Pull d-states into release branch
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59  
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev,
84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85           dev->hw_fib_va, dev->hw_fib_pa);
86         dev->hw_fib_va = NULL;
87         dev->hw_fib_pa = 0;
88 }
89
90 /**
91  *      aac_fib_setup   -       setup the fibs
92  *      @dev: Adapter to set up
93  *
94  *      Allocate the PCI space for the fibs, map it and then intialise the
95  *      fib area, the unmapped fib data and also the free list
96  */
97
98 int aac_fib_setup(struct aac_dev * dev)
99 {
100         struct fib *fibptr;
101         struct hw_fib *hw_fib;
102         dma_addr_t hw_fib_pa;
103         int i;
104
105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109         }
110         if (i<0)
111                 return -ENOMEM;
112                 
113         hw_fib = dev->hw_fib_va;
114         hw_fib_pa = dev->hw_fib_pa;
115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116         /*
117          *      Initialise the fibs
118          */
119         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
120         {
121                 fibptr->dev = dev;
122                 fibptr->hw_fib_va = hw_fib;
123                 fibptr->data = (void *) fibptr->hw_fib_va->data;
124                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
125                 init_MUTEX_LOCKED(&fibptr->event_wait);
126                 spin_lock_init(&fibptr->event_lock);
127                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
128                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
129                 fibptr->hw_fib_pa = hw_fib_pa;
130                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
131                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
132         }
133         /*
134          *      Add the fib chain to the free list
135          */
136         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
137         /*
138          *      Enable this to debug out of queue space
139          */
140         dev->free_fib = &dev->fibs[0];
141         return 0;
142 }
143
144 /**
145  *      aac_fib_alloc   -       allocate a fib
146  *      @dev: Adapter to allocate the fib for
147  *
148  *      Allocate a fib from the adapter fib pool. If the pool is empty we
149  *      return NULL.
150  */
151  
152 struct fib *aac_fib_alloc(struct aac_dev *dev)
153 {
154         struct fib * fibptr;
155         unsigned long flags;
156         spin_lock_irqsave(&dev->fib_lock, flags);
157         fibptr = dev->free_fib; 
158         if(!fibptr){
159                 spin_unlock_irqrestore(&dev->fib_lock, flags);
160                 return fibptr;
161         }
162         dev->free_fib = fibptr->next;
163         spin_unlock_irqrestore(&dev->fib_lock, flags);
164         /*
165          *      Set the proper node type code and node byte size
166          */
167         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
168         fibptr->size = sizeof(struct fib);
169         /*
170          *      Null out fields that depend on being zero at the start of
171          *      each I/O
172          */
173         fibptr->hw_fib_va->header.XferState = 0;
174         fibptr->callback = NULL;
175         fibptr->callback_data = NULL;
176
177         return fibptr;
178 }
179
180 /**
181  *      aac_fib_free    -       free a fib
182  *      @fibptr: fib to free up
183  *
184  *      Frees up a fib and places it on the appropriate queue
185  */
186  
187 void aac_fib_free(struct fib *fibptr)
188 {
189         unsigned long flags;
190
191         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
192         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
193                 aac_config.fib_timeouts++;
194         if (fibptr->hw_fib_va->header.XferState != 0) {
195                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196                          (void*)fibptr,
197                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
198         }
199         fibptr->next = fibptr->dev->free_fib;
200         fibptr->dev->free_fib = fibptr;
201         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202 }
203
204 /**
205  *      aac_fib_init    -       initialise a fib
206  *      @fibptr: The fib to initialize
207  *      
208  *      Set up the generic fib fields ready for use
209  */
210  
211 void aac_fib_init(struct fib *fibptr)
212 {
213         struct hw_fib *hw_fib = fibptr->hw_fib_va;
214
215         hw_fib->header.StructType = FIB_MAGIC;
216         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
217         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
218         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
219         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
220         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221 }
222
223 /**
224  *      fib_deallocate          -       deallocate a fib
225  *      @fibptr: fib to deallocate
226  *
227  *      Will deallocate and return to the free pool the FIB pointed to by the
228  *      caller.
229  */
230  
231 static void fib_dealloc(struct fib * fibptr)
232 {
233         struct hw_fib *hw_fib = fibptr->hw_fib_va;
234         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
235         hw_fib->header.XferState = 0;        
236 }
237
238 /*
239  *      Commuication primitives define and support the queuing method we use to
240  *      support host to adapter commuication. All queue accesses happen through
241  *      these routines and are the only routines which have a knowledge of the
242  *       how these queues are implemented.
243  */
244  
245 /**
246  *      aac_get_entry           -       get a queue entry
247  *      @dev: Adapter
248  *      @qid: Queue Number
249  *      @entry: Entry return
250  *      @index: Index return
251  *      @nonotify: notification control
252  *
253  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
254  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
255  *      returned.
256  */
257  
258 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
259 {
260         struct aac_queue * q;
261         unsigned long idx;
262
263         /*
264          *      All of the queues wrap when they reach the end, so we check
265          *      to see if they have reached the end and if they have we just
266          *      set the index back to zero. This is a wrap. You could or off
267          *      the high bits in all updates but this is a bit faster I think.
268          */
269
270         q = &dev->queues->queue[qid];
271
272         idx = *index = le32_to_cpu(*(q->headers.producer));
273         /* Interrupt Moderation, only interrupt for first two entries */
274         if (idx != le32_to_cpu(*(q->headers.consumer))) {
275                 if (--idx == 0) {
276                         if (qid == AdapNormCmdQueue)
277                                 idx = ADAP_NORM_CMD_ENTRIES;
278                         else
279                                 idx = ADAP_NORM_RESP_ENTRIES;
280                 }
281                 if (idx != le32_to_cpu(*(q->headers.consumer)))
282                         *nonotify = 1; 
283         }
284
285         if (qid == AdapNormCmdQueue) {
286                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
287                         *index = 0; /* Wrap to front of the Producer Queue. */
288         } else {
289                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
290                         *index = 0; /* Wrap to front of the Producer Queue. */
291         }
292
293         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295                                 qid, q->numpending);
296                 return 0;
297         } else {
298                 *entry = q->base + *index;
299                 return 1;
300         }
301 }   
302
303 /**
304  *      aac_queue_get           -       get the next free QE
305  *      @dev: Adapter
306  *      @index: Returned index
307  *      @priority: Priority of fib
308  *      @fib: Fib to associate with the queue entry
309  *      @wait: Wait if queue full
310  *      @fibptr: Driver fib object to go with fib
311  *      @nonotify: Don't notify the adapter
312  *
313  *      Gets the next free QE off the requested priorty adapter command
314  *      queue and associates the Fib with the QE. The QE represented by
315  *      index is ready to insert on the queue when this routine returns
316  *      success.
