1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
67 #include <linux/tcp.h>
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
73 #include <asm/div64.h>
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.16.1"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
114 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
116 struct mac_info *mac_control;
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
289 struct s2io_nic *nic = dev->priv;
292 spin_lock_irqsave(&nic->tx_lock, flags);
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
300 struct s2io_nic *nic = dev->priv;
303 spin_lock_irqsave(&nic->tx_lock, flags);
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
310 * Constants to be programmed into the Xena's registers, to configure
315 static const u64 herc_act_dtx_cfg[] = {
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
336 static const u64 xena_dtx_cfg[] = {
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
353 * Constants for Fixing the MacAddress problem seen mostly on
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
422 * This table lists all the devices that this driver supports.
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426 PCI_ANY_ID, PCI_ANY_ID},
427 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428 PCI_ANY_ID, PCI_ANY_ID},
429 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430 PCI_ANY_ID, PCI_ANY_ID},
431 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432 PCI_ANY_ID, PCI_ANY_ID},
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
438 static struct pci_driver s2io_driver = {
440 .id_table = s2io_tbl,
441 .probe = s2io_init_nic,
442 .remove = __devexit_p(s2io_rem_nic),
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
449 * init_shared_mem - Allocation and Initialization of Memory
450 * @nic: Device private variable.
451 * Description: The function allocates all the memory areas shared
452 * between the NIC and the driver. This includes Tx descriptors,
453 * Rx descriptors and the statistics block.
456 static int init_shared_mem(struct s2io_nic *nic)
459 void *tmp_v_addr, *tmp_v_addr_next;
460 dma_addr_t tmp_p_addr, tmp_p_addr_next;
461 struct RxD_block *pre_rxd_blk = NULL;
463 int lst_size, lst_per_page;
464 struct net_device *dev = nic->dev;
468 struct mac_info *mac_control;
469 struct config_param *config;
471 mac_control = &nic->mac_control;
472 config = &nic->config;
475 /* Allocation and initialization of TXDLs in FIOFs */
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 size += config->tx_cfg[i].fifo_len;
480 if (size > MAX_AVAILABLE_TXDS) {
481 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
486 lst_size = (sizeof(struct TxD) * config->max_txds);
487 lst_per_page = PAGE_SIZE / lst_size;
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
491 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
494 if (!mac_control->fifos[i].list_info) {
496 "Malloc failed for list_info\n");
499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506 config->tx_cfg[i].fifo_len - 1;
507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509 config->tx_cfg[i].fifo_len - 1;
510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
514 for (j = 0; j < page_num; j++) {
518 tmp_v = pci_alloc_consistent(nic->pdev,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
532 mac_control->zerodma_virt_addr = tmp_v;
534 "%s: Zero DMA address for TxDL. ", dev->name);
536 "Virtual address %p\n", tmp_v);
537 tmp_v = pci_alloc_consistent(nic->pdev,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
550 mac_control->fifos[i].list_info[l].list_virt_addr =
551 tmp_v + (k * lst_size);
552 mac_control->fifos[i].list_info[l].list_phy_addr =
553 tmp_p + (k * lst_size);
559 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
560 if (!nic->ufo_in_band_v)
563 /* Allocation and initialization of RXDs in Rings */
565 for (i = 0; i < config->rx_ring_num; i++) {
566 if (config->rx_cfg[i].num_rxd %
567 (rxd_count[nic->rxd_mode] + 1)) {
568 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
571 DBG_PRINT(ERR_DBG, "RxDs per Block");
574 size += config->rx_cfg[i].num_rxd;
575 mac_control->rings[i].block_count =
576 config->rx_cfg[i].num_rxd /
577 (rxd_count[nic->rxd_mode] + 1 );
578 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579 mac_control->rings[i].block_count;
581 if (nic->rxd_mode == RXD_MODE_1)
582 size = (size * (sizeof(struct RxD1)));
584 size = (size * (sizeof(struct RxD3)));
586 for (i = 0; i < config->rx_ring_num; i++) {
587 mac_control->rings[i].rx_curr_get_info.block_index = 0;
588 mac_control->rings[i].rx_curr_get_info.offset = 0;
589 mac_control->rings[i].rx_curr_get_info.ring_len =
590 config->rx_cfg[i].num_rxd - 1;
591 mac_control->rings[i].rx_curr_put_info.block_index = 0;
592 mac_control->rings[i].rx_curr_put_info.offset = 0;
593 mac_control->rings[i].rx_curr_put_info.ring_len =
594 config->rx_cfg[i].num_rxd - 1;
595 mac_control->rings[i].nic = nic;
596 mac_control->rings[i].ring_no = i;
598 blk_cnt = config->rx_cfg[i].num_rxd /
599 (rxd_count[nic->rxd_mode] + 1);
600 /* Allocating all the Rx blocks */
601 for (j = 0; j < blk_cnt; j++) {
602 struct rx_block_info *rx_blocks;
605 rx_blocks = &mac_control->rings[i].rx_blocks[j];
606 size = SIZE_OF_BLOCK; //size is always page size
607 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
609 if (tmp_v_addr == NULL) {
611 * In case of failure, free_shared_mem()
