Pull d-states into release branch
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/mm.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/semaphore.h>
33
34 #include "fw-transaction.h"
35 #include "fw-ohci.h"
36
37 #define DESCRIPTOR_OUTPUT_MORE          0
38 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
39 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
40 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
41 #define DESCRIPTOR_STATUS               (1 << 11)
42 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
43 #define DESCRIPTOR_PING                 (1 << 7)
44 #define DESCRIPTOR_YY                   (1 << 6)
45 #define DESCRIPTOR_NO_IRQ               (0 << 4)
46 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
47 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
48 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
49 #define DESCRIPTOR_WAIT                 (3 << 0)
50
51 struct descriptor {
52         __le16 req_count;
53         __le16 control;
54         __le32 data_address;
55         __le32 branch_address;
56         __le16 res_count;
57         __le16 transfer_status;
58 } __attribute__((aligned(16)));
59
60 struct db_descriptor {
61         __le16 first_size;
62         __le16 control;
63         __le16 second_req_count;
64         __le16 first_req_count;
65         __le32 branch_address;
66         __le16 second_res_count;
67         __le16 first_res_count;
68         __le32 reserved0;
69         __le32 first_buffer;
70         __le32 second_buffer;
71         __le32 reserved1;
72 } __attribute__((aligned(16)));
73
74 #define CONTROL_SET(regs)       (regs)
75 #define CONTROL_CLEAR(regs)     ((regs) + 4)
76 #define COMMAND_PTR(regs)       ((regs) + 12)
77 #define CONTEXT_MATCH(regs)     ((regs) + 16)
78
79 struct ar_buffer {
80         struct descriptor descriptor;
81         struct ar_buffer *next;
82         __le32 data[0];
83 };
84
85 struct ar_context {
86         struct fw_ohci *ohci;
87         struct ar_buffer *current_buffer;
88         struct ar_buffer *last_buffer;
89         void *pointer;
90         u32 regs;
91         struct tasklet_struct tasklet;
92 };
93
94 struct context;
95
96 typedef int (*descriptor_callback_t)(struct context *ctx,
97                                      struct descriptor *d,
98                                      struct descriptor *last);
99 struct context {
100         struct fw_ohci *ohci;
101         u32 regs;
102
103         struct descriptor *buffer;
104         dma_addr_t buffer_bus;
105         size_t buffer_size;
106         struct descriptor *head_descriptor;
107         struct descriptor *tail_descriptor;
108         struct descriptor *tail_descriptor_last;
109         struct descriptor *prev_descriptor;
110
111         descriptor_callback_t callback;
112
113         struct tasklet_struct tasklet;
114 };
115
116 #define IT_HEADER_SY(v)          ((v) <<  0)
117 #define IT_HEADER_TCODE(v)       ((v) <<  4)
118 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
119 #define IT_HEADER_TAG(v)         ((v) << 14)
120 #define IT_HEADER_SPEED(v)       ((v) << 16)
121 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
122
123 struct iso_context {
124         struct fw_iso_context base;
125         struct context context;
126         void *header;
127         size_t header_length;
128 };
129
130 #define CONFIG_ROM_SIZE 1024
131
132 struct fw_ohci {
133         struct fw_card card;
134
135         u32 version;
136         __iomem char *registers;
137         dma_addr_t self_id_bus;
138         __le32 *self_id_cpu;
139         struct tasklet_struct bus_reset_tasklet;
140         int node_id;
141         int generation;
142         int request_generation;
143         u32 bus_seconds;
144
145         /*
146          * Spinlock for accessing fw_ohci data.  Never call out of
147          * this driver with this lock held.
148          */
149         spinlock_t lock;
150         u32 self_id_buffer[512];
151
152         /* Config rom buffers */
153         __be32 *config_rom;
154         dma_addr_t config_rom_bus;
155         __be32 *next_config_rom;
156         dma_addr_t next_config_rom_bus;
157         u32 next_header;
158
159         struct ar_context ar_request_ctx;
160         struct ar_context ar_response_ctx;
161         struct context at_request_ctx;
162         struct context at_response_ctx;
163
164         u32 it_context_mask;
165         struct iso_context *it_context_list;
166         u32 ir_context_mask;
167         struct iso_context *ir_context_list;
168 };
169
170 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
171 {
172         return container_of(card, struct fw_ohci, card);
173 }
174
175 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
176 #define IR_CONTEXT_BUFFER_FILL          0x80000000
177 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
178 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
179 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
180 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
181
182 #define CONTEXT_RUN     0x8000
183 #define CONTEXT_WAKE    0x1000
184 #define CONTEXT_DEAD    0x0800
185 #define CONTEXT_ACTIVE  0x0400
186
187 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
188 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
189 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
190
191 #define FW_OHCI_MAJOR                   240
192 #define OHCI1394_REGISTER_SIZE          0x800
193 #define OHCI_LOOP_COUNT                 500
194 #define OHCI1394_PCI_HCI_Control        0x40
195 #define SELF_ID_BUF_SIZE                0x800
196 #define OHCI_TCODE_PHY_PACKET           0x0e
197 #define OHCI_VERSION_1_1                0x010010
198 #define ISO_BUFFER_SIZE                 (64 * 1024)
199 #define AT_BUFFER_SIZE                  4096
200
201 static char ohci_driver_name[] = KBUILD_MODNAME;
202
203 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
204 {
205         writel(data, ohci->registers + offset);
206 }
207
208 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
209 {
210         return readl(ohci->registers + offset);
211 }
212
213 static inline void flush_writes(const struct fw_ohci *ohci)
214 {
215         /* Do a dummy read to flush writes. */
216         reg_read(ohci, OHCI1394_Version);
217 }
218
219 static int
220 ohci_update_phy_reg(struct fw_card *card, int addr,
221                     int clear_bits, int set_bits)
222 {
223         struct fw_ohci *ohci = fw_ohci(card);
224         u32 val, old;
225
226         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
227         flush_writes(ohci);
228         msleep(2);
229         val = reg_read(ohci, OHCI1394_PhyControl);
230         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
231                 fw_error("failed to set phy reg bits.\n");
232                 return -EBUSY;
233         }
234
235         old = OHCI1394_PhyControl_ReadData(val);
236         old = (old & ~clear_bits) | set_bits;
237         reg_write(ohci, OHCI1394_PhyControl,
238                   OHCI1394_PhyControl_Write(addr, old));
239
240         return 0;
241 }
242
243 static int ar_context_add_page(struct ar_context *ctx)
244 {
245         struct device *dev = ctx->ohci->card.device;
246         struct ar_buffer *ab;
247         dma_addr_t ab_bus;
248         size_t offset;
249
250         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
251         if (ab == NULL)
252                 return -ENOMEM;
253
254         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
255         if (dma_mapping_error(ab_bus)) {
256                 free_page((unsigned long) ab);
257                 return -ENOMEM;
258         }
259
260         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
261         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
262                                                     DESCRIPTOR_STATUS |
263                                                     DESCRIPTOR_BRANCH_ALWAYS);
264         offset = offsetof(struct ar_buffer, data);
265         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
266         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
267         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
268         ab->descriptor.branch_address = 0;
269
270         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
271
272         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
273         ctx->last_buffer->next = ab;
274         ctx->last_buffer = ab;
275
276         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
277         flush_writes(ctx->ohci);
278
279         return 0;
280 }
281
282 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
283 {
284         struct fw_ohci *ohci = ctx->ohci;
285         struct fw_packet p;
286         u32 status, length, tcode;
287
288         p.header[0] = le32_to_cpu(buffer[0]);
289         p.header[1] = le32_to_cpu(buffer[1]);
290         p.header[2] = le32_to_cpu(buffer[2]);
291
292         tcode = (p.header[0] >> 4) & 0x0f;
293         switch (tcode) {
294         case TCODE_WRITE_QUADLET_REQUEST:
295         case TCODE_READ_QUADLET_RESPONSE:
296                 p.header[3] = (__force __u32) buffer[3];
297                 p.header_length = 16;
298                 p.payload_length = 0;
299                 break;
300
301         case TCODE_READ_BLOCK_REQUEST :
302                 p.header[3] = le32_to_cpu(buffer[3]);
303                 p.header_length = 16;
304                 p.payload_length = 0;
305                 break;
306
307         case TCODE_WRITE_BLOCK_REQUEST:
308         case TCODE_READ_BLOCK_RESPONSE:
309         case TCODE_LOCK_REQUEST:
310         case TCODE_LOCK_RESPONSE:
311                 p.header[3] = le32_to_cpu(buffer[3]);
312                 p.header_length = 16;
313                 p.payload_length = p.header[3] >> 16;
314                 break;
315
316         case TCODE_WRITE_RESPONSE:
317         case TCODE_READ_QUADLET_REQUEST:
318         case OHCI_TCODE_PHY_PACKET:
319                 p.header_length = 12;
320                 p.payload_length = 0;
321                 break;
322         }
323
324         p.payload = (void *) buffer + p.header_length;
325
326         /* FIXME: What to do about evt_* errors? */
327         length = (p.header_length + p.payload_length + 3) / 4;
328         status = le32_to_cpu(buffer[length]);
329
330         p.ack        = ((status >> 16) & 0x1f) - 16;
331         p.speed      = (status >> 21) & 0x7;
332         p.timestamp  = status & 0xffff;
333         p.generation = ohci->request_generation;
334
335         /*
336          * The OHCI bus reset handler synthesizes a phy packet with
337          * the new generation number when a bus reset happens (see
338          * section 8.4.2.3).  This helps us determine when a request
339          * was received and make sure we send the response in the same
340          * generation.  We only need this for requests; for responses
341          * we use the unique tlabel for finding the matching
342          * request.
