2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
69 unplug_slaves(conf->mddev);
74 static void r10bio_pool_free(void *r10_bio, void *data)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103 unplug_slaves(conf->mddev);
107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 nalloc = conf->copies; /* resync */
110 nalloc = 2; /* recovery */
115 for (j = nalloc ; j-- ; ) {
116 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 r10_bio->devs[j].bio = bio;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j = 0 ; j < nalloc; j++) {
126 bio = r10_bio->devs[j].bio;
127 for (i = 0; i < RESYNC_PAGES; i++) {
128 page = alloc_page(gfp_flags);
132 bio->bi_io_vec[i].bv_page = page;
140 safe_put_page(bio->bi_io_vec[i-1].bv_page);
142 for (i = 0; i < RESYNC_PAGES ; i++)
143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 while ( ++j < nalloc )
147 bio_put(r10_bio->devs[j].bio);
148 r10bio_pool_free(r10_bio, conf);
152 static void r10buf_pool_free(void *__r10_bio, void *data)
156 r10bio_t *r10bio = __r10_bio;
159 for (j=0; j < conf->copies; j++) {
160 struct bio *bio = r10bio->devs[j].bio;
162 for (i = 0; i < RESYNC_PAGES; i++) {
163 safe_put_page(bio->bi_io_vec[i].bv_page);
164 bio->bi_io_vec[i].bv_page = NULL;
169 r10bio_pool_free(r10bio, conf);
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
176 for (i = 0; i < conf->copies; i++) {
177 struct bio **bio = & r10_bio->devs[i].bio;
178 if (*bio && *bio != IO_BLOCKED)
184 static void free_r10bio(r10bio_t *r10_bio)
186 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
198 static void put_buf(r10bio_t *r10_bio)
200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
202 mempool_free(r10_bio, conf->r10buf_pool);
207 static void reschedule_retry(r10bio_t *r10_bio)
210 mddev_t *mddev = r10_bio->mddev;
211 conf_t *conf = mddev_to_conf(mddev);
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
216 spin_unlock_irqrestore(&conf->device_lock, flags);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t *r10_bio)
228 struct bio *bio = r10_bio->master_bio;
231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 free_r10bio(r10_bio);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
240 conf_t *conf = mddev_to_conf(r10_bio->mddev);
242 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 r10_bio->devs[slot].addr + (r10_bio->sectors);
246 static void raid10_end_read_request(struct bio *bio, int error)
248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
251 conf_t *conf = mddev_to_conf(r10_bio->mddev);
254 slot = r10_bio->read_slot;
255 dev = r10_bio->devs[slot].devnum;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot, r10_bio);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate, &r10_bio->state);
272 raid_end_bio_io(r10_bio);
277 char b[BDEVNAME_SIZE];
278 if (printk_ratelimit())
279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 reschedule_retry(r10_bio);
284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
287 static void raid10_end_write_request(struct bio *bio, int error)
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
292 conf_t *conf = mddev_to_conf(r10_bio->mddev);
294 for (slot = 0; slot < conf->copies; slot++)
295 if (r10_bio->devs[slot].bio == bio)
297 dev = r10_bio->devs[slot].devnum;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded, &r10_bio->state);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate, &r10_bio->state);
318 update_head_pos(slot, r10_bio);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio->remaining)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 !test_bit(R10BIO_Degraded, &r10_bio->state),
331 md_write_end(r10_bio->mddev);
332 raid_end_bio_io(r10_bio);
335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 /* now calculate first sector/dev */
375 chunk = r10bio->sector >> conf->chunk_shift;
376 sector = r10bio->sector & conf->chunk_mask;
378 chunk *= conf->near_copies;
380 dev = sector_div(stripe, conf->raid_disks);
381 if (conf->far_offset)
382 stripe *= conf->far_copies;
384 sector += stripe << conf->chunk_shift;
386 /* and calculate all the others */
387 for (n=0; n < conf->near_copies; n++) {
390 r10bio->devs[slot].addr = sector;
391 r10bio->devs[slot].devnum = d;
394 for (f = 1; f < conf->far_copies; f++) {
395 d += conf->near_copies;
396 if (d >= conf->raid_disks)
397 d -= conf->raid_disks;
399 r10bio->devs[slot].devnum = d;
400 r10bio->devs[slot].addr = s;
404 if (dev >= conf->raid_disks) {
406 sector += (conf->chunk_mask + 1);
409 BUG_ON(slot != conf->copies);
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
414 sector_t offset, chunk, vchunk;
416 offset = sector & conf->chunk_mask;
417 if (conf->far_offset) {
419 chunk = sector >> conf->chunk_shift;
420 fc = sector_div(chunk, conf->far_copies);
421 dev -= fc * conf->near_copies;
423 dev += conf->raid_disks;
425 while (sector >= conf->stride) {
426 sector -= conf->stride;
427 if (dev < conf->near_copies)
428 dev += conf->raid_disks - conf->near_copies;
430 dev -= conf->near_copies;
432 chunk = sector >> conf->chunk_shift;
434 vchunk = chunk * conf->raid_disks + dev;
435 sector_div(vchunk, conf->near_copies);
436 return (vchunk << conf->chunk_shift) + offset;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 struct bio_vec *bio_vec)
452 mddev_t *mddev = q->queuedata;
453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
455 unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 unsigned int bio_sectors = bio->bi_size >> 9;
458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 if (max <= bio_vec->bv_len && bio_sectors == 0)
461 return bio_vec->bv_len;
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
478 * The rdev for the device selected will have nr_pending incremented.
