2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
54 #include <net/ieee80211_radiotap.h>
56 #include <asm/unaligned.h>
62 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt;
64 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
65 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
73 MODULE_AUTHOR("Jiri Slaby");
74 MODULE_AUTHOR("Nick Kossifidis");
75 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
76 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
77 MODULE_LICENSE("Dual BSD/GPL");
78 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
82 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
83 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
84 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
85 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
86 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
87 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
88 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
89 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
90 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
91 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
92 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
98 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
99 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* PCI-E cards */
100 { PCI_VDEVICE(ATHEROS, 0x001d), .driver_data = AR5K_AR5212 }, /* 2417 Nala */
103 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
106 static struct ath5k_srev_name srev_names[] = {
107 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
108 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
109 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
110 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
111 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
112 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
113 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
114 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
115 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
116 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
117 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
118 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
119 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
120 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
121 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
122 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
123 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
124 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
125 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
126 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
127 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
128 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
129 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
130 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
131 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
132 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
133 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
134 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
135 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
136 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
137 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
138 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
139 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
140 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
141 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
142 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
145 static struct ieee80211_rate ath5k_rates[] = {
147 .hw_value = ATH5K_RATE_CODE_1M, },
149 .hw_value = ATH5K_RATE_CODE_2M,
150 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
151 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
153 .hw_value = ATH5K_RATE_CODE_5_5M,
154 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 .hw_value = ATH5K_RATE_CODE_11M,
158 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 .hw_value = ATH5K_RATE_CODE_6M,
164 .hw_value = ATH5K_RATE_CODE_9M,
167 .hw_value = ATH5K_RATE_CODE_12M,
170 .hw_value = ATH5K_RATE_CODE_18M,
173 .hw_value = ATH5K_RATE_CODE_24M,
176 .hw_value = ATH5K_RATE_CODE_36M,
179 .hw_value = ATH5K_RATE_CODE_48M,
182 .hw_value = ATH5K_RATE_CODE_54M,
188 * Prototypes - PCI stack related functions
190 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
191 const struct pci_device_id *id);
192 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
194 static int ath5k_pci_suspend(struct pci_dev *pdev,
196 static int ath5k_pci_resume(struct pci_dev *pdev);
198 #define ath5k_pci_suspend NULL
199 #define ath5k_pci_resume NULL
200 #endif /* CONFIG_PM */
202 static struct pci_driver ath5k_pci_driver = {
203 .name = KBUILD_MODNAME,
204 .id_table = ath5k_pci_id_table,
205 .probe = ath5k_pci_probe,
206 .remove = __devexit_p(ath5k_pci_remove),
207 .suspend = ath5k_pci_suspend,
208 .resume = ath5k_pci_resume,
214 * Prototypes - MAC 802.11 stack related functions
216 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
217 static int ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel);
218 static int ath5k_reset_wake(struct ath5k_softc *sc);
219 static int ath5k_start(struct ieee80211_hw *hw);
220 static void ath5k_stop(struct ieee80211_hw *hw);
221 static int ath5k_add_interface(struct ieee80211_hw *hw,
222 struct ieee80211_if_init_conf *conf);
223 static void ath5k_remove_interface(struct ieee80211_hw *hw,
224 struct ieee80211_if_init_conf *conf);
225 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
226 static int ath5k_config_interface(struct ieee80211_hw *hw,
227 struct ieee80211_vif *vif,
228 struct ieee80211_if_conf *conf);
229 static void ath5k_configure_filter(struct ieee80211_hw *hw,
230 unsigned int changed_flags,
231 unsigned int *new_flags,
232 int mc_count, struct dev_mc_list *mclist);
233 static int ath5k_set_key(struct ieee80211_hw *hw,
234 enum set_key_cmd cmd,
235 const u8 *local_addr, const u8 *addr,
236 struct ieee80211_key_conf *key);
237 static int ath5k_get_stats(struct ieee80211_hw *hw,
238 struct ieee80211_low_level_stats *stats);
239 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
240 struct ieee80211_tx_queue_stats *stats);
241 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
242 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
243 static int ath5k_beacon_update(struct ath5k_softc *sc, struct sk_buff *skb);
245 static struct ieee80211_ops ath5k_hw_ops = {
247 .start = ath5k_start,
249 .add_interface = ath5k_add_interface,
250 .remove_interface = ath5k_remove_interface,
251 .config = ath5k_config,
252 .config_interface = ath5k_config_interface,
253 .configure_filter = ath5k_configure_filter,
254 .set_key = ath5k_set_key,
255 .get_stats = ath5k_get_stats,
257 .get_tx_stats = ath5k_get_tx_stats,
258 .get_tsf = ath5k_get_tsf,
259 .reset_tsf = ath5k_reset_tsf,
263 * Prototypes - Internal functions
266 static int ath5k_attach(struct pci_dev *pdev,
267 struct ieee80211_hw *hw);
268 static void ath5k_detach(struct pci_dev *pdev,
269 struct ieee80211_hw *hw);
270 /* Channel/mode setup */
271 static inline short ath5k_ieee2mhz(short chan);
272 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
273 struct ieee80211_channel *channels,
276 static int ath5k_setup_bands(struct ieee80211_hw *hw);
277 static int ath5k_chan_set(struct ath5k_softc *sc,
278 struct ieee80211_channel *chan);
279 static void ath5k_setcurmode(struct ath5k_softc *sc,
281 static void ath5k_mode_setup(struct ath5k_softc *sc);
283 /* Descriptor setup */
284 static int ath5k_desc_alloc(struct ath5k_softc *sc,
285 struct pci_dev *pdev);
286 static void ath5k_desc_free(struct ath5k_softc *sc,
287 struct pci_dev *pdev);
289 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
290 struct ath5k_buf *bf);
291 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
292 struct ath5k_buf *bf);
293 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
294 struct ath5k_buf *bf)
299 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
301 dev_kfree_skb_any(bf->skb);
306 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
307 int qtype, int subtype);
308 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
309 static int ath5k_beaconq_config(struct ath5k_softc *sc);
310 static void ath5k_txq_drainq(struct ath5k_softc *sc,
311 struct ath5k_txq *txq);
312 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
313 static void ath5k_txq_release(struct ath5k_softc *sc);
315 static int ath5k_rx_start(struct ath5k_softc *sc);
316 static void ath5k_rx_stop(struct ath5k_softc *sc);
317 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
318 struct ath5k_desc *ds,
320 struct ath5k_rx_status *rs);
321 static void ath5k_tasklet_rx(unsigned long data);
323 static void ath5k_tx_processq(struct ath5k_softc *sc,
324 struct ath5k_txq *txq);
325 static void ath5k_tasklet_tx(unsigned long data);
326 /* Beacon handling */
327 static int ath5k_beacon_setup(struct ath5k_softc *sc,
328 struct ath5k_buf *bf);
329 static void ath5k_beacon_send(struct ath5k_softc *sc);
330 static void ath5k_beacon_config(struct ath5k_softc *sc);
331 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
333 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
335 u64 tsf = ath5k_hw_get_tsf64(ah);
337 if ((tsf & 0x7fff) < rstamp)
340 return (tsf & ~0x7fff) | rstamp;
343 /* Interrupt handling */
344 static int ath5k_init(struct ath5k_softc *sc, bool is_resume);
345 static int ath5k_stop_locked(struct ath5k_softc *sc);
346 static int ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend);
347 static irqreturn_t ath5k_intr(int irq, void *dev_id);
348 static void ath5k_tasklet_reset(unsigned long data);
350 static void ath5k_calibrate(unsigned long data);
352 static int ath5k_init_leds(struct ath5k_softc *sc);
353 static void ath5k_led_enable(struct ath5k_softc *sc);
354 static void ath5k_led_off(struct ath5k_softc *sc);
355 static void ath5k_unregister_leds(struct ath5k_softc *sc);
358 * Module init/exit functions
367 ret = pci_register_driver(&ath5k_pci_driver);
369 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
379 pci_unregister_driver(&ath5k_pci_driver);
381 ath5k_debug_finish();
384 module_init(init_ath5k_pci);
385 module_exit(exit_ath5k_pci);
388 /********************\
389 * PCI Initialization *
390 \********************/
393 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
395 const char *name = "xxxxx";
398 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
399 if (srev_names[i].sr_type != type)
402 if ((val & 0xf0) == srev_names[i].sr_val)
403 name = srev_names[i].sr_name;
405 if ((val & 0xff) == srev_names[i].sr_val) {
406 name = srev_names[i].sr_name;
415 ath5k_pci_probe(struct pci_dev *pdev,
416 const struct pci_device_id *id)
419 struct ath5k_softc *sc;
420 struct ieee80211_hw *hw;
424 ret = pci_enable_device(pdev);
426 dev_err(&pdev->dev, "can't enable device\n");
430 /* XXX 32-bit addressing only */
431 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
433 dev_err(&pdev->dev, "32-bit DMA not available\n");
438 * Cache line size is used to size and align various
439 * structures used to communicate with the hardware.
