2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/smp_lock.h>
23 #include <linux/kernel.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/delay.h>
26 #include <linux/bitops.h>
28 #include <asm/bootinfo.h>
30 #include <asm/mipsregs.h>
31 #include <asm/system.h>
33 #include <asm/ptrace.h>
34 #include <asm/processor.h>
35 #include <asm/pci/bridge.h>
36 #include <asm/sn/addrs.h>
37 #include <asm/sn/agent.h>
38 #include <asm/sn/arch.h>
39 #include <asm/sn/hub.h>
40 #include <asm/sn/intr.h>
43 * Linux has a controller-independent x86 interrupt architecture.
44 * every controller has a 'controller-template', that is used
45 * by the main code to do the right thing. Each driver-visible
46 * interrupt source is transparently wired to the apropriate
47 * controller. Thus drivers need not be aware of the
48 * interrupt-controller.
50 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
51 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
52 * (IO-APICs assumed to be messaging to Pentium local-APICs)
54 * the code is designed to be easily extended with new/different
55 * interrupt controllers, without having to do assembly magic.
58 extern asmlinkage void ip27_irq(void);
60 extern struct bridge_controller *irq_to_bridge[];
61 extern int irq_to_slot[];
64 * use these macros to get the encoded nasid and widget id
67 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
68 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
70 static inline int alloc_level(int cpu, int irq)
72 struct hub_data *hub = hub_data(cpu_to_node(cpu));
73 struct slice_data *si = cpu_data[cpu].data;
76 level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
77 if (level >= LEVELS_PER_SLICE)
78 panic("Cpu %d flooded with devices\n", cpu);
80 __set_bit(level, hub->irq_alloc_mask);
81 si->level_to_irq[level] = irq;
86 static inline int find_level(cpuid_t *cpunum, int irq)
90 for_each_online_cpu(cpu) {
91 struct slice_data *si = cpu_data[cpu].data;
93 for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
94 if (si->level_to_irq[i] == irq) {
101 panic("Could not identify cpu/level for irq %d\n", irq);
107 static int ms1bit(unsigned long x)
111 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
112 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
113 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
114 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
115 s = 1; if (x >> 1 == 0) s = 0; b += s;
121 * This code is unnecessarily complex, because we do IRQF_DISABLED
122 * intr enabling. Basically, once we grab the set of intrs we need
123 * to service, we must mask _all_ these interrupts; firstly, to make
124 * sure the same intr does not intr again, causing recursion that
125 * can lead to stack overflow. Secondly, we can not just mask the
126 * one intr we are do_IRQing, because the non-masked intrs in the
127 * first set might intr again, causing multiple servicings of the
128 * same intr. This effect is mostly seen for intercpu intrs.
132 static void ip27_do_irq_mask0(struct pt_regs *regs)
135 hubreg_t pend0, mask0;
136 cpuid_t cpu = smp_processor_id();
138 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
140 /* copied from Irix intpend0() */
141 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
142 mask0 = LOCAL_HUB_L(pi_int_mask0);
144 pend0 &= mask0; /* Pick intrs we should look at */
148 swlevel = ms1bit(pend0);
150 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
151 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
152 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
153 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
154 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
155 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
156 smp_call_function_interrupt();
157 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
158 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
159 smp_call_function_interrupt();
163 /* "map" swlevel to irq */
164 struct slice_data *si = cpu_data[cpu].data;
166 irq = si->level_to_irq[swlevel];
170 LOCAL_HUB_L(PI_INT_PEND0);
173 static void ip27_do_irq_mask1(struct pt_regs *regs)
176 hubreg_t pend1, mask1;
177 cpuid_t cpu = smp_processor_id();
178 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
179 struct slice_data *si = cpu_data[cpu].data;
181 /* copied from Irix intpend0() */
182 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
183 mask1 = LOCAL_HUB_L(pi_int_mask1);
185 pend1 &= mask1; /* Pick intrs we should look at */
189 swlevel = ms1bit(pend1);
190 /* "map" swlevel to irq */
191 irq = si->level_to_irq[swlevel];
192 LOCAL_HUB_CLR_INTR(swlevel);
195 LOCAL_HUB_L(PI_INT_PEND1);
198 static void ip27_prof_timer(struct pt_regs *regs)
200 panic("CPU %d got a profiling interrupt", smp_processor_id());
203 static void ip27_hub_error(struct pt_regs *regs)
205 panic("CPU %d got a hub error interrupt", smp_processor_id());
208 static int intr_connect_level(int cpu, int bit)
210 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
211 struct slice_data *si = cpu_data[cpu].data;
214 set_bit(bit, si->irq_enable_mask);
216 local_irq_save(flags);
217 if (!cputoslice(cpu)) {
218 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
219 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
221 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
222 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
224 local_irq_restore(flags);
229 static int intr_disconnect_level(int cpu, int bit)
231 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
232 struct slice_data *si = cpu_data[cpu].data;
234 clear_bit(bit, si->irq_enable_mask);
236 if (!cputoslice(cpu)) {
237 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
238 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
240 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
241 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
247 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
248 static unsigned int startup_bridge_irq(unsigned int irq)
250 struct bridge_controller *bc;
256 pin = SLOT_FROM_PCI_IRQ(irq);
257 bc = IRQ_TO_BRIDGE(irq);
260 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
262 * "map" irq to a swlevel greater than 6 since the first 6 bits
263 * of INT_PEND0 are taken
265 swlevel = find_level(&cpu, irq);
266 bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
267 bridge->b_int_enable |= (1 << pin);
268 bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
271 * Enable sending of an interrupt clear packt to the hub on a high to
272 * low transition of the interrupt pin.