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
487 const unsigned long this_sector = r10_bio->sector;
488 int disk, slot, nslot;
489 const int sectors = r10_bio->sectors;
490 sector_t new_distance, current_distance;
493 raid10_find_phys(conf, r10_bio);
496 * Check if we can balance. We can balance on the whole
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
501 if (conf->mddev->recovery_cp < MaxSector
502 && (this_sector + sectors >= conf->next_resync)) {
503 /* make sure that disk is operational */
505 disk = r10_bio->devs[slot].devnum;
507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 r10_bio->devs[slot].bio == IO_BLOCKED ||
509 !test_bit(In_sync, &rdev->flags)) {
511 if (slot == conf->copies) {
516 disk = r10_bio->devs[slot].devnum;
522 /* make sure the disk is operational */
524 disk = r10_bio->devs[slot].devnum;
525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 r10_bio->devs[slot].bio == IO_BLOCKED ||
527 !test_bit(In_sync, &rdev->flags)) {
529 if (slot == conf->copies) {
533 disk = r10_bio->devs[slot].devnum;
537 current_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
540 /* Find the disk whose head is closest,
541 * or - for far > 1 - find the closest to partition beginning */
543 for (nslot = slot; nslot < conf->copies; nslot++) {
544 int ndisk = r10_bio->devs[nslot].devnum;
547 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
548 r10_bio->devs[nslot].bio == IO_BLOCKED ||
549 !test_bit(In_sync, &rdev->flags))
552 /* This optimisation is debatable, and completely destroys
553 * sequential read speed for 'far copies' arrays. So only
554 * keep it for 'near' arrays, and review those later.
556 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
562 /* for far > 1 always use the lowest address */
563 if (conf->far_copies > 1)
564 new_distance = r10_bio->devs[nslot].addr;
566 new_distance = abs(r10_bio->devs[nslot].addr -
567 conf->mirrors[ndisk].head_position);
568 if (new_distance < current_distance) {
569 current_distance = new_distance;
576 r10_bio->read_slot = slot;
577 /* conf->next_seq_sect = this_sector + sectors;*/
579 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
580 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
588 static void unplug_slaves(mddev_t *mddev)
590 conf_t *conf = mddev_to_conf(mddev);
594 for (i=0; i<mddev->raid_disks; i++) {
595 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
596 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
597 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
599 atomic_inc(&rdev->nr_pending);
604 rdev_dec_pending(rdev, mddev);
611 static void raid10_unplug(struct request_queue *q)
613 mddev_t *mddev = q->queuedata;
615 unplug_slaves(q->queuedata);
616 md_wakeup_thread(mddev->thread);
619 static int raid10_congested(void *data, int bits)
621 mddev_t *mddev = data;
622 conf_t *conf = mddev_to_conf(mddev);
626 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
627 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
628 if (rdev && !test_bit(Faulty, &rdev->flags)) {
629 struct request_queue *q = bdev_get_queue(rdev->bdev);
631 ret |= bdi_congested(&q->backing_dev_info, bits);
638 static int flush_pending_writes(conf_t *conf)
640 /* Any writes that have been queued but are awaiting
641 * bitmap updates get flushed here.
642 * We return 1 if any requests were actually submitted.
646 spin_lock_irq(&conf->device_lock);
648 if (conf->pending_bio_list.head) {
650 bio = bio_list_get(&conf->pending_bio_list);
651 blk_remove_plug(conf->mddev->queue);
652 spin_unlock_irq(&conf->device_lock);
653 /* flush any pending bitmap writes to disk
654 * before proceeding w/ I/O */
655 bitmap_unplug(conf->mddev->bitmap);
657 while (bio) { /* submit pending writes */
658 struct bio *next = bio->bi_next;
660 generic_make_request(bio);
665 spin_unlock_irq(&conf->device_lock);
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
689 #define RESYNC_DEPTH 32
691 static void raise_barrier(conf_t *conf, int force)
693 BUG_ON(force && !conf->barrier);
694 spin_lock_irq(&conf->resync_lock);
696 /* Wait until no block IO is waiting (unless 'force') */
697 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
699 raid10_unplug(conf->mddev->queue));
701 /* block any new IO from starting */
704 /* No wait for all pending IO to complete */
705 wait_event_lock_irq(conf->wait_barrier,
706 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
708 raid10_unplug(conf->mddev->queue));
710 spin_unlock_irq(&conf->resync_lock);
713 static void lower_barrier(conf_t *conf)
716 spin_lock_irqsave(&conf->resync_lock, flags);
718 spin_unlock_irqrestore(&conf->resync_lock, flags);
719 wake_up(&conf->wait_barrier);
722 static void wait_barrier(conf_t *conf)
724 spin_lock_irq(&conf->resync_lock);
727 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
729 raid10_unplug(conf->mddev->queue));
733 spin_unlock_irq(&conf->resync_lock);
736 static void allow_barrier(conf_t *conf)
739 spin_lock_irqsave(&conf->resync_lock, flags);
741 spin_unlock_irqrestore(&conf->resync_lock, flags);
742 wake_up(&conf->wait_barrier);
745 static void freeze_array(conf_t *conf)
747 /* stop syncio and normal IO and wait for everything to
749 * We increment barrier and nr_waiting, and then
750 * wait until nr_pending match nr_queued+1
751 * This is called in the context of one normal IO request
752 * that has failed. Thus any sync request that might be pending
753 * will be blocked by nr_pending, and we need to wait for
754 * pending IO requests to complete or be queued for re-try.
755 * Thus the number queued (nr_queued) plus this request (1)
756 * must match the number of pending IOs (nr_pending) before
759 spin_lock_irq(&conf->resync_lock);
762 wait_event_lock_irq(conf->wait_barrier,
763 conf->nr_pending == conf->nr_queued+1,
765 ({ flush_pending_writes(conf);
766 raid10_unplug(conf->mddev->queue); }));
767 spin_unlock_irq(&conf->resync_lock);
770 static void unfreeze_array(conf_t *conf)
772 /* reverse the effect of the freeze */
773 spin_lock_irq(&conf->resync_lock);
776 wake_up(&conf->wait_barrier);
777 spin_unlock_irq(&conf->resync_lock);
780 static int make_request(struct request_queue *q, struct bio * bio)
782 mddev_t *mddev = q->queuedata;
783 conf_t *conf = mddev_to_conf(mddev);
784 mirror_info_t *mirror;
786 struct bio *read_bio;
788 int chunk_sects = conf->chunk_mask + 1;
789 const int rw = bio_data_dir(bio);
790 const int do_sync = bio_sync(bio);
793 mdk_rdev_t *blocked_rdev;
795 if (unlikely(bio_barrier(bio))) {
796 bio_endio(bio, -EOPNOTSUPP);
800 /* If this request crosses a chunk boundary, we need to
801 * split it. This will only happen for 1 PAGE (or less) requests.