441 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
444 * Linux 2.4.18 (at least) writes the cache line size
445 * register as a 16-bit wide register which is wrong.
446 * We must have this setup properly for rx buffer
447 * DMA to work so force a reasonable value here if it
450 csz = L1_CACHE_BYTES / sizeof(u32);
451 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
454 * The default setting of latency timer yields poor results,
455 * set it to the value used by other systems. It may be worth
456 * tweaking this setting more.
458 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
460 /* Enable bus mastering */
461 pci_set_master(pdev);
464 * Disable the RETRY_TIMEOUT register (0x41) to keep
465 * PCI Tx retries from interfering with C3 CPU state.
467 pci_write_config_byte(pdev, 0x41, 0);
469 ret = pci_request_region(pdev, 0, "ath5k");
471 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
475 mem = pci_iomap(pdev, 0, 0);
477 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
483 * Allocate hw (mac80211 main struct)
484 * and hw->priv (driver private data)
486 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
488 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
493 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
495 /* Initialize driver private data */
496 SET_IEEE80211_DEV(hw, &pdev->dev);
497 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
498 IEEE80211_HW_SIGNAL_DBM |
499 IEEE80211_HW_NOISE_DBM;
501 hw->wiphy->interface_modes =
502 BIT(NL80211_IFTYPE_STATION) |
503 BIT(NL80211_IFTYPE_ADHOC) |
504 BIT(NL80211_IFTYPE_MESH_POINT);
506 hw->extra_tx_headroom = 2;
507 hw->channel_change_time = 5000;
512 ath5k_debug_init_device(sc);
515 * Mark the device as detached to avoid processing
516 * interrupts until setup is complete.
518 __set_bit(ATH_STAT_INVALID, sc->status);
520 sc->iobase = mem; /* So we can unmap it on detach */
521 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
522 sc->opmode = NL80211_IFTYPE_STATION;
523 mutex_init(&sc->lock);
524 spin_lock_init(&sc->rxbuflock);
525 spin_lock_init(&sc->txbuflock);
526 spin_lock_init(&sc->block);
528 /* Set private data */
529 pci_set_drvdata(pdev, hw);
531 /* Setup interrupt handler */
532 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
534 ATH5K_ERR(sc, "request_irq failed\n");
538 /* Initialize device */
539 sc->ah = ath5k_hw_attach(sc, id->driver_data);
540 if (IS_ERR(sc->ah)) {
541 ret = PTR_ERR(sc->ah);
545 /* set up multi-rate retry capabilities */
546 if (sc->ah->ah_version == AR5K_AR5212) {
548 hw->max_rate_tries = 11;
551 /* Finish private driver data initialization */
552 ret = ath5k_attach(pdev, hw);
556 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
557 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
559 sc->ah->ah_phy_revision);
561 if (!sc->ah->ah_single_chip) {
562 /* Single chip radio (!RF5111) */
563 if (sc->ah->ah_radio_5ghz_revision &&
564 !sc->ah->ah_radio_2ghz_revision) {
565 /* No 5GHz support -> report 2GHz radio */
566 if (!test_bit(AR5K_MODE_11A,
567 sc->ah->ah_capabilities.cap_mode)) {
568 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
569 ath5k_chip_name(AR5K_VERSION_RAD,
570 sc->ah->ah_radio_5ghz_revision),
571 sc->ah->ah_radio_5ghz_revision);
572 /* No 2GHz support (5110 and some
573 * 5Ghz only cards) -> report 5Ghz radio */
574 } else if (!test_bit(AR5K_MODE_11B,
575 sc->ah->ah_capabilities.cap_mode)) {
576 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
577 ath5k_chip_name(AR5K_VERSION_RAD,
578 sc->ah->ah_radio_5ghz_revision),
579 sc->ah->ah_radio_5ghz_revision);
580 /* Multiband radio */
582 ATH5K_INFO(sc, "RF%s multiband radio found"
584 ath5k_chip_name(AR5K_VERSION_RAD,
585 sc->ah->ah_radio_5ghz_revision),
586 sc->ah->ah_radio_5ghz_revision);
589 /* Multi chip radio (RF5111 - RF2111) ->
590 * report both 2GHz/5GHz radios */
591 else if (sc->ah->ah_radio_5ghz_revision &&
592 sc->ah->ah_radio_2ghz_revision){
593 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
594 ath5k_chip_name(AR5K_VERSION_RAD,
595 sc->ah->ah_radio_5ghz_revision),
596 sc->ah->ah_radio_5ghz_revision);
597 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
598 ath5k_chip_name(AR5K_VERSION_RAD,
599 sc->ah->ah_radio_2ghz_revision),
600 sc->ah->ah_radio_2ghz_revision);
605 /* ready to process interrupts */
606 __clear_bit(ATH_STAT_INVALID, sc->status);
610 ath5k_hw_detach(sc->ah);
612 free_irq(pdev->irq, sc);
614 ieee80211_free_hw(hw);
616 pci_iounmap(pdev, mem);
618 pci_release_region(pdev, 0);
620 pci_disable_device(pdev);
625 static void __devexit
626 ath5k_pci_remove(struct pci_dev *pdev)
628 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
629 struct ath5k_softc *sc = hw->priv;
631 ath5k_debug_finish_device(sc);
632 ath5k_detach(pdev, hw);
633 ath5k_hw_detach(sc->ah);
634 free_irq(pdev->irq, sc);
635 pci_iounmap(pdev, sc->iobase);
636 pci_release_region(pdev, 0);
637 pci_disable_device(pdev);
638 ieee80211_free_hw(hw);
643 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
645 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
646 struct ath5k_softc *sc = hw->priv;
650 ath5k_stop_hw(sc, true);
652 free_irq(pdev->irq, sc);
653 pci_save_state(pdev);
654 pci_disable_device(pdev);
655 pci_set_power_state(pdev, PCI_D3hot);
661 ath5k_pci_resume(struct pci_dev *pdev)
663 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
664 struct ath5k_softc *sc = hw->priv;
667 pci_restore_state(pdev);
669 err = pci_enable_device(pdev);
674 * Suspend/Resume resets the PCI configuration space, so we have to
675 * re-disable the RETRY_TIMEOUT register (0x41) to keep
676 * PCI Tx retries from interfering with C3 CPU state
678 pci_write_config_byte(pdev, 0x41, 0);
680 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
682 ATH5K_ERR(sc, "request_irq failed\n");
686 err = ath5k_init(sc, true);
689 ath5k_led_enable(sc);
693 free_irq(pdev->irq, sc);
695 pci_disable_device(pdev);
698 #endif /* CONFIG_PM */
701 /***********************\
702 * Driver Initialization *
703 \***********************/
706 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
708 struct ath5k_softc *sc = hw->priv;
709 struct ath5k_hw *ah = sc->ah;
710 u8 mac[ETH_ALEN] = {};
713 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
716 * Check if the MAC has multi-rate retry support.
717 * We do this by trying to setup a fake extended
718 * descriptor. MAC's that don't have support will
719 * return false w/o doing anything. MAC's that do
720 * support it will return true w/o doing anything.
722 ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
726 __set_bit(ATH_STAT_MRRETRY, sc->status);
729 * Collect the channel list. The 802.11 layer
730 * is resposible for filtering this list based
731 * on settings like the phy mode and regulatory
732 * domain restrictions.
734 ret = ath5k_setup_bands(hw);
736 ATH5K_ERR(sc, "can't get channels\n");
740 /* NB: setup here so ath5k_rate_update is happy */
741 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
742 ath5k_setcurmode(sc, AR5K_MODE_11A);
744 ath5k_setcurmode(sc, AR5K_MODE_11B);
747 * Allocate tx+rx descriptors and populate the lists.
749 ret = ath5k_desc_alloc(sc, pdev);
751 ATH5K_ERR(sc, "can't allocate descriptors\n");
756 * Allocate hardware transmit queues: one queue for
757 * beacon frames and one data queue for each QoS
758 * priority. Note that hw functions handle reseting
759 * these queues at the needed time.
761 ret = ath5k_beaconq_setup(ah);
763 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
768 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
769 if (IS_ERR(sc->txq)) {
770 ATH5K_ERR(sc, "can't setup xmit queue\n");
771 ret = PTR_ERR(sc->txq);
775 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
776 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
777 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
778 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
780 ret = ath5k_eeprom_read_mac(ah, mac);
782 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
787 SET_IEEE80211_PERM_ADDR(hw, mac);
788 /* All MAC address bits matter for ACKs */
789 memset(sc->bssidmask, 0xff, ETH_ALEN);
790 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
792 ret = ieee80211_register_hw(hw);
794 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
802 ath5k_txq_release(sc);
804 ath5k_hw_release_tx_queue(ah, sc->bhalq);
806 ath5k_desc_free(sc, pdev);
812 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
814 struct ath5k_softc *sc = hw->priv;
817 * NB: the order of these is important:
818 * o call the 802.11 layer before detaching ath5k_hw to
819 * insure callbacks into the driver to delete global
820 * key cache entries can be handled
821 * o reclaim the tx queue data structures after calling
822 * the 802.11 layer as we'll get called back to reclaim
823 * node state and potentially want to use them
824 * o to cleanup the tx queues the hal is called, so detach
826 * XXX: ??? detach ath5k_hw ???