343          */
344
345         if (p.ack + 16 == 0x09)
346                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
347         else if (ctx == &ohci->ar_request_ctx)
348                 fw_core_handle_request(&ohci->card, &p);
349         else
350                 fw_core_handle_response(&ohci->card, &p);
351
352         return buffer + length + 1;
353 }
354
355 static void ar_context_tasklet(unsigned long data)
356 {
357         struct ar_context *ctx = (struct ar_context *)data;
358         struct fw_ohci *ohci = ctx->ohci;
359         struct ar_buffer *ab;
360         struct descriptor *d;
361         void *buffer, *end;
362
363         ab = ctx->current_buffer;
364         d = &ab->descriptor;
365
366         if (d->res_count == 0) {
367                 size_t size, rest, offset;
368
369                 /*
370                  * This descriptor is finished and we may have a
371                  * packet split across this and the next buffer. We
372                  * reuse the page for reassembling the split packet.
373                  */
374
375                 offset = offsetof(struct ar_buffer, data);
376                 dma_unmap_single(ohci->card.device,
377                         le32_to_cpu(ab->descriptor.data_address) - offset,
378                         PAGE_SIZE, DMA_BIDIRECTIONAL);
379
380                 buffer = ab;
381                 ab = ab->next;
382                 d = &ab->descriptor;
383                 size = buffer + PAGE_SIZE - ctx->pointer;
384                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
385                 memmove(buffer, ctx->pointer, size);
386                 memcpy(buffer + size, ab->data, rest);
387                 ctx->current_buffer = ab;
388                 ctx->pointer = (void *) ab->data + rest;
389                 end = buffer + size + rest;
390
391                 while (buffer < end)
392                         buffer = handle_ar_packet(ctx, buffer);
393
394                 free_page((unsigned long)buffer);
395                 ar_context_add_page(ctx);
396         } else {
397                 buffer = ctx->pointer;
398                 ctx->pointer = end =
399                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
400
401                 while (buffer < end)
402                         buffer = handle_ar_packet(ctx, buffer);
403         }
404 }
405
406 static int
407 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
408 {
409         struct ar_buffer ab;
410
411         ctx->regs        = regs;
412         ctx->ohci        = ohci;
413         ctx->last_buffer = &ab;
414         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
415
416         ar_context_add_page(ctx);
417         ar_context_add_page(ctx);
418         ctx->current_buffer = ab.next;
419         ctx->pointer = ctx->current_buffer->data;
420
421         return 0;
422 }
423
424 static void ar_context_run(struct ar_context *ctx)
425 {
426         struct ar_buffer *ab = ctx->current_buffer;
427         dma_addr_t ab_bus;
428         size_t offset;
429
430         offset = offsetof(struct ar_buffer, data);
431         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
432
433         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
434         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
435         flush_writes(ctx->ohci);
436 }
437
438 static void context_tasklet(unsigned long data)
439 {
440         struct context *ctx = (struct context *) data;
441         struct fw_ohci *ohci = ctx->ohci;
442         struct descriptor *d, *last;
443         u32 address;
444         int z;
445
446         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
447                                 ctx->buffer_size, DMA_TO_DEVICE);
448
449         d    = ctx->tail_descriptor;
450         last = ctx->tail_descriptor_last;
451
452         while (last->branch_address != 0) {
453                 address = le32_to_cpu(last->branch_address);
454                 z = address & 0xf;
455                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
456                 last = (z == 2) ? d : d + z - 1;
457
458                 if (!ctx->callback(ctx, d, last))
459                         break;
460
461                 ctx->tail_descriptor      = d;
462                 ctx->tail_descriptor_last = last;
463         }
464 }
465
466 static int
467 context_init(struct context *ctx, struct fw_ohci *ohci,
468              size_t buffer_size, u32 regs,
469              descriptor_callback_t callback)
470 {
471         ctx->ohci = ohci;
472         ctx->regs = regs;
473         ctx->buffer_size = buffer_size;
474         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
475         if (ctx->buffer == NULL)
476                 return -ENOMEM;
477
478         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
479         ctx->callback = callback;
480
481         ctx->buffer_bus =
482                 dma_map_single(ohci->card.device, ctx->buffer,
483                                buffer_size, DMA_TO_DEVICE);
484         if (dma_mapping_error(ctx->buffer_bus)) {
485                 kfree(ctx->buffer);
486                 return -ENOMEM;
487         }
488
489         ctx->head_descriptor      = ctx->buffer;
490         ctx->prev_descriptor      = ctx->buffer;
491         ctx->tail_descriptor      = ctx->buffer;
492         ctx->tail_descriptor_last = ctx->buffer;
493
494         /*
495          * We put a dummy descriptor in the buffer that has a NULL
496          * branch address and looks like it's been sent.  That way we
497          * have a descriptor to append DMA programs to.  Also, the
498          * ring buffer invariant is that it always has at least one
499          * element so that head == tail means buffer full.
