1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Tomas Winkler <tomas.winkler@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /* "false alarms" are signals that our DSP tries to lock onto,
70 * but then determines that they are either noise, or transmissions
71 * from a distant wireless network (also "noise", really) that get
72 * "stepped on" by stronger transmissions within our own network.
73 * This algorithm attempts to set a sensitivity level that is high
74 * enough to receive all of our own network traffic, but not so
75 * high that our DSP gets too busy trying to lock onto non-network
77 static int iwl_sens_energy_cck(struct iwl_priv *priv,
80 struct statistics_general_data *rx_info)
84 u8 max_silence_rssi = 0;
86 u8 silence_rssi_a = 0;
87 u8 silence_rssi_b = 0;
88 u8 silence_rssi_c = 0;
91 /* "false_alarms" values below are cross-multiplications to assess the
92 * numbers of false alarms within the measured period of actual Rx
93 * (Rx is off when we're txing), vs the min/max expected false alarms
94 * (some should be expected if rx is sensitive enough) in a
95 * hypothetical listening period of 200 time units (TU), 204.8 msec:
97 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
100 u32 false_alarms = norm_fa * 200 * 1024;
101 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
102 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
103 struct iwl_sensitivity_data *data = NULL;
104 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
106 data = &(priv->sensitivity_data);
108 data->nrg_auto_corr_silence_diff = 0;
110 /* Find max silence rssi among all 3 receivers.
111 * This is background noise, which may include transmissions from other
112 * networks, measured during silence before our network's beacon */
113 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
114 ALL_BAND_FILTER) >> 8);
115 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
116 ALL_BAND_FILTER) >> 8);
117 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
118 ALL_BAND_FILTER) >> 8);
120 val = max(silence_rssi_b, silence_rssi_c);
121 max_silence_rssi = max(silence_rssi_a, (u8) val);
123 /* Store silence rssi in 20-beacon history table */
124 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
125 data->nrg_silence_idx++;
126 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
127 data->nrg_silence_idx = 0;
129 /* Find max silence rssi across 20 beacon history */
130 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
131 val = data->nrg_silence_rssi[i];
132 silence_ref = max(silence_ref, val);
134 IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
135 silence_rssi_a, silence_rssi_b, silence_rssi_c,
138 /* Find max rx energy (min value!) among all 3 receivers,
139 * measured during beacon frame.
140 * Save it in 10-beacon history table. */
141 i = data->nrg_energy_idx;
142 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
143 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
145 data->nrg_energy_idx++;
146 if (data->nrg_energy_idx >= 10)
147 data->nrg_energy_idx = 0;
149 /* Find min rx energy (max value) across 10 beacon history.
150 * This is the minimum signal level that we want to receive well.
151 * Add backoff (margin so we don't miss slightly lower energy frames).
152 * This establishes an upper bound (min value) for energy threshold. */
153 max_nrg_cck = data->nrg_value[0];
154 for (i = 1; i < 10; i++)
155 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
158 IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
159 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
160 rx_info->beacon_energy_c, max_nrg_cck - 6);
162 /* Count number of consecutive beacons with fewer-than-desired
164 if (false_alarms < min_false_alarms)
165 data->num_in_cck_no_fa++;
167 data->num_in_cck_no_fa = 0;
168 IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
169 data->num_in_cck_no_fa);
171 /* If we got too many false alarms this time, reduce sensitivity */
172 if ((false_alarms > max_false_alarms) &&
173 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
174 IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
175 false_alarms, max_false_alarms);
176 IWL_DEBUG_CALIB("... reducing sensitivity\n");
177 data->nrg_curr_state = IWL_FA_TOO_MANY;
178 /* Store for "fewer than desired" on later beacon */
179 data->nrg_silence_ref = silence_ref;
181 /* increase energy threshold (reduce nrg value)
182 * to decrease sensitivity */
183 if (data->nrg_th_cck >
184 (ranges->max_nrg_cck + NRG_STEP_CCK))
185 data->nrg_th_cck = data->nrg_th_cck
188 data->nrg_th_cck = ranges->max_nrg_cck;
189 /* Else if we got fewer than desired, increase sensitivity */
190 } else if (false_alarms < min_false_alarms) {
191 data->nrg_curr_state = IWL_FA_TOO_FEW;
193 /* Compare silence level with silence level for most recent
