Merge branch 'next' into for-linus
[linux-2.6] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23
24 #include <asm/dma.h>
25 #include <asm/ia32.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
34 #include <asm/tlb.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38
39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
40
41 extern void ia64_tlb_init (void);
42
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long vmalloc_end = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(vmalloc_end);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51
52 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54
55 void
56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58         unsigned long addr;
59         struct page *page;
60
61         page = pte_page(pte);
62         addr = (unsigned long) page_address(page);
63
64         if (test_bit(PG_arch_1, &page->flags))
65                 return;                         /* i-cache is already coherent with d-cache */
66
67         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
68         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
69 }
70
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void
77 dma_mark_clean(void *addr, size_t size)
78 {
79         unsigned long pg_addr, end;
80
81         pg_addr = PAGE_ALIGN((unsigned long) addr);
82         end = (unsigned long) addr + size;
83         while (pg_addr + PAGE_SIZE <= end) {
84                 struct page *page = virt_to_page(pg_addr);
85                 set_bit(PG_arch_1, &page->flags);
86                 pg_addr += PAGE_SIZE;
87         }
88 }
89
90 inline void
91 ia64_set_rbs_bot (void)
92 {
93         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
94
95         if (stack_size > MAX_USER_STACK_SIZE)
96                 stack_size = MAX_USER_STACK_SIZE;
97         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
98 }
99
100 /*
101  * This performs some platform-dependent address space initialization.
102  * On IA-64, we want to setup the VM area for the register backing
103  * store (which grows upwards) and install the gateway page which is
104  * used for signal trampolines, etc.
105  */
106 void
107 ia64_init_addr_space (void)
108 {
109         struct vm_area_struct *vma;
110
111         ia64_set_rbs_bot();
112
113         /*
114          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
115          * the problem.  When the process attempts to write to the register backing store
116          * for the first time, it will get a SEGFAULT in this case.
117          */
118         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
119         if (vma) {
120                 vma->vm_mm = current->mm;
121                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
122                 vma->vm_end = vma->vm_start + PAGE_SIZE;
123                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
124                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
125                 down_write(&current->mm->mmap_sem);
126                 if (insert_vm_struct(current->mm, vma)) {
127                         up_write(&current->mm->mmap_sem);
128                         kmem_cache_free(vm_area_cachep, vma);
129                         return;
130                 }
131                 up_write(&current->mm->mmap_sem);
132         }
133
134         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
135         if (!(current->personality & MMAP_PAGE_ZERO)) {
136                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
137                 if (vma) {
138                         vma->vm_mm = current->mm;
139                         vma->vm_end = PAGE_SIZE;
140                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
142                         down_write(&current->mm->mmap_sem);
143                         if (insert_vm_struct(current->mm, vma)) {
144                                 up_write(&current->mm->mmap_sem);
145                                 kmem_cache_free(vm_area_cachep, vma);
146                                 return;
147                         }
148                         up_write(&current->mm->mmap_sem);
149                 }
150         }
151 }
152
153 void
154 free_initmem (void)
155 {
156         unsigned long addr, eaddr;
157
158         addr = (unsigned long) ia64_imva(__init_begin);
159         eaddr = (unsigned long) ia64_imva(__init_end);
160         while (addr < eaddr) {
161                 ClearPageReserved(virt_to_page(addr));
162                 init_page_count(virt_to_page(addr));
163                 free_page(addr);
164                 ++totalram_pages;
165                 addr += PAGE_SIZE;
166         }
167         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
168                (__init_end - __init_begin) >> 10);
169 }
170
171 void __init
172 free_initrd_mem (unsigned long start, unsigned long end)
173 {
174         struct page *page;
175         /*
176          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
177          * Thus EFI and the kernel may have different page sizes. It is
178          * therefore possible to have the initrd share the same page as
179          * the end of the kernel (given current setup).