612 * is called, which should free any
613 * memory that was alloced till the
616 rx_blocks->block_virt_addr = tmp_v_addr;
619 memset(tmp_v_addr, 0, size);
620 rx_blocks->block_virt_addr = tmp_v_addr;
621 rx_blocks->block_dma_addr = tmp_p_addr;
622 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
623 rxd_count[nic->rxd_mode],
625 if (!rx_blocks->rxds)
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
641 mac_control->rings[i].rx_blocks[(j + 1) %
642 blk_cnt].block_virt_addr;
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
646 mac_control->rings[i].rx_blocks[(j + 1) %
647 blk_cnt].block_dma_addr;
649 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
656 if (nic->rxd_mode >= RXD_MODE_3A) {
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
665 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
667 if (!mac_control->rings[i].ba)
669 for (j = 0; j < blk_cnt; j++) {
671 mac_control->rings[i].ba[j] =
672 kmalloc((sizeof(struct buffAdd) *
673 (rxd_count[nic->rxd_mode] + 1)),
675 if (!mac_control->rings[i].ba[j])
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
684 tmp = (unsigned long)ba->ba_0_org;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
693 tmp = (unsigned long) ba->ba_1_org;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
703 /* Allocation and initialization of Statistics block */
704 size = sizeof(struct stat_block);
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
708 if (!mac_control->stats_mem) {
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
716 mac_control->stats_mem_sz = size;
718 tmp_v_addr = mac_control->stats_mem;
719 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
720 memset(tmp_v_addr, 0, size);
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
728 * free_shared_mem - Free the allocated Memory
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
734 static void free_shared_mem(struct s2io_nic *nic)
736 int i, j, blk_cnt, size;
738 dma_addr_t tmp_p_addr;
739 struct mac_info *mac_control;
740 struct config_param *config;
741 int lst_size, lst_per_page;
742 struct net_device *dev = nic->dev;
747 mac_control = &nic->mac_control;
748 config = &nic->config;
750 lst_size = (sizeof(struct TxD) * config->max_txds);
751 lst_per_page = PAGE_SIZE / lst_size;
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
758 if (!mac_control->fifos[i].list_info)
760 if (!mac_control->fifos[i].list_info[mem_blks].
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->fifos[i].
767 mac_control->fifos[i].
771 /* If we got a zero DMA address during allocation,
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
779 "%s: Freeing TxDL with zero DMA addr. ",
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
784 kfree(mac_control->fifos[i].list_info);
787 size = SIZE_OF_BLOCK;
788 for (i = 0; i < config->rx_ring_num; i++) {
789 blk_cnt = mac_control->rings[i].block_count;
790 for (j = 0; j < blk_cnt; j++) {
791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
795 if (tmp_v_addr == NULL)
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
810 if (!mac_control->rings[i].ba[j])
812 while (k != rxd_count[nic->rxd_mode]) {
814 &mac_control->rings[i].ba[j][k];
819 kfree(mac_control->rings[i].ba[j]);
821 kfree(mac_control->rings[i].ba);
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
836 * s2io_verify_pci_mode -
839 static int s2io_verify_pci_mode(struct s2io_nic *nic)
841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
842 register u64 val64 = 0;
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
853 #define NEC_VENID 0x1033
854 #define NEC_DEVID 0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
857 struct pci_dev *tdev = NULL;
858 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860 if (tdev->bus == s2io_pdev->bus->parent)
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
870 * s2io_print_pci_mode -
872 static int s2io_print_pci_mode(struct s2io_nic *nic)
874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
875 register u64 val64 = 0;
877 struct config_param *config = &nic->config;
879 val64 = readq(&bar0->pci_mode);
880 mode = (u8)GET_PCI_MODE(val64);
882 if ( val64 & PCI_MODE_UNKNOWN_MODE)
883 return -1; /* Unknown PCI mode */
885 config->bus_speed = bus_speed[mode];
887 if (s2io_on_nec_bridge(nic->pdev)) {
888 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
893 if (val64 & PCI_MODE_32_BITS) {
894 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
896 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
900 case PCI_MODE_PCI_33:
901 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
903 case PCI_MODE_PCI_66:
904 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
906 case PCI_MODE_PCIX_M1_66:
907 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
909 case PCI_MODE_PCIX_M1_100:
910 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
912 case PCI_MODE_PCIX_M1_133:
913 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
915 case PCI_MODE_PCIX_M2_66:
916 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
918 case PCI_MODE_PCIX_M2_100:
919 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
921 case PCI_MODE_PCIX_M2_133:
922 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
925 return -1; /* Unsupported bus speed */
932 * init_nic - Initialization of hardware
933 * @nic: device peivate variable
934 * Description: The function sequentially configures every block
935 * of the H/W from their reset values.