317  */
318
319 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320 {
321         struct aac_entry * entry = NULL;
322         int map = 0;
323             
324         if (qid == AdapNormCmdQueue) {
325                 /*  if no entries wait for some if caller wants to */
326                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
327                 {
328                         printk(KERN_ERR "GetEntries failed\n");
329                 }
330                 /*
331                  *      Setup queue entry with a command, status and fib mapped
332                  */
333                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334                 map = 1;
335         } else {
336                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
337                 {
338                         /* if no entries wait for some if caller wants to */
339                 }
340                 /*
341                  *      Setup queue entry with command, status and fib mapped
342                  */
343                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344                 entry->addr = hw_fib->header.SenderFibAddress;
345                         /* Restore adapters pointer to the FIB */
346                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
347                 map = 0;
348         }
349         /*
350          *      If MapFib is true than we need to map the Fib and put pointers
351          *      in the queue entry.
352          */
353         if (map)
354                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
355         return 0;
356 }
357
358 /*
359  *      Define the highest level of host to adapter communication routines. 
360  *      These routines will support host to adapter FS commuication. These 
361  *      routines have no knowledge of the commuication method used. This level
362  *      sends and receives FIBs. This level has no knowledge of how these FIBs
363  *      get passed back and forth.
364  */
365
366 /**
367  *      aac_fib_send    -       send a fib to the adapter
368  *      @command: Command to send
369  *      @fibptr: The fib
370  *      @size: Size of fib data area
371  *      @priority: Priority of Fib
372  *      @wait: Async/sync select
373  *      @reply: True if a reply is wanted
374  *      @callback: Called with reply
375  *      @callback_data: Passed to callback
376  *
377  *      Sends the requested FIB to the adapter and optionally will wait for a
378  *      response FIB. If the caller does not wish to wait for a response than
379  *      an event to wait on must be supplied. This event will be set when a
380  *      response FIB is received from the adapter.
381  */
382  
383 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
384                 int priority, int wait, int reply, fib_callback callback,
385                 void *callback_data)
386 {
387         struct aac_dev * dev = fibptr->dev;
388         struct hw_fib * hw_fib = fibptr->hw_fib_va;
389         unsigned long flags = 0;
390         unsigned long qflags;
391
392         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
393                 return -EBUSY;
394         /*
395          *      There are 5 cases with the wait and reponse requested flags. 
396          *      The only invalid cases are if the caller requests to wait and
397          *      does not request a response and if the caller does not want a
398          *      response and the Fib is not allocated from pool. If a response
399          *      is not requesed the Fib will just be deallocaed by the DPC
400          *      routine when the response comes back from the adapter. No
401          *      further processing will be done besides deleting the Fib. We 
402          *      will have a debug mode where the adapter can notify the host
403          *      it had a problem and the host can log that fact.
404          */
405         if (wait && !reply) {
406                 return -EINVAL;
407         } else if (!wait && reply) {
408                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410         } else if (!wait && !reply) {
411                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413         } else if (wait && reply) {
414                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
416         } 
417         /*
418          *      Map the fib into 32bits by using the fib number
419          */
420
421         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
423         /*
424          *      Set FIB state to indicate where it came from and if we want a
425          *      response from the adapter. Also load the command from the
426          *      caller.
427          *
428          *      Map the hw fib pointer as a 32bit value
429          */
430         hw_fib->header.Command = cpu_to_le16(command);
431         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
433         /*
434          *      Set the size of the Fib we want to send to the adapter
435          */
436         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438                 return -EMSGSIZE;
439         }                
440         /*
441          *      Get a queue entry connect the FIB to it and send an notify
442          *      the adapter a command is ready.
443          */
444         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
445
446         /*
447          *      Fill in the Callback and CallbackContext if we are not
448          *      going to wait.
449          */
450         if (!wait) {
451                 fibptr->callback = callback;
452                 fibptr->callback_data = callback_data;
453         }
454
455         fibptr->done = 0;
456         fibptr->flags = 0;
457
458         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
459
460         dprintk((KERN_DEBUG "Fib contents:.\n"));
461         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
462         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
465         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
467
468         if (!dev->queues)
469                 return -EBUSY;
470
471         if(wait)
472                 spin_lock_irqsave(&fibptr->event_lock, flags);
473         aac_adapter_deliver(fibptr);
474
475         /*
476          *      If the caller wanted us to wait for response wait now. 
477          */
478     
479         if (wait) {
480                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
481                 /* Only set for first known interruptable command */
482                 if (wait < 0) {
483                         /*
484                          * *VERY* Dangerous to time out a command, the
485                          * assumption is made that we have no hope of
486                          * functioning because an interrupt routing or other
487                          * hardware failure has occurred.