803 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
805 conf->near_copies < conf->raid_disks)) {
807 /* Sanity check -- queue functions should prevent this happening */
808 if (bio->bi_vcnt != 1 ||
811 /* This is a one page bio that upper layers
812 * refuse to split for us, so we need to split it.
814 bp = bio_split(bio, bio_split_pool,
815 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
816 if (make_request(q, &bp->bio1))
817 generic_make_request(&bp->bio1);
818 if (make_request(q, &bp->bio2))
819 generic_make_request(&bp->bio2);
821 bio_pair_release(bp);
824 printk("raid10_make_request bug: can't convert block across chunks"
825 " or bigger than %dk %llu %d\n", chunk_sects/2,
826 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
832 md_write_start(mddev, bio);
835 * Register the new request and wait if the reconstruction
836 * thread has put up a bar for new requests.
837 * Continue immediately if no resync is active currently.
841 disk_stat_inc(mddev->gendisk, ios[rw]);
842 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
844 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
846 r10_bio->master_bio = bio;
847 r10_bio->sectors = bio->bi_size >> 9;
849 r10_bio->mddev = mddev;
850 r10_bio->sector = bio->bi_sector;
855 * read balancing logic:
857 int disk = read_balance(conf, r10_bio);
858 int slot = r10_bio->read_slot;
860 raid_end_bio_io(r10_bio);
863 mirror = conf->mirrors + disk;
865 read_bio = bio_clone(bio, GFP_NOIO);
867 r10_bio->devs[slot].bio = read_bio;
869 read_bio->bi_sector = r10_bio->devs[slot].addr +
870 mirror->rdev->data_offset;
871 read_bio->bi_bdev = mirror->rdev->bdev;
872 read_bio->bi_end_io = raid10_end_read_request;
873 read_bio->bi_rw = READ | do_sync;
874 read_bio->bi_private = r10_bio;
876 generic_make_request(read_bio);
883 /* first select target devices under rcu_lock and
884 * inc refcount on their rdev. Record them by setting
887 raid10_find_phys(conf, r10_bio);
891 for (i = 0; i < conf->copies; i++) {
892 int d = r10_bio->devs[i].devnum;
893 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
894 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
895 atomic_inc(&rdev->nr_pending);
899 if (rdev && !test_bit(Faulty, &rdev->flags)) {
900 atomic_inc(&rdev->nr_pending);
901 r10_bio->devs[i].bio = bio;
903 r10_bio->devs[i].bio = NULL;
904 set_bit(R10BIO_Degraded, &r10_bio->state);
909 if (unlikely(blocked_rdev)) {
910 /* Have to wait for this device to get unblocked, then retry */
914 for (j = 0; j < i; j++)
915 if (r10_bio->devs[j].bio) {
916 d = r10_bio->devs[j].devnum;
917 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
920 md_wait_for_blocked_rdev(blocked_rdev, mddev);
925 atomic_set(&r10_bio->remaining, 0);
928 for (i = 0; i < conf->copies; i++) {
930 int d = r10_bio->devs[i].devnum;
931 if (!r10_bio->devs[i].bio)
934 mbio = bio_clone(bio, GFP_NOIO);
935 r10_bio->devs[i].bio = mbio;
937 mbio->bi_sector = r10_bio->devs[i].addr+
938 conf->mirrors[d].rdev->data_offset;
939 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
940 mbio->bi_end_io = raid10_end_write_request;
941 mbio->bi_rw = WRITE | do_sync;
942 mbio->bi_private = r10_bio;
944 atomic_inc(&r10_bio->remaining);
945 bio_list_add(&bl, mbio);
948 if (unlikely(!atomic_read(&r10_bio->remaining))) {
949 /* the array is dead */
951 raid_end_bio_io(r10_bio);
955 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
956 spin_lock_irqsave(&conf->device_lock, flags);
957 bio_list_merge(&conf->pending_bio_list, &bl);
958 blk_plug_device(mddev->queue);
959 spin_unlock_irqrestore(&conf->device_lock, flags);
961 /* In case raid10d snuck in to freeze_array */
962 wake_up(&conf->wait_barrier);
965 md_wakeup_thread(mddev->thread);
970 static void status(struct seq_file *seq, mddev_t *mddev)
972 conf_t *conf = mddev_to_conf(mddev);
975 if (conf->near_copies < conf->raid_disks)
976 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
977 if (conf->near_copies > 1)
978 seq_printf(seq, " %d near-copies", conf->near_copies);
979 if (conf->far_copies > 1) {
980 if (conf->far_offset)
981 seq_printf(seq, " %d offset-copies", conf->far_copies);
983 seq_printf(seq, " %d far-copies", conf->far_copies);
985 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
986 conf->raid_disks - mddev->degraded);
987 for (i = 0; i < conf->raid_disks; i++)
988 seq_printf(seq, "%s",
989 conf->mirrors[i].rdev &&
990 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
991 seq_printf(seq, "]");
994 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
996 char b[BDEVNAME_SIZE];
997 conf_t *conf = mddev_to_conf(mddev);
1000 * If it is not operational, then we have already marked it as dead
1001 * else if it is the last working disks, ignore the error, let the
1002 * next level up know.
1003 * else mark the drive as failed
1005 if (test_bit(In_sync, &rdev->flags)
1006 && conf->raid_disks-mddev->degraded == 1)
1008 * Don't fail the drive, just return an IO error.
1009 * The test should really be more sophisticated than
1010 * "working_disks == 1", but it isn't critical, and
1011 * can wait until we do more sophisticated "is the drive
1012 * really dead" tests...
