *stats = cp->net_stats;
4461 unsigned long flags;
4465 /* we collate all of the stats into net_stats[N_TX_RING] */
4466 if (!cp->hw_running)
4467 return stats + N_TX_RINGS;
4469 /* collect outstanding stats */
4470 /* WTZ: the Cassini spec gives these as 16 bit counters but
4471 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4472 * in case the chip somehow puts any garbage in the other bits.
4473 * Also, counter usage didn't seem to mach what Adrian did
4474 * in the parts of the code that set these quantities. Made
4477 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4478 stats[N_TX_RINGS].rx_crc_errors +=
4479 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4480 stats[N_TX_RINGS].rx_frame_errors +=
4481 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4482 stats[N_TX_RINGS].rx_length_errors +=
4483 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4485 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4486 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4487 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4488 stats[N_TX_RINGS].collisions +=
4489 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4491 stats[N_TX_RINGS].tx_aborted_errors +=
4492 readl(cp->regs + REG_MAC_COLL_EXCESS);
4493 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4494 readl(cp->regs + REG_MAC_COLL_LATE);
4496 cas_clear_mac_err(cp);
4498 /* saved bits that are unique to ring 0 */
4499 spin_lock(&cp->stat_lock[0]);
4500 stats[N_TX_RINGS].collisions += stats[0].collisions;
4501 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4502 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4503 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4504 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4505 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4506 spin_unlock(&cp->stat_lock[0]);
4508 for (i = 0; i < N_TX_RINGS; i++) {
4509 spin_lock(&cp->stat_lock[i]);
4510 stats[N_TX_RINGS].rx_length_errors +=
4511 stats[i].rx_length_errors;
4512 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4513 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4514 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4515 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4516 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4517 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4518 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4519 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4520 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4521 memset(stats + i, 0, sizeof(struct net_device_stats));
4522 spin_unlock(&cp->stat_lock[i]);
4524 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4525 return stats + N_TX_RINGS;
4529 static void cas_set_multicast(struct net_device *dev)
4531 struct cas *cp = netdev_priv(dev);
4532 u32 rxcfg, rxcfg_new;
4533 unsigned long flags;
4534 int limit = STOP_TRIES;
4536 if (!cp->hw_running)
4539 spin_lock_irqsave(&cp->lock, flags);
4540 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4542 /* disable RX MAC and wait for completion */
4543 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4544 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4550 /* disable hash filter and wait for completion */
4552 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4553 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4554 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4560 /* program hash filters */
4561 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4563 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4564 spin_unlock_irqrestore(&cp->lock, flags);
4567 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4569 struct cas *cp = netdev_priv(dev);
4570 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4571 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4572 info->fw_version[0] = '\0';