500          */
501
502         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
503         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
504         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
505         ctx->head_descriptor++;
506
507         return 0;
508 }
509
510 static void
511 context_release(struct context *ctx)
512 {
513         struct fw_card *card = &ctx->ohci->card;
514
515         dma_unmap_single(card->device, ctx->buffer_bus,
516                          ctx->buffer_size, DMA_TO_DEVICE);
517         kfree(ctx->buffer);
518 }
519
520 static struct descriptor *
521 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
522 {
523         struct descriptor *d, *tail, *end;
524
525         d = ctx->head_descriptor;
526         tail = ctx->tail_descriptor;
527         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
528
529         if (d + z <= tail) {
530                 goto has_space;
531         } else if (d > tail && d + z <= end) {
532                 goto has_space;
533         } else if (d > tail && ctx->buffer + z <= tail) {
534                 d = ctx->buffer;
535                 goto has_space;
536         }
537
538         return NULL;
539
540  has_space:
541         memset(d, 0, z * sizeof(*d));
542         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
543
544         return d;
545 }
546
547 static void context_run(struct context *ctx, u32 extra)
548 {
549         struct fw_ohci *ohci = ctx->ohci;
550
551         reg_write(ohci, COMMAND_PTR(ctx->regs),
552                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
553         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
554         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
555         flush_writes(ohci);
556 }
557
558 static void context_append(struct context *ctx,
559                            struct descriptor *d, int z, int extra)
560 {
561         dma_addr_t d_bus;
562
563         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
564
565         ctx->head_descriptor = d + z + extra;
566         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
567         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
568
569         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
570                                    ctx->buffer_size, DMA_TO_DEVICE);
571
572         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
573         flush_writes(ctx->ohci);
574 }
575
576 static void context_stop(struct context *ctx)
577 {
578         u32 reg;
579         int i;
580
581         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
582         flush_writes(ctx->ohci);
583
584         for (i = 0; i < 10; i++) {
585                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
586                 if ((reg & CONTEXT_ACTIVE) == 0)
587                         break;
588
589                 fw_notify("context_stop: still active (0x%08x)\n", reg);
590                 mdelay(1);
591         }
592 }
593
594 struct driver_data {
595         struct fw_packet *packet;
596 };
597
598 /*
599  * This function apppends a packet to the DMA queue for transmission.
600  * Must always be called with the ochi->lock held to ensure proper
601  * generation handling and locking around packet queue manipulation.
602  */
603 static int
604 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
605 {
606         struct fw_ohci *ohci = ctx->ohci;
607         dma_addr_t d_bus, payload_bus;
608         struct driver_data *driver_data;
609         struct descriptor *d, *last;
610         __le32 *header;
611         int z, tcode;
612         u32 reg;
613
614         d = context_get_descriptors(ctx, 4, &d_bus);
615         if (d == NULL) {
616                 packet->ack = RCODE_SEND_ERROR;
617                 return -1;
618         }
619
620         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
621         d[0].res_count = cpu_to_le16(packet->timestamp);
622
623         /*
624          * The DMA format for asyncronous link packets is different
625          * from the IEEE1394 layout, so shift the fields around
626          * accordingly.  If header_length is 8, it's a PHY packet, to
627          * which we need to prepend an extra quadlet.
628          */
629
630         header = (__le32 *) &d[1];
631         if (packet->header_length > 8) {
632                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
633                                         (packet->speed << 16));
634                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
635                                         (packet->header[0] & 0xffff0000));
636                 header[2] = cpu_to_le32(packet->header[2]);
637
638                 tcode = (packet->header[0] >> 4) & 0x0f;
639                 if (TCODE_IS_BLOCK_PACKET(tcode))
640                         header[3] = cpu_to_le32(packet->header[3]);
641                 else
642                         header[3] = (__force __le32) packet->header[3];
643
644                 d[0].req_count = cpu_to_le16(packet->header_length);
645         } else {
646                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
647                                         (packet->speed << 16));
648                 header[1] = cpu_to_le32(packet->header[0]);
649                 header[2] = cpu_to_le32(packet->header[1]);
650                 d[0].req_count = cpu_to_le16(12);
651         }
652
653         driver_data = (struct driver_data *) &d[3];
654         driver_data->packet = packet;
655         packet->driver_data = driver_data;
656         
657         if (packet->payload_length > 0) {
658                 payload_bus =
659                         dma_map_single(ohci->card.device, packet->payload,
660                                        packet->payload_length, DMA_TO_DEVICE);
661                 if (dma_mapping_error(payload_bus)) {
662                         packet->ack = RCODE_SEND_ERROR;
663                         return -1;
664                 }
665
666                 d[2].req_count    = cpu_to_le16(packet->payload_length);
667                 d[2].data_address = cpu_to_le32(payload_bus);
668                 last = &d[2];
669                 z = 3;
670         } else {
671                 last = &d[0];
672                 z = 2;
673         }
674
675         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
676                                      DESCRIPTOR_IRQ_ALWAYS |
677                                      DESCRIPTOR_BRANCH_ALWAYS);
678
679         /* FIXME: Document how the locking works. */
680         if (ohci->generation != packet->generation) {
681                 packet->ack = RCODE_GENERATION;
682                 return -1;
683         }
684
685         context_append(ctx, d, z, 4 - z);
686
687         /* If the context isn't already running, start it up. */
688         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
689         if ((reg & CONTEXT_RUN) == 0)
690                 context_run(ctx, 0);
691
692         return 0;
693 }
694
695 static int handle_at_packet(struct context *context,
696                             struct descriptor *d,
697                             struct descriptor *last)
698 {
699         struct driver_data *driver_data;
700         struct fw_packet *packet;
701         struct fw_ohci *ohci = context->ohci;
702         dma_addr_t payload_bus;
703         int evt;
704
705         if (last->transfer_status == 0)
706                 /* This descriptor isn't done yet, stop iteration. */
707                 return 0;
708
709         driver_data = (struct driver_data *) &d[3];
710         packet = driver_data->packet;
711         if (packet == NULL)
712                 /* This packet was cancelled, just continue. */
713                 return 1;
714
715         payload_bus = le32_to_cpu(last->data_address);
716         if (payload_bus != 0)
717                 dma_unmap_single(ohci->card.device, payload_bus,
718                                  packet->payload_length, DMA_TO_DEVICE);
719
720         evt = le16_to_cpu(last->transfer_status) & 0x1f;
721         packet->timestamp = le16_to_cpu(last->res_count);
722
723         switch (evt) {
724         case OHCI1394_evt_timeout:
725                 /* Async response transmit timed out. */
726                 packet->ack = RCODE_CANCELLED;
727                 break;
728
729         case OHCI1394_evt_flushed:
730                 /*
731                  * The packet was flushed should give same error as
732                  * when we try to use a stale generation count.
733                  */
734                 packet->ack = RCODE_GENERATION;
735                 break;
736
737         case OHCI1394_evt_missing_ack:
738                 /*
739                  * Using a valid (current) generation count, but the
740                  * node is not on the bus or not sending acks.
