4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static struct kmem_cache * inode_cachep __read_mostly;
102 static struct inode *alloc_inode(struct super_block *sb)
104 static const struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static const struct file_operations empty_fops;
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
115 struct address_space * const mapping = &inode->i_data;
118 inode->i_blkbits = sb->s_blocksize_bits;
120 atomic_set(&inode->i_count, 1);
121 inode->i_op = &empty_iops;
122 inode->i_fop = &empty_fops;
124 atomic_set(&inode->i_writecount, 0);
128 inode->i_generation = 0;
130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 inode->i_pipe = NULL;
133 inode->i_bdev = NULL;
134 inode->i_cdev = NULL;
136 inode->dirtied_when = 0;
137 if (security_inode_alloc(inode)) {
138 if (inode->i_sb->s_op->destroy_inode)
139 inode->i_sb->s_op->destroy_inode(inode);
141 kmem_cache_free(inode_cachep, (inode));
145 mapping->a_ops = &empty_aops;
146 mapping->host = inode;
148 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 mapping->assoc_mapping = NULL;
150 mapping->backing_dev_info = &default_backing_dev_info;
153 * If the block_device provides a backing_dev_info for client
154 * inodes then use that. Otherwise the inode share the bdev's
158 struct backing_dev_info *bdi;
160 bdi = sb->s_bdev->bd_inode_backing_dev_info;
162 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 mapping->backing_dev_info = bdi;
165 inode->i_private = NULL;
166 inode->i_mapping = mapping;
171 void destroy_inode(struct inode *inode)
173 BUG_ON(inode_has_buffers(inode));
174 security_inode_free(inode);
175 if (inode->i_sb->s_op->destroy_inode)
176 inode->i_sb->s_op->destroy_inode(inode);
178 kmem_cache_free(inode_cachep, (inode));
183 * These are initializations that only need to be done
184 * once, because the fields are idempotent across use
185 * of the inode, so let the slab aware of that.
187 void inode_init_once(struct inode *inode)
189 memset(inode, 0, sizeof(*inode));
190 INIT_HLIST_NODE(&inode->i_hash);
191 INIT_LIST_HEAD(&inode->i_dentry);
192 INIT_LIST_HEAD(&inode->i_devices);
193 mutex_init(&inode->i_mutex);
194 init_rwsem(&inode->i_alloc_sem);
195 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
196 rwlock_init(&inode->i_data.tree_lock);
197 spin_lock_init(&inode->i_data.i_mmap_lock);
198 INIT_LIST_HEAD(&inode->i_data.private_list);
199 spin_lock_init(&inode->i_data.private_lock);
200 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
201 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
202 spin_lock_init(&inode->i_lock);
203 i_size_ordered_init(inode);
204 #ifdef CONFIG_INOTIFY
205 INIT_LIST_HEAD(&inode->inotify_watches);
206 mutex_init(&inode->inotify_mutex);
210 EXPORT_SYMBOL(inode_init_once);
212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
214 struct inode * inode = (struct inode *) foo;
216 inode_init_once(inode);
220 * inode_lock must be held
222 void __iget(struct inode * inode)
224 if (atomic_read(&inode->i_count)) {
225 atomic_inc(&inode->i_count);
228 atomic_inc(&inode->i_count);
229 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
230 list_move(&inode->i_list, &inode_in_use);
231 inodes_stat.nr_unused--;
235 * clear_inode - clear an inode
236 * @inode: inode to clear
238 * This is called by the filesystem to tell us
239 * that the inode is no longer useful. We just
240 * terminate it with extreme prejudice.
242 void clear_inode(struct inode *inode)
245 invalidate_inode_buffers(inode);
247 BUG_ON(inode->i_data.nrpages);
248 BUG_ON(!(inode->i_state & I_FREEING));
249 BUG_ON(inode->i_state & I_CLEAR);
250 wait_on_inode(inode);
252 if (inode->i_sb->s_op->clear_inode)
253 inode->i_sb->s_op->clear_inode(inode);
254 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
256 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
258 inode->i_state = I_CLEAR;
261 EXPORT_SYMBOL(clear_inode);
264 * dispose_list - dispose of the contents of a local list
265 * @head: the head of the list to free
267 * Dispose-list gets a local list with local inodes in it, so it doesn't
268 * need to worry about list corruption and SMP locks.