4573 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4574 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4575 cp->casreg_len : CAS_MAX_REGS;
4576 info->n_stats = CAS_NUM_STAT_KEYS;
4579 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4581 struct cas *cp = netdev_priv(dev);
4583 int full_duplex, speed, pause;
4584 unsigned long flags;
4585 enum link_state linkstate = link_up;
4587 cmd->advertising = 0;
4588 cmd->supported = SUPPORTED_Autoneg;
4589 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4590 cmd->supported |= SUPPORTED_1000baseT_Full;
4591 cmd->advertising |= ADVERTISED_1000baseT_Full;
4594 /* Record PHY settings if HW is on. */
4595 spin_lock_irqsave(&cp->lock, flags);
4597 linkstate = cp->lstate;
4598 if (CAS_PHY_MII(cp->phy_type)) {
4599 cmd->port = PORT_MII;
4600 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4601 XCVR_INTERNAL : XCVR_EXTERNAL;
4602 cmd->phy_address = cp->phy_addr;
4603 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4604 ADVERTISED_10baseT_Half |
4605 ADVERTISED_10baseT_Full |
4606 ADVERTISED_100baseT_Half |
4607 ADVERTISED_100baseT_Full;
4610 (SUPPORTED_10baseT_Half |
4611 SUPPORTED_10baseT_Full |
4612 SUPPORTED_100baseT_Half |
4613 SUPPORTED_100baseT_Full |
4614 SUPPORTED_TP | SUPPORTED_MII);
4616 if (cp->hw_running) {
4617 cas_mif_poll(cp, 0);
4618 bmcr = cas_phy_read(cp, MII_BMCR);
4619 cas_read_mii_link_mode(cp, &full_duplex,
4621 cas_mif_poll(cp, 1);
4625 cmd->port = PORT_FIBRE;
4626 cmd->transceiver = XCVR_INTERNAL;
4627 cmd->phy_address = 0;
4628 cmd->supported |= SUPPORTED_FIBRE;
4629 cmd->advertising |= ADVERTISED_FIBRE;
4631 if (cp->hw_running) {
4632 /* pcs uses the same bits as mii */
4633 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4634 cas_read_pcs_link_mode(cp, &full_duplex,
4638 spin_unlock_irqrestore(&cp->lock, flags);
4640 if (bmcr & BMCR_ANENABLE) {
4641 cmd->advertising |= ADVERTISED_Autoneg;
4642 cmd->autoneg = AUTONEG_ENABLE;
4643 cmd->speed = ((speed == 10) ?
4646 SPEED_1000 : SPEED_100));
4647 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4649 cmd->autoneg = AUTONEG_DISABLE;
4651 (bmcr & CAS_BMCR_SPEED1000) ?
4653 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4656 (bmcr & BMCR_FULLDPLX) ?
4657 DUPLEX_FULL : DUPLEX_HALF;
4659 if (linkstate != link_up) {
4660 /* Force these to "unknown" if the link is not up and
4661 * autonogotiation in enabled. We can set the link
4662 * speed to 0, but not cmd->duplex,
4663 * because its legal values are 0 and 1. Ethtool will
4664 * print the value reported in parentheses after the
4665 * word "Unknown" for unrecognized values.
4667 * If in forced mode, we report the speed and duplex
4668 * settings that we configured.
4670 if (cp->link_cntl & BMCR_ANENABLE) {
4674 cmd->speed = SPEED_10;
4675 if (cp->link_cntl & BMCR_SPEED100) {
4676 cmd->speed = SPEED_100;
4677 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4678 cmd->speed = SPEED_1000;
4680 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4681 DUPLEX_FULL : DUPLEX_HALF;
4687 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4689 struct cas *cp = netdev_priv(dev);
4690 unsigned long flags;
4692 /* Verify the settings we care about. */
4693 if (cmd->autoneg != AUTONEG_ENABLE &&
4694 cmd->autoneg != AUTONEG_DISABLE)
4697 if (cmd->autoneg == AUTONEG_DISABLE &&
4698 ((cmd->speed != SPEED_1000 &&
4699 cmd->speed != SPEED_100 &&
4700 cmd->speed != SPEED_10) ||
4701 (cmd->duplex != DUPLEX_HALF &&
4702 cmd->duplex != DUPLEX_FULL)))
4705 /* Apply settings and restart link process. */
4706 spin_lock_irqsave(&cp->lock, flags);
4707 cas_begin_auto_negotiation(cp, cmd);
4708 spin_unlock_irqrestore(&cp->lock, flags);
4712 static int cas_nway_reset(struct net_device *dev)
4714 struct cas *cp = netdev_priv(dev);
4715 unsigned long flags;