827 * Other than that, it's straightforward...
829 ieee80211_unregister_hw(hw);
830 ath5k_desc_free(sc, pdev);
831 ath5k_txq_release(sc);
832 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
833 ath5k_unregister_leds(sc);
836 * NB: can't reclaim these until after ieee80211_ifdetach
837 * returns because we'll get called back to reclaim node
838 * state and potentially want to use them.
845 /********************\
846 * Channel/mode setup *
847 \********************/
850 * Convert IEEE channel number to MHz frequency.
853 ath5k_ieee2mhz(short chan)
855 if (chan <= 14 || chan >= 27)
856 return ieee80211chan2mhz(chan);
858 return 2212 + chan * 20;
862 ath5k_copy_channels(struct ath5k_hw *ah,
863 struct ieee80211_channel *channels,
867 unsigned int i, count, size, chfreq, freq, ch;
869 if (!test_bit(mode, ah->ah_modes))
874 case AR5K_MODE_11A_TURBO:
875 /* 1..220, but 2GHz frequencies are filtered by check_channel */
877 chfreq = CHANNEL_5GHZ;
881 case AR5K_MODE_11G_TURBO:
883 chfreq = CHANNEL_2GHZ;
886 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
890 for (i = 0, count = 0; i < size && max > 0; i++) {
892 freq = ath5k_ieee2mhz(ch);
894 /* Check if channel is supported by the chipset */
895 if (!ath5k_channel_ok(ah, freq, chfreq))
898 /* Write channel info and increment counter */
899 channels[count].center_freq = freq;
900 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
901 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
905 channels[count].hw_value = chfreq | CHANNEL_OFDM;
907 case AR5K_MODE_11A_TURBO:
908 case AR5K_MODE_11G_TURBO:
909 channels[count].hw_value = chfreq |
910 CHANNEL_OFDM | CHANNEL_TURBO;
913 channels[count].hw_value = CHANNEL_B;
924 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
928 for (i = 0; i < AR5K_MAX_RATES; i++)
929 sc->rate_idx[b->band][i] = -1;
931 for (i = 0; i < b->n_bitrates; i++) {
932 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
933 if (b->bitrates[i].hw_value_short)
934 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
939 ath5k_setup_bands(struct ieee80211_hw *hw)
941 struct ath5k_softc *sc = hw->priv;
942 struct ath5k_hw *ah = sc->ah;
943 struct ieee80211_supported_band *sband;
944 int max_c, count_c = 0;
947 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
948 max_c = ARRAY_SIZE(sc->channels);
951 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
952 sband->band = IEEE80211_BAND_2GHZ;
953 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
955 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
957 memcpy(sband->bitrates, &ath5k_rates[0],
958 sizeof(struct ieee80211_rate) * 12);
959 sband->n_bitrates = 12;
961 sband->channels = sc->channels;
962 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
963 AR5K_MODE_11G, max_c);
965 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
966 count_c = sband->n_channels;
968 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
970 memcpy(sband->bitrates, &ath5k_rates[0],
971 sizeof(struct ieee80211_rate) * 4);
972 sband->n_bitrates = 4;
974 /* 5211 only supports B rates and uses 4bit rate codes
975 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
978 if (ah->ah_version == AR5K_AR5211) {
979 for (i = 0; i < 4; i++) {
980 sband->bitrates[i].hw_value =
981 sband->bitrates[i].hw_value & 0xF;
982 sband->bitrates[i].hw_value_short =
983 sband->bitrates[i].hw_value_short & 0xF;
987 sband->channels = sc->channels;
988 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
989 AR5K_MODE_11B, max_c);
991 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
992 count_c = sband->n_channels;
995 ath5k_setup_rate_idx(sc, sband);
997 /* 5GHz band, A mode */
998 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
999 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1000 sband->band = IEEE80211_BAND_5GHZ;
1001 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1003 memcpy(sband->bitrates, &ath5k_rates[4],
1004 sizeof(struct ieee80211_rate) * 8);
1005 sband->n_bitrates = 8;
1007 sband->channels = &sc->channels[count_c];
1008 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1009 AR5K_MODE_11A, max_c);
1011 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1013 ath5k_setup_rate_idx(sc, sband);
1015 ath5k_debug_dump_bands(sc);
1021 * Set/change channels. If the channel is really being changed,
1022 * it's done by reseting the chip. To accomplish this we must
1023 * first cleanup any pending DMA, then restart stuff after a la
1027 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1029 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1030 sc->curchan->center_freq, chan->center_freq);
1032 if (chan->center_freq != sc->curchan->center_freq ||
1033 chan->hw_value != sc->curchan->hw_value) {
1036 sc->curband = &sc->sbands[chan->band];
1039 * To switch channels clear any pending DMA operations;
1040 * wait long enough for the RX fifo to drain, reset the
1041 * hardware at the new frequency, and then re-enable
1042 * the relevant bits of the h/w.
1044 return ath5k_reset(sc, true, true);
1051 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1055 if (mode == AR5K_MODE_11A) {
1056 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1058 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1063 ath5k_mode_setup(struct ath5k_softc *sc)
1065 struct ath5k_hw *ah = sc->ah;
1068 /* configure rx filter */
1069 rfilt = sc->filter_flags;
1070 ath5k_hw_set_rx_filter(ah, rfilt);
1072 if (ath5k_hw_hasbssidmask(ah))
1073 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1075 /* configure operational mode */
1076 ath5k_hw_set_opmode(ah);
1078 ath5k_hw_set_mcast_filter(ah, 0, 0);
1079 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1083 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1085 WARN_ON(hw_rix < 0 || hw_rix > AR5K_MAX_RATES);
1086 return sc->rate_idx[sc->curband->band][hw_rix];
1094 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1096 struct ath5k_hw *ah = sc->ah;
1097 struct sk_buff *skb = bf->skb;
1098 struct ath5k_desc *ds;
1100 if (likely(skb == NULL)) {
1104 * Allocate buffer with headroom_needed space for the
1105 * fake physical layer header at the start.
1107 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1108 if (unlikely(skb == NULL)) {
1109 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1110 sc->rxbufsize + sc->cachelsz - 1);
1114 * Cache-line-align. This is important (for the
1115 * 5210 at least) as not doing so causes bogus data
1118 off = ((unsigned long)skb->data) % sc->cachelsz;
1120 skb_reserve(skb, sc->cachelsz - off);
1123 bf->skbaddr = pci_map_single(sc->pdev,
1124 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1125 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->skbaddr))) {
1126 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1134 * Setup descriptors. For receive we always terminate
1135 * the descriptor list with a self-linked entry so we'll
1136 * not get overrun under high load (as can happen with a
1137 * 5212 when ANI processing enables PHY error frames).
1139 * To insure the last descriptor is self-linked we create
1140 * each descriptor as self-linked and add it to the end. As
1141 * each additional descriptor is added the previous self-linked
1142 * entry is ``fixed'' naturally. This should be safe even
1143 * if DMA is happening. When processing RX interrupts we
1144 * never remove/process the last, self-linked, entry on the
1145 * descriptor list. This insures the hardware always has
1146 * someplace to write a new frame.