741                  */
742                 packet->ack = RCODE_NO_ACK;
743                 break;
744
745         case ACK_COMPLETE + 0x10:
746         case ACK_PENDING + 0x10:
747         case ACK_BUSY_X + 0x10:
748         case ACK_BUSY_A + 0x10:
749         case ACK_BUSY_B + 0x10:
750         case ACK_DATA_ERROR + 0x10:
751         case ACK_TYPE_ERROR + 0x10:
752                 packet->ack = evt - 0x10;
753                 break;
754
755         default:
756                 packet->ack = RCODE_SEND_ERROR;
757                 break;
758         }
759
760         packet->callback(packet, &ohci->card, packet->ack);
761
762         return 1;
763 }
764
765 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
766 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
767 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
768 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
769 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
770
771 static void
772 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
773 {
774         struct fw_packet response;
775         int tcode, length, i;
776
777         tcode = HEADER_GET_TCODE(packet->header[0]);
778         if (TCODE_IS_BLOCK_PACKET(tcode))
779                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
780         else
781                 length = 4;
782
783         i = csr - CSR_CONFIG_ROM;
784         if (i + length > CONFIG_ROM_SIZE) {
785                 fw_fill_response(&response, packet->header,
786                                  RCODE_ADDRESS_ERROR, NULL, 0);
787         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
788                 fw_fill_response(&response, packet->header,
789                                  RCODE_TYPE_ERROR, NULL, 0);
790         } else {
791                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
792                                  (void *) ohci->config_rom + i, length);
793         }
794
795         fw_core_handle_response(&ohci->card, &response);
796 }
797
798 static void
799 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
800 {
801         struct fw_packet response;
802         int tcode, length, ext_tcode, sel;
803         __be32 *payload, lock_old;
804         u32 lock_arg, lock_data;
805
806         tcode = HEADER_GET_TCODE(packet->header[0]);
807         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
808         payload = packet->payload;
809         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
810
811         if (tcode == TCODE_LOCK_REQUEST &&
812             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
813                 lock_arg = be32_to_cpu(payload[0]);
814                 lock_data = be32_to_cpu(payload[1]);
815         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
816                 lock_arg = 0;
817                 lock_data = 0;
818         } else {
819                 fw_fill_response(&response, packet->header,
820                                  RCODE_TYPE_ERROR, NULL, 0);
821                 goto out;
822         }
823
824         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
825         reg_write(ohci, OHCI1394_CSRData, lock_data);
826         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
827         reg_write(ohci, OHCI1394_CSRControl, sel);
828
829         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
830                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
831         else
832                 fw_notify("swap not done yet\n");
833
834         fw_fill_response(&response, packet->header,
835                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
836  out:
837         fw_core_handle_response(&ohci->card, &response);
838 }
839
840 static void
841 handle_local_request(struct context *ctx, struct fw_packet *packet)
842 {
843         u64 offset;
844         u32 csr;
845
846         if (ctx == &ctx->ohci->at_request_ctx) {
847                 packet->ack = ACK_PENDING;
848                 packet->callback(packet, &ctx->ohci->card, packet->ack);
849         }
850
851         offset =
852                 ((unsigned long long)
853                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
854                 packet->header[2];
855         csr = offset - CSR_REGISTER_BASE;
856
857         /* Handle config rom reads. */
858         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
859                 handle_local_rom(ctx->ohci, packet, csr);
860         else switch (csr) {
861         case CSR_BUS_MANAGER_ID:
862         case CSR_BANDWIDTH_AVAILABLE:
863         case CSR_CHANNELS_AVAILABLE_HI:
864         case CSR_CHANNELS_AVAILABLE_LO:
865                 handle_local_lock(ctx->ohci, packet, csr);
866                 break;
867         default:
868                 if (ctx == &ctx->ohci->at_request_ctx)
869                         fw_core_handle_request(&ctx->ohci->card, packet);
870                 else
871                         fw_core_handle_response(&ctx->ohci->card, packet);
872                 break;
873         }
874
875         if (ctx == &ctx->ohci->at_response_ctx) {
876                 packet->ack = ACK_COMPLETE;
877                 packet->callback(packet, &ctx->ohci->card, packet->ack);
878         }
879 }
880
881 static void
882 at_context_transmit(struct context *ctx, struct fw_packet *packet)
883 {
884         unsigned long flags;
885         int retval;
886
887         spin_lock_irqsave(&ctx->ohci->lock, flags);
888
889         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
890             ctx->ohci->generation == packet->generation) {
891                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
892                 handle_local_request(ctx, packet);
893                 return;
894         }
895
896         retval = at_context_queue_packet(ctx, packet);
897         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
898
899         if (retval < 0)
900                 packet->callback(packet, &ctx->ohci->card, packet->ack);
901         
902 }
903
904 static void bus_reset_tasklet(unsigned long data)
905 {
906         struct fw_ohci *ohci = (struct fw_ohci *)data;
907         int self_id_count, i, j, reg;
908         int generation, new_generation;
909         unsigned long flags;
910
911         reg = reg_read(ohci, OHCI1394_NodeID);
912         if (!(reg & OHCI1394_NodeID_idValid)) {
913                 fw_error("node ID not valid, new bus reset in progress\n");
914                 return;
915         }
916         ohci->node_id = reg & 0xffff;
917
918         /*
919          * The count in the SelfIDCount register is the number of
920          * bytes in the self ID receive buffer.  Since we also receive
921          * the inverted quadlets and a header quadlet, we shift one
922          * bit extra to get the actual number of self IDs.
923          */
924
925         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
926         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
927
928         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
929                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
930                         fw_error("inconsistent self IDs\n");
931                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
932         }
933
934         /*
935          * Check the consistency of the self IDs we just read.  The
936          * problem we face is that a new bus reset can start while we
937          * read out the self IDs from the DMA buffer. If this happens,
938          * the DMA buffer will be overwritten with new self IDs and we
939          * will read out inconsistent data.  The OHCI specification
940          * (section 11.2) recommends a technique similar to
941          * linux/seqlock.h, where we remember the generation of the
942          * self IDs in the buffer before reading them out and compare
943          * it to the current generation after reading them out.  If
944          * the two generations match we know we have a consistent set
945          * of self IDs.
946          */
947
948         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
949         if (new_generation != generation) {
950                 fw_notify("recursive bus reset detected, "
951                           "discarding self ids\n");
952                 return;
953         }
954
955         /* FIXME: Document how the locking works. */
956         spin_lock_irqsave(&ohci->lock, flags);
957
958         ohci->generation = generation;
959         context_stop(&ohci->at_request_ctx);
960         context_stop(&ohci->at_response_ctx);
961         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
962
963         /*
964          * This next bit is unrelated to the AT context stuff but we
965          * have to do it under the spinlock also.  If a new config rom
966          * was set up before this reset, the old one is now no longer
967          * in use and we can free it. Update the config rom pointers
968          * to point to the current config rom and clear the
969          * next_config_rom pointer so a new udpate can take place.
970          */
971
972         if (ohci->next_config_rom != NULL) {
973                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
974                                   ohci->config_rom, ohci->config_rom_bus);
975                 ohci->config_rom      = ohci->next_config_rom;
976                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
977                 ohci->next_config_rom = NULL;
978
979                 /*
980                  * Restore config_rom image and manually update
981                  * config_rom registers.  Writing the header quadlet
982                  * will indicate that the config rom is ready, so we
983                  * do that last.