4717 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4720 /* Restart link process. */
4721 spin_lock_irqsave(&cp->lock, flags);
4722 cas_begin_auto_negotiation(cp, NULL);
4723 spin_unlock_irqrestore(&cp->lock, flags);
4728 static u32 cas_get_link(struct net_device *dev)
4730 struct cas *cp = netdev_priv(dev);
4731 return cp->lstate == link_up;
4734 static u32 cas_get_msglevel(struct net_device *dev)
4736 struct cas *cp = netdev_priv(dev);
4737 return cp->msg_enable;
4740 static void cas_set_msglevel(struct net_device *dev, u32 value)
4742 struct cas *cp = netdev_priv(dev);
4743 cp->msg_enable = value;
4746 static int cas_get_regs_len(struct net_device *dev)
4748 struct cas *cp = netdev_priv(dev);
4749 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4752 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4755 struct cas *cp = netdev_priv(dev);
4757 /* cas_read_regs handles locks (cp->lock). */
4758 cas_read_regs(cp, p, regs->len / sizeof(u32));
4761 static int cas_get_sset_count(struct net_device *dev, int sset)
4765 return CAS_NUM_STAT_KEYS;
4771 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4773 memcpy(data, ðtool_cassini_statnames,
4774 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4777 static void cas_get_ethtool_stats(struct net_device *dev,
4778 struct ethtool_stats *estats, u64 *data)
4780 struct cas *cp = netdev_priv(dev);
4781 struct net_device_stats *stats = cas_get_stats(cp->dev);
4783 data[i++] = stats->collisions;
4784 data[i++] = stats->rx_bytes;
4785 data[i++] = stats->rx_crc_errors;
4786 data[i++] = stats->rx_dropped;
4787 data[i++] = stats->rx_errors;
4788 data[i++] = stats->rx_fifo_errors;
4789 data[i++] = stats->rx_frame_errors;
4790 data[i++] = stats->rx_length_errors;
4791 data[i++] = stats->rx_over_errors;
4792 data[i++] = stats->rx_packets;
4793 data[i++] = stats->tx_aborted_errors;
4794 data[i++] = stats->tx_bytes;
4795 data[i++] = stats->tx_dropped;
4796 data[i++] = stats->tx_errors;
4797 data[i++] = stats->tx_fifo_errors;
4798 data[i++] = stats->tx_packets;
4799 BUG_ON(i != CAS_NUM_STAT_KEYS);
4802 static const struct ethtool_ops cas_ethtool_ops = {
4803 .get_drvinfo = cas_get_drvinfo,
4804 .get_settings = cas_get_settings,
4805 .set_settings = cas_set_settings,
4806 .nway_reset = cas_nway_reset,
4807 .get_link = cas_get_link,
4808 .get_msglevel = cas_get_msglevel,
4809 .set_msglevel = cas_set_msglevel,
4810 .get_regs_len = cas_get_regs_len,
4811 .get_regs = cas_get_regs,
4812 .get_sset_count = cas_get_sset_count,
4813 .get_strings = cas_get_strings,
4814 .get_ethtool_stats = cas_get_ethtool_stats,
4817 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4819 struct cas *cp = netdev_priv(dev);
4820 struct mii_ioctl_data *data = if_mii(ifr);
4821 unsigned long flags;
4822 int rc = -EOPNOTSUPP;
4824 /* Hold the PM mutex while doing ioctl's or we may collide
4825 * with open/close and power management and oops.
4827 mutex_lock(&cp->pm_mutex);
4829 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4830 data->phy_id = cp->phy_addr;
4831 /* Fallthrough... */
4833 case SIOCGMIIREG: /* Read MII PHY register. */
4834 spin_lock_irqsave(&cp->lock, flags);
4835 cas_mif_poll(cp, 0);
4836 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4837 cas_mif_poll(cp, 1);
4838 spin_unlock_irqrestore(&cp->lock, flags);
4842 case SIOCSMIIREG: /* Write MII PHY register. */
4843 if (!capable(CAP_NET_ADMIN)) {
4847 spin_lock_irqsave(&cp->lock, flags);
4848 cas_mif_poll(cp, 0);
4849 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4850 cas_mif_poll(cp, 1);
4851 spin_unlock_irqrestore(&cp->lock, flags);
4857 mutex_unlock(&cp->pm_mutex);
4861 /* When this chip sits underneath an Intel 31154 bridge, it is the
4862 * only subordinate device and we can tweak the bridge settings to
4863 * reflect that fact.