1015 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1016 unsigned long flags;
1017 spin_lock_irqsave(&conf->device_lock, flags);
1019 spin_unlock_irqrestore(&conf->device_lock, flags);
1021 * if recovery is running, make sure it aborts.
1023 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1025 set_bit(Faulty, &rdev->flags);
1026 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1027 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1028 "raid10: Operation continuing on %d devices.\n",
1029 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1032 static void print_conf(conf_t *conf)
1037 printk("RAID10 conf printout:\n");
1039 printk("(!conf)\n");
1042 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1045 for (i = 0; i < conf->raid_disks; i++) {
1046 char b[BDEVNAME_SIZE];
1047 tmp = conf->mirrors + i;
1049 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1050 i, !test_bit(In_sync, &tmp->rdev->flags),
1051 !test_bit(Faulty, &tmp->rdev->flags),
1052 bdevname(tmp->rdev->bdev,b));
1056 static void close_sync(conf_t *conf)
1059 allow_barrier(conf);
1061 mempool_destroy(conf->r10buf_pool);
1062 conf->r10buf_pool = NULL;
1065 /* check if there are enough drives for
1066 * every block to appear on atleast one
1068 static int enough(conf_t *conf)
1073 int n = conf->copies;
1076 if (conf->mirrors[first].rdev)
1078 first = (first+1) % conf->raid_disks;
1082 } while (first != 0);
1086 static int raid10_spare_active(mddev_t *mddev)
1089 conf_t *conf = mddev->private;
1093 * Find all non-in_sync disks within the RAID10 configuration
1094 * and mark them in_sync
1096 for (i = 0; i < conf->raid_disks; i++) {
1097 tmp = conf->mirrors + i;
1099 && !test_bit(Faulty, &tmp->rdev->flags)
1100 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1101 unsigned long flags;
1102 spin_lock_irqsave(&conf->device_lock, flags);
1104 spin_unlock_irqrestore(&conf->device_lock, flags);
1113 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1115 conf_t *conf = mddev->private;
1120 if (mddev->recovery_cp < MaxSector)
1121 /* only hot-add to in-sync arrays, as recovery is
1122 * very different from resync
1128 if (rdev->saved_raid_disk >= 0 &&
1129 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1130 mirror = rdev->saved_raid_disk;
1133 for ( ; mirror < mddev->raid_disks; mirror++)
1134 if ( !(p=conf->mirrors+mirror)->rdev) {
1136 blk_queue_stack_limits(mddev->queue,
1137 rdev->bdev->bd_disk->queue);
1138 /* as we don't honour merge_bvec_fn, we must never risk
1139 * violating it, so limit ->max_sector to one PAGE, as
1140 * a one page request is never in violation.
1142 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1143 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1144 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1146 p->head_position = 0;
1147 rdev->raid_disk = mirror;
1149 if (rdev->saved_raid_disk != mirror)
1151 rcu_assign_pointer(p->rdev, rdev);
1159 static int raid10_remove_disk(mddev_t *mddev, int number)
1161 conf_t *conf = mddev->private;
1164 mirror_info_t *p = conf->mirrors+ number;
1169 if (test_bit(In_sync, &rdev->flags) ||
1170 atomic_read(&rdev->nr_pending)) {
1174 /* Only remove faulty devices in recovery
1177 if (!test_bit(Faulty, &rdev->flags) &&
1184 if (atomic_read(&rdev->nr_pending)) {
1185 /* lost the race, try later */
1197 static void end_sync_read(struct bio *bio, int error)
1199 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1200 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1203 for (i=0; i<conf->copies; i++)
1204 if (r10_bio->devs[i].bio == bio)
1206 BUG_ON(i == conf->copies);
1207 update_head_pos(i, r10_bio);
1208 d = r10_bio->devs[i].devnum;
1210 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1211 set_bit(R10BIO_Uptodate, &r10_bio->state);
1213 atomic_add(r10_bio->sectors,
1214 &conf->mirrors[d].rdev->corrected_errors);
1215 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1216 md_error(r10_bio->mddev,
1217 conf->mirrors[d].rdev);
1220 /* for reconstruct, we always reschedule after a read.
1221 * for resync, only after all reads
1223 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1224 atomic_dec_and_test(&r10_bio->remaining)) {
1225 /* we have read all the blocks,
1226 * do the comparison in process context in raid10d
1228 reschedule_retry(r10_bio);
1230 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1233 static void end_sync_write(struct bio *bio, int error)
1235 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1236 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1237 mddev_t *mddev = r10_bio->mddev;
1238 conf_t *conf = mddev_to_conf(mddev);
1241 for (i = 0; i < conf->copies; i++)
1242 if (r10_bio->devs[i].bio == bio)
1244 d = r10_bio->devs[i].devnum;
1247 md_error(mddev, conf->mirrors[d].rdev);
1249 update_head_pos(i, r10_bio);
1251 while (atomic_dec_and_test(&r10_bio->remaining)) {
1252 if (r10_bio->master_bio == NULL) {
1253 /* the primary of several recovery bios */
1254 md_done_sync(mddev, r10_bio->sectors, 1);
1258 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1263 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1267 * Note: sync and recover and handled very differently for raid10
1268 * This code is for resync.
1269 * For resync, we read through virtual addresses and read all blocks.
1270 * If there is any error, we schedule a write. The lowest numbered
1271 * drive is authoritative.
1272 * However requests come for physical address, so we need to map.
1273 * For every physical address there are raid_disks/copies virtual addresses,
1274 * which is always are least one, but is not necessarly an integer.
1275 * This means that a physical address can span multiple chunks, so we may
1276 * have to submit multiple io requests for a single sync request.
1279 * We check if all blocks are in-sync and only write to blocks that
1282 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1284 conf_t *conf = mddev_to_conf(mddev);
1286 struct bio *tbio, *fbio;
1288 atomic_set(&r10_bio->remaining, 1);
1290 /* find the first device with a block */
1291 for (i=0; i<conf->copies; i++)
1292 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1295 if (i == conf->copies)
1299 fbio = r10_bio->devs[i].bio;
1301 /* now find blocks with errors */
1302 for (i=0 ; i < conf->copies ; i++) {
1304 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1306 tbio = r10_bio->devs[i].bio;
1308 if (tbio->bi_end_io != end_sync_read)
1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1313 /* We know that the bi_io_vec layout is the same for
1314 * both 'first' and 'i', so we just compare them.
