2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
7 * Update the current task's runtime statistics. Skip current tasks that
8 * are not in our scheduling class.
10 static void update_curr_rt(struct rq *rq)
12 struct task_struct *curr = rq->curr;
15 if (!task_has_rt_policy(curr))
18 delta_exec = rq->clock - curr->se.exec_start;
19 if (unlikely((s64)delta_exec < 0))
22 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
24 curr->se.sum_exec_runtime += delta_exec;
25 curr->se.exec_start = rq->clock;
26 cpuacct_charge(curr, delta_exec);
29 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
31 struct rt_prio_array *array = &rq->rt.active;
33 list_add_tail(&p->run_list, array->queue + p->prio);
34 __set_bit(p->prio, array->bitmap);
38 * Adding/removing a task to/from a priority array:
40 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
42 struct rt_prio_array *array = &rq->rt.active;
46 list_del(&p->run_list);
47 if (list_empty(array->queue + p->prio))
48 __clear_bit(p->prio, array->bitmap);
52 * Put task to the end of the run list without the overhead of dequeue
53 * followed by enqueue.
55 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
57 struct rt_prio_array *array = &rq->rt.active;
59 list_move_tail(&p->run_list, array->queue + p->prio);
63 yield_task_rt(struct rq *rq)
65 requeue_task_rt(rq, rq->curr);
69 * Preempt the current task with a newly woken task if needed:
71 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
73 if (p->prio < rq->curr->prio)
74 resched_task(rq->curr);
77 static struct task_struct *pick_next_task_rt(struct rq *rq)
79 struct rt_prio_array *array = &rq->rt.active;
80 struct task_struct *next;
81 struct list_head *queue;
84 idx = sched_find_first_bit(array->bitmap);
85 if (idx >= MAX_RT_PRIO)
88 queue = array->queue + idx;
89 next = list_entry(queue->next, struct task_struct, run_list);
91 next->se.exec_start = rq->clock;
96 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
104 * Load-balancing iterator. Note: while the runqueue stays locked
105 * during the whole iteration, the current task might be
106 * dequeued so the iterator has to be dequeue-safe. Here we
107 * achieve that by always pre-iterating before returning
110 static struct task_struct *load_balance_start_rt(void *arg)
113 struct rt_prio_array *array = &rq->rt.active;
114 struct list_head *head, *curr;
115 struct task_struct *p;
118 idx = sched_find_first_bit(array->bitmap);
119 if (idx >= MAX_RT_PRIO)
122 head = array->queue + idx;
125 p = list_entry(curr, struct task_struct, run_list);
129 rq->rt.rt_load_balance_idx = idx;
130 rq->rt.rt_load_balance_head = head;
131 rq->rt.rt_load_balance_curr = curr;
136 static struct task_struct *load_balance_next_rt(void *arg)
139 struct rt_prio_array *array = &rq->rt.active;
140 struct list_head *head, *curr;
141 struct task_struct *p;
144 idx = rq->rt.rt_load_balance_idx;
145 head = rq->rt.rt_load_balance_head;
146 curr = rq->rt.rt_load_balance_curr;
149 * If we arrived back to the head again then
150 * iterate to the next queue (if any):
152 if (unlikely(head == curr)) {
153 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
155 if (next_idx >= MAX_RT_PRIO)
159 head = array->queue + idx;
162 rq->rt.rt_load_balance_idx = idx;
163 rq->rt.rt_load_balance_head = head;
166 p = list_entry(curr, struct task_struct, run_list);
170 rq->rt.rt_load_balance_curr = curr;
176 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
177 unsigned long max_load_move,
178 struct sched_domain *sd, enum cpu_idle_type idle,
179 int *all_pinned, int *this_best_prio)
181 struct rq_iterator rt_rq_iterator;
183 rt_rq_iterator.start = load_balance_start_rt;
184 rt_rq_iterator.next = load_balance_next_rt;
185 /* pass 'busiest' rq argument into
186 * load_balance_[start|next]_rt iterators
188 rt_rq_iterator.arg = busiest;
190 return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
191 idle, all_pinned, this_best_prio, &rt_rq_iterator);
195 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
196 struct sched_domain *sd, enum cpu_idle_type idle)
198 struct rq_iterator rt_rq_iterator;
200 rt_rq_iterator.start = load_balance_start_rt;
201 rt_rq_iterator.next = load_balance_next_rt;
202 rt_rq_iterator.arg = busiest;
204 return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
209 static void task_tick_rt(struct rq *rq, struct task_struct *p)
212 * RR tasks need a special form of timeslice management.
213 * FIFO tasks have no timeslices.
215 if (p->policy != SCHED_RR)
221 p->time_slice = DEF_TIMESLICE;
224 * Requeue to the end of queue if we are not the only element
227 if (p->run_list.prev != p->run_list.next) {
228 requeue_task_rt(rq, p);
229 set_tsk_need_resched(p);
233 static void set_curr_task_rt(struct rq *rq)
235 struct task_struct *p = rq->curr;
237 p->se.exec_start = rq->clock;
240 const struct sched_class rt_sched_class = {
241 .next = &fair_sched_class,
242 .enqueue_task = enqueue_task_rt,
243 .dequeue_task = dequeue_task_rt,
244 .yield_task = yield_task_rt,
246 .check_preempt_curr = check_preempt_curr_rt,
248 .pick_next_task = pick_next_task_rt,
249 .put_prev_task = put_prev_task_rt,
252 .load_balance = load_balance_rt,
253 .move_one_task = move_one_task_rt,
256 .set_curr_task = set_curr_task_rt,
257 .task_tick = task_tick_rt,