4865 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4867 struct pci_dev *pdev = cas_pdev->bus->self;
4873 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4876 /* Clear bit 10 (Bus Parking Control) in the Secondary
4877 * Arbiter Control/Status Register which lives at offset
4878 * 0x41. Using a 32-bit word read/modify/write at 0x40
4879 * is much simpler so that's how we do this.
4881 pci_read_config_dword(pdev, 0x40, &val);
4883 pci_write_config_dword(pdev, 0x40, val);
4885 /* Max out the Multi-Transaction Timer settings since
4886 * Cassini is the only device present.
4888 * The register is 16-bit and lives at 0x50. When the
4889 * settings are enabled, it extends the GRANT# signal
4890 * for a requestor after a transaction is complete. This
4891 * allows the next request to run without first needing
4892 * to negotiate the GRANT# signal back.
4894 * Bits 12:10 define the grant duration:
4902 * All other values are illegal.
4904 * Bits 09:00 define which REQ/GNT signal pairs get the
4905 * GRANT# signal treatment. We set them all.
4907 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4909 /* The Read Prefecth Policy register is 16-bit and sits at
4910 * offset 0x52. It enables a "smart" pre-fetch policy. We
4911 * enable it and max out all of the settings since only one
4912 * device is sitting underneath and thus bandwidth sharing is
4915 * The register has several 3 bit fields, which indicates a
4916 * multiplier applied to the base amount of prefetching the
4917 * chip would do. These fields are at:
4919 * 15:13 --- ReRead Primary Bus
4920 * 12:10 --- FirstRead Primary Bus
4921 * 09:07 --- ReRead Secondary Bus
4922 * 06:04 --- FirstRead Secondary Bus
4924 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4925 * get enabled on. Bit 3 is a grouped enabler which controls
4926 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4927 * the individual REQ/GNT pairs [2:0].
4929 pci_write_config_word(pdev, 0x52,
4936 /* Force cacheline size to 0x8 */
4937 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4939 /* Force latency timer to maximum setting so Cassini can
4940 * sit on the bus as long as it likes.
4942 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4945 static int __devinit cas_init_one(struct pci_dev *pdev,
4946 const struct pci_device_id *ent)
4948 static int cas_version_printed = 0;
4949 unsigned long casreg_len;
4950 struct net_device *dev;
4952 int i, err, pci_using_dac;
4954 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4955 DECLARE_MAC_BUF(mac);
4957 if (cas_version_printed++ == 0)
4958 printk(KERN_INFO "%s", version);
4960 err = pci_enable_device(pdev);
4962 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4966 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4967 dev_err(&pdev->dev, "Cannot find proper PCI device "
4968 "base address, aborting.\n");
4970 goto err_out_disable_pdev;
4973 dev = alloc_etherdev(sizeof(*cp));
4975 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4977 goto err_out_disable_pdev;
4979 SET_NETDEV_DEV(dev, &pdev->dev);
4981 err = pci_request_regions(pdev, dev->name);
4983 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4984 goto err_out_free_netdev;
4986 pci_set_master(pdev);
4988 /* we must always turn on parity response or else parity
4989 * doesn't get generated properly. disable SERR/PERR as well.
4990 * in addition, we want to turn MWI on.