1315 * All vec entries are PAGE_SIZE;
1317 for (j = 0; j < vcnt; j++)
1318 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1319 page_address(tbio->bi_io_vec[j].bv_page),
1324 mddev->resync_mismatches += r10_bio->sectors;
1326 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1327 /* Don't fix anything. */
1329 /* Ok, we need to write this bio
1330 * First we need to fixup bv_offset, bv_len and
1331 * bi_vecs, as the read request might have corrupted these
1333 tbio->bi_vcnt = vcnt;
1334 tbio->bi_size = r10_bio->sectors << 9;
1336 tbio->bi_phys_segments = 0;
1337 tbio->bi_hw_segments = 0;
1338 tbio->bi_hw_front_size = 0;
1339 tbio->bi_hw_back_size = 0;
1340 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1341 tbio->bi_flags |= 1 << BIO_UPTODATE;
1342 tbio->bi_next = NULL;
1343 tbio->bi_rw = WRITE;
1344 tbio->bi_private = r10_bio;
1345 tbio->bi_sector = r10_bio->devs[i].addr;
1347 for (j=0; j < vcnt ; j++) {
1348 tbio->bi_io_vec[j].bv_offset = 0;
1349 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1351 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1352 page_address(fbio->bi_io_vec[j].bv_page),
1355 tbio->bi_end_io = end_sync_write;
1357 d = r10_bio->devs[i].devnum;
1358 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1359 atomic_inc(&r10_bio->remaining);
1360 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1362 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1363 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1364 generic_make_request(tbio);
1368 if (atomic_dec_and_test(&r10_bio->remaining)) {
1369 md_done_sync(mddev, r10_bio->sectors, 1);
1375 * Now for the recovery code.
1376 * Recovery happens across physical sectors.
1377 * We recover all non-is_sync drives by finding the virtual address of
1378 * each, and then choose a working drive that also has that virt address.
1379 * There is a separate r10_bio for each non-in_sync drive.
1380 * Only the first two slots are in use. The first for reading,
1381 * The second for writing.
1385 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1387 conf_t *conf = mddev_to_conf(mddev);
1389 struct bio *bio, *wbio;
1392 /* move the pages across to the second bio
1393 * and submit the write request
1395 bio = r10_bio->devs[0].bio;
1396 wbio = r10_bio->devs[1].bio;
1397 for (i=0; i < wbio->bi_vcnt; i++) {
1398 struct page *p = bio->bi_io_vec[i].bv_page;
1399 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1400 wbio->bi_io_vec[i].bv_page = p;
1402 d = r10_bio->devs[1].devnum;
1404 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1405 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1406 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1407 generic_make_request(wbio);
1409 bio_endio(wbio, -EIO);
1414 * This is a kernel thread which:
1416 * 1. Retries failed read operations on working mirrors.
1417 * 2. Updates the raid superblock when problems encounter.
1418 * 3. Performs writes following reads for array synchronising.
1421 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1423 int sect = 0; /* Offset from r10_bio->sector */
1424 int sectors = r10_bio->sectors;
1428 int sl = r10_bio->read_slot;
1432 if (s > (PAGE_SIZE>>9))
1437 int d = r10_bio->devs[sl].devnum;
1438 rdev = rcu_dereference(conf->mirrors[d].rdev);
1440 test_bit(In_sync, &rdev->flags)) {
1441 atomic_inc(&rdev->nr_pending);
1443 success = sync_page_io(rdev->bdev,
1444 r10_bio->devs[sl].addr +
1445 sect + rdev->data_offset,
1447 conf->tmppage, READ);
1448 rdev_dec_pending(rdev, mddev);
1454 if (sl == conf->copies)
1456 } while (!success && sl != r10_bio->read_slot);
1460 /* Cannot read from anywhere -- bye bye array */
1461 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1462 md_error(mddev, conf->mirrors[dn].rdev);
1467 /* write it back and re-read */
1469 while (sl != r10_bio->read_slot) {
1474 d = r10_bio->devs[sl].devnum;
1475 rdev = rcu_dereference(conf->mirrors[d].rdev);
1477 test_bit(In_sync, &rdev->flags)) {
1478 atomic_inc(&rdev->nr_pending);
1480 atomic_add(s, &rdev->corrected_errors);
1481 if (sync_page_io(rdev->bdev,
1482 r10_bio->devs[sl].addr +
1483 sect + rdev->data_offset,
1484 s<<9, conf->tmppage, WRITE)
1486 /* Well, this device is dead */
1487 md_error(mddev, rdev);
1488 rdev_dec_pending(rdev, mddev);
1493 while (sl != r10_bio->read_slot) {
1498 d = r10_bio->devs[sl].devnum;
1499 rdev = rcu_dereference(conf->mirrors[d].rdev);
1501 test_bit(In_sync, &rdev->flags)) {
1502 char b[BDEVNAME_SIZE];
1503 atomic_inc(&rdev->nr_pending);
1505 if (sync_page_io(rdev->bdev,
1506 r10_bio->devs[sl].addr +
1507 sect + rdev->data_offset,
1508 s<<9, conf->tmppage, READ) == 0)
1509 /* Well, this device is dead */
1510 md_error(mddev, rdev);
1513 "raid10:%s: read error corrected"
1514 " (%d sectors at %llu on %s)\n",
1516 (unsigned long long)(sect+
1518 bdevname(rdev->bdev, b));
1520 rdev_dec_pending(rdev, mddev);
1531 static void raid10d(mddev_t *mddev)
1535 unsigned long flags;
1536 conf_t *conf = mddev_to_conf(mddev);
1537 struct list_head *head = &conf->retry_list;
1541 md_check_recovery(mddev);
1544 char b[BDEVNAME_SIZE];
1546 unplug += flush_pending_writes(conf);
1548 spin_lock_irqsave(&conf->device_lock, flags);
1549 if (list_empty(head)) {
1550 spin_unlock_irqrestore(&conf->device_lock, flags);
1553 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1554 list_del(head->prev);
1556 spin_unlock_irqrestore(&conf->device_lock, flags);
1558 mddev = r10_bio->mddev;
1559 conf = mddev_to_conf(mddev);
1560 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1561 sync_request_write(mddev, r10_bio);
1563 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1564 recovery_request_write(mddev, r10_bio);
1568 /* we got a read error. Maybe the drive is bad. Maybe just
1569 * the block and we can fix it.