270 static void dispose_list(struct list_head *head)
274 while (!list_empty(head)) {
277 inode = list_first_entry(head, struct inode, i_list);
278 list_del(&inode->i_list);
280 if (inode->i_data.nrpages)
281 truncate_inode_pages(&inode->i_data, 0);
284 spin_lock(&inode_lock);
285 hlist_del_init(&inode->i_hash);
286 list_del_init(&inode->i_sb_list);
287 spin_unlock(&inode_lock);
289 wake_up_inode(inode);
290 destroy_inode(inode);
293 spin_lock(&inode_lock);
294 inodes_stat.nr_inodes -= nr_disposed;
295 spin_unlock(&inode_lock);
299 * Invalidate all inodes for a device.
301 static int invalidate_list(struct list_head *head, struct list_head *dispose)
303 struct list_head *next;
304 int busy = 0, count = 0;
308 struct list_head * tmp = next;
309 struct inode * inode;
312 * We can reschedule here without worrying about the list's
313 * consistency because the per-sb list of inodes must not
314 * change during umount anymore, and because iprune_mutex keeps
315 * shrink_icache_memory() away.
317 cond_resched_lock(&inode_lock);
322 inode = list_entry(tmp, struct inode, i_sb_list);
323 invalidate_inode_buffers(inode);
324 if (!atomic_read(&inode->i_count)) {
325 list_move(&inode->i_list, dispose);
326 inode->i_state |= I_FREEING;
332 /* only unused inodes may be cached with i_count zero */
333 inodes_stat.nr_unused -= count;
338 * invalidate_inodes - discard the inodes on a device
341 * Discard all of the inodes for a given superblock. If the discard
342 * fails because there are busy inodes then a non zero value is returned.
343 * If the discard is successful all the inodes have been discarded.
345 int invalidate_inodes(struct super_block * sb)
348 LIST_HEAD(throw_away);
350 mutex_lock(&iprune_mutex);
351 spin_lock(&inode_lock);
352 inotify_unmount_inodes(&sb->s_inodes);
353 busy = invalidate_list(&sb->s_inodes, &throw_away);
354 spin_unlock(&inode_lock);
356 dispose_list(&throw_away);
357 mutex_unlock(&iprune_mutex);
362 EXPORT_SYMBOL(invalidate_inodes);
364 static int can_unuse(struct inode *inode)
368 if (inode_has_buffers(inode))
370 if (atomic_read(&inode->i_count))
372 if (inode->i_data.nrpages)
378 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
379 * a temporary list and then are freed outside inode_lock by dispose_list().
381 * Any inodes which are pinned purely because of attached pagecache have their
382 * pagecache removed. We expect the final iput() on that inode to add it to
383 * the front of the inode_unused list. So look for it there and if the
384 * inode is still freeable, proceed. The right inode is found 99.9% of the
385 * time in testing on a 4-way.
387 * If the inode has metadata buffers attached to mapping->private_list then
388 * try to remove them.
390 static void prune_icache(int nr_to_scan)
395 unsigned long reap = 0;
397 mutex_lock(&iprune_mutex);
398 spin_lock(&inode_lock);
399 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
402 if (list_empty(&inode_unused))
405 inode = list_entry(inode_unused.prev, struct inode, i_list);
407 if (inode->i_state || atomic_read(&inode->i_count)) {
408 list_move(&inode->i_list, &inode_unused);
411 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
413 spin_unlock(&inode_lock);
414 if (remove_inode_buffers(inode))
415 reap += invalidate_mapping_pages(&inode->i_data,
418 spin_lock(&inode_lock);
420 if (inode != list_entry(inode_unused.next,
421 struct inode, i_list))
422 continue; /* wrong inode or list_empty */
423 if (!can_unuse(inode))
426 list_move(&inode->i_list, &freeable);
427 inode->i_state |= I_FREEING;
430 inodes_stat.nr_unused -= nr_pruned;
431 if (current_is_kswapd())
432 __count_vm_events(KSWAPD_INODESTEAL, reap);
434 __count_vm_events(PGINODESTEAL, reap);
435 spin_unlock(&inode_lock);
437 dispose_list(&freeable);
438 mutex_unlock(&iprune_mutex);
442 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
443 * "unused" means that no dentries are referring to the inodes: the files are
444 * not open and the dcache references to those inodes have already been
447 * This function is passed the number of inodes to scan, and it returns the
448 * total number of remaining possibly-reclaimable inodes.