488                          */
489                         unsigned long count = 36000000L; /* 3 minutes */
490                         while (down_trylock(&fibptr->event_wait)) {
491                                 int blink;
492                                 if (--count == 0) {
493                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
494                                         spin_lock_irqsave(q->lock, qflags);
495                                         q->numpending--;
496                                         spin_unlock_irqrestore(q->lock, qflags);
497                                         if (wait == -1) {
498                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
499                                                   "Usually a result of a PCI interrupt routing problem;\n"
500                                                   "update mother board BIOS or consider utilizing one of\n"
501                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
502                                         }
503                                         return -ETIMEDOUT;
504                                 }
505                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
506                                         if (wait == -1) {
507                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
508                                                   "Usually a result of a serious unrecoverable hardware problem\n",
509                                                   blink);
510                                         }
511                                         return -EFAULT;
512                                 }
513                                 udelay(5);
514                         }
515                 } else
516                         (void)down_interruptible(&fibptr->event_wait);
517                 spin_lock_irqsave(&fibptr->event_lock, flags);
518                 if (fibptr->done == 0) {
519                         fibptr->done = 2; /* Tell interrupt we aborted */
520                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
521                         return -EINTR;
522                 }
523                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
524                 BUG_ON(fibptr->done == 0);
525                         
526                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
527                         return -ETIMEDOUT;
528                 return 0;
529         }
530         /*
531          *      If the user does not want a response than return success otherwise
532          *      return pending
533          */
534         if (reply)
535                 return -EINPROGRESS;
536         else
537                 return 0;
538 }
539
540 /** 
541  *      aac_consumer_get        -       get the top of the queue
542  *      @dev: Adapter
543  *      @q: Queue
544  *      @entry: Return entry
545  *
546  *      Will return a pointer to the entry on the top of the queue requested that
547  *      we are a consumer of, and return the address of the queue entry. It does
548  *      not change the state of the queue. 
549  */
550
551 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
552 {
553         u32 index;
554         int status;
555         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
556                 status = 0;
557         } else {
558                 /*
559                  *      The consumer index must be wrapped if we have reached
560                  *      the end of the queue, else we just use the entry
561                  *      pointed to by the header index
562                  */
563                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
564                         index = 0;              
565                 else
566                         index = le32_to_cpu(*q->headers.consumer);
567                 *entry = q->base + index;
568                 status = 1;
569         }
570         return(status);
571 }
572
573 /**
574  *      aac_consumer_free       -       free consumer entry
575  *      @dev: Adapter
576  *      @q: Queue
577  *      @qid: Queue ident
578  *
579  *      Frees up the current top of the queue we are a consumer of. If the
580  *      queue was full notify the producer that the queue is no longer full.
581  */
582
583 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
584 {
585         int wasfull = 0;
586         u32 notify;
587
588         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
589                 wasfull = 1;
590         
591         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
592                 *q->headers.consumer = cpu_to_le32(1);
593         else
594                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
595         
596         if (wasfull) {
597                 switch (qid) {
598
599                 case HostNormCmdQueue:
600                         notify = HostNormCmdNotFull;
601                         break;
602                 case HostNormRespQueue:
603                         notify = HostNormRespNotFull;
604                         break;
605                 default:
606                         BUG();
607                         return;
608                 }
609                 aac_adapter_notify(dev, notify);
610         }
611 }        
612
613 /**
614  *      aac_fib_adapter_complete        -       complete adapter issued fib
615  *      @fibptr: fib to complete
616  *      @size: size of fib
617  *
618  *      Will do all necessary work to complete a FIB that was sent from
619  *      the adapter.
620  */
621
622 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
623 {
624         struct hw_fib * hw_fib = fibptr->hw_fib_va;
625         struct aac_dev * dev = fibptr->dev;
626         struct aac_queue * q;
627         unsigned long nointr = 0;
628         unsigned long qflags;
629
630         if (hw_fib->header.XferState == 0) {
631                 if (dev->comm_interface == AAC_COMM_MESSAGE)
632                         kfree (hw_fib);
633                 return 0;
634         }
635         /*
636          *      If we plan to do anything check the structure type first.
637          */ 
638         if ( hw_fib->header.StructType != FIB_MAGIC ) {
639                 if (dev->comm_interface == AAC_COMM_MESSAGE)
640                         kfree (hw_fib);
641                 return -EINVAL;
642         }
643         /*
644          *      This block handles the case where the adapter had sent us a
645          *      command and we have finished processing the command. We
646          *      call completeFib when we are done processing the command 
647          *      and want to send a response back to the adapter. This will 
648          *      send the completed cdb to the adapter.
649          */
650         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
651                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
652                         kfree (hw_fib);
653                 } else {
654                         u32 index;
655                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
656                         if (size) {
657                                 size += sizeof(struct aac_fibhdr);
658                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
659                                         return -EMSGSIZE;
660                                 hw_fib->header.Size = cpu_to_le16(size);
661                         }
662                         q = &dev->queues->queue[AdapNormRespQueue];
663                         spin_lock_irqsave(q->lock, qflags);
664                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
665                         *(q->headers.producer) = cpu_to_le32(index + 1);
666                         spin_unlock_irqrestore(q->lock, qflags);
667                         if (!(nointr & (int)aac_config.irq_mod))
668                                 aac_adapter_notify(dev, AdapNormRespQueue);
669                 }
670         }
671         else 
672         {
673                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
674                 BUG();
675         }   
676         return 0;
677 }
678
679 /**
680  *      aac_fib_complete        -       fib completion handler
681  *      @fib: FIB to complete
682  *
683  *      Will do all necessary work to complete a FIB.
684  */
685  
686 int aac_fib_complete(struct fib *fibptr)
687 {
688         struct hw_fib * hw_fib = fibptr->hw_fib_va;
689
690         /*
691          *      Check for a fib which has already been completed
692          */
693
694         if (hw_fib->header.XferState == 0)
695                 return 0;
696         /*
697          *      If we plan to do anything check the structure type first.
698          */ 
699
700         if (hw_fib->header.StructType != FIB_MAGIC)
701                 return -EINVAL;
702         /*
703          *      This block completes a cdb which orginated on the host and we 
704          *      just need to deallocate the cdb or reinit it. At this point the
705          *      command is complete that we had sent to the adapter and this
706          *      cdb could be reused.