1570 * We freeze all other IO, and try reading the block from
1571 * other devices. When we find one, we re-write
1572 * and check it that fixes the read error.
1573 * This is all done synchronously while the array is
1576 if (mddev->ro == 0) {
1578 fix_read_error(conf, mddev, r10_bio);
1579 unfreeze_array(conf);
1582 bio = r10_bio->devs[r10_bio->read_slot].bio;
1583 r10_bio->devs[r10_bio->read_slot].bio =
1584 mddev->ro ? IO_BLOCKED : NULL;
1585 mirror = read_balance(conf, r10_bio);
1587 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1588 " read error for block %llu\n",
1589 bdevname(bio->bi_bdev,b),
1590 (unsigned long long)r10_bio->sector);
1591 raid_end_bio_io(r10_bio);
1594 const int do_sync = bio_sync(r10_bio->master_bio);
1596 rdev = conf->mirrors[mirror].rdev;
1597 if (printk_ratelimit())
1598 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1599 " another mirror\n",
1600 bdevname(rdev->bdev,b),
1601 (unsigned long long)r10_bio->sector);
1602 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1603 r10_bio->devs[r10_bio->read_slot].bio = bio;
1604 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1605 + rdev->data_offset;
1606 bio->bi_bdev = rdev->bdev;
1607 bio->bi_rw = READ | do_sync;
1608 bio->bi_private = r10_bio;
1609 bio->bi_end_io = raid10_end_read_request;
1611 generic_make_request(bio);
1616 unplug_slaves(mddev);
1620 static int init_resync(conf_t *conf)
1624 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1625 BUG_ON(conf->r10buf_pool);
1626 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1627 if (!conf->r10buf_pool)
1629 conf->next_resync = 0;
1634 * perform a "sync" on one "block"
1636 * We need to make sure that no normal I/O request - particularly write
1637 * requests - conflict with active sync requests.
1639 * This is achieved by tracking pending requests and a 'barrier' concept
1640 * that can be installed to exclude normal IO requests.
1642 * Resync and recovery are handled very differently.
1643 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1645 * For resync, we iterate over virtual addresses, read all copies,
1646 * and update if there are differences. If only one copy is live,
1648 * For recovery, we iterate over physical addresses, read a good
1649 * value for each non-in_sync drive, and over-write.
1651 * So, for recovery we may have several outstanding complex requests for a
1652 * given address, one for each out-of-sync device. We model this by allocating
1653 * a number of r10_bio structures, one for each out-of-sync device.
1654 * As we setup these structures, we collect all bio's together into a list
1655 * which we then process collectively to add pages, and then process again
1656 * to pass to generic_make_request.
1658 * The r10_bio structures are linked using a borrowed master_bio pointer.
1659 * This link is counted in ->remaining. When the r10_bio that points to NULL
1660 * has its remaining count decremented to 0, the whole complex operation
1665 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1667 conf_t *conf = mddev_to_conf(mddev);
1669 struct bio *biolist = NULL, *bio;
1670 sector_t max_sector, nr_sectors;
1676 sector_t sectors_skipped = 0;
1677 int chunks_skipped = 0;
1679 if (!conf->r10buf_pool)
1680 if (init_resync(conf))
1684 max_sector = mddev->size << 1;
1685 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1686 max_sector = mddev->resync_max_sectors;
1687 if (sector_nr >= max_sector) {
1688 /* If we aborted, we need to abort the
1689 * sync on the 'current' bitmap chucks (there can
1690 * be several when recovering multiple devices).
1691 * as we may have started syncing it but not finished.
1692 * We can find the current address in
1693 * mddev->curr_resync, but for recovery,
1694 * we need to convert that to several
1695 * virtual addresses.
1697 if (mddev->curr_resync < max_sector) { /* aborted */
1698 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1699 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1701 else for (i=0; i<conf->raid_disks; i++) {
1703 raid10_find_virt(conf, mddev->curr_resync, i);
1704 bitmap_end_sync(mddev->bitmap, sect,
1707 } else /* completed sync */
1710 bitmap_close_sync(mddev->bitmap);
1713 return sectors_skipped;
1715 if (chunks_skipped >= conf->raid_disks) {
1716 /* if there has been nothing to do on any drive,
1717 * then there is nothing to do at all..
1720 return (max_sector - sector_nr) + sectors_skipped;
1723 if (max_sector > mddev->resync_max)
1724 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1726 /* make sure whole request will fit in a chunk - if chunks
1729 if (conf->near_copies < conf->raid_disks &&
1730 max_sector > (sector_nr | conf->chunk_mask))
1731 max_sector = (sector_nr | conf->chunk_mask) + 1;
1733 * If there is non-resync activity waiting for us then
1734 * put in a delay to throttle resync.
1736 if (!go_faster && conf->nr_waiting)
1737 msleep_interruptible(1000);
1739 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1741 /* Again, very different code for resync and recovery.
1742 * Both must result in an r10bio with a list of bios that
1743 * have bi_end_io, bi_sector, bi_bdev set,
1744 * and bi_private set to the r10bio.
1745 * For recovery, we may actually create several r10bios
1746 * with 2 bios in each, that correspond to the bios in the main one.
1747 * In this case, the subordinate r10bios link back through a
1748 * borrowed master_bio pointer, and the counter in the master
1749 * includes a ref from each subordinate.
1751 /* First, we decide what to do and set ->bi_end_io
1752 * To end_sync_read if we want to read, and
1753 * end_sync_write if we will want to write.