180          *
181          * To avoid freeing/using the wrong page (kernel sized) we:
182          *      - align up the beginning of initrd
183          *      - align down the end of initrd
184          *
185          *  |             |
186          *  |=============| a000
187          *  |             |
188          *  |             |
189          *  |             | 9000
190          *  |/////////////|
191          *  |/////////////|
192          *  |=============| 8000
193          *  |///INITRD////|
194          *  |/////////////|
195          *  |/////////////| 7000
196          *  |             |
197          *  |KKKKKKKKKKKKK|
198          *  |=============| 6000
199          *  |KKKKKKKKKKKKK|
200          *  |KKKKKKKKKKKKK|
201          *  K=kernel using 8KB pages
202          *
203          * In this example, we must free page 8000 ONLY. So we must align up
204          * initrd_start and keep initrd_end as is.
205          */
206         start = PAGE_ALIGN(start);
207         end = end & PAGE_MASK;
208
209         if (start < end)
210                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
211
212         for (; start < end; start += PAGE_SIZE) {
213                 if (!virt_addr_valid(start))
214                         continue;
215                 page = virt_to_page(start);
216                 ClearPageReserved(page);
217                 init_page_count(page);
218                 free_page(start);
219                 ++totalram_pages;
220         }
221 }
222
223 /*
224  * This installs a clean page in the kernel's page table.
225  */
226 static struct page * __init
227 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
228 {
229         pgd_t *pgd;
230         pud_t *pud;
231         pmd_t *pmd;
232         pte_t *pte;
233
234         if (!PageReserved(page))
235                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
236                        page_address(page));
237
238         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
239
240         {
241                 pud = pud_alloc(&init_mm, pgd, address);
242                 if (!pud)
243                         goto out;
244                 pmd = pmd_alloc(&init_mm, pud, address);
245                 if (!pmd)
246                         goto out;
247                 pte = pte_alloc_kernel(pmd, address);
248                 if (!pte)
249                         goto out;
250                 if (!pte_none(*pte))
251                         goto out;
252                 set_pte(pte, mk_pte(page, pgprot));
253         }
254   out:
255         /* no need for flush_tlb */
256         return page;
257 }
258
259 static void __init
260 setup_gate (void)
261 {
262         struct page *page;
263
264         /*
265          * Map the gate page twice: once read-only to export the ELF
266          * headers etc. and once execute-only page to enable
267          * privilege-promotion via "epc":
268          */
269         page = virt_to_page(ia64_imva(__start_gate_section));
270         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
271 #ifdef HAVE_BUGGY_SEGREL
272         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
273         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
274 #else
275         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
276         /* Fill in the holes (if any) with read-only zero pages: */
277         {
278                 unsigned long addr;
279
280                 for (addr = GATE_ADDR + PAGE_SIZE;
281                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
282                      addr += PAGE_SIZE)
283                 {
284                         put_kernel_page(ZERO_PAGE(0), addr,
285                                         PAGE_READONLY);
286                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
287                                         PAGE_READONLY);
288                 }
289         }
290 #endif
291         ia64_patch_gate();
292 }
293
294 void __devinit
295 ia64_mmu_init (void *my_cpu_data)
296 {
297         unsigned long pta, impl_va_bits;
298         extern void __devinit tlb_init (void);
299
300 #ifdef CONFIG_DISABLE_VHPT
301 #       define VHPT_ENABLE_BIT  0
302 #else
303 #       define VHPT_ENABLE_BIT  1
304 #endif
305
306         /*
307          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
308          * address space.  The IA-64 architecture guarantees that at least 50 bits of
309          * virtual address space are implemented but if we pick a large enough page size
310          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
311          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
312          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
313          * problem in practice.  Alternatively, we could truncate the top of the mapped
314          * address space to not permit mappings that would overlap with the VMLPT.