707          */
708         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
709                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
710         {
711                 fib_dealloc(fibptr);
712         }
713         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
714         {
715                 /*
716                  *      This handles the case when the host has aborted the I/O
717                  *      to the adapter because the adapter is not responding
718                  */
719                 fib_dealloc(fibptr);
720         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
721                 fib_dealloc(fibptr);
722         } else {
723                 BUG();
724         }   
725         return 0;
726 }
727
728 /**
729  *      aac_printf      -       handle printf from firmware
730  *      @dev: Adapter
731  *      @val: Message info
732  *
733  *      Print a message passed to us by the controller firmware on the
734  *      Adaptec board
735  */
736
737 void aac_printf(struct aac_dev *dev, u32 val)
738 {
739         char *cp = dev->printfbuf;
740         if (dev->printf_enabled)
741         {
742                 int length = val & 0xffff;
743                 int level = (val >> 16) & 0xffff;
744                 
745                 /*
746                  *      The size of the printfbuf is set in port.c
747                  *      There is no variable or define for it
748                  */
749                 if (length > 255)
750                         length = 255;
751                 if (cp[length] != 0)
752                         cp[length] = 0;
753                 if (level == LOG_AAC_HIGH_ERROR)
754                         printk(KERN_WARNING "%s:%s", dev->name, cp);
755                 else
756                         printk(KERN_INFO "%s:%s", dev->name, cp);
757         }
758         memset(cp, 0,  256);
759 }
760
761
762 /**
763  *      aac_handle_aif          -       Handle a message from the firmware
764  *      @dev: Which adapter this fib is from
765  *      @fibptr: Pointer to fibptr from adapter
766  *
767  *      This routine handles a driver notify fib from the adapter and
768  *      dispatches it to the appropriate routine for handling.
769  */
770
771 #define AIF_SNIFF_TIMEOUT       (30*HZ)
772 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
773 {
774         struct hw_fib * hw_fib = fibptr->hw_fib_va;
775         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
776         u32 container;
777         struct scsi_device *device;
778         enum {
779                 NOTHING,
780                 DELETE,
781                 ADD,
782                 CHANGE
783         } device_config_needed;
784
785         /* Sniff for container changes */
786
787         if (!dev || !dev->fsa_dev)
788                 return;
789         container = (u32)-1;
790
791         /*
792          *      We have set this up to try and minimize the number of
793          * re-configures that take place. As a result of this when
794          * certain AIF's come in we will set a flag waiting for another
795          * type of AIF before setting the re-config flag.
796          */
797         switch (le32_to_cpu(aifcmd->command)) {
798         case AifCmdDriverNotify:
799                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
800                 /*
801                  *      Morph or Expand complete
802                  */
803                 case AifDenMorphComplete:
804                 case AifDenVolumeExtendComplete:
805                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
806                         if (container >= dev->maximum_num_containers)
807                                 break;
808
809                         /*
810                          *      Find the scsi_device associated with the SCSI
811                          * address. Make sure we have the right array, and if
812                          * so set the flag to initiate a new re-config once we
813                          * see an AifEnConfigChange AIF come through.
814                          */
815
816                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
817                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
818                                         CONTAINER_TO_CHANNEL(container), 
819                                         CONTAINER_TO_ID(container), 
820                                         CONTAINER_TO_LUN(container));
821                                 if (device) {
822                                         dev->fsa_dev[container].config_needed = CHANGE;
823                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
824                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
825                                         scsi_device_put(device);
826                                 }
827                         }
828                 }
829
830                 /*
831                  *      If we are waiting on something and this happens to be
832                  * that thing then set the re-configure flag.
833                  */
834                 if (container != (u32)-1) {
835                         if (container >= dev->maximum_num_containers)
836                                 break;
837                         if ((dev->fsa_dev[container].config_waiting_on ==
838                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
839                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
840                                 dev->fsa_dev[container].config_waiting_on = 0;
841                 } else for (container = 0;
842                     container < dev->maximum_num_containers; ++container) {
843                         if ((dev->fsa_dev[container].config_waiting_on ==
844                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
845                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
846                                 dev->fsa_dev[container].config_waiting_on = 0;
847                 }
848                 break;
849
850         case AifCmdEventNotify:
851                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
852                 /*
853                  *      Add an Array.
854                  */
855                 case AifEnAddContainer:
856                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
857                         if (container >= dev->maximum_num_containers)
858                                 break;
859                         dev->fsa_dev[container].config_needed = ADD;
860                         dev->fsa_dev[container].config_waiting_on =
861                                 AifEnConfigChange;
862                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
863                         break;
864
865                 /*
866                  *      Delete an Array.
867                  */
868                 case AifEnDeleteContainer:
869                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
870                         if (container >= dev->maximum_num_containers)
871                                 break;
872                         dev->fsa_dev[container].config_needed = DELETE;
873                         dev->fsa_dev[container].config_waiting_on =
874                                 AifEnConfigChange;
875                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
876                         break;
877
878                 /*
879                  *      Container change detected. If we currently are not
880                  * waiting on something else, setup to wait on a Config Change.
881                  */
882                 case AifEnContainerChange:
883                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
884                         if (container >= dev->maximum_num_containers)
885                                 break;
886                         if (dev->fsa_dev[container].config_waiting_on &&
887                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
888                                 break;
889                         dev->fsa_dev[container].config_needed = CHANGE;
890                         dev->fsa_dev[container].config_waiting_on =
891                                 AifEnConfigChange;
892                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
893                         break;
894
895                 case AifEnConfigChange:
896                         break;
897
898                 }
899
900                 /*
901                  *      If we are waiting on something and this happens to be
902                  * that thing then set the re-configure flag.
903                  */
904                 if (container != (u32)-1) {
905                         if (container >= dev->maximum_num_containers)
906                                 break;
907                         if ((dev->fsa_dev[container].config_waiting_on ==
908                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
909                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
910                                 dev->fsa_dev[container].config_waiting_on = 0;
911                 } else for (container = 0;
912                     container < dev->maximum_num_containers; ++container) {
913                         if ((dev->fsa_dev[container].config_waiting_on ==
914                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
915                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
916                                 dev->fsa_dev[container].config_waiting_on = 0;
917                 }
918                 break;
919
920         case AifCmdJobProgress:
921                 /*
922                  *      These are job progress AIF's. When a Clear is being
923                  * done on a container it is initially created then hidden from
924                  * the OS. When the clear completes we don't get a config
925                  * change so we monitor the job status complete on a clear then
926                  * wait for a container change.
927                  */
928
929                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
930                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
931                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
932                         for (container = 0;
933                             container < dev->maximum_num_containers;
934                             ++container) {
935                                 /*
936                                  * Stomp on all config sequencing for all
937                                  * containers?