4992 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4993 pci_cmd &= ~PCI_COMMAND_SERR;
4994 pci_cmd |= PCI_COMMAND_PARITY;
4995 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4996 if (pci_try_set_mwi(pdev))
4997 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
5000 cas_program_bridge(pdev);
5003 * On some architectures, the default cache line size set
5004 * by pci_try_set_mwi reduces perforamnce. We have to increase
5005 * it for this case. To start, we'll print some configuration
5009 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5010 &orig_cacheline_size);
5011 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5012 cas_cacheline_size =
5013 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5014 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5015 if (pci_write_config_byte(pdev,
5016 PCI_CACHE_LINE_SIZE,
5017 cas_cacheline_size)) {
5018 dev_err(&pdev->dev, "Could not set PCI cache "
5020 goto err_write_cacheline;
5026 /* Configure DMA attributes. */
5027 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5029 err = pci_set_consistent_dma_mask(pdev,
5032 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5033 "for consistent allocations\n");
5034 goto err_out_free_res;
5038 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5040 dev_err(&pdev->dev, "No usable DMA configuration, "
5042 goto err_out_free_res;
5047 casreg_len = pci_resource_len(pdev, 0);
5049 cp = netdev_priv(dev);
5052 /* A value of 0 indicates we never explicitly set it */
5053 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5056 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5059 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5060 cp->link_transition_jiffies_valid = 0;
5062 spin_lock_init(&cp->lock);
5063 spin_lock_init(&cp->rx_inuse_lock);
5064 spin_lock_init(&cp->rx_spare_lock);
5065 for (i = 0; i < N_TX_RINGS; i++) {
5066 spin_lock_init(&cp->stat_lock[i]);
5067 spin_lock_init(&cp->tx_lock[i]);
5069 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5070 mutex_init(&cp->pm_mutex);
5072 init_timer(&cp->link_timer);
5073 cp->link_timer.function = cas_link_timer;
5074 cp->link_timer.data = (unsigned long) cp;
5077 /* Just in case the implementation of atomic operations
5078 * change so that an explicit initialization is necessary.
5080 atomic_set(&cp->reset_task_pending, 0);
5081 atomic_set(&cp->reset_task_pending_all, 0);
5082 atomic_set(&cp->reset_task_pending_spare, 0);
5083 atomic_set(&cp->reset_task_pending_mtu, 0);
5085 INIT_WORK(&cp->reset_task, cas_reset_task);
5087 /* Default link parameters */
5088 if (link_mode >= 0 && link_mode <= 6)
5089 cp->link_cntl = link_modes[link_mode];
5091 cp->link_cntl = BMCR_ANENABLE;
5092 cp->lstate = link_down;
5093 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5094 netif_carrier_off(cp->dev);
5095 cp->timer_ticks = 0;
5097 /* give us access to cassini registers */
5098 cp->regs = pci_iomap(pdev, 0, casreg_len);
5100 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5101 goto err_out_free_res;
5103 cp->casreg_len = casreg_len;
5105 pci_save_state(pdev);
5106 cas_check_pci_invariants(cp);
5109 if (cas_check_invariants(cp))
5110 goto err_out_iounmap;
5112 cp->init_block = (struct cas_init_block *)
5113 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5115 if (!cp->init_block) {
5116 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5117 goto err_out_iounmap;
5120 for (i = 0; i < N_TX_RINGS; i++)
5121 cp->init_txds[i] = cp->init_block->txds[i];
5123 for (i = 0; i < N_RX_DESC_RINGS; i++)
5124 cp->init_rxds[i] = cp->init_block->rxds[i];
5126 for (i = 0; i < N_RX_COMP_RINGS; i++)
5127 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5129 for (i = 0; i < N_RX_FLOWS; i++)
5130 skb_queue_head_init(&cp->rx_flows[i]);
5132 dev->open = cas_open;
5133 dev->stop = cas_close;
5134 dev->hard_start_xmit = cas_start_xmit;
5135 dev->get_stats = cas_get_stats;
5136 dev->set_multicast_list = cas_set_multicast;