1149 ds->ds_link = bf->daddr; /* link to self */
1150 ds->ds_data = bf->skbaddr;
1151 ah->ah_setup_rx_desc(ah, ds,
1152 skb_tailroom(skb), /* buffer size */
1155 if (sc->rxlink != NULL)
1156 *sc->rxlink = bf->daddr;
1157 sc->rxlink = &ds->ds_link;
1162 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1164 struct ath5k_hw *ah = sc->ah;
1165 struct ath5k_txq *txq = sc->txq;
1166 struct ath5k_desc *ds = bf->desc;
1167 struct sk_buff *skb = bf->skb;
1168 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1169 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1170 struct ieee80211_rate *rate;
1171 unsigned int mrr_rate[3], mrr_tries[3];
1174 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1176 /* XXX endianness */
1177 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1180 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1181 flags |= AR5K_TXDESC_NOACK;
1185 if (info->control.hw_key) {
1186 keyidx = info->control.hw_key->hw_key_idx;
1187 pktlen += info->control.hw_key->icv_len;
1189 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1190 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1191 (sc->power_level * 2),
1192 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1193 info->control.rates[0].count, keyidx, 0, flags, 0, 0);
1197 memset(mrr_rate, 0, sizeof(mrr_rate));
1198 memset(mrr_tries, 0, sizeof(mrr_tries));
1199 for (i = 0; i < 3; i++) {
1200 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1204 mrr_rate[i] = rate->hw_value;
1205 mrr_tries[i] = info->control.rates[i + 1].count;
1208 ah->ah_setup_mrr_tx_desc(ah, ds,
1209 mrr_rate[0], mrr_tries[0],
1210 mrr_rate[1], mrr_tries[1],
1211 mrr_rate[2], mrr_tries[2]);
1214 ds->ds_data = bf->skbaddr;
1216 spin_lock_bh(&txq->lock);
1217 list_add_tail(&bf->list, &txq->q);
1218 sc->tx_stats[txq->qnum].len++;
1219 if (txq->link == NULL) /* is this first packet? */
1220 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1221 else /* no, so only link it */
1222 *txq->link = bf->daddr;
1224 txq->link = &ds->ds_link;
1225 ath5k_hw_start_tx_dma(ah, txq->qnum);
1227 spin_unlock_bh(&txq->lock);
1231 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1235 /*******************\
1236 * Descriptors setup *
1237 \*******************/
1240 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1242 struct ath5k_desc *ds;
1243 struct ath5k_buf *bf;
1248 /* allocate descriptors */
1249 sc->desc_len = sizeof(struct ath5k_desc) *
1250 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1251 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1252 if (sc->desc == NULL) {
1253 ATH5K_ERR(sc, "can't allocate descriptors\n");
1258 da = sc->desc_daddr;
1259 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1260 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1262 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1263 sizeof(struct ath5k_buf), GFP_KERNEL);
1265 ATH5K_ERR(sc, "can't allocate bufptr\n");
1271 INIT_LIST_HEAD(&sc->rxbuf);
1272 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1275 list_add_tail(&bf->list, &sc->rxbuf);
1278 INIT_LIST_HEAD(&sc->txbuf);
1279 sc->txbuf_len = ATH_TXBUF;
1280 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1281 da += sizeof(*ds)) {
1284 list_add_tail(&bf->list, &sc->txbuf);
1294 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1301 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1303 struct ath5k_buf *bf;
1305 ath5k_txbuf_free(sc, sc->bbuf);
1306 list_for_each_entry(bf, &sc->txbuf, list)
1307 ath5k_txbuf_free(sc, bf);
1308 list_for_each_entry(bf, &sc->rxbuf, list)
1309 ath5k_txbuf_free(sc, bf);
1311 /* Free memory associated with all descriptors */
1312 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1326 static struct ath5k_txq *
1327 ath5k_txq_setup(struct ath5k_softc *sc,
1328 int qtype, int subtype)
1330 struct ath5k_hw *ah = sc->ah;
1331 struct ath5k_txq *txq;
1332 struct ath5k_txq_info qi = {
1333 .tqi_subtype = subtype,
1334 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1335 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1336 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1341 * Enable interrupts only for EOL and DESC conditions.
1342 * We mark tx descriptors to receive a DESC interrupt
1343 * when a tx queue gets deep; otherwise waiting for the
1344 * EOL to reap descriptors. Note that this is done to
1345 * reduce interrupt load and this only defers reaping
1346 * descriptors, never transmitting frames. Aside from
1347 * reducing interrupts this also permits more concurrency.
1348 * The only potential downside is if the tx queue backs
1349 * up in which case the top half of the kernel may backup
1350 * due to a lack of tx descriptors.
1352 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1353 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1354 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1357 * NB: don't print a message, this happens
1358 * normally on parts with too few tx queues
1360 return ERR_PTR(qnum);
1362 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1363 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1364 qnum, ARRAY_SIZE(sc->txqs));
1365 ath5k_hw_release_tx_queue(ah, qnum);
1366 return ERR_PTR(-EINVAL);
1368 txq = &sc->txqs[qnum];
1372 INIT_LIST_HEAD(&txq->q);
1373 spin_lock_init(&txq->lock);
1376 return &sc->txqs[qnum];
1380 ath5k_beaconq_setup(struct ath5k_hw *ah)
1382 struct ath5k_txq_info qi = {
1383 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1384 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1385 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1386 /* NB: for dynamic turbo, don't enable any other interrupts */
1387 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1390 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1394 ath5k_beaconq_config(struct ath5k_softc *sc)
1396 struct ath5k_hw *ah = sc->ah;
1397 struct ath5k_txq_info qi;
1400 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1403 if (sc->opmode == NL80211_IFTYPE_AP ||
1404 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1406 * Always burst out beacon and CAB traffic
1407 * (aifs = cwmin = cwmax = 0)
1412 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1414 * Adhoc mode; backoff between 0 and (2 * cw_min).
1418 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1421 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1422 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1423 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1425 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1427 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1428 "hardware queue!\n", __func__);
1432 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1436 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1438 struct ath5k_buf *bf, *bf0;
1441 * NB: this assumes output has been stopped and
1442 * we do not need to block ath5k_tx_tasklet
1444 spin_lock_bh(&txq->lock);
1445 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1446 ath5k_debug_printtxbuf(sc, bf);
1448 ath5k_txbuf_free(sc, bf);
1450 spin_lock_bh(&sc->txbuflock);
1451 sc->tx_stats[txq->qnum].len--;
1452 list_move_tail(&bf->list, &sc->txbuf);
1454 spin_unlock_bh(&sc->txbuflock);
1457 spin_unlock_bh(&txq->lock);
1461 * Drain the transmit queues and reclaim resources.
1464 ath5k_txq_cleanup(struct ath5k_softc *sc)
1466 struct ath5k_hw *ah = sc->ah;
1469 /* XXX return value */
1470 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1471 /* don't touch the hardware if marked invalid */
1472 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1473 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1474 ath5k_hw_get_txdp(ah, sc->bhalq));
1475 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1476 if (sc->txqs[i].setup) {
1477 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1478 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1481 ath5k_hw_get_txdp(ah,
1486 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1488 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1489 if (sc->txqs[i].setup)
1490 ath5k_txq_drainq(sc, &sc->txqs[i]);
1494 ath5k_txq_release(struct ath5k_softc *sc)
1496 struct ath5k_txq *txq = sc->txqs;
1499 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1501 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1514 * Enable the receive h/w following a reset.
1517 ath5k_rx_start(struct ath5k_softc *sc)
1519 struct ath5k_hw *ah = sc->ah;
1520 struct ath5k_buf *bf;
1523 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1525 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1526 sc->cachelsz, sc->rxbufsize);
1530 spin_lock_bh(&sc->rxbuflock);
1531 list_for_each_entry(bf, &sc->rxbuf, list) {
1532 ret = ath5k_rxbuf_setup(sc, bf);
1534 spin_unlock_bh(&sc->rxbuflock);
1538 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1539 spin_unlock_bh(&sc->rxbuflock);
1541 ath5k_hw_set_rxdp(ah, bf->daddr);
1542 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1543 ath5k_mode_setup(sc); /* set filters, etc. */
1544 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1552 * Disable the receive h/w in preparation for a reset.
1555 ath5k_rx_stop(struct ath5k_softc *sc)
1557 struct ath5k_hw *ah = sc->ah;
1559 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1560 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1561 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1563 ath5k_debug_printrxbuffs(sc, ah);
1565 sc->rxlink = NULL; /* just in case */
1569 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1570 struct sk_buff *skb, struct ath5k_rx_status *rs)
1572 struct ieee80211_hdr *hdr = (void *)skb->data;
1573 unsigned int keyix, hlen;
1575 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1576 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1577 return RX_FLAG_DECRYPTED;
1579 /* Apparently when a default key is used to decrypt the packet
1580 the hw does not set the index used to decrypt. In such cases
1581 get the index from the packet. */
1582 hlen = ieee80211_hdrlen(hdr->frame_control);
1583 if (ieee80211_has_protected(hdr->frame_control) &&
1584 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1585 skb->len >= hlen + 4) {
1586 keyix = skb->data[hlen + 3] >> 6;
1588 if (test_bit(keyix, sc->keymap))
1589 return RX_FLAG_DECRYPTED;
1597 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1598 struct ieee80211_rx_status *rxs)
1602 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1604 if (ieee80211_is_beacon(mgmt->frame_control) &&
1605 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1606 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1608 * Received an IBSS beacon with the same BSSID. Hardware *must*
1609 * have updated the local TSF. We have to work around various
1610 * hardware bugs, though...
1612 tsf = ath5k_hw_get_tsf64(sc->ah);
1613 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1614 hw_tu = TSF_TO_TU(tsf);
1616 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1617 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1618 (unsigned long long)bc_tstamp,
1619 (unsigned long long)rxs->mactime,
1620 (unsigned long long)(rxs->mactime - bc_tstamp),
1621 (unsigned long long)tsf);
1624 * Sometimes the HW will give us a wrong tstamp in the rx
1625 * status, causing the timestamp extension to go wrong.