1756 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1757 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1758 /* recovery... the complicated one */
1762 for (i=0 ; i<conf->raid_disks; i++)
1763 if (conf->mirrors[i].rdev &&
1764 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1765 int still_degraded = 0;
1766 /* want to reconstruct this device */
1767 r10bio_t *rb2 = r10_bio;
1768 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1770 /* Unless we are doing a full sync, we only need
1771 * to recover the block if it is set in the bitmap
1773 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1775 if (sync_blocks < max_sync)
1776 max_sync = sync_blocks;
1779 /* yep, skip the sync_blocks here, but don't assume
1780 * that there will never be anything to do here
1782 chunks_skipped = -1;
1786 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1787 raise_barrier(conf, rb2 != NULL);
1788 atomic_set(&r10_bio->remaining, 0);
1790 r10_bio->master_bio = (struct bio*)rb2;
1792 atomic_inc(&rb2->remaining);
1793 r10_bio->mddev = mddev;
1794 set_bit(R10BIO_IsRecover, &r10_bio->state);
1795 r10_bio->sector = sect;
1797 raid10_find_phys(conf, r10_bio);
1798 /* Need to check if this section will still be
1801 for (j=0; j<conf->copies;j++) {
1802 int d = r10_bio->devs[j].devnum;
1803 if (conf->mirrors[d].rdev == NULL ||
1804 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1809 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1810 &sync_blocks, still_degraded);
1812 for (j=0; j<conf->copies;j++) {
1813 int d = r10_bio->devs[j].devnum;
1814 if (conf->mirrors[d].rdev &&
1815 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1816 /* This is where we read from */
1817 bio = r10_bio->devs[0].bio;
1818 bio->bi_next = biolist;
1820 bio->bi_private = r10_bio;
1821 bio->bi_end_io = end_sync_read;
1823 bio->bi_sector = r10_bio->devs[j].addr +
1824 conf->mirrors[d].rdev->data_offset;
1825 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1826 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1827 atomic_inc(&r10_bio->remaining);
1828 /* and we write to 'i' */
1830 for (k=0; k<conf->copies; k++)
1831 if (r10_bio->devs[k].devnum == i)
1833 BUG_ON(k == conf->copies);
1834 bio = r10_bio->devs[1].bio;
1835 bio->bi_next = biolist;
1837 bio->bi_private = r10_bio;
1838 bio->bi_end_io = end_sync_write;
1840 bio->bi_sector = r10_bio->devs[k].addr +
1841 conf->mirrors[i].rdev->data_offset;
1842 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1844 r10_bio->devs[0].devnum = d;
1845 r10_bio->devs[1].devnum = i;
1850 if (j == conf->copies) {
1851 /* Cannot recover, so abort the recovery */
1854 atomic_dec(&rb2->remaining);
1856 if (!test_and_set_bit(MD_RECOVERY_INTR,
1858 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1863 if (biolist == NULL) {
1865 r10bio_t *rb2 = r10_bio;
1866 r10_bio = (r10bio_t*) rb2->master_bio;
1867 rb2->master_bio = NULL;
1873 /* resync. Schedule a read for every block at this virt offset */
1876 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1877 &sync_blocks, mddev->degraded) &&
1878 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1879 /* We can skip this block */
1881 return sync_blocks + sectors_skipped;
1883 if (sync_blocks < max_sync)
1884 max_sync = sync_blocks;
1885 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1887 r10_bio->mddev = mddev;
1888 atomic_set(&r10_bio->remaining, 0);
1889 raise_barrier(conf, 0);
1890 conf->next_resync = sector_nr;
1892 r10_bio->master_bio = NULL;
1893 r10_bio->sector = sector_nr;
1894 set_bit(R10BIO_IsSync, &r10_bio->state);
1895 raid10_find_phys(conf, r10_bio);
1896 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1898 for (i=0; i<conf->copies; i++) {
1899 int d = r10_bio->devs[i].devnum;
1900 bio = r10_bio->devs[i].bio;
1901 bio->bi_end_io = NULL;
1902 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1903 if (conf->mirrors[d].rdev == NULL ||
1904 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1906 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1907 atomic_inc(&r10_bio->remaining);
1908 bio->bi_next = biolist;
1910 bio->bi_private = r10_bio;
1911 bio->bi_end_io = end_sync_read;
1913 bio->bi_sector = r10_bio->devs[i].addr +
1914 conf->mirrors[d].rdev->data_offset;
1915 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1920 for (i=0; i<conf->copies; i++) {
1921 int d = r10_bio->devs[i].devnum;
1922 if (r10_bio->devs[i].bio->bi_end_io)
1923 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1931 for (bio = biolist; bio ; bio=bio->bi_next) {
1933 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1935 bio->bi_flags |= 1 << BIO_UPTODATE;
1938 bio->bi_phys_segments = 0;
1939 bio->bi_hw_segments = 0;
1944 if (sector_nr + max_sync < max_sector)
1945 max_sector = sector_nr + max_sync;
1948 int len = PAGE_SIZE;
1950 if (sector_nr + (len>>9) > max_sector)
1951 len = (max_sector - sector_nr) << 9;
1954 for (bio= biolist ; bio ; bio=bio->bi_next) {
1955 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1956 if (bio_add_page(bio, page, len, 0) == 0) {
1959 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1960 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1961 /* remove last page from this bio */
1963 bio2->bi_size -= len;
1964 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1970 nr_sectors += len>>9;
1971 sector_nr += len>>9;
1972 } while (biolist->bi_vcnt < RESYNC_PAGES);
1974 r10_bio->sectors = nr_sectors;
1978 biolist = biolist->bi_next;
1980 bio->bi_next = NULL;
1981 r10_bio = bio->bi_private;
1982 r10_bio->sectors = nr_sectors;
1984 if (bio->bi_end_io == end_sync_read) {
1985 md_sync_acct(bio->bi_bdev, nr_sectors);
1986 generic_make_request(bio);
1990 if (sectors_skipped)
1991 /* pretend they weren't skipped, it makes
1992 * no important difference in this case
1994 md_done_sync(mddev, sectors_skipped, 1);
1996 return sectors_skipped + nr_sectors;
1998 /* There is nowhere to write, so all non-sync
1999 * drives must be failed, so try the next chunk...