5137 dev->do_ioctl = cas_ioctl;
5138 dev->ethtool_ops = &cas_ethtool_ops;
5139 dev->tx_timeout = cas_tx_timeout;
5140 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5141 dev->change_mtu = cas_change_mtu;
5143 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5145 #ifdef CONFIG_NET_POLL_CONTROLLER
5146 dev->poll_controller = cas_netpoll;
5148 dev->irq = pdev->irq;
5151 /* Cassini features. */
5152 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5153 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5156 dev->features |= NETIF_F_HIGHDMA;
5158 if (register_netdev(dev)) {
5159 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5160 goto err_out_free_consistent;
5163 i = readl(cp->regs + REG_BIM_CFG);
5164 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5165 "Ethernet[%d] %s\n", dev->name,
5166 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5167 (i & BIM_CFG_32BIT) ? "32" : "64",
5168 (i & BIM_CFG_66MHZ) ? "66" : "33",
5169 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5170 print_mac(mac, dev->dev_addr));
5172 pci_set_drvdata(pdev, dev);
5174 cas_entropy_reset(cp);
5176 cas_begin_auto_negotiation(cp, NULL);
5179 err_out_free_consistent:
5180 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5181 cp->init_block, cp->block_dvma);
5184 mutex_lock(&cp->pm_mutex);
5187 mutex_unlock(&cp->pm_mutex);
5189 pci_iounmap(pdev, cp->regs);
5193 pci_release_regions(pdev);
5195 err_write_cacheline:
5196 /* Try to restore it in case the error occured after we
5199 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5201 err_out_free_netdev:
5204 err_out_disable_pdev:
5205 pci_disable_device(pdev);
5206 pci_set_drvdata(pdev, NULL);
5210 static void __devexit cas_remove_one(struct pci_dev *pdev)
5212 struct net_device *dev = pci_get_drvdata(pdev);
5217 cp = netdev_priv(dev);
5218 unregister_netdev(dev);
5220 mutex_lock(&cp->pm_mutex);
5221 flush_scheduled_work();
5224 mutex_unlock(&cp->pm_mutex);
5227 if (cp->orig_cacheline_size) {
5228 /* Restore the cache line size if we had modified
5231 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5232 cp->orig_cacheline_size);
5235 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5236 cp->init_block, cp->block_dvma);
5237 pci_iounmap(pdev, cp->regs);
5239 pci_release_regions(pdev);
5240 pci_disable_device(pdev);
5241 pci_set_drvdata(pdev, NULL);
5245 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5247 struct net_device *dev = pci_get_drvdata(pdev);
5248 struct cas *cp = netdev_priv(dev);
5249 unsigned long flags;
5251 mutex_lock(&cp->pm_mutex);
5253 /* If the driver is opened, we stop the DMA */
5255 netif_device_detach(dev);
5257 cas_lock_all_save(cp, flags);
5259 /* We can set the second arg of cas_reset to 0
5260 * because on resume, we'll call cas_init_hw with
5261 * its second arg set so that autonegotiation is
5265 cas_clean_rings(cp);
5266 cas_unlock_all_restore(cp, flags);
5271 mutex_unlock(&cp->pm_mutex);
5276 static int cas_resume(struct pci_dev *pdev)
5278 struct net_device *dev = pci_get_drvdata(pdev);
5279 struct cas *cp = netdev_priv(dev);
5281 printk(KERN_INFO "%s: resuming\n", dev->name);
5283 mutex_lock(&cp->pm_mutex);
5286 unsigned long flags;
5287 cas_lock_all_save(cp, flags);
5290 cas_clean_rings(cp);
5292 cas_unlock_all_restore(cp, flags);
5294 netif_device_attach(dev);
5296 mutex_unlock(&cp->pm_mutex);
5299 #endif /* CONFIG_PM */
5301 static struct pci_driver cas_driver = {
5302 .name = DRV_MODULE_NAME,
5303 .id_table = cas_pci_tbl,
5304 .probe = cas_init_one,
5305 .remove = __devexit_p(cas_remove_one),
5307 .suspend = cas_suspend,
5308 .resume = cas_resume
5312 static int __init cas_init(void)
5314 if (linkdown_timeout > 0)
5315 link_transition_timeout = linkdown_timeout * HZ;
5317 link_transition_timeout = 0;
5319 return pci_register_driver(&cas_driver);
5322 static void __exit cas_cleanup(void)
5324 pci_unregister_driver(&cas_driver);
5327 module_init(cas_init);
5328 module_exit(cas_cleanup);