1626 * (This seems to happen especially with beacon frames bigger
1627 * than 78 byte (incl. FCS))
1628 * But we know that the receive timestamp must be later than the
1629 * timestamp of the beacon since HW must have synced to that.
1631 * NOTE: here we assume mactime to be after the frame was
1632 * received, not like mac80211 which defines it at the start.
1634 if (bc_tstamp > rxs->mactime) {
1635 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1636 "fixing mactime from %llx to %llx\n",
1637 (unsigned long long)rxs->mactime,
1638 (unsigned long long)tsf);
1643 * Local TSF might have moved higher than our beacon timers,
1644 * in that case we have to update them to continue sending
1645 * beacons. This also takes care of synchronizing beacon sending
1646 * times with other stations.
1648 if (hw_tu >= sc->nexttbtt)
1649 ath5k_beacon_update_timers(sc, bc_tstamp);
1655 ath5k_tasklet_rx(unsigned long data)
1657 struct ieee80211_rx_status rxs = {};
1658 struct ath5k_rx_status rs = {};
1659 struct sk_buff *skb;
1660 struct ath5k_softc *sc = (void *)data;
1661 struct ath5k_buf *bf, *bf_last;
1662 struct ath5k_desc *ds;
1667 spin_lock(&sc->rxbuflock);
1668 if (list_empty(&sc->rxbuf)) {
1669 ATH5K_WARN(sc, "empty rx buf pool\n");
1672 bf_last = list_entry(sc->rxbuf.prev, struct ath5k_buf, list);
1676 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1677 BUG_ON(bf->skb == NULL);
1682 * last buffer must not be freed to ensure proper hardware
1683 * function. When the hardware finishes also a packet next to
1684 * it, we are sure, it doesn't use it anymore and we can go on.
1689 struct ath5k_buf *bf_next = list_entry(bf->list.next,
1690 struct ath5k_buf, list);
1691 ret = sc->ah->ah_proc_rx_desc(sc->ah, bf_next->desc,
1696 /* skip the overwritten one (even status is martian) */
1700 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1701 if (unlikely(ret == -EINPROGRESS))
1703 else if (unlikely(ret)) {
1704 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1705 spin_unlock(&sc->rxbuflock);
1709 if (unlikely(rs.rs_more)) {
1710 ATH5K_WARN(sc, "unsupported jumbo\n");
1714 if (unlikely(rs.rs_status)) {
1715 if (rs.rs_status & AR5K_RXERR_PHY)
1717 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1719 * Decrypt error. If the error occurred
1720 * because there was no hardware key, then
1721 * let the frame through so the upper layers
1722 * can process it. This is necessary for 5210
1723 * parts which have no way to setup a ``clear''
1726 * XXX do key cache faulting
1728 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1729 !(rs.rs_status & AR5K_RXERR_CRC))
1732 if (rs.rs_status & AR5K_RXERR_MIC) {
1733 rxs.flag |= RX_FLAG_MMIC_ERROR;
1737 /* let crypto-error packets fall through in MNTR */
1739 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1740 sc->opmode != NL80211_IFTYPE_MONITOR)
1744 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1745 PCI_DMA_FROMDEVICE);
1748 skb_put(skb, rs.rs_datalen);
1751 * the hardware adds a padding to 4 byte boundaries between
1752 * the header and the payload data if the header length is
1753 * not multiples of 4 - remove it
1755 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1758 memmove(skb->data + pad, skb->data, hdrlen);
1763 * always extend the mac timestamp, since this information is
1764 * also needed for proper IBSS merging.
1766 * XXX: it might be too late to do it here, since rs_tstamp is
1767 * 15bit only. that means TSF extension has to be done within
1768 * 32768usec (about 32ms). it might be necessary to move this to
1769 * the interrupt handler, like it is done in madwifi.
1771 * Unfortunately we don't know when the hardware takes the rx
1772 * timestamp (beginning of phy frame, data frame, end of rx?).
1773 * The only thing we know is that it is hardware specific...
1774 * On AR5213 it seems the rx timestamp is at the end of the
1775 * frame, but i'm not sure.
1777 * NOTE: mac80211 defines mactime at the beginning of the first
1778 * data symbol. Since we don't have any time references it's
1779 * impossible to comply to that. This affects IBSS merge only
1780 * right now, so it's not too bad...
1782 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1783 rxs.flag |= RX_FLAG_TSFT;
1785 rxs.freq = sc->curchan->center_freq;
1786 rxs.band = sc->curband->band;
1788 rxs.noise = sc->ah->ah_noise_floor;
1789 rxs.signal = rxs.noise + rs.rs_rssi;
1791 /* An rssi of 35 indicates you should be able use
1792 * 54 Mbps reliably. A more elaborate scheme can be used
1793 * here but it requires a map of SNR/throughput for each
1794 * possible mode used */
1795 rxs.qual = rs.rs_rssi * 100 / 35;
1797 /* rssi can be more than 35 though, anything above that
1798 * should be considered at 100% */
1802 rxs.antenna = rs.rs_antenna;
1803 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1804 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1806 if (rxs.rate_idx >= 0 && rs.rs_rate ==
1807 sc->curband->bitrates[rxs.rate_idx].hw_value_short)
1808 rxs.flag |= RX_FLAG_SHORTPRE;
1810 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1812 /* check beacons in IBSS mode */
1813 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1814 ath5k_check_ibss_tsf(sc, skb, &rxs);
1816 __ieee80211_rx(sc->hw, skb, &rxs);
1818 list_move_tail(&bf->list, &sc->rxbuf);
1819 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1821 spin_unlock(&sc->rxbuflock);
1832 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1834 struct ath5k_tx_status ts = {};
1835 struct ath5k_buf *bf, *bf0;
1836 struct ath5k_desc *ds;
1837 struct sk_buff *skb;
1838 struct ieee80211_tx_info *info;
1841 spin_lock(&txq->lock);
1842 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1845 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1846 if (unlikely(ret == -EINPROGRESS))
1848 else if (unlikely(ret)) {
1849 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1855 info = IEEE80211_SKB_CB(skb);
1858 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1861 ieee80211_tx_info_clear_status(info);
1862 for (i = 0; i < 4; i++) {
1863 struct ieee80211_tx_rate *r =
1864 &info->status.rates[i];
1866 if (ts.ts_rate[i]) {
1867 r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1868 r->count = ts.ts_retry[i];
1875 /* count the successful attempt as well */
1876 info->status.rates[ts.ts_final_idx].count++;
1878 if (unlikely(ts.ts_status)) {
1879 sc->ll_stats.dot11ACKFailureCount++;
1880 if (ts.ts_status & AR5K_TXERR_FILT)
1881 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1883 info->flags |= IEEE80211_TX_STAT_ACK;
1884 info->status.ack_signal = ts.ts_rssi;
1887 ieee80211_tx_status(sc->hw, skb);
1888 sc->tx_stats[txq->qnum].count++;
1890 spin_lock(&sc->txbuflock);
1891 sc->tx_stats[txq->qnum].len--;
1892 list_move_tail(&bf->list, &sc->txbuf);
1894 spin_unlock(&sc->txbuflock);
1896 if (likely(list_empty(&txq->q)))
1898 spin_unlock(&txq->lock);
1899 if (sc->txbuf_len > ATH_TXBUF / 5)
1900 ieee80211_wake_queues(sc->hw);
1904 ath5k_tasklet_tx(unsigned long data)
1906 struct ath5k_softc *sc = (void *)data;
1908 ath5k_tx_processq(sc, sc->txq);
1917 * Setup the beacon frame for transmit.
1920 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1922 struct sk_buff *skb = bf->skb;
1923 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1924 struct ath5k_hw *ah = sc->ah;
1925 struct ath5k_desc *ds;
1926 int ret, antenna = 0;
1929 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1931 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1932 "skbaddr %llx\n", skb, skb->data, skb->len,
1933 (unsigned long long)bf->skbaddr);
1934 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
1935 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1941 flags = AR5K_TXDESC_NOACK;
1942 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1943 ds->ds_link = bf->daddr; /* self-linked */
1944 flags |= AR5K_TXDESC_VEOL;
1946 * Let hardware handle antenna switching if txantenna is not set
1951 * Switch antenna every 4 beacons if txantenna is not set
1952 * XXX assumes two antennas
1955 antenna = sc->bsent & 4 ? 2 : 1;
1958 ds->ds_data = bf->skbaddr;
1959 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1960 ieee80211_get_hdrlen_from_skb(skb),
1961 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1962 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1963 1, AR5K_TXKEYIX_INVALID,
1964 antenna, flags, 0, 0);
1970 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1975 * Transmit a beacon frame at SWBA. Dynamic updates to the
1976 * frame contents are done as needed and the slot time is
1977 * also adjusted based on current state.