194 * healthy number or too many false alarms */
195 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
198 IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
199 false_alarms, min_false_alarms,
200 data->nrg_auto_corr_silence_diff);
202 /* Increase value to increase sensitivity, but only if:
203 * 1a) previous beacon did *not* have *too many* false alarms
204 * 1b) AND there's a significant difference in Rx levels
205 * from a previous beacon with too many, or healthy # FAs
206 * OR 2) We've seen a lot of beacons (100) with too few
208 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
209 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
210 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
212 IWL_DEBUG_CALIB("... increasing sensitivity\n");
213 /* Increase nrg value to increase sensitivity */
214 val = data->nrg_th_cck + NRG_STEP_CCK;
215 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
217 IWL_DEBUG_CALIB("... but not changing sensitivity\n");
220 /* Else we got a healthy number of false alarms, keep status quo */
222 IWL_DEBUG_CALIB(" FA in safe zone\n");
223 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
225 /* Store for use in "fewer than desired" with later beacon */
226 data->nrg_silence_ref = silence_ref;
228 /* If previous beacon had too many false alarms,
229 * give it some extra margin by reducing sensitivity again
230 * (but don't go below measured energy of desired Rx) */
231 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
232 IWL_DEBUG_CALIB("... increasing margin\n");
233 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
234 data->nrg_th_cck -= NRG_MARGIN;
236 data->nrg_th_cck = max_nrg_cck;
240 /* Make sure the energy threshold does not go above the measured
241 * energy of the desired Rx signals (reduced by backoff margin),
242 * or else we might start missing Rx frames.
243 * Lower value is higher energy, so we use max()!
245 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
246 IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
248 data->nrg_prev_state = data->nrg_curr_state;
250 /* Auto-correlation CCK algorithm */
251 if (false_alarms > min_false_alarms) {
253 /* increase auto_corr values to decrease sensitivity
254 * so the DSP won't be disturbed by the noise
256 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
257 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
259 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
260 data->auto_corr_cck =
261 min((u32)ranges->auto_corr_max_cck, val);
263 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
264 data->auto_corr_cck_mrc =
265 min((u32)ranges->auto_corr_max_cck_mrc, val);
266 } else if ((false_alarms < min_false_alarms) &&
267 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
268 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
270 /* Decrease auto_corr values to increase sensitivity */
271 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
272 data->auto_corr_cck =
273 max((u32)ranges->auto_corr_min_cck, val);
274 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
275 data->auto_corr_cck_mrc =
276 max((u32)ranges->auto_corr_min_cck_mrc, val);
283 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
288 u32 false_alarms = norm_fa * 200 * 1024;
289 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
290 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
291 struct iwl_sensitivity_data *data = NULL;
292 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
294 data = &(priv->sensitivity_data);
296 /* If we got too many false alarms this time, reduce sensitivity */
297 if (false_alarms > max_false_alarms) {
299 IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
300 false_alarms, max_false_alarms);
302 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
303 data->auto_corr_ofdm =
304 min((u32)ranges->auto_corr_max_ofdm, val);
306 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
307 data->auto_corr_ofdm_mrc =
308 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
310 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
311 data->auto_corr_ofdm_x1 =
312 min((u32)ranges->auto_corr_max_ofdm_x1, val);
314 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
315 data->auto_corr_ofdm_mrc_x1 =
316 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
319 /* Else if we got fewer than desired, increase sensitivity */
320 else if (false_alarms < min_false_alarms) {
322 IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
323 false_alarms, min_false_alarms);
325 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
326 data->auto_corr_ofdm =
327 max((u32)ranges->auto_corr_min_ofdm, val);
329 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
330 data->auto_corr_ofdm_mrc =
331 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