984                  */
985                 reg_write(ohci, OHCI1394_BusOptions,
986                           be32_to_cpu(ohci->config_rom[2]));
987                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
988                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
989         }
990
991         spin_unlock_irqrestore(&ohci->lock, flags);
992
993         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
994                                  self_id_count, ohci->self_id_buffer);
995 }
996
997 static irqreturn_t irq_handler(int irq, void *data)
998 {
999         struct fw_ohci *ohci = data;
1000         u32 event, iso_event, cycle_time;
1001         int i;
1002
1003         event = reg_read(ohci, OHCI1394_IntEventClear);
1004
1005         if (!event || !~event)
1006                 return IRQ_NONE;
1007
1008         reg_write(ohci, OHCI1394_IntEventClear, event);
1009
1010         if (event & OHCI1394_selfIDComplete)
1011                 tasklet_schedule(&ohci->bus_reset_tasklet);
1012
1013         if (event & OHCI1394_RQPkt)
1014                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1015
1016         if (event & OHCI1394_RSPkt)
1017                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1018
1019         if (event & OHCI1394_reqTxComplete)
1020                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1021
1022         if (event & OHCI1394_respTxComplete)
1023                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1024
1025         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1026         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1027
1028         while (iso_event) {
1029                 i = ffs(iso_event) - 1;
1030                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1031                 iso_event &= ~(1 << i);
1032         }
1033
1034         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1035         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1036
1037         while (iso_event) {
1038                 i = ffs(iso_event) - 1;
1039                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1040                 iso_event &= ~(1 << i);
1041         }
1042
1043         if (event & OHCI1394_cycle64Seconds) {
1044                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1045                 if ((cycle_time & 0x80000000) == 0)
1046                         ohci->bus_seconds++;
1047         }
1048
1049         return IRQ_HANDLED;
1050 }
1051
1052 static int software_reset(struct fw_ohci *ohci)
1053 {
1054         int i;
1055
1056         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1057
1058         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1059                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1060                      OHCI1394_HCControl_softReset) == 0)
1061                         return 0;
1062                 msleep(1);
1063         }
1064
1065         return -EBUSY;
1066 }
1067
1068 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1069 {
1070         struct fw_ohci *ohci = fw_ohci(card);
1071         struct pci_dev *dev = to_pci_dev(card->device);
1072
1073         if (software_reset(ohci)) {
1074                 fw_error("Failed to reset ohci card.\n");
1075                 return -EBUSY;
1076         }
1077
1078         /*
1079          * Now enable LPS, which we need in order to start accessing
1080          * most of the registers.  In fact, on some cards (ALI M5251),
1081          * accessing registers in the SClk domain without LPS enabled
1082          * will lock up the machine.  Wait 50msec to make sure we have
1083          * full link enabled.
1084          */
1085         reg_write(ohci, OHCI1394_HCControlSet,
1086                   OHCI1394_HCControl_LPS |
1087                   OHCI1394_HCControl_postedWriteEnable);
1088         flush_writes(ohci);
1089         msleep(50);
1090
1091         reg_write(ohci, OHCI1394_HCControlClear,
1092                   OHCI1394_HCControl_noByteSwapData);
1093
1094         reg_write(ohci, OHCI1394_LinkControlSet,
1095                   OHCI1394_LinkControl_rcvSelfID |
1096                   OHCI1394_LinkControl_cycleTimerEnable |
1097                   OHCI1394_LinkControl_cycleMaster);
1098
1099         reg_write(ohci, OHCI1394_ATRetries,
1100                   OHCI1394_MAX_AT_REQ_RETRIES |
1101                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1102                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1103
1104         ar_context_run(&ohci->ar_request_ctx);
1105         ar_context_run(&ohci->ar_response_ctx);
1106
1107         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1108         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1109         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1110         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1111         reg_write(ohci, OHCI1394_IntMaskSet,
1112                   OHCI1394_selfIDComplete |
1113                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1114                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1115                   OHCI1394_isochRx | OHCI1394_isochTx |
1116                   OHCI1394_masterIntEnable |
1117                   OHCI1394_cycle64Seconds);
1118
1119         /* Activate link_on bit and contender bit in our self ID packets.*/
1120         if (ohci_update_phy_reg(card, 4, 0,
1121                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1122                 return -EIO;
1123
1124         /*
1125          * When the link is not yet enabled, the atomic config rom
1126          * update mechanism described below in ohci_set_config_rom()
1127          * is not active.  We have to update ConfigRomHeader and
1128          * BusOptions manually, and the write to ConfigROMmap takes
1129          * effect immediately.  We tie this to the enabling of the
1130          * link, so we have a valid config rom before enabling - the
1131          * OHCI requires that ConfigROMhdr and BusOptions have valid
1132          * values before enabling.
1133          *
1134          * However, when the ConfigROMmap is written, some controllers
1135          * always read back quadlets 0 and 2 from the config rom to
1136          * the ConfigRomHeader and BusOptions registers on bus reset.
1137          * They shouldn't do that in this initial case where the link
1138          * isn't enabled.  This means we have to use the same
1139          * workaround here, setting the bus header to 0 and then write
1140          * the right values in the bus reset tasklet.
1141          */
1142
1143         ohci->next_config_rom =
1144                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1145                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1146         if (ohci->next_config_rom == NULL)
1147                 return -ENOMEM;
1148
1149         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1150         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1151
1152         ohci->next_header = config_rom[0];
1153         ohci->next_config_rom[0] = 0;
1154         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1155         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1156         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1157
1158         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1159
1160         if (request_irq(dev->irq, irq_handler,
1161                         IRQF_SHARED, ohci_driver_name, ohci)) {
1162                 fw_error("Failed to allocate shared interrupt %d.\n",
1163                          dev->irq);
1164                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1165                                   ohci->config_rom, ohci->config_rom_bus);
1166                 return -EIO;
1167         }
1168
1169         reg_write(ohci, OHCI1394_HCControlSet,
1170                   OHCI1394_HCControl_linkEnable |
1171                   OHCI1394_HCControl_BIBimageValid);
1172         flush_writes(ohci);
1173
1174         /*
1175          * We are ready to go, initiate bus reset to finish the
1176          * initialization.
1177          */
1178
1179         fw_core_initiate_bus_reset(&ohci->card, 1);
1180
1181         return 0;
1182 }
1183
1184 static int
1185 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1186 {
1187         struct fw_ohci *ohci;
1188         unsigned long flags;
1189         int retval = 0;
1190         __be32 *next_config_rom;
1191         dma_addr_t next_config_rom_bus;
1192
1193         ohci = fw_ohci(card);
1194
1195         /*
1196          * When the OHCI controller is enabled, the config rom update
1197          * mechanism is a bit tricky, but easy enough to use.  See
1198          * section 5.5.6 in the OHCI specification.
1199          *
1200          * The OHCI controller caches the new config rom address in a
1201          * shadow register (ConfigROMmapNext) and needs a bus reset
1202          * for the changes to take place.  When the bus reset is
1203          * detected, the controller loads the new values for the
1204          * ConfigRomHeader and BusOptions registers from the specified
1205          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1206          * shadow register. All automatically and atomically.
1207          *
1208          * Now, there's a twist to this story.  The automatic load of
1209          * ConfigRomHeader and BusOptions doesn't honor the
1210          * noByteSwapData bit, so with a be32 config rom, the
1211          * controller will load be32 values in to these registers
1212          * during the atomic update, even on litte endian
1213          * architectures.  The workaround we use is to put a 0 in the
1214          * header quadlet; 0 is endian agnostic and means that the
1215          * config rom isn't ready yet.  In the bus reset tasklet we
1216          * then set up the real values for the two registers.
1217          *
1218          * We use ohci->lock to avoid racing with the code that sets
1219          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1220          */
1221
1222         next_config_rom =
1223                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1224                                    &next_config_rom_bus, GFP_KERNEL);
1225         if (next_config_rom == NULL)
1226                 return -ENOMEM;
1227
1228         spin_lock_irqsave(&ohci->lock, flags);
1229
1230         if (ohci->next_config_rom == NULL) {
1231                 ohci->next_config_rom = next_config_rom;
1232                 ohci->next_config_rom_bus = next_config_rom_bus;
1233
1234                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1235                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1236                                   length * 4);
1237
1238                 ohci->next_header = config_rom[0];
1239                 ohci->next_config_rom[0] = 0;
1240
1241                 reg_write(ohci, OHCI1394_ConfigROMmap,
1242                           ohci->next_config_rom_bus);
1243         } else {
1244                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1245                                   next_config_rom, next_config_rom_bus);
1246                 retval = -EBUSY;
1247         }
1248
1249         spin_unlock_irqrestore(&ohci->lock, flags);
1250
1251         /*
1252          * Now initiate a bus reset to have the changes take
1253          * effect. We clean up the old config rom memory and DMA
1254          * mappings in the bus reset tasklet, since the OHCI
1255          * controller could need to access it before the bus reset
1256          * takes effect.