938                                  */
939                                 dev->fsa_dev[container].config_waiting_on =
940                                         AifEnContainerChange;
941                                 dev->fsa_dev[container].config_needed = ADD;
942                                 dev->fsa_dev[container].config_waiting_stamp =
943                                         jiffies;
944                         }
945                 }
946                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
947                  && (((u32 *)aifcmd->data)[6] == 0)
948                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
949                         for (container = 0;
950                             container < dev->maximum_num_containers;
951                             ++container) {
952                                 /*
953                                  * Stomp on all config sequencing for all
954                                  * containers?
955                                  */
956                                 dev->fsa_dev[container].config_waiting_on =
957                                         AifEnContainerChange;
958                                 dev->fsa_dev[container].config_needed = DELETE;
959                                 dev->fsa_dev[container].config_waiting_stamp =
960                                         jiffies;
961                         }
962                 }
963                 break;
964         }
965
966         device_config_needed = NOTHING;
967         for (container = 0; container < dev->maximum_num_containers;
968             ++container) {
969                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
970                         (dev->fsa_dev[container].config_needed != NOTHING) &&
971                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
972                         device_config_needed =
973                                 dev->fsa_dev[container].config_needed;
974                         dev->fsa_dev[container].config_needed = NOTHING;
975                         break;
976                 }
977         }
978         if (device_config_needed == NOTHING)
979                 return;
980
981         /*
982          *      If we decided that a re-configuration needs to be done,
983          * schedule it here on the way out the door, please close the door
984          * behind you.
985          */
986
987         /*
988          *      Find the scsi_device associated with the SCSI address,
989          * and mark it as changed, invalidating the cache. This deals
990          * with changes to existing device IDs.
991          */
992
993         if (!dev || !dev->scsi_host_ptr)
994                 return;
995         /*
996          * force reload of disk info via aac_probe_container
997          */
998         if ((device_config_needed == CHANGE)
999          && (dev->fsa_dev[container].valid == 1))
1000                 dev->fsa_dev[container].valid = 2;
1001         if ((device_config_needed == CHANGE) ||
1002                         (device_config_needed == ADD))
1003                 aac_probe_container(dev, container);
1004         device = scsi_device_lookup(dev->scsi_host_ptr, 
1005                 CONTAINER_TO_CHANNEL(container), 
1006                 CONTAINER_TO_ID(container), 
1007                 CONTAINER_TO_LUN(container));
1008         if (device) {
1009                 switch (device_config_needed) {
1010                 case DELETE:
1011                 case CHANGE:
1012                         scsi_rescan_device(&device->sdev_gendev);
1013
1014                 default:
1015                         break;
1016                 }
1017                 scsi_device_put(device);
1018         }
1019         if (device_config_needed == ADD) {
1020                 scsi_add_device(dev->scsi_host_ptr,
1021                   CONTAINER_TO_CHANNEL(container),
1022                   CONTAINER_TO_ID(container),
1023                   CONTAINER_TO_LUN(container));
1024         }
1025
1026 }
1027
1028 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1029 {
1030         int index, quirks;
1031         int retval;
1032         struct Scsi_Host *host;
1033         struct scsi_device *dev;
1034         struct scsi_cmnd *command;
1035         struct scsi_cmnd *command_list;
1036         int jafo = 0;
1037
1038         /*
1039          * Assumptions:
1040          *      - host is locked, unless called by the aacraid thread.
1041          *        (a matter of convenience, due to legacy issues surrounding
1042          *        eh_host_adapter_reset).
1043          *      - in_reset is asserted, so no new i/o is getting to the
1044          *        card.
1045          *      - The card is dead, or will be very shortly ;-/ so no new
1046          *        commands are completing in the interrupt service.
1047          */
1048         host = aac->scsi_host_ptr;
1049         scsi_block_requests(host);
1050         aac_adapter_disable_int(aac);
1051         if (aac->thread->pid != current->pid) {
1052                 spin_unlock_irq(host->host_lock);
1053                 kthread_stop(aac->thread);
1054                 jafo = 1;
1055         }
1056
1057         /*
1058          *      If a positive health, means in a known DEAD PANIC
1059          * state and the adapter could be reset to `try again'.
1060          */
1061         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1062
1063         if (retval)
1064                 goto out;
1065
1066         /*
1067          *      Loop through the fibs, close the synchronous FIBS
1068          */
1069         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1070                 struct fib *fib = &aac->fibs[index];
1071                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1072                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1073                         unsigned long flagv;
1074                         spin_lock_irqsave(&fib->event_lock, flagv);
1075                         up(&fib->event_wait);
1076                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1077                         schedule();
1078                         retval = 0;
1079                 }
1080         }
1081         /* Give some extra time for ioctls to complete. */
1082         if (retval == 0)
1083                 ssleep(2);
1084         index = aac->cardtype;
1085
1086         /*
1087          * Re-initialize the adapter, first free resources, then carefully
1088          * apply the initialization sequence to come back again. Only risk
1089          * is a change in Firmware dropping cache, it is assumed the caller
1090          * will ensure that i/o is queisced and the card is flushed in that
1091          * case.
1092          */
1093         aac_fib_map_free(aac);
1094         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1095         aac->comm_addr = NULL;
1096         aac->comm_phys = 0;
1097         kfree(aac->queues);
1098         aac->queues = NULL;
1099         free_irq(aac->pdev->irq, aac);
1100         kfree(aac->fsa_dev);
1101         aac->fsa_dev = NULL;
1102         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1103                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1104                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1105                         goto out;
1106         } else {
1107                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1108                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1109                         goto out;
1110         }
1111         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1112                 goto out;
1113         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1114                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1115                         goto out;
1116         if (jafo) {
1117                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1118                 if (IS_ERR(aac->thread)) {
1119                         retval = PTR_ERR(aac->thread);
1120                         goto out;
1121                 }
1122         }
1123         (void)aac_get_adapter_info(aac);
1124         quirks = aac_get_driver_ident(index)->quirks;
1125         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1126                 host->sg_tablesize = 34;
1127                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1128         }
1129         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1130                 host->sg_tablesize = 17;
1131                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1132         }
1133         aac_get_config_status(aac, 1);
1134         aac_get_containers(aac);
1135         /*
1136          * This is where the assumption that the Adapter is quiesced
1137          * is important.