450 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
454 * Nasty deadlock avoidance. We may hold various FS locks,
455 * and we don't want to recurse into the FS that called us
456 * in clear_inode() and friends..
458 if (!(gfp_mask & __GFP_FS))
462 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
465 static void __wait_on_freeing_inode(struct inode *inode);
467 * Called with the inode lock held.
468 * NOTE: we are not increasing the inode-refcount, you must call __iget()
469 * by hand after calling find_inode now! This simplifies iunique and won't
470 * add any additional branch in the common code.
472 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
474 struct hlist_node *node;
475 struct inode * inode = NULL;
478 hlist_for_each (node, head) {
479 inode = hlist_entry(node, struct inode, i_hash);
480 if (inode->i_sb != sb)
482 if (!test(inode, data))
484 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
485 __wait_on_freeing_inode(inode);
490 return node ? inode : NULL;
494 * find_inode_fast is the fast path version of find_inode, see the comment at
495 * iget_locked for details.
497 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
499 struct hlist_node *node;
500 struct inode * inode = NULL;
503 hlist_for_each (node, head) {
504 inode = hlist_entry(node, struct inode, i_hash);
505 if (inode->i_ino != ino)
507 if (inode->i_sb != sb)
509 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
510 __wait_on_freeing_inode(inode);
515 return node ? inode : NULL;
519 * new_inode - obtain an inode
522 * Allocates a new inode for given superblock.
524 struct inode *new_inode(struct super_block *sb)
527 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
528 * error if st_ino won't fit in target struct field. Use 32bit counter
529 * here to attempt to avoid that.
531 static unsigned int last_ino;
532 struct inode * inode;
534 spin_lock_prefetch(&inode_lock);
536 inode = alloc_inode(sb);
538 spin_lock(&inode_lock);
539 inodes_stat.nr_inodes++;
540 list_add(&inode->i_list, &inode_in_use);
541 list_add(&inode->i_sb_list, &sb->s_inodes);
542 inode->i_ino = ++last_ino;
544 spin_unlock(&inode_lock);
549 EXPORT_SYMBOL(new_inode);
551 void unlock_new_inode(struct inode *inode)
554 * This is special! We do not need the spinlock
555 * when clearing I_LOCK, because we're guaranteed
556 * that nobody else tries to do anything about the
557 * state of the inode when it is locked, as we
558 * just created it (so there can be no old holders
559 * that haven't tested I_LOCK).
561 inode->i_state &= ~(I_LOCK|I_NEW);
562 wake_up_inode(inode);
565 EXPORT_SYMBOL(unlock_new_inode);
568 * This is called without the inode lock held.. Be careful.
570 * We no longer cache the sb_flags in i_flags - see fs.h
571 * -- rmk@arm.uk.linux.org
573 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
575 struct inode * inode;
577 inode = alloc_inode(sb);
581 spin_lock(&inode_lock);
582 /* We released the lock, so.. */
583 old = find_inode(sb, head, test, data);
585 if (set(inode, data))
588 inodes_stat.nr_inodes++;
589 list_add(&inode->i_list, &inode_in_use);
590 list_add(&inode->i_sb_list, &sb->s_inodes);
591 hlist_add_head(&inode->i_hash, head);
592 inode->i_state = I_LOCK|I_NEW;
593 spin_unlock(&inode_lock);
595 /* Return the locked inode with I_NEW set, the
596 * caller is responsible for filling in the contents
602 * Uhhuh, somebody else created the same inode under
603 * us. Use the old inode instead of the one we just
607 spin_unlock(&inode_lock);
608 destroy_inode(inode);
610 wait_on_inode(inode);
615 spin_unlock(&inode_lock);
616 destroy_inode(inode);
621 * get_new_inode_fast is the fast path version of get_new_inode, see the
622 * comment at iget_locked for details.