1257          */
1258         if (retval == 0)
1259                 fw_core_initiate_bus_reset(&ohci->card, 1);
1260
1261         return retval;
1262 }
1263
1264 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1265 {
1266         struct fw_ohci *ohci = fw_ohci(card);
1267
1268         at_context_transmit(&ohci->at_request_ctx, packet);
1269 }
1270
1271 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1272 {
1273         struct fw_ohci *ohci = fw_ohci(card);
1274
1275         at_context_transmit(&ohci->at_response_ctx, packet);
1276 }
1277
1278 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1279 {
1280         struct fw_ohci *ohci = fw_ohci(card);
1281         struct context *ctx = &ohci->at_request_ctx;
1282         struct driver_data *driver_data = packet->driver_data;
1283         int retval = -ENOENT;
1284
1285         tasklet_disable(&ctx->tasklet);
1286
1287         if (packet->ack != 0)
1288                 goto out;
1289
1290         driver_data->packet = NULL;
1291         packet->ack = RCODE_CANCELLED;
1292         packet->callback(packet, &ohci->card, packet->ack);
1293         retval = 0;
1294
1295  out:
1296         tasklet_enable(&ctx->tasklet);
1297
1298         return retval;
1299 }
1300
1301 static int
1302 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1303 {
1304         struct fw_ohci *ohci = fw_ohci(card);
1305         unsigned long flags;
1306         int n, retval = 0;
1307
1308         /*
1309          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1310          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1311          */
1312
1313         spin_lock_irqsave(&ohci->lock, flags);
1314
1315         if (ohci->generation != generation) {
1316                 retval = -ESTALE;
1317                 goto out;
1318         }
1319
1320         /*
1321          * Note, if the node ID contains a non-local bus ID, physical DMA is
1322          * enabled for _all_ nodes on remote buses.
1323          */
1324
1325         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1326         if (n < 32)
1327                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1328         else
1329                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1330
1331         flush_writes(ohci);
1332  out:
1333         spin_unlock_irqrestore(&ohci->lock, flags);
1334         return retval;
1335 }
1336
1337 static u64
1338 ohci_get_bus_time(struct fw_card *card)
1339 {
1340         struct fw_ohci *ohci = fw_ohci(card);
1341         u32 cycle_time;
1342         u64 bus_time;
1343
1344         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1345         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1346
1347         return bus_time;
1348 }
1349
1350 static int handle_ir_dualbuffer_packet(struct context *context,
1351                                        struct descriptor *d,
1352                                        struct descriptor *last)
1353 {
1354         struct iso_context *ctx =
1355                 container_of(context, struct iso_context, context);
1356         struct db_descriptor *db = (struct db_descriptor *) d;
1357         __le32 *ir_header;
1358         size_t header_length;
1359         void *p, *end;
1360         int i;
1361
1362         if (db->first_res_count > 0 && db->second_res_count > 0)
1363                 /* This descriptor isn't done yet, stop iteration. */
1364                 return 0;
1365
1366         header_length = le16_to_cpu(db->first_req_count) -
1367                 le16_to_cpu(db->first_res_count);
1368
1369         i = ctx->header_length;
1370         p = db + 1;
1371         end = p + header_length;
1372         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1373                 /*
1374                  * The iso header is byteswapped to little endian by
1375                  * the controller, but the remaining header quadlets
1376                  * are big endian.  We want to present all the headers
1377                  * as big endian, so we have to swap the first
1378                  * quadlet.
1379                  */
1380                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1381                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1382                 i += ctx->base.header_size;
1383                 p += ctx->base.header_size + 4;
1384         }
1385
1386         ctx->header_length = i;
1387
1388         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1389                 ir_header = (__le32 *) (db + 1);
1390                 ctx->base.callback(&ctx->base,
1391                                    le32_to_cpu(ir_header[0]) & 0xffff,
1392                                    ctx->header_length, ctx->header,
1393                                    ctx->base.callback_data);
1394                 ctx->header_length = 0;
1395         }
1396
1397         return 1;
1398 }
1399
1400 static int handle_it_packet(struct context *context,
1401                             struct descriptor *d,
1402                             struct descriptor *last)
1403 {
1404         struct iso_context *ctx =
1405                 container_of(context, struct iso_context, context);
1406
1407         if (last->transfer_status == 0)
1408                 /* This descriptor isn't done yet, stop iteration. */
1409                 return 0;
1410
1411         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1412                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1413                                    0, NULL, ctx->base.callback_data);
1414
1415         return 1;
1416 }
1417
1418 static struct fw_iso_context *
1419 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1420 {
1421         struct fw_ohci *ohci = fw_ohci(card);
1422         struct iso_context *ctx, *list;
1423         descriptor_callback_t callback;
1424         u32 *mask, regs;
1425         unsigned long flags;
1426         int index, retval = -ENOMEM;
1427
1428         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1429                 mask = &ohci->it_context_mask;
1430                 list = ohci->it_context_list;
1431                 callback = handle_it_packet;
1432         } else {
1433                 mask = &ohci->ir_context_mask;
1434                 list = ohci->ir_context_list;
1435                 callback = handle_ir_dualbuffer_packet;
1436         }
1437
1438         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1439         if (callback == handle_ir_dualbuffer_packet &&
1440             ohci->version < OHCI_VERSION_1_1)
1441                 return ERR_PTR(-EINVAL);
1442
1443         spin_lock_irqsave(&ohci->lock, flags);
1444         index = ffs(*mask) - 1;
1445         if (index >= 0)
1446                 *mask &= ~(1 << index);
1447         spin_unlock_irqrestore(&ohci->lock, flags);
1448
1449         if (index < 0)
1450                 return ERR_PTR(-EBUSY);
1451
1452         if (type == FW_ISO_CONTEXT_TRANSMIT)
1453                 regs = OHCI1394_IsoXmitContextBase(index);
1454         else
1455                 regs = OHCI1394_IsoRcvContextBase(index);
1456
1457         ctx = &list[index];
1458         memset(ctx, 0, sizeof(*ctx));
1459         ctx->header_length = 0;
1460         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1461         if (ctx->header == NULL)
1462                 goto out;
1463
1464         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1465                               regs, callback);
1466         if (retval < 0)
1467                 goto out_with_header;
1468
1469         return &ctx->base;
1470
1471  out_with_header:
1472         free_page((unsigned long)ctx->header);
1473  out:
1474         spin_lock_irqsave(&ohci->lock, flags);
1475         *mask |= 1 << index;
1476         spin_unlock_irqrestore(&ohci->lock, flags);
1477
1478         return ERR_PTR(retval);
1479 }
1480
1481 static int ohci_start_iso(struct fw_iso_context *base,
1482                           s32 cycle, u32 sync, u32 tags)
1483 {
1484         struct iso_context *ctx = container_of(base, struct iso_context, base);
1485         struct fw_ohci *ohci = ctx->context.ohci;
1486         u32 control, match;
1487         int index;
1488
1489         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1490                 index = ctx - ohci->it_context_list;
1491                 match = 0;