1138          */
1139         command_list = NULL;
1140         __shost_for_each_device(dev, host) {
1141                 unsigned long flags;
1142                 spin_lock_irqsave(&dev->list_lock, flags);
1143                 list_for_each_entry(command, &dev->cmd_list, list)
1144                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1145                                 command->SCp.buffer = (struct scatterlist *)command_list;
1146                                 command_list = command;
1147                         }
1148                 spin_unlock_irqrestore(&dev->list_lock, flags);
1149         }
1150         while ((command = command_list)) {
1151                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1152                 command->SCp.buffer = NULL;
1153                 command->result = DID_OK << 16
1154                   | COMMAND_COMPLETE << 8
1155                   | SAM_STAT_TASK_SET_FULL;
1156                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1157                 command->scsi_done(command);
1158         }
1159         retval = 0;
1160
1161 out:
1162         aac->in_reset = 0;
1163         scsi_unblock_requests(host);
1164         if (jafo) {
1165                 spin_lock_irq(host->host_lock);
1166         }
1167         return retval;
1168 }
1169
1170 int aac_reset_adapter(struct aac_dev * aac, int forced)
1171 {
1172         unsigned long flagv = 0;
1173         int retval;
1174         struct Scsi_Host * host;
1175
1176         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1177                 return -EBUSY;
1178
1179         if (aac->in_reset) {
1180                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1181                 return -EBUSY;
1182         }
1183         aac->in_reset = 1;
1184         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1185
1186         /*
1187          * Wait for all commands to complete to this specific
1188          * target (block maximum 60 seconds). Although not necessary,
1189          * it does make us a good storage citizen.
1190          */
1191         host = aac->scsi_host_ptr;
1192         scsi_block_requests(host);
1193         if (forced < 2) for (retval = 60; retval; --retval) {
1194                 struct scsi_device * dev;
1195                 struct scsi_cmnd * command;
1196                 int active = 0;
1197
1198                 __shost_for_each_device(dev, host) {
1199                         spin_lock_irqsave(&dev->list_lock, flagv);
1200                         list_for_each_entry(command, &dev->cmd_list, list) {
1201                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1202                                         active++;
1203                                         break;
1204                                 }
1205                         }
1206                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1207                         if (active)
1208                                 break;
1209
1210                 }
1211                 /*
1212                  * We can exit If all the commands are complete
1213                  */
1214                 if (active == 0)
1215                         break;
1216                 ssleep(1);
1217         }
1218
1219         /* Quiesce build, flush cache, write through mode */
1220         aac_send_shutdown(aac);
1221         spin_lock_irqsave(host->host_lock, flagv);
1222         retval = _aac_reset_adapter(aac, forced);
1223         spin_unlock_irqrestore(host->host_lock, flagv);
1224
1225         if (retval == -ENODEV) {
1226                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1227                 struct fib * fibctx = aac_fib_alloc(aac);
1228                 if (fibctx) {
1229                         struct aac_pause *cmd;
1230                         int status;
1231
1232                         aac_fib_init(fibctx);
1233
1234                         cmd = (struct aac_pause *) fib_data(fibctx);
1235
1236                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1237                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1238                         cmd->timeout = cpu_to_le32(1);
1239                         cmd->min = cpu_to_le32(1);
1240                         cmd->noRescan = cpu_to_le32(1);
1241                         cmd->count = cpu_to_le32(0);
1242
1243                         status = aac_fib_send(ContainerCommand,
1244                           fibctx,
1245                           sizeof(struct aac_pause),
1246                           FsaNormal,
1247                           -2 /* Timeout silently */, 1,
1248                           NULL, NULL);
1249
1250                         if (status >= 0)
1251                                 aac_fib_complete(fibctx);
1252                         aac_fib_free(fibctx);
1253                 }
1254         }
1255
1256         return retval;
1257 }
1258
1259 int aac_check_health(struct aac_dev * aac)
1260 {
1261         int BlinkLED;
1262         unsigned long time_now, flagv = 0;
1263         struct list_head * entry;
1264         struct Scsi_Host * host;
1265
1266         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1267         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1268                 return 0;
1269
1270         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1271                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1272                 return 0; /* OK */
1273         }
1274
1275         aac->in_reset = 1;
1276
1277         /* Fake up an AIF:
1278          *      aac_aifcmd.command = AifCmdEventNotify = 1
1279          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1280          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1281          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1282          *      aac.aifcmd.data[2] = AifHighPriority = 3
1283          *      aac.aifcmd.data[3] = BlinkLED
1284          */
1285
1286         time_now = jiffies/HZ;
1287         entry = aac->fib_list.next;
1288
1289         /*
1290          * For each Context that is on the
1291          * fibctxList, make a copy of the
1292          * fib, and then set the event to wake up the
1293          * thread that is waiting for it.
1294          */
1295         while (entry != &aac->fib_list) {
1296                 /*
1297                  * Extract the fibctx
1298                  */
1299                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1300                 struct hw_fib * hw_fib;
1301                 struct fib * fib;
1302                 /*
1303                  * Check if the queue is getting
1304                  * backlogged
1305                  */
1306                 if (fibctx->count > 20) {
1307                         /*
1308                          * It's *not* jiffies folks,
1309                          * but jiffies / HZ, so do not
1310                          * panic ...
1311                          */
1312                         u32 time_last = fibctx->jiffies;
1313                         /*
1314                          * Has it been > 2 minutes
1315                          * since the last read off
1316                          * the queue?