624 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
626 struct inode * inode;
628 inode = alloc_inode(sb);
632 spin_lock(&inode_lock);
633 /* We released the lock, so.. */
634 old = find_inode_fast(sb, head, ino);
637 inodes_stat.nr_inodes++;
638 list_add(&inode->i_list, &inode_in_use);
639 list_add(&inode->i_sb_list, &sb->s_inodes);
640 hlist_add_head(&inode->i_hash, head);
641 inode->i_state = I_LOCK|I_NEW;
642 spin_unlock(&inode_lock);
644 /* Return the locked inode with I_NEW set, the
645 * caller is responsible for filling in the contents
651 * Uhhuh, somebody else created the same inode under
652 * us. Use the old inode instead of the one we just
656 spin_unlock(&inode_lock);
657 destroy_inode(inode);
659 wait_on_inode(inode);
664 static unsigned long hash(struct super_block *sb, unsigned long hashval)
668 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
670 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
671 return tmp & I_HASHMASK;
675 * iunique - get a unique inode number
677 * @max_reserved: highest reserved inode number
679 * Obtain an inode number that is unique on the system for a given
680 * superblock. This is used by file systems that have no natural
681 * permanent inode numbering system. An inode number is returned that
682 * is higher than the reserved limit but unique.
685 * With a large number of inodes live on the file system this function
686 * currently becomes quite slow.
688 ino_t iunique(struct super_block *sb, ino_t max_reserved)
691 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
692 * error if st_ino won't fit in target struct field. Use 32bit counter
693 * here to attempt to avoid that.
695 static unsigned int counter;
697 struct hlist_head *head;
700 spin_lock(&inode_lock);
702 if (counter <= max_reserved)
703 counter = max_reserved + 1;
705 head = inode_hashtable + hash(sb, res);
706 inode = find_inode_fast(sb, head, res);
707 } while (inode != NULL);
708 spin_unlock(&inode_lock);
712 EXPORT_SYMBOL(iunique);
714 struct inode *igrab(struct inode *inode)
716 spin_lock(&inode_lock);
717 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
721 * Handle the case where s_op->clear_inode is not been
722 * called yet, and somebody is calling igrab
723 * while the inode is getting freed.
726 spin_unlock(&inode_lock);
730 EXPORT_SYMBOL(igrab);
733 * ifind - internal function, you want ilookup5() or iget5().
734 * @sb: super block of file system to search
735 * @head: the head of the list to search
736 * @test: callback used for comparisons between inodes
737 * @data: opaque data pointer to pass to @test
738 * @wait: if true wait for the inode to be unlocked, if false do not
740 * ifind() searches for the inode specified by @data in the inode
741 * cache. This is a generalized version of ifind_fast() for file systems where
742 * the inode number is not sufficient for unique identification of an inode.
744 * If the inode is in the cache, the inode is returned with an incremented
747 * Otherwise NULL is returned.
749 * Note, @test is called with the inode_lock held, so can't sleep.
751 static struct inode *ifind(struct super_block *sb,
752 struct hlist_head *head, int (*test)(struct inode *, void *),
753 void *data, const int wait)
757 spin_lock(&inode_lock);
758 inode = find_inode(sb, head, test, data);
761 spin_unlock(&inode_lock);
763 wait_on_inode(inode);
766 spin_unlock(&inode_lock);
771 * ifind_fast - internal function, you want ilookup() or iget().
772 * @sb: super block of file system to search
773 * @head: head of the list to search
774 * @ino: inode number to search for
776 * ifind_fast() searches for the inode @ino in the inode cache. This is for
777 * file systems where the inode number is sufficient for unique identification
780 * If the inode is in the cache, the inode is returned with an incremented
783 * Otherwise NULL is returned.