2002 sector_t sec = max_sector - sector_nr;
2003 sectors_skipped += sec;
2005 sector_nr = max_sector;
2010 static int run(mddev_t *mddev)
2014 mirror_info_t *disk;
2016 struct list_head *tmp;
2018 sector_t stride, size;
2020 if (mddev->chunk_size == 0) {
2021 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2025 nc = mddev->layout & 255;
2026 fc = (mddev->layout >> 8) & 255;
2027 fo = mddev->layout & (1<<16);
2028 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2029 (mddev->layout >> 17)) {
2030 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2031 mdname(mddev), mddev->layout);
2035 * copy the already verified devices into our private RAID10
2036 * bookkeeping area. [whatever we allocate in run(),
2037 * should be freed in stop()]
2039 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2040 mddev->private = conf;
2042 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2046 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2048 if (!conf->mirrors) {
2049 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2054 conf->tmppage = alloc_page(GFP_KERNEL);
2058 conf->mddev = mddev;
2059 conf->raid_disks = mddev->raid_disks;
2060 conf->near_copies = nc;
2061 conf->far_copies = fc;
2062 conf->copies = nc*fc;
2063 conf->far_offset = fo;
2064 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2065 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2066 size = mddev->size >> (conf->chunk_shift-1);
2067 sector_div(size, fc);
2068 size = size * conf->raid_disks;
2069 sector_div(size, nc);
2070 /* 'size' is now the number of chunks in the array */
2071 /* calculate "used chunks per device" in 'stride' */
2072 stride = size * conf->copies;
2074 /* We need to round up when dividing by raid_disks to
2075 * get the stride size.
2077 stride += conf->raid_disks - 1;
2078 sector_div(stride, conf->raid_disks);
2079 mddev->size = stride << (conf->chunk_shift-1);
2084 sector_div(stride, fc);
2085 conf->stride = stride << conf->chunk_shift;
2087 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2088 r10bio_pool_free, conf);
2089 if (!conf->r10bio_pool) {
2090 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2095 spin_lock_init(&conf->device_lock);
2096 mddev->queue->queue_lock = &conf->device_lock;
2098 rdev_for_each(rdev, tmp, mddev) {
2099 disk_idx = rdev->raid_disk;
2100 if (disk_idx >= mddev->raid_disks
2103 disk = conf->mirrors + disk_idx;
2107 blk_queue_stack_limits(mddev->queue,
2108 rdev->bdev->bd_disk->queue);
2109 /* as we don't honour merge_bvec_fn, we must never risk
2110 * violating it, so limit ->max_sector to one PAGE, as
2111 * a one page request is never in violation.
2113 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2114 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2115 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2117 disk->head_position = 0;
2119 INIT_LIST_HEAD(&conf->retry_list);
2121 spin_lock_init(&conf->resync_lock);
2122 init_waitqueue_head(&conf->wait_barrier);
2124 /* need to check that every block has at least one working mirror */
2125 if (!enough(conf)) {
2126 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2131 mddev->degraded = 0;
2132 for (i = 0; i < conf->raid_disks; i++) {
2134 disk = conf->mirrors + i;
2137 !test_bit(In_sync, &disk->rdev->flags)) {
2138 disk->head_position = 0;
2144 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2145 if (!mddev->thread) {
2147 "raid10: couldn't allocate thread for %s\n",
2153 "raid10: raid set %s active with %d out of %d devices\n",
2154 mdname(mddev), mddev->raid_disks - mddev->degraded,
2157 * Ok, everything is just fine now
2159 mddev->array_size = size << (conf->chunk_shift-1);
2160 mddev->resync_max_sectors = size << conf->chunk_shift;
2162 mddev->queue->unplug_fn = raid10_unplug;
2163 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2164 mddev->queue->backing_dev_info.congested_data = mddev;
2166 /* Calculate max read-ahead size.
2167 * We need to readahead at least twice a whole stripe....
2171 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2172 stripe /= conf->near_copies;
2173 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2174 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2177 if (conf->near_copies < mddev->raid_disks)
2178 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2182 if (conf->r10bio_pool)
2183 mempool_destroy(conf->r10bio_pool);
2184 safe_put_page(conf->tmppage);
2185 kfree(conf->mirrors);
2187 mddev->private = NULL;
2192 static int stop(mddev_t *mddev)
2194 conf_t *conf = mddev_to_conf(mddev);
2196 md_unregister_thread(mddev->thread);
2197 mddev->thread = NULL;
2198 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2199 if (conf->r10bio_pool)
2200 mempool_destroy(conf->r10bio_pool);
2201 kfree(conf->mirrors);
2203 mddev->private = NULL;
2207 static void raid10_quiesce(mddev_t *mddev, int state)
2209 conf_t *conf = mddev_to_conf(mddev);
2213 raise_barrier(conf, 0);
2216 lower_barrier(conf);
2219 if (mddev->thread) {
2221 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2223 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2224 md_wakeup_thread(mddev->thread);
2228 static struct mdk_personality raid10_personality =
2232 .owner = THIS_MODULE,
2233 .make_request = make_request,
2237 .error_handler = error,
2238 .hot_add_disk = raid10_add_disk,
2239 .hot_remove_disk= raid10_remove_disk,
2240 .spare_active = raid10_spare_active,
2241 .sync_request = sync_request,
2242 .quiesce = raid10_quiesce,
2245 static int __init raid_init(void)
2247 return register_md_personality(&raid10_personality);
2250 static void raid_exit(void)
2252 unregister_md_personality(&raid10_personality);
2255 module_init(raid_init);
2256 module_exit(raid_exit);
2257 MODULE_LICENSE("GPL");
2258 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2259 MODULE_ALIAS("md-raid10");
2260 MODULE_ALIAS("md-level-10");