315          * --davidm 00/12/06
316          */
317 #       define pte_bits                 3
318 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
319         /*
320          * The virtual page table has to cover the entire implemented address space within
321          * a region even though not all of this space may be mappable.  The reason for
322          * this is that the Access bit and Dirty bit fault handlers perform
323          * non-speculative accesses to the virtual page table, so the address range of the
324          * virtual page table itself needs to be covered by virtual page table.
325          */
326 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
327 #       define POW2(n)                  (1ULL << (n))
328
329         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
330
331         if (impl_va_bits < 51 || impl_va_bits > 61)
332                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
333         /*
334          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
335          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
336          * the test makes sure that our mapped space doesn't overlap the
337          * unimplemented hole in the middle of the region.
338          */
339         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
340             (mapped_space_bits > impl_va_bits - 1))
341                 panic("Cannot build a big enough virtual-linear page table"
342                       " to cover mapped address space.\n"
343                       " Try using a smaller page size.\n");
344
345
346         /* place the VMLPT at the end of each page-table mapped region: */
347         pta = POW2(61) - POW2(vmlpt_bits);
348
349         /*
350          * Set the (virtually mapped linear) page table address.  Bit
351          * 8 selects between the short and long format, bits 2-7 the
352          * size of the table, and bit 0 whether the VHPT walker is
353          * enabled.
354          */
355         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
356
357         ia64_tlb_init();
358
359 #ifdef  CONFIG_HUGETLB_PAGE
360         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
361         ia64_srlz_d();
362 #endif
363 }
364
365 #ifdef CONFIG_VIRTUAL_MEM_MAP
366 int vmemmap_find_next_valid_pfn(int node, int i)
367 {
368         unsigned long end_address, hole_next_pfn;
369         unsigned long stop_address;
370         pg_data_t *pgdat = NODE_DATA(node);
371
372         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
373         end_address = PAGE_ALIGN(end_address);
374
375         stop_address = (unsigned long) &vmem_map[
376                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
377
378         do {
379                 pgd_t *pgd;
380                 pud_t *pud;
381                 pmd_t *pmd;
382                 pte_t *pte;
383
384                 pgd = pgd_offset_k(end_address);
385                 if (pgd_none(*pgd)) {
386                         end_address += PGDIR_SIZE;
387                         continue;
388                 }
389
390                 pud = pud_offset(pgd, end_address);
391                 if (pud_none(*pud)) {
392                         end_address += PUD_SIZE;
393                         continue;
394                 }
395
396                 pmd = pmd_offset(pud, end_address);
397                 if (pmd_none(*pmd)) {
398                         end_address += PMD_SIZE;
399                         continue;
400                 }
401
402                 pte = pte_offset_kernel(pmd, end_address);
403 retry_pte:
404                 if (pte_none(*pte)) {
405                         end_address += PAGE_SIZE;
406                         pte++;
407                         if ((end_address < stop_address) &&
408                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
409                                 goto retry_pte;
410                         continue;
411                 }
412                 /* Found next valid vmem_map page */
413                 break;
414         } while (end_address < stop_address);
415
416         end_address = min(end_address, stop_address);
417         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
418         hole_next_pfn = end_address / sizeof(struct page);
419         return hole_next_pfn - pgdat->node_start_pfn;
420 }
421
422 int __init
423 create_mem_map_page_table (u64 start, u64 end, void *arg)
424 {
425         unsigned long address, start_page, end_page;
426         struct page *map_start, *map_end;
427         int node;
428         pgd_t *pgd;
429         pud_t *pud;
430         pmd_t *pmd;
431         pte_t *pte;
432
433         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
434         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
435
436         start_page = (unsigned long) map_start & PAGE_MASK;
437         end_page = PAGE_ALIGN((unsigned long) map_end);
438         node = paddr_to_nid(__pa(start));
439
440         for (address = start_page; address < end_page; address += PAGE_SIZE) {
441                 pgd = pgd_offset_k(address);
442                 if (pgd_none(*pgd))
443                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
444                 pud = pud_offset(pgd, address);
445
446                 if (pud_none(*pud))
447                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
448                 pmd = pmd_offset(pud, address);
449
450                 if (pmd_none(*pmd))
451                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
452                 pte = pte_offset_kernel(pmd, address);
453
454                 if (pte_none(*pte))
455                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
456                                              PAGE_KERNEL));
457         }
458         return 0;
459 }
460
461 struct memmap_init_callback_data {
462         struct page *start;
463         struct page *end;
464         int nid;
465         unsigned long zone;
466 };
467
468 static int __meminit
469 virtual_memmap_init (u64 start, u64 end, void *arg)
470 {
471         struct memmap_init_callback_data *args;
472         struct page *map_start, *map_end;
473
474         args = (struct memmap_init_callback_data *) arg;
475         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
476         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
477
478         if (map_start < args->start)
479                 map_start = args->start;
480         if (map_end > args->end)
481                 map_end = args->end;
482
483         /*
484          * We have to initialize "out of bounds" struct page elements that fit completely
485          * on the same pages that were allocated for the "in bounds" elements because they
486          * may be referenced later (and found to be "reserved").