333 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
334 data->auto_corr_ofdm_x1 =
335 max((u32)ranges->auto_corr_min_ofdm_x1, val);
337 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
338 data->auto_corr_ofdm_mrc_x1 =
339 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
341 IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
342 min_false_alarms, false_alarms, max_false_alarms);
347 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
348 static int iwl_sensitivity_write(struct iwl_priv *priv)
351 struct iwl_sensitivity_cmd cmd ;
352 struct iwl_sensitivity_data *data = NULL;
353 struct iwl_host_cmd cmd_out = {
354 .id = SENSITIVITY_CMD,
355 .len = sizeof(struct iwl_sensitivity_cmd),
356 .meta.flags = CMD_ASYNC,
360 data = &(priv->sensitivity_data);
362 memset(&cmd, 0, sizeof(cmd));
364 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
365 cpu_to_le16((u16)data->auto_corr_ofdm);
366 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
367 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
368 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
369 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
370 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
371 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
373 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
374 cpu_to_le16((u16)data->auto_corr_cck);
375 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
376 cpu_to_le16((u16)data->auto_corr_cck_mrc);
378 cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
379 cpu_to_le16((u16)data->nrg_th_cck);
380 cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
381 cpu_to_le16((u16)data->nrg_th_ofdm);
383 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
384 __constant_cpu_to_le16(190);
385 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
386 __constant_cpu_to_le16(390);
387 cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
388 __constant_cpu_to_le16(62);
390 IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
391 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
392 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
395 IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
396 data->auto_corr_cck, data->auto_corr_cck_mrc,
399 /* Update uCode's "work" table, and copy it to DSP */
400 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
402 /* Don't send command to uCode if nothing has changed */
403 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
404 sizeof(u16)*HD_TABLE_SIZE)) {
405 IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
409 /* Copy table for comparison next time */
410 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
411 sizeof(u16)*HD_TABLE_SIZE);
413 ret = iwl_send_cmd(priv, &cmd_out);
415 IWL_ERROR("SENSITIVITY_CMD failed\n");
420 void iwl_init_sensitivity(struct iwl_priv *priv)
424 struct iwl_sensitivity_data *data = NULL;
425 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
427 if (priv->disable_sens_cal)
430 IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
432 /* Clear driver's sensitivity algo data */
433 data = &(priv->sensitivity_data);
438 memset(data, 0, sizeof(struct iwl_sensitivity_data));
440 data->num_in_cck_no_fa = 0;
441 data->nrg_curr_state = IWL_FA_TOO_MANY;
442 data->nrg_prev_state = IWL_FA_TOO_MANY;
443 data->nrg_silence_ref = 0;
444 data->nrg_silence_idx = 0;
445 data->nrg_energy_idx = 0;
447 for (i = 0; i < 10; i++)
448 data->nrg_value[i] = 0;
450 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
451 data->nrg_silence_rssi[i] = 0;
453 data->auto_corr_ofdm = 90;
454 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
455 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
456 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
457 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
458 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
459 data->nrg_th_cck = ranges->nrg_th_cck;
460 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
462 data->last_bad_plcp_cnt_ofdm = 0;
463 data->last_fa_cnt_ofdm = 0;
464 data->last_bad_plcp_cnt_cck = 0;
465 data->last_fa_cnt_cck = 0;
467 ret |= iwl_sensitivity_write(priv);
468 IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
470 EXPORT_SYMBOL(iwl_init_sensitivity);
472 void iwl_sensitivity_calibration(struct iwl_priv *priv,
473 struct iwl4965_notif_statistics *resp)
482 struct iwl_sensitivity_data *data = NULL;
483 struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
484 struct statistics_rx *statistics = &(resp->rx);
486 struct statistics_general_data statis;
488 if (priv->disable_sens_cal)
491 data = &(priv->sensitivity_data);
493 if (!iwl_is_associated(priv)) {
494 IWL_DEBUG_CALIB("<< - not associated\n");
498 spin_lock_irqsave(&priv->lock, flags);
499 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
500 IWL_DEBUG_CALIB("<< invalid data.\n");