1979 * this is usually called from interrupt context (ath5k_intr())
1980 * but also from ath5k_beacon_config() in IBSS mode which in turn
1981 * can be called from a tasklet and user context
1984 ath5k_beacon_send(struct ath5k_softc *sc)
1986 struct ath5k_buf *bf = sc->bbuf;
1987 struct ath5k_hw *ah = sc->ah;
1989 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1991 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1992 sc->opmode == NL80211_IFTYPE_MONITOR)) {
1993 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1997 * Check if the previous beacon has gone out. If
1998 * not don't don't try to post another, skip this
1999 * period and wait for the next. Missed beacons
2000 * indicate a problem and should not occur. If we
2001 * miss too many consecutive beacons reset the device.
2003 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2005 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2006 "missed %u consecutive beacons\n", sc->bmisscount);
2007 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2008 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2009 "stuck beacon time (%u missed)\n",
2011 tasklet_schedule(&sc->restq);
2015 if (unlikely(sc->bmisscount != 0)) {
2016 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2017 "resume beacon xmit after %u misses\n",
2023 * Stop any current dma and put the new frame on the queue.
2024 * This should never fail since we check above that no frames
2025 * are still pending on the queue.
2027 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2028 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2029 /* NB: hw still stops DMA, so proceed */
2032 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2033 ath5k_hw_start_tx_dma(ah, sc->bhalq);
2034 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2035 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2042 * ath5k_beacon_update_timers - update beacon timers
2044 * @sc: struct ath5k_softc pointer we are operating on
2045 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2046 * beacon timer update based on the current HW TSF.
2048 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2049 * of a received beacon or the current local hardware TSF and write it to the
2050 * beacon timer registers.
2052 * This is called in a variety of situations, e.g. when a beacon is received,
2053 * when a TSF update has been detected, but also when an new IBSS is created or
2054 * when we otherwise know we have to update the timers, but we keep it in this
2055 * function to have it all together in one place.
2058 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2060 struct ath5k_hw *ah = sc->ah;
2061 u32 nexttbtt, intval, hw_tu, bc_tu;
2064 intval = sc->bintval & AR5K_BEACON_PERIOD;
2065 if (WARN_ON(!intval))
2068 /* beacon TSF converted to TU */
2069 bc_tu = TSF_TO_TU(bc_tsf);
2071 /* current TSF converted to TU */
2072 hw_tsf = ath5k_hw_get_tsf64(ah);
2073 hw_tu = TSF_TO_TU(hw_tsf);
2076 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2079 * no beacons received, called internally.
2080 * just need to refresh timers based on HW TSF.
2082 nexttbtt = roundup(hw_tu + FUDGE, intval);
2083 } else if (bc_tsf == 0) {
2085 * no beacon received, probably called by ath5k_reset_tsf().
2086 * reset TSF to start with 0.
2089 intval |= AR5K_BEACON_RESET_TSF;
2090 } else if (bc_tsf > hw_tsf) {
2092 * beacon received, SW merge happend but HW TSF not yet updated.
2093 * not possible to reconfigure timers yet, but next time we
2094 * receive a beacon with the same BSSID, the hardware will
2095 * automatically update the TSF and then we need to reconfigure
2098 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2099 "need to wait for HW TSF sync\n");
2103 * most important case for beacon synchronization between STA.
2105 * beacon received and HW TSF has been already updated by HW.
2106 * update next TBTT based on the TSF of the beacon, but make
2107 * sure it is ahead of our local TSF timer.
2109 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2113 sc->nexttbtt = nexttbtt;
2115 intval |= AR5K_BEACON_ENA;
2116 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2119 * debugging output last in order to preserve the time critical aspect
2123 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2124 "reconfigured timers based on HW TSF\n");
2125 else if (bc_tsf == 0)
2126 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2127 "reset HW TSF and timers\n");
2129 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2130 "updated timers based on beacon TSF\n");
2132 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2133 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2134 (unsigned long long) bc_tsf,
2135 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2136 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2137 intval & AR5K_BEACON_PERIOD,
2138 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2139 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2144 * ath5k_beacon_config - Configure the beacon queues and interrupts
2146 * @sc: struct ath5k_softc pointer we are operating on
2148 * When operating in station mode we want to receive a BMISS interrupt when we
2149 * stop seeing beacons from the AP we've associated with so we can look for
2150 * another AP to associate with.
2152 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2153 * interrupts to detect TSF updates only.
2156 ath5k_beacon_config(struct ath5k_softc *sc)
2158 struct ath5k_hw *ah = sc->ah;
2160 ath5k_hw_set_imr(ah, 0);
2162 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2164 if (sc->opmode == NL80211_IFTYPE_STATION) {
2165 sc->imask |= AR5K_INT_BMISS;
2166 } else if (sc->opmode == NL80211_IFTYPE_ADHOC ||
2167 sc->opmode == NL80211_IFTYPE_MESH_POINT ||
2168 sc->opmode == NL80211_IFTYPE_AP) {
2170 * In IBSS mode we use a self-linked tx descriptor and let the
2171 * hardware send the beacons automatically. We have to load it
2173 * We use the SWBA interrupt only to keep track of the beacon
2174 * timers in order to detect automatic TSF updates.
2176 ath5k_beaconq_config(sc);
2178 sc->imask |= AR5K_INT_SWBA;
2180 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2181 if (ath5k_hw_hasveol(ah)) {
2182 spin_lock(&sc->block);
2183 ath5k_beacon_send(sc);
2184 spin_unlock(&sc->block);
2187 ath5k_beacon_update_timers(sc, -1);
2190 ath5k_hw_set_imr(ah, sc->imask);
2194 /********************\
2195 * Interrupt handling *
2196 \********************/
2199 ath5k_init(struct ath5k_softc *sc, bool is_resume)
2201 struct ath5k_hw *ah = sc->ah;
2204 mutex_lock(&sc->lock);
2206 if (is_resume && !test_bit(ATH_STAT_STARTED, sc->status))
2209 __clear_bit(ATH_STAT_STARTED, sc->status);
2211 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2214 * Stop anything previously setup. This is safe
2215 * no matter this is the first time through or not.
2217 ath5k_stop_locked(sc);
2220 * The basic interface to setting the hardware in a good
2221 * state is ``reset''. On return the hardware is known to
2222 * be powered up and with interrupts disabled. This must
2223 * be followed by initialization of the appropriate bits
2224 * and then setup of the interrupt mask.
2226 sc->curchan = sc->hw->conf.channel;
2227 sc->curband = &sc->sbands[sc->curchan->band];
2228 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2229 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2230 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2231 ret = ath5k_reset(sc, false, false);
2236 * Reset the key cache since some parts do not reset the
2237 * contents on initial power up or resume from suspend.
2239 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2240 ath5k_hw_reset_key(ah, i);
2242 __set_bit(ATH_STAT_STARTED, sc->status);
2244 /* Set ack to be sent at low bit-rates */
2245 ath5k_hw_set_ack_bitrate_high(ah, false);
2247 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2248 msecs_to_jiffies(ath5k_calinterval * 1000)));
2254 mutex_unlock(&sc->lock);
2259 ath5k_stop_locked(struct ath5k_softc *sc)
2261 struct ath5k_hw *ah = sc->ah;
2263 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2264 test_bit(ATH_STAT_INVALID, sc->status));
2267 * Shutdown the hardware and driver:
2268 * stop output from above
2269 * disable interrupts
2271 * turn off the radio
2272 * clear transmit machinery
2273 * clear receive machinery
2274 * drain and release tx queues
2275 * reclaim beacon resources
2276 * power down hardware
2278 * Note that some of this work is not possible if the
2279 * hardware is gone (invalid).
2281 ieee80211_stop_queues(sc->hw);
2283 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2285 ath5k_hw_set_imr(ah, 0);
2286 synchronize_irq(sc->pdev->irq);
2288 ath5k_txq_cleanup(sc);
2289 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2291 ath5k_hw_phy_disable(ah);
2299 * Stop the device, grabbing the top-level lock to protect
2300 * against concurrent entry through ath5k_init (which can happen
2301 * if another thread does a system call and the thread doing the
2302 * stop is preempted).
2305 ath5k_stop_hw(struct ath5k_softc *sc, bool is_suspend)
2309 mutex_lock(&sc->lock);
2310 ret = ath5k_stop_locked(sc);
2311 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2313 * Set the chip in full sleep mode. Note that we are
2314 * careful to do this only when bringing the interface
2315 * completely to a stop. When the chip is in this state
2316 * it must be carefully woken up or references to
2317 * registers in the PCI clock domain may freeze the bus
2318 * (and system). This varies by chip and is mostly an
2319 * issue with newer parts that go to sleep more quickly.