487          */
488         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
489         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
490                     / sizeof(struct page));
491
492         if (map_start < map_end)
493                 memmap_init_zone((unsigned long)(map_end - map_start),
494                                  args->nid, args->zone, page_to_pfn(map_start),
495                                  MEMMAP_EARLY);
496         return 0;
497 }
498
499 void __meminit
500 memmap_init (unsigned long size, int nid, unsigned long zone,
501              unsigned long start_pfn)
502 {
503         if (!vmem_map)
504                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
505         else {
506                 struct page *start;
507                 struct memmap_init_callback_data args;
508
509                 start = pfn_to_page(start_pfn);
510                 args.start = start;
511                 args.end = start + size;
512                 args.nid = nid;
513                 args.zone = zone;
514
515                 efi_memmap_walk(virtual_memmap_init, &args);
516         }
517 }
518
519 int
520 ia64_pfn_valid (unsigned long pfn)
521 {
522         char byte;
523         struct page *pg = pfn_to_page(pfn);
524
525         return     (__get_user(byte, (char __user *) pg) == 0)
526                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
527                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
528 }
529 EXPORT_SYMBOL(ia64_pfn_valid);
530
531 int __init
532 find_largest_hole (u64 start, u64 end, void *arg)
533 {
534         u64 *max_gap = arg;
535
536         static u64 last_end = PAGE_OFFSET;
537
538         /* NOTE: this algorithm assumes efi memmap table is ordered */
539
540         if (*max_gap < (start - last_end))
541                 *max_gap = start - last_end;
542         last_end = end;
543         return 0;
544 }
545
546 #endif /* CONFIG_VIRTUAL_MEM_MAP */
547
548 int __init
549 register_active_ranges(u64 start, u64 len, int nid)
550 {
551         u64 end = start + len;
552
553 #ifdef CONFIG_KEXEC
554         if (start > crashk_res.start && start < crashk_res.end)
555                 start = crashk_res.end;
556         if (end > crashk_res.start && end < crashk_res.end)
557                 end = crashk_res.start;
558 #endif
559
560         if (start < end)
561                 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
562                         __pa(end) >> PAGE_SHIFT);
563         return 0;
564 }
565
566 static int __init
567 count_reserved_pages (u64 start, u64 end, void *arg)
568 {
569         unsigned long num_reserved = 0;
570         unsigned long *count = arg;
571
572         for (; start < end; start += PAGE_SIZE)
573                 if (PageReserved(virt_to_page(start)))
574                         ++num_reserved;
575         *count += num_reserved;
576         return 0;
577 }
578
579 int
580 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
581 {
582         unsigned long pfn_start, pfn_end;
583 #ifdef CONFIG_FLATMEM
584         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
585         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
586 #else
587         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
588         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
589 #endif
590         min_low_pfn = min(min_low_pfn, pfn_start);
591         max_low_pfn = max(max_low_pfn, pfn_end);
592         return 0;
593 }
594
595 /*
596  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
597  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
598  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
599  * useful for performance testing, but conceivably could also come in handy for debugging
600  * purposes.