936 * Return Value: SUCCESS on success and
937 * '-1' on failure (endian settings incorrect).
940 static int init_nic(struct s2io_nic *nic)
942 struct XENA_dev_config __iomem *bar0 = nic->bar0;
943 struct net_device *dev = nic->dev;
944 register u64 val64 = 0;
948 struct mac_info *mac_control;
949 struct config_param *config;
951 unsigned long long mem_share;
954 mac_control = &nic->mac_control;
955 config = &nic->config;
957 /* to set the swapper controle on the card */
958 if(s2io_set_swapper(nic)) {
959 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
964 * Herc requires EOI to be removed from reset before XGXS, so..
966 if (nic->device_type & XFRAME_II_DEVICE) {
967 val64 = 0xA500000000ULL;
968 writeq(val64, &bar0->sw_reset);
970 val64 = readq(&bar0->sw_reset);
973 /* Remove XGXS from reset state */
975 writeq(val64, &bar0->sw_reset);
977 val64 = readq(&bar0->sw_reset);
979 /* Enable Receiving broadcasts */
980 add = &bar0->mac_cfg;
981 val64 = readq(&bar0->mac_cfg);
982 val64 |= MAC_RMAC_BCAST_ENABLE;
983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984 writel((u32) val64, add);
985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986 writel((u32) (val64 >> 32), (add + 4));
988 /* Read registers in all blocks */
989 val64 = readq(&bar0->mac_int_mask);
990 val64 = readq(&bar0->mc_int_mask);
991 val64 = readq(&bar0->xgxs_int_mask);
995 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
997 if (nic->device_type & XFRAME_II_DEVICE) {
998 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000 &bar0->dtx_control, UF);
1002 msleep(1); /* Necessary!! */
1006 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008 &bar0->dtx_control, UF);
1009 val64 = readq(&bar0->dtx_control);
1014 /* Tx DMA Initialization */
1016 writeq(val64, &bar0->tx_fifo_partition_0);
1017 writeq(val64, &bar0->tx_fifo_partition_1);
1018 writeq(val64, &bar0->tx_fifo_partition_2);
1019 writeq(val64, &bar0->tx_fifo_partition_3);
1022 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1024 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025 13) | vBIT(config->tx_cfg[i].fifo_priority,
1028 if (i == (config->tx_fifo_num - 1)) {
1035 writeq(val64, &bar0->tx_fifo_partition_0);
1039 writeq(val64, &bar0->tx_fifo_partition_1);
1043 writeq(val64, &bar0->tx_fifo_partition_2);
1047 writeq(val64, &bar0->tx_fifo_partition_3);
1053 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1056 if ((nic->device_type == XFRAME_I_DEVICE) &&
1057 (get_xena_rev_id(nic->pdev) < 4))
1058 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1060 val64 = readq(&bar0->tx_fifo_partition_0);
1061 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1065 * Initialization of Tx_PA_CONFIG register to ignore packet
1066 * integrity checking.