1492                 if (cycle >= 0)
1493                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1494                                 (cycle & 0x7fff) << 16;
1495
1496                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1497                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1498                 context_run(&ctx->context, match);
1499         } else {
1500                 index = ctx - ohci->ir_context_list;
1501                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1502                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1503                 if (cycle >= 0) {
1504                         match |= (cycle & 0x07fff) << 12;
1505                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1506                 }
1507
1508                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1509                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1510                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1511                 context_run(&ctx->context, control);
1512         }
1513
1514         return 0;
1515 }
1516
1517 static int ohci_stop_iso(struct fw_iso_context *base)
1518 {
1519         struct fw_ohci *ohci = fw_ohci(base->card);
1520         struct iso_context *ctx = container_of(base, struct iso_context, base);
1521         int index;
1522
1523         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1524                 index = ctx - ohci->it_context_list;
1525                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1526         } else {
1527                 index = ctx - ohci->ir_context_list;
1528                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1529         }
1530         flush_writes(ohci);
1531         context_stop(&ctx->context);
1532
1533         return 0;
1534 }
1535
1536 static void ohci_free_iso_context(struct fw_iso_context *base)
1537 {
1538         struct fw_ohci *ohci = fw_ohci(base->card);
1539         struct iso_context *ctx = container_of(base, struct iso_context, base);
1540         unsigned long flags;
1541         int index;
1542
1543         ohci_stop_iso(base);
1544         context_release(&ctx->context);
1545         free_page((unsigned long)ctx->header);
1546
1547         spin_lock_irqsave(&ohci->lock, flags);
1548
1549         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1550                 index = ctx - ohci->it_context_list;
1551                 ohci->it_context_mask |= 1 << index;
1552         } else {
1553                 index = ctx - ohci->ir_context_list;
1554                 ohci->ir_context_mask |= 1 << index;
1555         }
1556
1557         spin_unlock_irqrestore(&ohci->lock, flags);
1558 }
1559
1560 static int
1561 ohci_queue_iso_transmit(struct fw_iso_context *base,
1562                         struct fw_iso_packet *packet,
1563                         struct fw_iso_buffer *buffer,
1564                         unsigned long payload)
1565 {
1566         struct iso_context *ctx = container_of(base, struct iso_context, base);
1567         struct descriptor *d, *last, *pd;
1568         struct fw_iso_packet *p;
1569         __le32 *header;
1570         dma_addr_t d_bus, page_bus;
1571         u32 z, header_z, payload_z, irq;
1572         u32 payload_index, payload_end_index, next_page_index;
1573         int page, end_page, i, length, offset;
1574
1575         /*
1576          * FIXME: Cycle lost behavior should be configurable: lose
1577          * packet, retransmit or terminate..
1578          */
1579
1580         p = packet;
1581         payload_index = payload;
1582
1583         if (p->skip)
1584                 z = 1;
1585         else
1586                 z = 2;
1587         if (p->header_length > 0)
1588                 z++;
1589
1590         /* Determine the first page the payload isn't contained in. */
1591         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1592         if (p->payload_length > 0)
1593                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1594         else
1595                 payload_z = 0;
1596
1597         z += payload_z;
1598
1599         /* Get header size in number of descriptors. */
1600         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1601
1602         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1603         if (d == NULL)
1604                 return -ENOMEM;
1605
1606         if (!p->skip) {
1607                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1608                 d[0].req_count = cpu_to_le16(8);
1609
1610                 header = (__le32 *) &d[1];
1611                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1612                                         IT_HEADER_TAG(p->tag) |
1613                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1614                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1615                                         IT_HEADER_SPEED(ctx->base.speed));
1616                 header[1] =
1617                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1618                                                           p->payload_length));
1619         }
1620
1621         if (p->header_length > 0) {
1622                 d[2].req_count    = cpu_to_le16(p->header_length);
1623                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1624                 memcpy(&d[z], p->header, p->header_length);
1625         }
1626
1627         pd = d + z - payload_z;
1628         payload_end_index = payload_index + p->payload_length;
1629         for (i = 0; i < payload_z; i++) {
1630                 page               = payload_index >> PAGE_SHIFT;
1631                 offset             = payload_index & ~PAGE_MASK;
1632                 next_page_index    = (page + 1) << PAGE_SHIFT;
1633                 length             =
1634                         min(next_page_index, payload_end_index) - payload_index;
1635                 pd[i].req_count    = cpu_to_le16(length);
1636
1637                 page_bus = page_private(buffer->pages[page]);
1638                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1639
1640                 payload_index += length;
1641         }
1642
1643         if (p->interrupt)
1644                 irq = DESCRIPTOR_IRQ_ALWAYS;
1645         else
1646                 irq = DESCRIPTOR_NO_IRQ;
1647
1648         last = z == 2 ? d : d + z - 1;
1649         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1650                                      DESCRIPTOR_STATUS |
1651                                      DESCRIPTOR_BRANCH_ALWAYS |
1652                                      irq);
1653
1654         context_append(&ctx->context, d, z, header_z);
1655
1656         return 0;
1657 }
1658
1659 static int
1660 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1661                                   struct fw_iso_packet *packet,
1662                                   struct fw_iso_buffer *buffer,
1663                                   unsigned long payload)
1664 {
1665         struct iso_context *ctx = container_of(base, struct iso_context, base);
1666         struct db_descriptor *db = NULL;
1667         struct descriptor *d;
1668         struct fw_iso_packet *p;
1669         dma_addr_t d_bus, page_bus;
1670         u32 z, header_z, length, rest;
1671         int page, offset, packet_count, header_size;
1672
1673         /*
1674          * FIXME: Cycle lost behavior should be configurable: lose
1675          * packet, retransmit or terminate..
1676          */
1677
1678         if (packet->skip) {
1679                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1680                 if (d == NULL)
1681                         return -ENOMEM;
1682
1683                 db = (struct db_descriptor *) d;
1684                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1685                                           DESCRIPTOR_BRANCH_ALWAYS |
1686                                           DESCRIPTOR_WAIT);
1687                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1688                 context_append(&ctx->context, d, 2, 0);
1689         }
1690
1691         p = packet;
1692         z = 2;
1693
1694         /*
1695          * The OHCI controller puts the status word in the header
1696          * buffer too, so we need 4 extra bytes per packet.