785 static struct inode *ifind_fast(struct super_block *sb,
786 struct hlist_head *head, unsigned long ino)
790 spin_lock(&inode_lock);
791 inode = find_inode_fast(sb, head, ino);
794 spin_unlock(&inode_lock);
795 wait_on_inode(inode);
798 spin_unlock(&inode_lock);
803 * ilookup5_nowait - search for an inode in the inode cache
804 * @sb: super block of file system to search
805 * @hashval: hash value (usually inode number) to search for
806 * @test: callback used for comparisons between inodes
807 * @data: opaque data pointer to pass to @test
809 * ilookup5() uses ifind() to search for the inode specified by @hashval and
810 * @data in the inode cache. This is a generalized version of ilookup() for
811 * file systems where the inode number is not sufficient for unique
812 * identification of an inode.
814 * If the inode is in the cache, the inode is returned with an incremented
815 * reference count. Note, the inode lock is not waited upon so you have to be
816 * very careful what you do with the returned inode. You probably should be
817 * using ilookup5() instead.
819 * Otherwise NULL is returned.
821 * Note, @test is called with the inode_lock held, so can't sleep.
823 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
824 int (*test)(struct inode *, void *), void *data)
826 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
828 return ifind(sb, head, test, data, 0);
831 EXPORT_SYMBOL(ilookup5_nowait);
834 * ilookup5 - search for an inode in the inode cache
835 * @sb: super block of file system to search
836 * @hashval: hash value (usually inode number) to search for
837 * @test: callback used for comparisons between inodes
838 * @data: opaque data pointer to pass to @test
840 * ilookup5() uses ifind() to search for the inode specified by @hashval and
841 * @data in the inode cache. This is a generalized version of ilookup() for
842 * file systems where the inode number is not sufficient for unique
843 * identification of an inode.
845 * If the inode is in the cache, the inode lock is waited upon and the inode is
846 * returned with an incremented reference count.
848 * Otherwise NULL is returned.
850 * Note, @test is called with the inode_lock held, so can't sleep.
852 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
853 int (*test)(struct inode *, void *), void *data)
855 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
857 return ifind(sb, head, test, data, 1);
860 EXPORT_SYMBOL(ilookup5);
863 * ilookup - search for an inode in the inode cache
864 * @sb: super block of file system to search
865 * @ino: inode number to search for
867 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
868 * This is for file systems where the inode number is sufficient for unique
869 * identification of an inode.
871 * If the inode is in the cache, the inode is returned with an incremented
874 * Otherwise NULL is returned.
876 struct inode *ilookup(struct super_block *sb, unsigned long ino)
878 struct hlist_head *head = inode_hashtable + hash(sb, ino);
880 return ifind_fast(sb, head, ino);
883 EXPORT_SYMBOL(ilookup);
886 * iget5_locked - obtain an inode from a mounted file system
887 * @sb: super block of file system
888 * @hashval: hash value (usually inode number) to get
889 * @test: callback used for comparisons between inodes
890 * @set: callback used to initialize a new struct inode
891 * @data: opaque data pointer to pass to @test and @set
893 * This is iget() without the read_inode() portion of get_new_inode().
895 * iget5_locked() uses ifind() to search for the inode specified by @hashval
896 * and @data in the inode cache and if present it is returned with an increased
897 * reference count. This is a generalized version of iget_locked() for file
898 * systems where the inode number is not sufficient for unique identification
901 * If the inode is not in cache, get_new_inode() is called to allocate a new
902 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
903 * file system gets to fill it in before unlocking it via unlock_new_inode().
905 * Note both @test and @set are called with the inode_lock held, so can't sleep.
907 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
908 int (*test)(struct inode *, void *),
909 int (*set)(struct inode *, void *), void *data)
911 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
914 inode = ifind(sb, head, test, data, 1);
918 * get_new_inode() will do the right thing, re-trying the search
919 * in case it had to block at any point.