1068 val64 = readq(&bar0->tx_pa_cfg);
1069 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071 writeq(val64, &bar0->tx_pa_cfg);
1073 /* Rx DMA intialization. */
1075 for (i = 0; i < config->rx_ring_num; i++) {
1077 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1080 writeq(val64, &bar0->rx_queue_priority);
1083 * Allocating equal share of memory to all the
1087 if (nic->device_type & XFRAME_II_DEVICE)
1092 for (i = 0; i < config->rx_ring_num; i++) {
1095 mem_share = (mem_size / config->rx_ring_num +
1096 mem_size % config->rx_ring_num);
1097 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1100 mem_share = (mem_size / config->rx_ring_num);
1101 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1104 mem_share = (mem_size / config->rx_ring_num);
1105 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1108 mem_share = (mem_size / config->rx_ring_num);
1109 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1112 mem_share = (mem_size / config->rx_ring_num);
1113 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1116 mem_share = (mem_size / config->rx_ring_num);
1117 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1120 mem_share = (mem_size / config->rx_ring_num);
1121 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1124 mem_share = (mem_size / config->rx_ring_num);
1125 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1129 writeq(val64, &bar0->rx_queue_cfg);
1132 * Filling Tx round robin registers
1133 * as per the number of FIFOs
1135 switch (config->tx_fifo_num) {
1137 val64 = 0x0000000000000000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 writeq(val64, &bar0->tx_w_round_robin_1);
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 writeq(val64, &bar0->tx_w_round_robin_4);
1145 val64 = 0x0000010000010000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_0);
1147 val64 = 0x0100000100000100ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_1);
1149 val64 = 0x0001000001000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_2);
1151 val64 = 0x0000010000010000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_3);
1153 val64 = 0x0100000000000000ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_4);
1157 val64 = 0x0001000102000001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_0);
1159 val64 = 0x0001020000010001ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_1);
1161 val64 = 0x0200000100010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_2);
1163 val64 = 0x0001000102000001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 val64 = 0x0001020000000000ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1169 val64 = 0x0001020300010200ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000102030001ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0200010000010203ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0001020001000001ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0203000100000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1181 val64 = 0x0001000203000102ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020001030004ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0001000203000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001020001030004ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001000000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1193 val64 = 0x0001020304000102ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0304050001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0203000100000102ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0304000102030405ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0001000200000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1205 val64 = 0x0001020001020300ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0102030400010203ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0405060001020001ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0304050000010200ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0102030000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1217 val64 = 0x0001020300040105ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0200030106000204ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0103000502010007ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304010002060500ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0103020400000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1230 /* Enable all configured Tx FIFO partitions */
1231 val64 = readq(&bar0->tx_fifo_partition_0);
1232 val64 |= (TX_FIFO_PARTITION_EN);
1233 writeq(val64, &bar0->tx_fifo_partition_0);
1235 /* Filling the Rx round robin registers as per the
1236 * number of Rings and steering based on QoS.
1238 switch (config->rx_ring_num) {
1240 val64 = 0x8080808080808080ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1244 val64 = 0x0000010000010000ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0100000100000100ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0001000001000001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0000010000010000ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0100000000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1255 val64 = 0x8080808040404040ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1259 val64 = 0x0001000102000001ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0001020000010001ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0200000100010200ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0001000102000001ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0001020000000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1270 val64 = 0x8080804040402020ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1274 val64 = 0x0001020300010200ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_0);
1276 val64 = 0x0100000102030001ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_1);
1278 val64 = 0x0200010000010203ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_2);
1280 val64 = 0x0001020001000001ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_3);
1282 val64 = 0x0203000100000000ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_4);
1285 val64 = 0x8080404020201010ULL;
1286 writeq(val64, &bar0->rts_qos_steering);
1289 val64 = 0x0001000203000102ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_0);
1291 val64 = 0x0001020001030004ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_1);
1293 val64 = 0x0001000203000102ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_2);
1295 val64 = 0x0001020001030004ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_3);
1297 val64 = 0x0001000000000000ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_4);
1300 val64 = 0x8080404020201008ULL;
1301 writeq(val64, &bar0->rts_qos_steering);
1304 val64 = 0x0001020304000102ULL;
1305 writeq(val64, &bar0->rx_w_round_robin_0);
1306 val64 = 0x0304050001020001ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_1);
1308 val64 = 0x0203000100000102ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_2);
1310 val64 = 0x0304000102030405ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_3);
1312 val64 = 0x0001000200000000ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_4);
1315 val64 = 0x8080404020100804ULL;
1316 writeq(val64, &bar0->rts_qos_steering);
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_4);
1330 val64 = 0x8080402010080402ULL;
1331 writeq(val64, &bar0->rts_qos_steering);
1334 val64 = 0x0001020300040105ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_0);
1336 val64 = 0x0200030106000204ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_1);
1338 val64 = 0x0103000502010007ULL;
1339 writeq(val64, &bar0->rx_w_round_robin_2);
1340 val64 = 0x0304010002060500ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_3);
1342 val64 = 0x0103020400000000ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_4);
1345 val64 = 0x8040201008040201ULL;
1346 writeq(val64, &bar0->rts_qos_steering);
1352 for (i = 0; i < 8; i++)
1353 writeq(val64, &bar0->rts_frm_len_n[i]);
1355 /* Set the default rts frame length for the rings configured */
1356 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357 for (i = 0 ; i < config->rx_ring_num ; i++)
1358 writeq(val64, &bar0->rts_frm_len_n[i]);
1360 /* Set the frame length for the configured rings
1361 * desired by the user
1363 for (i = 0; i < config->rx_ring_num; i++) {
1364 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365 * specified frame length steering.