2321 if (sc->ah->ah_mac_srev >= 0x78) {
2324 * don't put newer MAC revisions > 7.8 to sleep because
2325 * of the above mentioned problems
2327 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2328 "not putting device to sleep\n");
2330 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2331 "putting device to full sleep\n");
2332 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2335 ath5k_txbuf_free(sc, sc->bbuf);
2337 __clear_bit(ATH_STAT_STARTED, sc->status);
2340 mutex_unlock(&sc->lock);
2342 del_timer_sync(&sc->calib_tim);
2343 tasklet_kill(&sc->rxtq);
2344 tasklet_kill(&sc->txtq);
2345 tasklet_kill(&sc->restq);
2351 ath5k_intr(int irq, void *dev_id)
2353 struct ath5k_softc *sc = dev_id;
2354 struct ath5k_hw *ah = sc->ah;
2355 enum ath5k_int status;
2356 unsigned int counter = 1000;
2358 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2359 !ath5k_hw_is_intr_pending(ah)))
2364 * Figure out the reason(s) for the interrupt. Note
2365 * that get_isr returns a pseudo-ISR that may include
2366 * bits we haven't explicitly enabled so we mask the
2367 * value to insure we only process bits we requested.
2369 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2370 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2372 status &= sc->imask; /* discard unasked for bits */
2373 if (unlikely(status & AR5K_INT_FATAL)) {
2375 * Fatal errors are unrecoverable.
2376 * Typically these are caused by DMA errors.
2378 tasklet_schedule(&sc->restq);
2379 } else if (unlikely(status & AR5K_INT_RXORN)) {
2380 tasklet_schedule(&sc->restq);
2382 if (status & AR5K_INT_SWBA) {
2384 * Software beacon alert--time to send a beacon.
2385 * Handle beacon transmission directly; deferring
2386 * this is too slow to meet timing constraints
2389 * In IBSS mode we use this interrupt just to
2390 * keep track of the next TBTT (target beacon
2391 * transmission time) in order to detect wether
2392 * automatic TSF updates happened.
2394 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2395 /* XXX: only if VEOL suppported */
2396 u64 tsf = ath5k_hw_get_tsf64(ah);
2397 sc->nexttbtt += sc->bintval;
2398 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2399 "SWBA nexttbtt: %x hw_tu: %x "
2403 (unsigned long long) tsf);
2405 spin_lock(&sc->block);
2406 ath5k_beacon_send(sc);
2407 spin_unlock(&sc->block);
2410 if (status & AR5K_INT_RXEOL) {
2412 * NB: the hardware should re-read the link when
2413 * RXE bit is written, but it doesn't work at
2414 * least on older hardware revs.
2418 if (status & AR5K_INT_TXURN) {
2419 /* bump tx trigger level */
2420 ath5k_hw_update_tx_triglevel(ah, true);
2422 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2423 tasklet_schedule(&sc->rxtq);
2424 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2425 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2426 tasklet_schedule(&sc->txtq);
2427 if (status & AR5K_INT_BMISS) {
2429 if (status & AR5K_INT_MIB) {
2431 * These stats are also used for ANI i think
2432 * so how about updating them more often ?
2434 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2437 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2439 if (unlikely(!counter))
2440 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2446 ath5k_tasklet_reset(unsigned long data)
2448 struct ath5k_softc *sc = (void *)data;
2450 ath5k_reset_wake(sc);
2454 * Periodically recalibrate the PHY to account
2455 * for temperature/environment changes.
2458 ath5k_calibrate(unsigned long data)
2460 struct ath5k_softc *sc = (void *)data;
2461 struct ath5k_hw *ah = sc->ah;
2463 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2464 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2465 sc->curchan->hw_value);
2467 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2469 * Rfgain is out of bounds, reset the chip
2470 * to load new gain values.
2472 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2473 ath5k_reset_wake(sc);
2475 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2476 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2477 ieee80211_frequency_to_channel(
2478 sc->curchan->center_freq));
2480 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2481 msecs_to_jiffies(ath5k_calinterval * 1000)));
2491 ath5k_led_enable(struct ath5k_softc *sc)
2493 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2494 ath5k_hw_set_gpio_output(sc->ah, sc->led_pin);
2500 ath5k_led_on(struct ath5k_softc *sc)
2502 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2504 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2508 ath5k_led_off(struct ath5k_softc *sc)
2510 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2512 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2516 ath5k_led_brightness_set(struct led_classdev *led_dev,
2517 enum led_brightness brightness)
2519 struct ath5k_led *led = container_of(led_dev, struct ath5k_led,
2522 if (brightness == LED_OFF)
2523 ath5k_led_off(led->sc);
2525 ath5k_led_on(led->sc);
2529 ath5k_register_led(struct ath5k_softc *sc, struct ath5k_led *led,
2530 const char *name, char *trigger)
2535 strncpy(led->name, name, sizeof(led->name));
2536 led->led_dev.name = led->name;
2537 led->led_dev.default_trigger = trigger;
2538 led->led_dev.brightness_set = ath5k_led_brightness_set;
2540 err = led_classdev_register(&sc->pdev->dev, &led->led_dev);
2542 ATH5K_WARN(sc, "could not register LED %s\n", name);
2549 ath5k_unregister_led(struct ath5k_led *led)
2553 led_classdev_unregister(&led->led_dev);
2554 ath5k_led_off(led->sc);
2559 ath5k_unregister_leds(struct ath5k_softc *sc)
2561 ath5k_unregister_led(&sc->rx_led);
2562 ath5k_unregister_led(&sc->tx_led);
2567 ath5k_init_leds(struct ath5k_softc *sc)
2570 struct ieee80211_hw *hw = sc->hw;
2571 struct pci_dev *pdev = sc->pdev;
2572 char name[ATH5K_LED_MAX_NAME_LEN + 1];
2575 * Auto-enable soft led processing for IBM cards and for
2576 * 5211 minipci cards.
2578 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
2579 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
2580 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2582 sc->led_on = 0; /* active low */
2584 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
2585 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
2586 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2588 sc->led_on = 1; /* active high */
2590 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2593 ath5k_led_enable(sc);
2595 snprintf(name, sizeof(name), "ath5k-%s::rx", wiphy_name(hw->wiphy));
2596 ret = ath5k_register_led(sc, &sc->rx_led, name,
2597 ieee80211_get_rx_led_name(hw));
2601 snprintf(name, sizeof(name), "ath5k-%s::tx", wiphy_name(hw->wiphy));
2602 ret = ath5k_register_led(sc, &sc->tx_led, name,
2603 ieee80211_get_tx_led_name(hw));
2609 /********************\
2610 * Mac80211 functions *
2611 \********************/
2614 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2616 struct ath5k_softc *sc = hw->priv;
2617 struct ath5k_buf *bf;
2618 unsigned long flags;
2622 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2624 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2625 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2628 * the hardware expects the header padded to 4 byte boundaries
2629 * if this is not the case we add the padding after the header
2631 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2634 if (skb_headroom(skb) < pad) {
2635 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2636 " headroom to pad %d\n", hdrlen, pad);
2640 memmove(skb->data, skb->data+pad, hdrlen);
2643 spin_lock_irqsave(&sc->txbuflock, flags);
2644 if (list_empty(&sc->txbuf)) {
2645 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2646 spin_unlock_irqrestore(&sc->txbuflock, flags);
2647 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2650 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2651 list_del(&bf->list);
2653 if (list_empty(&sc->txbuf))
2654 ieee80211_stop_queues(hw);
2655 spin_unlock_irqrestore(&sc->txbuflock, flags);
2659 if (ath5k_txbuf_setup(sc, bf)) {
2661 spin_lock_irqsave(&sc->txbuflock, flags);
2662 list_add_tail(&bf->list, &sc->txbuf);
2664 spin_unlock_irqrestore(&sc->txbuflock, flags);
2665 dev_kfree_skb_any(skb);
2673 ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
2675 struct ath5k_hw *ah = sc->ah;
2678 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2681 ath5k_hw_set_imr(ah, 0);
2682 ath5k_txq_cleanup(sc);
2685 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2687 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2692 * This is needed only to setup initial state
2693 * but it's best done after a reset.
2695 ath5k_hw_set_txpower_limit(sc->ah, 0);
2697 ret = ath5k_rx_start(sc);
2699 ATH5K_ERR(sc, "can't start recv logic\n");
2704 * Change channels and update the h/w rate map if we're switching;
2705 * e.g. 11a to 11b/g.
2707 * We may be doing a reset in response to an ioctl that changes the
2708 * channel so update any state that might change as a result.