1317                          */
1318                         if ((time_now - time_last) > aif_timeout) {
1319                                 entry = entry->next;
1320                                 aac_close_fib_context(aac, fibctx);
1321                                 continue;
1322                         }
1323                 }
1324                 /*
1325                  * Warning: no sleep allowed while
1326                  * holding spinlock
1327                  */
1328                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1329                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1330                 if (fib && hw_fib) {
1331                         struct aac_aifcmd * aif;
1332
1333                         fib->hw_fib_va = hw_fib;
1334                         fib->dev = aac;
1335                         aac_fib_init(fib);
1336                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1337                         fib->size = sizeof (struct fib);
1338                         fib->data = hw_fib->data;
1339                         aif = (struct aac_aifcmd *)hw_fib->data;
1340                         aif->command = cpu_to_le32(AifCmdEventNotify);
1341                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1342                         aif->data[0] = cpu_to_le32(AifEnExpEvent);
1343                         aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1344                         aif->data[2] = cpu_to_le32(AifHighPriority);
1345                         aif->data[3] = cpu_to_le32(BlinkLED);
1346
1347                         /*
1348                          * Put the FIB onto the
1349                          * fibctx's fibs
1350                          */
1351                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1352                         fibctx->count++;
1353                         /*
1354                          * Set the event to wake up the
1355                          * thread that will waiting.
1356                          */
1357                         up(&fibctx->wait_sem);
1358                 } else {
1359                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1360                         kfree(fib);
1361                         kfree(hw_fib);
1362                 }
1363                 entry = entry->next;
1364         }
1365
1366         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1367
1368         if (BlinkLED < 0) {
1369                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1370                 goto out;
1371         }
1372
1373         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1374
1375         if (!check_reset || (aac->supplement_adapter_info.SupportedOptions2 &
1376           le32_to_cpu(AAC_OPTION_IGNORE_RESET)))
1377                 goto out;
1378         host = aac->scsi_host_ptr;
1379         if (aac->thread->pid != current->pid)
1380                 spin_lock_irqsave(host->host_lock, flagv);
1381         BlinkLED = _aac_reset_adapter(aac, 0);
1382         if (aac->thread->pid != current->pid)
1383                 spin_unlock_irqrestore(host->host_lock, flagv);
1384         return BlinkLED;
1385
1386 out:
1387         aac->in_reset = 0;
1388         return BlinkLED;
1389 }
1390
1391
1392 /**
1393  *      aac_command_thread      -       command processing thread
1394  *      @dev: Adapter to monitor
1395  *
1396  *      Waits on the commandready event in it's queue. When the event gets set
1397  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1398  *      until the queue is empty. When the queue is empty it will wait for
1399  *      more FIBs.
1400  */
1401  
1402 int aac_command_thread(void *data)
1403 {
1404         struct aac_dev *dev = data;
1405         struct hw_fib *hw_fib, *hw_newfib;
1406         struct fib *fib, *newfib;
1407         struct aac_fib_context *fibctx;
1408         unsigned long flags;
1409         DECLARE_WAITQUEUE(wait, current);
1410         unsigned long next_jiffies = jiffies + HZ;
1411         unsigned long next_check_jiffies = next_jiffies;
1412         long difference = HZ;
1413
1414         /*
1415          *      We can only have one thread per adapter for AIF's.
1416          */
1417         if (dev->aif_thread)
1418                 return -EINVAL;
1419
1420         /*
1421          *      Let the DPC know it has a place to send the AIF's to.
1422          */
1423         dev->aif_thread = 1;
1424         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1425         set_current_state(TASK_INTERRUPTIBLE);
1426         dprintk ((KERN_INFO "aac_command_thread start\n"));
1427         while(1) 
1428         {
1429                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1430                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1431                         struct list_head *entry;
1432                         struct aac_aifcmd * aifcmd;
1433
1434                         set_current_state(TASK_RUNNING);
1435         
1436                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1437                         list_del(entry);
1438                 
1439                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1440                         fib = list_entry(entry, struct fib, fiblink);
1441                         /*
1442                          *      We will process the FIB here or pass it to a 
1443                          *      worker thread that is TBD. We Really can't 
1444                          *      do anything at this point since we don't have
1445                          *      anything defined for this thread to do.
1446                          */
1447                         hw_fib = fib->hw_fib_va;
1448                         memset(fib, 0, sizeof(struct fib));
1449                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1450                         fib->size = sizeof( struct fib );
1451                         fib->hw_fib_va = hw_fib;
1452                         fib->data = hw_fib->data;
1453                         fib->dev = dev;
1454                         /*
1455                          *      We only handle AifRequest fibs from the adapter.
1456                          */
1457                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1458                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1459                                 /* Handle Driver Notify Events */
1460                                 aac_handle_aif(dev, fib);
1461                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1462                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1463                         } else {
1464                                 struct list_head *entry;
1465                                 /* The u32 here is important and intended. We are using
1466                                    32bit wrapping time to fit the adapter field */
1467                                    
1468                                 u32 time_now, time_last;
1469                                 unsigned long flagv;
1470                                 unsigned num;
1471                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1472                                 struct fib ** fib_pool, ** fib_p;
1473                         
1474                                 /* Sniff events */
1475                                 if ((aifcmd->command == 
1476                                      cpu_to_le32(AifCmdEventNotify)) ||
1477                                     (aifcmd->command == 
1478                                      cpu_to_le32(AifCmdJobProgress))) {
1479                                         aac_handle_aif(dev, fib);
1480                                 }
1481
1482                                 time_now = jiffies/HZ;
1483
1484                                 /*
1485                                  * Warning: no sleep allowed while
1486                                  * holding spinlock. We take the estimate
1487                                  * and pre-allocate a set of fibs outside the
1488                                  * lock.
1489                                  */
1490                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1491                                     / sizeof(struct hw_fib); /* some extra */
1492                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1493                                 entry = dev->fib_list.next;
1494                                 while (entry != &dev->fib_list) {
1495                                         entry = entry->next;
1496                                         ++num;
1497                                 }
1498                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1499                                 hw_fib_pool = NULL;
1500                                 fib_pool = NULL;
1501                                 if (num
1502                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1503                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1504                                         hw_fib_p = hw_fib_pool;
1505                                         fib_p = fib_pool;
1506                                         while (hw_fib_p < &hw_fib_pool[num]) {
1507                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1508                                                         --hw_fib_p;
1509                                                         break;
1510                                                 }
1511                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1512                                                         kfree(*(--hw_fib_p));
1513                                                         break;
1514                                                 }
1515                                         }
1516                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1517                                                 kfree(fib_pool);
1518                                                 fib_pool = NULL;
1519                                                 kfree(hw_fib_pool);
1520                                                 hw_fib_pool = NULL;
1521                                         }
1522                                 } else {
1523                                         kfree(hw_fib_pool);
1524                                         hw_fib_pool = NULL;
1525                                 }
1526                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1527                                 entry = dev->fib_list.next;
1528                                 /*
1529                                  * For each Context that is on the 
1530                                  * fibctxList, make a copy of the
1531                                  * fib, and then set the event to wake up the
1532                                  * thread that is waiting for it.