921 return get_new_inode(sb, head, test, set, data);
924 EXPORT_SYMBOL(iget5_locked);
927 * iget_locked - obtain an inode from a mounted file system
928 * @sb: super block of file system
929 * @ino: inode number to get
931 * This is iget() without the read_inode() portion of get_new_inode_fast().
933 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
934 * the inode cache and if present it is returned with an increased reference
935 * count. This is for file systems where the inode number is sufficient for
936 * unique identification of an inode.
938 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
939 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
940 * The file system gets to fill it in before unlocking it via
941 * unlock_new_inode().
943 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
945 struct hlist_head *head = inode_hashtable + hash(sb, ino);
948 inode = ifind_fast(sb, head, ino);
952 * get_new_inode_fast() will do the right thing, re-trying the search
953 * in case it had to block at any point.
955 return get_new_inode_fast(sb, head, ino);
958 EXPORT_SYMBOL(iget_locked);
961 * __insert_inode_hash - hash an inode
962 * @inode: unhashed inode
963 * @hashval: unsigned long value used to locate this object in the
966 * Add an inode to the inode hash for this superblock.
968 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
970 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
971 spin_lock(&inode_lock);
972 hlist_add_head(&inode->i_hash, head);
973 spin_unlock(&inode_lock);
976 EXPORT_SYMBOL(__insert_inode_hash);
979 * remove_inode_hash - remove an inode from the hash
980 * @inode: inode to unhash
982 * Remove an inode from the superblock.
984 void remove_inode_hash(struct inode *inode)
986 spin_lock(&inode_lock);
987 hlist_del_init(&inode->i_hash);
988 spin_unlock(&inode_lock);
991 EXPORT_SYMBOL(remove_inode_hash);
994 * Tell the filesystem that this inode is no longer of any interest and should
995 * be completely destroyed.
997 * We leave the inode in the inode hash table until *after* the filesystem's
998 * ->delete_inode completes. This ensures that an iget (such as nfsd might
999 * instigate) will always find up-to-date information either in the hash or on
1002 * I_FREEING is set so that no-one will take a new reference to the inode while
1003 * it is being deleted.
1005 void generic_delete_inode(struct inode *inode)
1007 const struct super_operations *op = inode->i_sb->s_op;
1009 list_del_init(&inode->i_list);
1010 list_del_init(&inode->i_sb_list);
1011 inode->i_state |= I_FREEING;
1012 inodes_stat.nr_inodes--;
1013 spin_unlock(&inode_lock);
1015 security_inode_delete(inode);
1017 if (op->delete_inode) {
1018 void (*delete)(struct inode *) = op->delete_inode;
1019 if (!is_bad_inode(inode))
1021 /* Filesystems implementing their own
1022 * s_op->delete_inode are required to call
1023 * truncate_inode_pages and clear_inode()
1027 truncate_inode_pages(&inode->i_data, 0);
1030 spin_lock(&inode_lock);
1031 hlist_del_init(&inode->i_hash);
1032 spin_unlock(&inode_lock);
1033 wake_up_inode(inode);
1034 BUG_ON(inode->i_state != I_CLEAR);
1035 destroy_inode(inode);
1038 EXPORT_SYMBOL(generic_delete_inode);
1040 static void generic_forget_inode(struct inode *inode)
1042 struct super_block *sb = inode->i_sb;
1044 if (!hlist_unhashed(&inode->i_hash)) {
1045 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1046 list_move(&inode->i_list, &inode_unused);
1047 inodes_stat.nr_unused++;
1048 if (sb->s_flags & MS_ACTIVE) {
1049 spin_unlock(&inode_lock);
1052 inode->i_state |= I_WILL_FREE;
1053 spin_unlock(&inode_lock);
1054 write_inode_now(inode, 1);
1055 spin_lock(&inode_lock);
1056 inode->i_state &= ~I_WILL_FREE;
1057 inodes_stat.nr_unused--;
1058 hlist_del_init(&inode->i_hash);
1060 list_del_init(&inode->i_list);
1061 list_del_init(&inode->i_sb_list);
1062 inode->i_state |= I_FREEING;
1063 inodes_stat.nr_inodes--;
1064 spin_unlock(&inode_lock);
1065 if (inode->i_data.nrpages)
1066 truncate_inode_pages(&inode->i_data, 0);
1068 wake_up_inode(inode);
1069 destroy_inode(inode);
1073 * Normal UNIX filesystem behaviour: delete the
1074 * inode when the usage count drops to zero, and
1077 void generic_drop_inode(struct inode *inode)
1079 if (!inode->i_nlink)
1080 generic_delete_inode(inode);
1082 generic_forget_inode(inode);
1085 EXPORT_SYMBOL_GPL(generic_drop_inode);
1088 * Called when we're dropping the last reference
1091 * Call the FS "drop()" function, defaulting to
1092 * the legacy UNIX filesystem behaviour..