1366 * If the user provides the frame length then program
1367 * the rts_frm_len register for those values or else
1368 * leave it as it is.
1370 if (rts_frm_len[i] != 0) {
1371 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372 &bar0->rts_frm_len_n[i]);
1376 /* Program statistics memory */
1377 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1379 if (nic->device_type == XFRAME_II_DEVICE) {
1380 val64 = STAT_BC(0x320);
1381 writeq(val64, &bar0->stat_byte_cnt);
1385 * Initializing the sampling rate for the device to calculate the
1386 * bandwidth utilization.
1388 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390 writeq(val64, &bar0->mac_link_util);
1394 * Initializing the Transmit and Receive Traffic Interrupt
1398 * TTI Initialization. Default Tx timer gets us about
1399 * 250 interrupts per sec. Continuous interrupts are enabled
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 int count = (nic->config.bus_speed * 125)/2;
1404 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1407 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1409 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412 if (use_continuous_tx_intrs)
1413 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414 writeq(val64, &bar0->tti_data1_mem);
1416 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419 writeq(val64, &bar0->tti_data2_mem);
1421 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422 writeq(val64, &bar0->tti_command_mem);
1425 * Once the operation completes, the Strobe bit of the command
1426 * register will be reset. We poll for this particular condition
1427 * We wait for a maximum of 500ms for the operation to complete,
1428 * if it's not complete by then we return error.
1432 val64 = readq(&bar0->tti_command_mem);
1433 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1437 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1445 if (nic->config.bimodal) {
1447 for (k = 0; k < config->rx_ring_num; k++) {
1448 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450 writeq(val64, &bar0->tti_command_mem);
1453 * Once the operation completes, the Strobe bit of the command
1454 * register will be reset. We poll for this particular condition
1455 * We wait for a maximum of 500ms for the operation to complete,
1456 * if it's not complete by then we return error.
1460 val64 = readq(&bar0->tti_command_mem);
1461 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1466 "%s: TTI init Failed\n",
1476 /* RTI Initialization */
1477 if (nic->device_type == XFRAME_II_DEVICE) {
1479 * Programmed to generate Apprx 500 Intrs per
1482 int count = (nic->config.bus_speed * 125)/4;
1483 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1485 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1487 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1491 writeq(val64, &bar0->rti_data1_mem);
1493 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495 if (nic->intr_type == MSI_X)
1496 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497 RTI_DATA2_MEM_RX_UFC_D(0x40));
1499 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501 writeq(val64, &bar0->rti_data2_mem);
1503 for (i = 0; i < config->rx_ring_num; i++) {
1504 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505 | RTI_CMD_MEM_OFFSET(i);
1506 writeq(val64, &bar0->rti_command_mem);
1509 * Once the operation completes, the Strobe bit of the
1510 * command register will be reset. We poll for this
1511 * particular condition. We wait for a maximum of 500ms
1512 * for the operation to complete, if it's not complete
1513 * by then we return error.
1517 val64 = readq(&bar0->rti_command_mem);
1518 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1522 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1533 * Initializing proper values as Pause threshold into all
1534 * the 8 Queues on Rx side.
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1539 /* Disable RMAC PAD STRIPPING */
1540 add = &bar0->mac_cfg;
1541 val64 = readq(&bar0->mac_cfg);
1542 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 val64 = readq(&bar0->mac_cfg);
1549 /* Enable FCS stripping by adapter */
1550 add = &bar0->mac_cfg;
1551 val64 = readq(&bar0->mac_cfg);
1552 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553 if (nic->device_type == XFRAME_II_DEVICE)
1554 writeq(val64, &bar0->mac_cfg);
1556 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557 writel((u32) (val64), add);
1558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559 writel((u32) (val64 >> 32), (add + 4));
1563 * Set the time value to be inserted in the pause frame
1564 * generated by xena.