501 spin_unlock_irqrestore(&priv->lock, flags);
505 /* Extract Statistics: */
506 rx_enable_time = le32_to_cpu(rx_info->channel_load);
507 fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
508 fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
509 bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
510 bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
512 statis.beacon_silence_rssi_a =
513 le32_to_cpu(statistics->general.beacon_silence_rssi_a);
514 statis.beacon_silence_rssi_b =
515 le32_to_cpu(statistics->general.beacon_silence_rssi_b);
516 statis.beacon_silence_rssi_c =
517 le32_to_cpu(statistics->general.beacon_silence_rssi_c);
518 statis.beacon_energy_a =
519 le32_to_cpu(statistics->general.beacon_energy_a);
520 statis.beacon_energy_b =
521 le32_to_cpu(statistics->general.beacon_energy_b);
522 statis.beacon_energy_c =
523 le32_to_cpu(statistics->general.beacon_energy_c);
525 spin_unlock_irqrestore(&priv->lock, flags);
527 IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
529 if (!rx_enable_time) {
530 IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
534 /* These statistics increase monotonically, and do not reset
535 * at each beacon. Calculate difference from last value, or just
536 * use the new statistics value if it has reset or wrapped around. */
537 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
538 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
540 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
541 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
544 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
545 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
547 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
548 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
551 if (data->last_fa_cnt_ofdm > fa_ofdm)
552 data->last_fa_cnt_ofdm = fa_ofdm;
554 fa_ofdm -= data->last_fa_cnt_ofdm;
555 data->last_fa_cnt_ofdm += fa_ofdm;
558 if (data->last_fa_cnt_cck > fa_cck)
559 data->last_fa_cnt_cck = fa_cck;
561 fa_cck -= data->last_fa_cnt_cck;
562 data->last_fa_cnt_cck += fa_cck;
565 /* Total aborted signal locks */
566 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
567 norm_fa_cck = fa_cck + bad_plcp_cck;
569 IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
570 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
572 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
573 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
574 iwl_sensitivity_write(priv);
578 EXPORT_SYMBOL(iwl_sensitivity_calibration);
581 * Accumulate 20 beacons of signal and noise statistics for each of
582 * 3 receivers/antennas/rx-chains, then figure out:
583 * 1) Which antennas are connected.
584 * 2) Differential rx gain settings to balance the 3 receivers.
586 void iwl_chain_noise_calibration(struct iwl_priv *priv,
587 struct iwl4965_notif_statistics *stat_resp)
589 struct iwl_chain_noise_data *data = NULL;
597 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
598 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
600 u16 max_average_sig_antenna_i;
601 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
602 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
604 u16 rxon_chnum = INITIALIZATION_VALUE;
605 u16 stat_chnum = INITIALIZATION_VALUE;
608 u32 active_chains = 0;
611 struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
613 if (priv->disable_chain_noise_cal)
616 data = &(priv->chain_noise_data);
618 /* Accumulate just the first 20 beacons after the first association,
619 * then we're done forever. */
620 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
621 if (data->state == IWL_CHAIN_NOISE_ALIVE)
622 IWL_DEBUG_CALIB("Wait for noise calib reset\n");
626 spin_lock_irqsave(&priv->lock, flags);
627 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
628 IWL_DEBUG_CALIB(" << Interference data unavailable\n");
629 spin_unlock_irqrestore(&priv->lock, flags);
633 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
634 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
635 stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
636 stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
638 /* Make sure we accumulate data for just the associated channel
639 * (even if scanning). */
640 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
641 IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
642 rxon_chnum, rxon_band24);
643 spin_unlock_irqrestore(&priv->lock, flags);
647 /* Accumulate beacon statistics values across 20 beacons */
648 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
650 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
652 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
655 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
656 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