1094 * NOTE! NOTE! NOTE! We're called with the inode lock
1095 * held, and the drop function is supposed to release
1098 static inline void iput_final(struct inode *inode)
1100 const struct super_operations *op = inode->i_sb->s_op;
1101 void (*drop)(struct inode *) = generic_drop_inode;
1103 if (op && op->drop_inode)
1104 drop = op->drop_inode;
1109 * iput - put an inode
1110 * @inode: inode to put
1112 * Puts an inode, dropping its usage count. If the inode use count hits
1113 * zero, the inode is then freed and may also be destroyed.
1115 * Consequently, iput() can sleep.
1117 void iput(struct inode *inode)
1120 const struct super_operations *op = inode->i_sb->s_op;
1122 BUG_ON(inode->i_state == I_CLEAR);
1124 if (op && op->put_inode)
1125 op->put_inode(inode);
1127 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1132 EXPORT_SYMBOL(iput);
1135 * bmap - find a block number in a file
1136 * @inode: inode of file
1137 * @block: block to find
1139 * Returns the block number on the device holding the inode that
1140 * is the disk block number for the block of the file requested.
1141 * That is, asked for block 4 of inode 1 the function will return the
1142 * disk block relative to the disk start that holds that block of the
1145 sector_t bmap(struct inode * inode, sector_t block)
1148 if (inode->i_mapping->a_ops->bmap)
1149 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1152 EXPORT_SYMBOL(bmap);
1155 * touch_atime - update the access time
1156 * @mnt: mount the inode is accessed on
1157 * @dentry: dentry accessed
1159 * Update the accessed time on an inode and mark it for writeback.
1160 * This function automatically handles read only file systems and media,
1161 * as well as the "noatime" flag and inode specific "noatime" markers.
1163 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1165 struct inode *inode = dentry->d_inode;
1166 struct timespec now;
1168 if (inode->i_flags & S_NOATIME)
1170 if (IS_NOATIME(inode))
1172 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1176 * We may have a NULL vfsmount when coming from NFSD
1179 if (mnt->mnt_flags & MNT_NOATIME)
1181 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1184 if (mnt->mnt_flags & MNT_RELATIME) {
1186 * With relative atime, only update atime if the
1187 * previous atime is earlier than either the ctime or
1190 if (timespec_compare(&inode->i_mtime,
1191 &inode->i_atime) < 0 &&
1192 timespec_compare(&inode->i_ctime,
1193 &inode->i_atime) < 0)
1198 now = current_fs_time(inode->i_sb);
1199 if (timespec_equal(&inode->i_atime, &now))
1202 inode->i_atime = now;
1203 mark_inode_dirty_sync(inode);
1205 EXPORT_SYMBOL(touch_atime);
1208 * file_update_time - update mtime and ctime time
1209 * @file: file accessed
1211 * Update the mtime and ctime members of an inode and mark the inode
1212 * for writeback. Note that this function is meant exclusively for
1213 * usage in the file write path of filesystems, and filesystems may
1214 * choose to explicitly ignore update via this function with the
1215 * S_NOCTIME inode flag, e.g. for network filesystem where these
1216 * timestamps are handled by the server.