2712 /* ath5k_chan_change(sc, c); */
2714 ath5k_beacon_config(sc);
2715 /* intrs are enabled by ath5k_beacon_config */
2723 ath5k_reset_wake(struct ath5k_softc *sc)
2727 ret = ath5k_reset(sc, true, true);
2729 ieee80211_wake_queues(sc->hw);
2734 static int ath5k_start(struct ieee80211_hw *hw)
2736 return ath5k_init(hw->priv, false);
2739 static void ath5k_stop(struct ieee80211_hw *hw)
2741 ath5k_stop_hw(hw->priv, false);
2744 static int ath5k_add_interface(struct ieee80211_hw *hw,
2745 struct ieee80211_if_init_conf *conf)
2747 struct ath5k_softc *sc = hw->priv;
2750 mutex_lock(&sc->lock);
2756 sc->vif = conf->vif;
2758 switch (conf->type) {
2759 case NL80211_IFTYPE_AP:
2760 case NL80211_IFTYPE_STATION:
2761 case NL80211_IFTYPE_ADHOC:
2762 case NL80211_IFTYPE_MESH_POINT:
2763 case NL80211_IFTYPE_MONITOR:
2764 sc->opmode = conf->type;
2771 /* Set to a reasonable value. Note that this will
2772 * be set to mac80211's value at ath5k_config(). */
2774 ath5k_hw_set_lladdr(sc->ah, conf->mac_addr);
2778 mutex_unlock(&sc->lock);
2783 ath5k_remove_interface(struct ieee80211_hw *hw,
2784 struct ieee80211_if_init_conf *conf)
2786 struct ath5k_softc *sc = hw->priv;
2787 u8 mac[ETH_ALEN] = {};
2789 mutex_lock(&sc->lock);
2790 if (sc->vif != conf->vif)
2793 ath5k_hw_set_lladdr(sc->ah, mac);
2796 mutex_unlock(&sc->lock);
2800 * TODO: Phy disable/diversity etc
2803 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2805 struct ath5k_softc *sc = hw->priv;
2806 struct ieee80211_conf *conf = &hw->conf;
2808 sc->bintval = conf->beacon_int;
2809 sc->power_level = conf->power_level;
2811 return ath5k_chan_set(sc, conf->channel);
2815 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2816 struct ieee80211_if_conf *conf)
2818 struct ath5k_softc *sc = hw->priv;
2819 struct ath5k_hw *ah = sc->ah;
2822 mutex_lock(&sc->lock);
2823 if (sc->vif != vif) {
2827 if (conf->changed & IEEE80211_IFCC_BSSID && conf->bssid) {
2828 /* Cache for later use during resets */
2829 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2830 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2831 * a clean way of letting us retrieve this yet. */
2832 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2835 if (conf->changed & IEEE80211_IFCC_BEACON &&
2836 (vif->type == NL80211_IFTYPE_ADHOC ||
2837 vif->type == NL80211_IFTYPE_MESH_POINT ||
2838 vif->type == NL80211_IFTYPE_AP)) {
2839 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
2844 ath5k_beacon_update(sc, beacon);
2846 mutex_unlock(&sc->lock);
2848 return ath5k_reset_wake(sc);
2850 mutex_unlock(&sc->lock);
2854 #define SUPPORTED_FIF_FLAGS \
2855 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2856 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2857 FIF_BCN_PRBRESP_PROMISC
2859 * o always accept unicast, broadcast, and multicast traffic
2860 * o multicast traffic for all BSSIDs will be enabled if mac80211
2862 * o maintain current state of phy ofdm or phy cck error reception.
2863 * If the hardware detects any of these type of errors then
2864 * ath5k_hw_get_rx_filter() will pass to us the respective
2865 * hardware filters to be able to receive these type of frames.
2866 * o probe request frames are accepted only when operating in
2867 * hostap, adhoc, or monitor modes
2868 * o enable promiscuous mode according to the interface state
2870 * - when operating in adhoc mode so the 802.11 layer creates
2871 * node table entries for peers,
2872 * - when operating in station mode for collecting rssi data when
2873 * the station is otherwise quiet, or
2876 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2877 unsigned int changed_flags,
2878 unsigned int *new_flags,
2879 int mc_count, struct dev_mc_list *mclist)
2881 struct ath5k_softc *sc = hw->priv;
2882 struct ath5k_hw *ah = sc->ah;
2883 u32 mfilt[2], val, rfilt;
2890 /* Only deal with supported flags */
2891 changed_flags &= SUPPORTED_FIF_FLAGS;
2892 *new_flags &= SUPPORTED_FIF_FLAGS;
2894 /* If HW detects any phy or radar errors, leave those filters on.
2895 * Also, always enable Unicast, Broadcasts and Multicast
2896 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2897 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2898 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2899 AR5K_RX_FILTER_MCAST);
2901 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2902 if (*new_flags & FIF_PROMISC_IN_BSS) {
2903 rfilt |= AR5K_RX_FILTER_PROM;
2904 __set_bit(ATH_STAT_PROMISC, sc->status);
2906 __clear_bit(ATH_STAT_PROMISC, sc->status);
2910 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2911 if (*new_flags & FIF_ALLMULTI) {
2915 for (i = 0; i < mc_count; i++) {
2918 /* calculate XOR of eight 6-bit values */
2919 val = get_unaligned_le32(mclist->dmi_addr + 0);
2920 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2921 val = get_unaligned_le32(mclist->dmi_addr + 3);
2922 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2924 mfilt[pos / 32] |= (1 << (pos % 32));
2925 /* XXX: we might be able to just do this instead,
2926 * but not sure, needs testing, if we do use this we'd
2927 * neet to inform below to not reset the mcast */
2928 /* ath5k_hw_set_mcast_filterindex(ah,
2929 * mclist->dmi_addr[5]); */
2930 mclist = mclist->next;
2934 /* This is the best we can do */
2935 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2936 rfilt |= AR5K_RX_FILTER_PHYERR;
2938 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2939 * and probes for any BSSID, this needs testing */
2940 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2941 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2943 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2944 * set we should only pass on control frames for this
2945 * station. This needs testing. I believe right now this
2946 * enables *all* control frames, which is OK.. but
2947 * but we should see if we can improve on granularity */
2948 if (*new_flags & FIF_CONTROL)
2949 rfilt |= AR5K_RX_FILTER_CONTROL;
2951 /* Additional settings per mode -- this is per ath5k */
2953 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2955 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2956 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2957 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2958 if (sc->opmode != NL80211_IFTYPE_STATION)
2959 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2960 if (sc->opmode != NL80211_IFTYPE_AP &&
2961 sc->opmode != NL80211_IFTYPE_MESH_POINT &&
2962 test_bit(ATH_STAT_PROMISC, sc->status))
2963 rfilt |= AR5K_RX_FILTER_PROM;
2964 if (sc->opmode == NL80211_IFTYPE_STATION ||
2965 sc->opmode == NL80211_IFTYPE_ADHOC ||
2966 sc->opmode == NL80211_IFTYPE_AP)
2967 rfilt |= AR5K_RX_FILTER_BEACON;
2968 if (sc->opmode == NL80211_IFTYPE_MESH_POINT)
2969 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2970 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2973 ath5k_hw_set_rx_filter(ah, rfilt);
2975 /* Set multicast bits */
2976 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2977 /* Set the cached hw filter flags, this will alter actually
2979 sc->filter_flags = rfilt;
2983 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2984 const u8 *local_addr, const u8 *addr,
2985 struct ieee80211_key_conf *key)
2987 struct ath5k_softc *sc = hw->priv;
2990 if (modparam_nohwcrypt)
3004 mutex_lock(&sc->lock);
3008 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
3010 ATH5K_ERR(sc, "can't set the key\n");
3013 __set_bit(key->keyidx, sc->keymap);
3014 key->hw_key_idx = key->keyidx;
3015 key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
3016 IEEE80211_KEY_FLAG_GENERATE_MMIC);
3019 ath5k_hw_reset_key(sc->ah, key->keyidx);
3020 __clear_bit(key->keyidx, sc->keymap);
3029 mutex_unlock(&sc->lock);
3034 ath5k_get_stats(struct ieee80211_hw *hw,
3035 struct ieee80211_low_level_stats *stats)
3037 struct ath5k_softc *sc = hw->priv;
3038 struct ath5k_hw *ah = sc->ah;
3041 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3043 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3049 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3050 struct ieee80211_tx_queue_stats *stats)
3052 struct ath5k_softc *sc = hw->priv;
3054 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3060 ath5k_get_tsf(struct ieee80211_hw *hw)
3062 struct ath5k_softc *sc = hw->priv;
3064 return ath5k_hw_get_tsf64(sc->ah);
3068 ath5k_reset_tsf(struct ieee80211_hw *hw)
3070 struct ath5k_softc *sc = hw->priv;
3073 * in IBSS mode we need to update the beacon timers too.
3074 * this will also reset the TSF if we call it with 0
3076 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3077 ath5k_beacon_update_timers(sc, 0);
3079 ath5k_hw_reset_tsf(sc->ah);
3083 ath5k_beacon_update(struct ath5k_softc *sc, struct sk_buff *skb)
3085 unsigned long flags;
3088 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3090 spin_lock_irqsave(&sc->block, flags);
3091 ath5k_txbuf_free(sc, sc->bbuf);
3092 sc->bbuf->skb = skb;
3093 ret = ath5k_beacon_setup(sc, sc->bbuf);
3095 sc->bbuf->skb = NULL;
3096 spin_unlock_irqrestore(&sc->block, flags);
3098 ath5k_beacon_config(sc);