657 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
659 spin_unlock_irqrestore(&priv->lock, flags);
661 data->beacon_count++;
663 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
664 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
665 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
667 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
668 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
669 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
671 IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
672 rxon_chnum, rxon_band24, data->beacon_count);
673 IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
674 chain_sig_a, chain_sig_b, chain_sig_c);
675 IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
676 chain_noise_a, chain_noise_b, chain_noise_c);
678 /* If this is the 20th beacon, determine:
679 * 1) Disconnected antennas (using signal strengths)
680 * 2) Differential gain (using silence noise) to balance receivers */
681 if (data->beacon_count != CAL_NUM_OF_BEACONS)
684 /* Analyze signal for disconnected antenna */
685 average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
686 average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
687 average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
689 if (average_sig[0] >= average_sig[1]) {
690 max_average_sig = average_sig[0];
691 max_average_sig_antenna_i = 0;
692 active_chains = (1 << max_average_sig_antenna_i);
694 max_average_sig = average_sig[1];
695 max_average_sig_antenna_i = 1;
696 active_chains = (1 << max_average_sig_antenna_i);
699 if (average_sig[2] >= max_average_sig) {
700 max_average_sig = average_sig[2];
701 max_average_sig_antenna_i = 2;
702 active_chains = (1 << max_average_sig_antenna_i);
705 IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
706 average_sig[0], average_sig[1], average_sig[2]);
707 IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
708 max_average_sig, max_average_sig_antenna_i);
710 /* Compare signal strengths for all 3 receivers. */
711 for (i = 0; i < NUM_RX_CHAINS; i++) {
712 if (i != max_average_sig_antenna_i) {
713 s32 rssi_delta = (max_average_sig - average_sig[i]);
715 /* If signal is very weak, compared with
716 * strongest, mark it as disconnected. */
717 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
718 data->disconn_array[i] = 1;
720 active_chains |= (1 << i);
721 IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
722 "disconn_array[i] = %d\n",
723 i, rssi_delta, data->disconn_array[i]);
728 for (i = 0; i < NUM_RX_CHAINS; i++) {
729 /* loops on all the bits of
730 * priv->hw_setting.valid_tx_ant */
731 u8 ant_msk = (1 << i);
732 if (!(priv->hw_params.valid_tx_ant & ant_msk))
736 if (data->disconn_array[i] == 0)
737 /* there is a Tx antenna connected */
739 if (num_tx_chains == priv->hw_params.tx_chains_num &&
740 data->disconn_array[i]) {
741 /* This is the last TX antenna and is also
742 * disconnected connect it anyway */
743 data->disconn_array[i] = 0;
744 active_chains |= ant_msk;
745 IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
746 "declare %d as connected\n", i);
751 IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
754 /* Save for use within RXON, TX, SCAN commands, etc. */
755 /*priv->valid_antenna = active_chains;*/
756 /*FIXME: should be reflected in RX chains in RXON */
758 /* Analyze noise for rx balance */
759 average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
760 average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
761 average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
763 for (i = 0; i < NUM_RX_CHAINS; i++) {
764 if (!(data->disconn_array[i]) &&
765 (average_noise[i] <= min_average_noise)) {
766 /* This means that chain i is active and has
767 * lower noise values so far: */
768 min_average_noise = average_noise[i];
769 min_average_noise_antenna_i = i;
773 IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
774 average_noise[0], average_noise[1],
777 IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
778 min_average_noise, min_average_noise_antenna_i);
780 priv->cfg->ops->utils->gain_computation(priv, average_noise,
781 min_average_noise_antenna_i, min_average_noise);
783 EXPORT_SYMBOL(iwl_chain_noise_calibration);
786 void iwl_reset_run_time_calib(struct iwl_priv *priv)
789 memset(&(priv->sensitivity_data), 0,
790 sizeof(struct iwl_sensitivity_data));
791 memset(&(priv->chain_noise_data), 0,
792 sizeof(struct iwl_chain_noise_data));
793 for (i = 0; i < NUM_RX_CHAINS; i++)
794 priv->chain_noise_data.delta_gain_code[i] =
795 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
797 /* Ask for statistics now, the uCode will send notification
798 * periodically after association */
799 iwl_send_statistics_request(priv, CMD_ASYNC);
801 EXPORT_SYMBOL(iwl_reset_run_time_calib);