1697          */
1698         packet_count = p->header_length / ctx->base.header_size;
1699         header_size = packet_count * (ctx->base.header_size + 4);
1700
1701         /* Get header size in number of descriptors. */
1702         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1703         page     = payload >> PAGE_SHIFT;
1704         offset   = payload & ~PAGE_MASK;
1705         rest     = p->payload_length;
1706
1707         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1708         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1709         while (rest > 0) {
1710                 d = context_get_descriptors(&ctx->context,
1711                                             z + header_z, &d_bus);
1712                 if (d == NULL)
1713                         return -ENOMEM;
1714
1715                 db = (struct db_descriptor *) d;
1716                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1717                                           DESCRIPTOR_BRANCH_ALWAYS);
1718                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1719                 db->first_req_count = cpu_to_le16(header_size);
1720                 db->first_res_count = db->first_req_count;
1721                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1722
1723                 if (offset + rest < PAGE_SIZE)
1724                         length = rest;
1725                 else
1726                         length = PAGE_SIZE - offset;
1727
1728                 db->second_req_count = cpu_to_le16(length);
1729                 db->second_res_count = db->second_req_count;
1730                 page_bus = page_private(buffer->pages[page]);
1731                 db->second_buffer = cpu_to_le32(page_bus + offset);
1732
1733                 if (p->interrupt && length == rest)
1734                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1735
1736                 context_append(&ctx->context, d, z, header_z);
1737                 offset = (offset + length) & ~PAGE_MASK;
1738                 rest -= length;
1739                 page++;
1740         }
1741
1742         return 0;
1743 }
1744
1745 static int
1746 ohci_queue_iso(struct fw_iso_context *base,
1747                struct fw_iso_packet *packet,
1748                struct fw_iso_buffer *buffer,
1749                unsigned long payload)
1750 {
1751         struct iso_context *ctx = container_of(base, struct iso_context, base);
1752
1753         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1754                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1755         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1756                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1757                                                          buffer, payload);
1758         else
1759                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1760                 return -EINVAL;
1761 }
1762
1763 static const struct fw_card_driver ohci_driver = {
1764         .name                   = ohci_driver_name,
1765         .enable                 = ohci_enable,
1766         .update_phy_reg         = ohci_update_phy_reg,
1767         .set_config_rom         = ohci_set_config_rom,
1768         .send_request           = ohci_send_request,
1769         .send_response          = ohci_send_response,
1770         .cancel_packet          = ohci_cancel_packet,
1771         .enable_phys_dma        = ohci_enable_phys_dma,
1772         .get_bus_time           = ohci_get_bus_time,
1773
1774         .allocate_iso_context   = ohci_allocate_iso_context,
1775         .free_iso_context       = ohci_free_iso_context,
1776         .queue_iso              = ohci_queue_iso,
1777         .start_iso              = ohci_start_iso,
1778         .stop_iso               = ohci_stop_iso,
1779 };
1780
1781 static int __devinit
1782 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1783 {
1784         struct fw_ohci *ohci;
1785         u32 bus_options, max_receive, link_speed;
1786         u64 guid;
1787         int err;
1788         size_t size;
1789
1790         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1791         if (ohci == NULL) {
1792                 fw_error("Could not malloc fw_ohci data.\n");
1793                 return -ENOMEM;
1794         }
1795
1796         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1797
1798         err = pci_enable_device(dev);
1799         if (err) {
1800                 fw_error("Failed to enable OHCI hardware.\n");
1801                 goto fail_put_card;
1802         }
1803
1804         pci_set_master(dev);
1805         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1806         pci_set_drvdata(dev, ohci);
1807
1808         spin_lock_init(&ohci->lock);
1809
1810         tasklet_init(&ohci->bus_reset_tasklet,
1811                      bus_reset_tasklet, (unsigned long)ohci);
1812
1813         err = pci_request_region(dev, 0, ohci_driver_name);
1814         if (err) {
1815                 fw_error("MMIO resource unavailable\n");
1816                 goto fail_disable;
1817         }
1818
1819         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1820         if (ohci->registers == NULL) {
1821                 fw_error("Failed to remap registers\n");
1822                 err = -ENXIO;
1823                 goto fail_iomem;
1824         }
1825
1826         ar_context_init(&ohci->ar_request_ctx, ohci,
1827                         OHCI1394_AsReqRcvContextControlSet);
1828
1829         ar_context_init(&ohci->ar_response_ctx, ohci,
1830                         OHCI1394_AsRspRcvContextControlSet);
1831
1832         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1833                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1834
1835         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1836                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1837
1838         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1839         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1840         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1841         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1842         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1843
1844         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1845         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1846         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1847         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1848         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1849
1850         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1851                 fw_error("Out of memory for it/ir contexts.\n");
1852                 err = -ENOMEM;
1853                 goto fail_registers;
1854         }
1855
1856         /* self-id dma buffer allocation */
1857         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1858                                                SELF_ID_BUF_SIZE,
1859                                                &ohci->self_id_bus,
1860                                                GFP_KERNEL);
1861         if (ohci->self_id_cpu == NULL) {
1862                 fw_error("Out of memory for self ID buffer.\n");
1863                 err = -ENOMEM;
1864                 goto fail_registers;
1865         }
1866
1867         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1868         max_receive = (bus_options >> 12) & 0xf;
1869         link_speed = bus_options & 0x7;
1870         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1871                 reg_read(ohci, OHCI1394_GUIDLo);
1872
1873         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1874         if (err < 0)
1875                 goto fail_self_id;
1876
1877         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1878         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1879                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1880
1881         return 0;
1882
1883  fail_self_id:
1884         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1885                           ohci->self_id_cpu, ohci->self_id_bus);
1886  fail_registers:
1887         kfree(ohci->it_context_list);
1888         kfree(ohci->ir_context_list);
1889         pci_iounmap(dev, ohci->registers);
1890  fail_iomem:
1891         pci_release_region(dev, 0);
1892  fail_disable:
1893         pci_disable_device(dev);
1894  fail_put_card:
1895         fw_card_put(&ohci->card);
1896
1897         return err;
1898 }
1899
1900 static void pci_remove(struct pci_dev *dev)
1901 {
1902         struct fw_ohci *ohci;
1903
1904         ohci = pci_get_drvdata(dev);
1905         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1906         flush_writes(ohci);
1907         fw_core_remove_card(&ohci->card);
1908
1909         /*
1910          * FIXME: Fail all pending packets here, now that the upper
1911          * layers can't queue any more.
1912          */
1913
1914         software_reset(ohci);
1915         free_irq(dev->irq, ohci);
1916         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1917                           ohci->self_id_cpu, ohci->self_id_bus);
1918         kfree(ohci->it_context_list);
1919         kfree(ohci->ir_context_list);
1920         pci_iounmap(dev, ohci->registers);
1921         pci_release_region(dev, 0);
1922         pci_disable_device(dev);
1923         fw_card_put(&ohci->card);
1924
1925         fw_notify("Removed fw-ohci device.\n");
1926 }
1927
1928 #ifdef CONFIG_PM
1929 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
1930 {
1931         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1932         int err;
1933
1934         software_reset(ohci);
1935         free_irq(pdev->irq, ohci);
1936         err = pci_save_state(pdev);
1937         if (err) {
1938                 fw_error("pci_save_state failed\n");
1939                 return err;
1940         }
1941         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1942         if (err) {
1943                 fw_error("pci_set_power_state failed\n");
1944                 return err;
1945         }
1946
1947         return 0;
1948 }
1949
1950 static int pci_resume(struct pci_dev *pdev)
1951 {
1952         struct fw_ohci *ohci = pci_get_drvdata(pdev);
1953         int err;
1954
1955         pci_set_power_state(pdev, PCI_D0);
1956         pci_restore_state(pdev);
1957         err = pci_enable_device(pdev);
1958         if (err) {
1959                 fw_error("pci_enable_device failed\n");
1960                 return err;
1961         }
1962
1963         return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
1964 }
1965 #endif
1966
1967 static struct pci_device_id pci_table[] = {
1968         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1969         { }
1970 };
1971
1972 MODULE_DEVICE_TABLE(pci, pci_table);
1973
1974 static struct pci_driver fw_ohci_pci_driver = {
1975         .name           = ohci_driver_name,
1976         .id_table       = pci_table,
1977         .probe          = pci_probe,
1978         .remove         = pci_remove,
1979 #ifdef CONFIG_PM
1980         .resume         = pci_resume,
1981         .suspend        = pci_suspend,
1982 #endif
1983 };
1984
1985 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1986 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1987 MODULE_LICENSE("GPL");
1988
1989 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1990 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1991 MODULE_ALIAS("ohci1394");
1992 #endif
1993
1994 static int __init fw_ohci_init(void)
1995 {
1996         return pci_register_driver(&fw_ohci_pci_driver);
1997 }
1998
1999 static void __exit fw_ohci_cleanup(void)
2000 {
2001         pci_unregister_driver(&fw_ohci_pci_driver);
2002 }
2003
2004 module_init(fw_ohci_init);
2005 module_exit(fw_ohci_cleanup);