274 * IRIX sets additional bits in the address which are documented as
275 * reserved in the bridge docs.
277 bridge->b_int_mode |= (1UL << pin);
280 * We assume the bridge to have a 1:1 mapping between devices
281 * (slots) and intr pins.
283 device = bridge->b_int_device;
284 device &= ~(7 << (pin*3));
285 device |= (pin << (pin*3));
286 bridge->b_int_device = device;
288 bridge->b_wid_tflush;
290 return 0; /* Never anything pending. */
293 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
294 static void shutdown_bridge_irq(unsigned int irq)
296 struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
297 struct hub_data *hub = hub_data(cpu_to_node(bc->irq_cpu));
298 bridge_t *bridge = bc->base;
299 struct slice_data *si = cpu_data[bc->irq_cpu].data;
303 pr_debug("bridge_shutdown: irq 0x%x\n", irq);
304 pin = SLOT_FROM_PCI_IRQ(irq);
307 * map irq to a swlevel greater than 6 since the first 6 bits
308 * of INT_PEND0 are taken
310 swlevel = find_level(&cpu, irq);
311 intr_disconnect_level(cpu, swlevel);
313 __clear_bit(swlevel, hub->irq_alloc_mask);
314 si->level_to_irq[swlevel] = -1;
316 bridge->b_int_enable &= ~(1 << pin);
317 bridge->b_wid_tflush;
320 static inline void enable_bridge_irq(unsigned int irq)
325 swlevel = find_level(&cpu, irq); /* Criminal offence */
326 intr_connect_level(cpu, swlevel);
329 static inline void disable_bridge_irq(unsigned int irq)
334 swlevel = find_level(&cpu, irq); /* Criminal offence */
335 intr_disconnect_level(cpu, swlevel);
338 static void mask_and_ack_bridge_irq(unsigned int irq)
340 disable_bridge_irq(irq);
343 static void end_bridge_irq(unsigned int irq)
345 if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) &&
346 irq_desc[irq].action)
347 enable_bridge_irq(irq);
350 static struct hw_interrupt_type bridge_irq_type = {
351 .typename = "bridge",
352 .startup = startup_bridge_irq,
353 .shutdown = shutdown_bridge_irq,
354 .enable = enable_bridge_irq,
355 .disable = disable_bridge_irq,
356 .ack = mask_and_ack_bridge_irq,
357 .end = end_bridge_irq,
360 static unsigned long irq_map[NR_IRQS / BITS_PER_LONG];
362 int allocate_irqno(void)
367 irq = find_first_zero_bit(irq_map, NR_IRQS);
372 if (test_and_set_bit(irq, irq_map))
378 void free_irqno(unsigned int irq)
380 clear_bit(irq, irq_map);
383 void __devinit register_bridge_irq(unsigned int irq)
385 irq_desc[irq].status = IRQ_DISABLED;
386 irq_desc[irq].action = 0;
387 irq_desc[irq].depth = 1;
388 irq_desc[irq].chip = &bridge_irq_type;
391 int __devinit request_bridge_irq(struct bridge_controller *bc)
393 int irq = allocate_irqno();
401 * "map" irq to a swlevel greater than 6 since the first 6 bits
402 * of INT_PEND0 are taken
405 swlevel = alloc_level(cpu, irq);
406 if (unlikely(swlevel < 0)) {
412 /* Make sure it's not already pending when we connect it. */
413 nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
414 REMOTE_HUB_CLR_INTR(nasid, swlevel);
416 intr_connect_level(cpu, swlevel);
418 register_bridge_irq(irq);
423 extern void ip27_rt_timer_interrupt(struct pt_regs *regs);
425 asmlinkage void plat_irq_dispatch(struct pt_regs *regs)
427 unsigned long pending = read_c0_cause() & read_c0_status();
429 if (pending & CAUSEF_IP4)
430 ip27_rt_timer_interrupt(regs);
431 else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
432 ip27_do_irq_mask0(regs);
433 else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
434 ip27_do_irq_mask1(regs);
435 else if (pending & CAUSEF_IP5)
436 ip27_prof_timer(regs);
437 else if (pending & CAUSEF_IP6)
438 ip27_hub_error(regs);
441 void __init arch_init_irq(void)
445 void install_ipi(void)
447 int slice = LOCAL_HUB_L(PI_CPU_NUM);
448 int cpu = smp_processor_id();
449 struct slice_data *si = cpu_data[cpu].data;
450 struct hub_data *hub = hub_data(cpu_to_node(cpu));
453 resched = CPU_RESCHED_A_IRQ + slice;
454 __set_bit(resched, hub->irq_alloc_mask);
455 __set_bit(resched, si->irq_enable_mask);
456 LOCAL_HUB_CLR_INTR(resched);
458 call = CPU_CALL_A_IRQ + slice;
459 __set_bit(call, hub->irq_alloc_mask);
460 __set_bit(call, si->irq_enable_mask);
461 LOCAL_HUB_CLR_INTR(call);
464 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
465 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
467 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
468 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);