601  */
602
603 static int nolwsys __initdata;
604
605 static int __init
606 nolwsys_setup (char *s)
607 {
608         nolwsys = 1;
609         return 1;
610 }
611
612 __setup("nolwsys", nolwsys_setup);
613
614 void __init
615 mem_init (void)
616 {
617         long reserved_pages, codesize, datasize, initsize;
618         pg_data_t *pgdat;
619         int i;
620         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
621
622         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
623         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
624         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
625
626 #ifdef CONFIG_PCI
627         /*
628          * This needs to be called _after_ the command line has been parsed but _before_
629          * any drivers that may need the PCI DMA interface are initialized or bootmem has
630          * been freed.
631          */
632         platform_dma_init();
633 #endif
634
635 #ifdef CONFIG_FLATMEM
636         if (!mem_map)
637                 BUG();
638         max_mapnr = max_low_pfn;
639 #endif
640
641         high_memory = __va(max_low_pfn * PAGE_SIZE);
642
643         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
644         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
645         kclist_add(&kcore_kernel, _stext, _end - _stext);
646
647         for_each_online_pgdat(pgdat)
648                 if (pgdat->bdata->node_bootmem_map)
649                         totalram_pages += free_all_bootmem_node(pgdat);
650
651         reserved_pages = 0;
652         efi_memmap_walk(count_reserved_pages, &reserved_pages);
653
654         codesize =  (unsigned long) _etext - (unsigned long) _stext;
655         datasize =  (unsigned long) _edata - (unsigned long) _etext;
656         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
657
658         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
659                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
660                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
661                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
662
663
664         /*
665          * For fsyscall entrpoints with no light-weight handler, use the ordinary
666          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
667          * code can tell them apart.
668          */
669         for (i = 0; i < NR_syscalls; ++i) {
670                 extern unsigned long fsyscall_table[NR_syscalls];
671                 extern unsigned long sys_call_table[NR_syscalls];
672
673                 if (!fsyscall_table[i] || nolwsys)
674                         fsyscall_table[i] = sys_call_table[i] | 1;
675         }
676         setup_gate();
677
678 #ifdef CONFIG_IA32_SUPPORT
679         ia32_mem_init();
680 #endif
681 }
682
683 #ifdef CONFIG_MEMORY_HOTPLUG
684 int arch_add_memory(int nid, u64 start, u64 size)
685 {
686         pg_data_t *pgdat;
687         struct zone *zone;
688         unsigned long start_pfn = start >> PAGE_SHIFT;
689         unsigned long nr_pages = size >> PAGE_SHIFT;
690         int ret;
691
692         pgdat = NODE_DATA(nid);
693
694         zone = pgdat->node_zones + ZONE_NORMAL;
695         ret = __add_pages(zone, start_pfn, nr_pages);
696
697         if (ret)
698                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
699                        __func__,  ret);
700
701         return ret;
702 }
703 #endif
704
705 /*
706  * Even when CONFIG_IA32_SUPPORT is not enabled it is
707  * useful to have the Linux/x86 domain registered to
708  * avoid an attempted module load when emulators call
709  * personality(PER_LINUX32). This saves several milliseconds
710  * on each such call.
711  */
712 static struct exec_domain ia32_exec_domain;
713
714 static int __init
715 per_linux32_init(void)
716 {
717         ia32_exec_domain.name = "Linux/x86";
718         ia32_exec_domain.handler = NULL;
719         ia32_exec_domain.pers_low = PER_LINUX32;
720         ia32_exec_domain.pers_high = PER_LINUX32;
721         ia32_exec_domain.signal_map = default_exec_domain.signal_map;
722         ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
723         register_exec_domain(&ia32_exec_domain);
724
725         return 0;
726 }
727
728 __initcall(per_linux32_init);