1219 void file_update_time(struct file *file)
1221 struct inode *inode = file->f_path.dentry->d_inode;
1222 struct timespec now;
1225 if (IS_NOCMTIME(inode))
1227 if (IS_RDONLY(inode))
1230 now = current_fs_time(inode->i_sb);
1231 if (!timespec_equal(&inode->i_mtime, &now)) {
1232 inode->i_mtime = now;
1236 if (!timespec_equal(&inode->i_ctime, &now)) {
1237 inode->i_ctime = now;
1242 mark_inode_dirty_sync(inode);
1245 EXPORT_SYMBOL(file_update_time);
1247 int inode_needs_sync(struct inode *inode)
1251 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1256 EXPORT_SYMBOL(inode_needs_sync);
1258 int inode_wait(void *word)
1265 * If we try to find an inode in the inode hash while it is being
1266 * deleted, we have to wait until the filesystem completes its
1267 * deletion before reporting that it isn't found. This function waits
1268 * until the deletion _might_ have completed. Callers are responsible
1269 * to recheck inode state.
1271 * It doesn't matter if I_LOCK is not set initially, a call to
1272 * wake_up_inode() after removing from the hash list will DTRT.
1274 * This is called with inode_lock held.
1276 static void __wait_on_freeing_inode(struct inode *inode)
1278 wait_queue_head_t *wq;
1279 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1280 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1281 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1282 spin_unlock(&inode_lock);
1284 finish_wait(wq, &wait.wait);
1285 spin_lock(&inode_lock);
1288 void wake_up_inode(struct inode *inode)
1291 * Prevent speculative execution through spin_unlock(&inode_lock);
1294 wake_up_bit(&inode->i_state, __I_LOCK);
1298 * We rarely want to lock two inodes that do not have a parent/child
1299 * relationship (such as directory, child inode) simultaneously. The
1300 * vast majority of file systems should be able to get along fine
1301 * without this. Do not use these functions except as a last resort.
1303 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1305 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1307 mutex_lock(&inode1->i_mutex);
1309 mutex_lock(&inode2->i_mutex);
1313 if (inode1 < inode2) {
1314 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1315 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1317 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1318 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1321 EXPORT_SYMBOL(inode_double_lock);
1323 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1326 mutex_unlock(&inode1->i_mutex);
1328 if (inode2 && inode2 != inode1)
1329 mutex_unlock(&inode2->i_mutex);
1331 EXPORT_SYMBOL(inode_double_unlock);
1333 static __initdata unsigned long ihash_entries;
1334 static int __init set_ihash_entries(char *str)
1338 ihash_entries = simple_strtoul(str, &str, 0);
1341 __setup("ihash_entries=", set_ihash_entries);
1344 * Initialize the waitqueues and inode hash table.
1346 void __init inode_init_early(void)
1350 /* If hashes are distributed across NUMA nodes, defer
1351 * hash allocation until vmalloc space is available.
1357 alloc_large_system_hash("Inode-cache",
1358 sizeof(struct hlist_head),
1366 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1367 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1370 void __init inode_init(unsigned long mempages)
1374 /* inode slab cache */
1375 inode_cachep = kmem_cache_create("inode_cache",
1376 sizeof(struct inode),
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1382 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1384 /* Hash may have been set up in inode_init_early */
1389 alloc_large_system_hash("Inode-cache",
1390 sizeof(struct hlist_head),
1398 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1399 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1402 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1404 inode->i_mode = mode;
1405 if (S_ISCHR(mode)) {
1406 inode->i_fop = &def_chr_fops;
1407 inode->i_rdev = rdev;
1408 } else if (S_ISBLK(mode)) {
1409 inode->i_fop = &def_blk_fops;
1410 inode->i_rdev = rdev;
1411 } else if (S_ISFIFO(mode))
1412 inode->i_fop = &def_fifo_fops;
1413 else if (S_ISSOCK(mode))
1414 inode->i_fop = &bad_sock_fops;
1416 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1419 EXPORT_SYMBOL(init_special_inode);