1533                                  */
1534                                 hw_fib_p = hw_fib_pool;
1535                                 fib_p = fib_pool;
1536                                 while (entry != &dev->fib_list) {
1537                                         /*
1538                                          * Extract the fibctx
1539                                          */
1540                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1541                                         /*
1542                                          * Check if the queue is getting
1543                                          * backlogged
1544                                          */
1545                                         if (fibctx->count > 20)
1546                                         {
1547                                                 /*
1548                                                  * It's *not* jiffies folks,
1549                                                  * but jiffies / HZ so do not
1550                                                  * panic ...
1551                                                  */
1552                                                 time_last = fibctx->jiffies;
1553                                                 /*
1554                                                  * Has it been > 2 minutes 
1555                                                  * since the last read off
1556                                                  * the queue?
1557                                                  */
1558                                                 if ((time_now - time_last) > aif_timeout) {
1559                                                         entry = entry->next;
1560                                                         aac_close_fib_context(dev, fibctx);
1561                                                         continue;
1562                                                 }
1563                                         }
1564                                         /*
1565                                          * Warning: no sleep allowed while
1566                                          * holding spinlock
1567                                          */
1568                                         if (hw_fib_p < &hw_fib_pool[num]) {
1569                                                 hw_newfib = *hw_fib_p;
1570                                                 *(hw_fib_p++) = NULL;
1571                                                 newfib = *fib_p;
1572                                                 *(fib_p++) = NULL;
1573                                                 /*
1574                                                  * Make the copy of the FIB
1575                                                  */
1576                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1577                                                 memcpy(newfib, fib, sizeof(struct fib));
1578                                                 newfib->hw_fib_va = hw_newfib;
1579                                                 /*
1580                                                  * Put the FIB onto the
1581                                                  * fibctx's fibs
1582                                                  */
1583                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1584                                                 fibctx->count++;
1585                                                 /* 
1586                                                  * Set the event to wake up the
1587                                                  * thread that is waiting.
1588                                                  */
1589                                                 up(&fibctx->wait_sem);
1590                                         } else {
1591                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1592                                         }
1593                                         entry = entry->next;
1594                                 }
1595                                 /*
1596                                  *      Set the status of this FIB
1597                                  */
1598                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1599                                 aac_fib_adapter_complete(fib, sizeof(u32));
1600                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1601                                 /* Free up the remaining resources */
1602                                 hw_fib_p = hw_fib_pool;
1603                                 fib_p = fib_pool;
1604                                 while (hw_fib_p < &hw_fib_pool[num]) {
1605                                         kfree(*hw_fib_p);
1606                                         kfree(*fib_p);
1607                                         ++fib_p;
1608                                         ++hw_fib_p;
1609                                 }
1610                                 kfree(hw_fib_pool);
1611                                 kfree(fib_pool);
1612                         }
1613                         kfree(fib);
1614                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1615                 }
1616                 /*
1617                  *      There are no more AIF's
1618                  */
1619                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1620
1621                 /*
1622                  *      Background activity
1623                  */
1624                 if ((time_before(next_check_jiffies,next_jiffies))
1625                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1626                         next_check_jiffies = next_jiffies;
1627                         if (aac_check_health(dev) == 0) {
1628                                 difference = ((long)(unsigned)check_interval)
1629                                            * HZ;
1630                                 next_check_jiffies = jiffies + difference;
1631                         } else if (!dev->queues)
1632                                 break;
1633                 }
1634                 if (!time_before(next_check_jiffies,next_jiffies)
1635                  && ((difference = next_jiffies - jiffies) <= 0)) {
1636                         struct timeval now;
1637                         int ret;
1638
1639                         /* Don't even try to talk to adapter if its sick */
1640                         ret = aac_check_health(dev);
1641                         if (!ret && !dev->queues)
1642                                 break;
1643                         next_check_jiffies = jiffies
1644                                            + ((long)(unsigned)check_interval)
1645                                            * HZ;
1646                         do_gettimeofday(&now);
1647
1648                         /* Synchronize our watches */
1649                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1650                          && (now.tv_usec > (1000000 / HZ)))
1651                                 difference = (((1000000 - now.tv_usec) * HZ)
1652                                   + 500000) / 1000000;
1653                         else if (ret == 0) {
1654                                 struct fib *fibptr;
1655
1656                                 if ((fibptr = aac_fib_alloc(dev))) {
1657                                         u32 * info;
1658
1659                                         aac_fib_init(fibptr);
1660
1661                                         info = (u32 *) fib_data(fibptr);
1662                                         if (now.tv_usec > 500000)
1663                                                 ++now.tv_sec;
1664
1665                                         *info = cpu_to_le32(now.tv_sec);
1666
1667                                         (void)aac_fib_send(SendHostTime,
1668                                                 fibptr,
1669                                                 sizeof(*info),
1670                                                 FsaNormal,
1671                                                 1, 1,
1672                                                 NULL,
1673                                                 NULL);
1674                                         aac_fib_complete(fibptr);
1675                                         aac_fib_free(fibptr);
1676                                 }
1677                                 difference = (long)(unsigned)update_interval*HZ;
1678                         } else {
1679                                 /* retry shortly */
1680                                 difference = 10 * HZ;
1681                         }
1682                         next_jiffies = jiffies + difference;
1683                         if (time_before(next_check_jiffies,next_jiffies))
1684                                 difference = next_check_jiffies - jiffies;
1685                 }
1686                 if (difference <= 0)
1687                         difference = 1;
1688                 set_current_state(TASK_INTERRUPTIBLE);
1689                 schedule_timeout(difference);
1690
1691                 if (kthread_should_stop())
1692                         break;
1693         }
1694         if (dev->queues)
1695                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1696         dev->aif_thread = 0;
1697         return 0;
1698 }