1566 val64 = readq(&bar0->rmac_pause_cfg);
1567 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569 writeq(val64, &bar0->rmac_pause_cfg);
1572 * Set the Threshold Limit for Generating the pause frame
1573 * If the amount of data in any Queue exceeds ratio of
1574 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575 * pause frame is generated
1578 for (i = 0; i < 4; i++) {
1580 (((u64) 0xFF00 | nic->mac_control.
1581 mc_pause_threshold_q0q3)
1584 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1587 for (i = 0; i < 4; i++) {
1589 (((u64) 0xFF00 | nic->mac_control.
1590 mc_pause_threshold_q4q7)
1593 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1596 * TxDMA will stop Read request if the number of read split has
1597 * exceeded the limit pointed by shared_splits
1599 val64 = readq(&bar0->pic_control);
1600 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601 writeq(val64, &bar0->pic_control);
1603 if (nic->config.bus_speed == 266) {
1604 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605 writeq(0x0, &bar0->read_retry_delay);
1606 writeq(0x0, &bar0->write_retry_delay);
1610 * Programming the Herc to split every write transaction
1611 * that does not start on an ADB to reduce disconnects.
1613 if (nic->device_type == XFRAME_II_DEVICE) {
1614 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615 MISC_LINK_STABILITY_PRD(3);
1616 writeq(val64, &bar0->misc_control);
1617 val64 = readq(&bar0->pic_control2);
1618 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619 writeq(val64, &bar0->pic_control2);
1621 if (strstr(nic->product_name, "CX4")) {
1622 val64 = TMAC_AVG_IPG(0x17);
1623 writeq(val64, &bar0->tmac_avg_ipg);
1628 #define LINK_UP_DOWN_INTERRUPT 1
1629 #define MAC_RMAC_ERR_TIMER 2
1631 static int s2io_link_fault_indication(struct s2io_nic *nic)
1633 if (nic->intr_type != INTA)
1634 return MAC_RMAC_ERR_TIMER;
1635 if (nic->device_type == XFRAME_II_DEVICE)
1636 return LINK_UP_DOWN_INTERRUPT;
1638 return MAC_RMAC_ERR_TIMER;
1642 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1643 * @nic: device private variable,
1644 * @mask: A mask indicating which Intr block must be modified and,
1645 * @flag: A flag indicating whether to enable or disable the Intrs.
1646 * Description: This function will either disable or enable the interrupts
1647 * depending on the flag argument. The mask argument can be used to
1648 * enable/disable any Intr block.
1649 * Return Value: NONE.
1652 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1655 register u64 val64 = 0, temp64 = 0;
1657 /* Top level interrupt classification */
1658 /* PIC Interrupts */
1659 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660 /* Enable PIC Intrs in the general intr mask register */
1661 val64 = TXPIC_INT_M;
1662 if (flag == ENABLE_INTRS) {
1663 temp64 = readq(&bar0->general_int_mask);
1664 temp64 &= ~((u64) val64);
1665 writeq(temp64, &bar0->general_int_mask);
1667 * If Hercules adapter enable GPIO otherwise
1668 * disable all PCIX, Flash, MDIO, IIC and GPIO
1669 * interrupts for now.
1672 if (s2io_link_fault_indication(nic) ==
1673 LINK_UP_DOWN_INTERRUPT ) {
1674 temp64 = readq(&bar0->pic_int_mask);
1675 temp64 &= ~((u64) PIC_INT_GPIO);
1676 writeq(temp64, &bar0->pic_int_mask);
1677 temp64 = readq(&bar0->gpio_int_mask);
1678 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679 writeq(temp64, &bar0->gpio_int_mask);
1681 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1684 * No MSI Support is available presently, so TTI and
1685 * RTI interrupts are also disabled.
1687 } else if (flag == DISABLE_INTRS) {
1689 * Disable PIC Intrs in the general
1690 * intr mask register
1692 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693 temp64 = readq(&bar0->general_int_mask);
1695 writeq(val64, &bar0->general_int_mask);
1699 /* MAC Interrupts */
1700 /* Enabling/Disabling MAC interrupts */
1701 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1702 val64 = TXMAC_INT_M | RXMAC_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
1708 * All MAC block error interrupts are disabled for now
1711 } else if (flag == DISABLE_INTRS) {
1713 * Disable MAC Intrs in the general intr mask register
1715 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1716 writeq(DISABLE_ALL_INTRS,
1717 &bar0->mac_rmac_err_mask);
1719 temp64 = readq(&bar0->general_int_mask);
1721 writeq(val64, &bar0->general_int_mask);
1725 /* Tx traffic interrupts */
1726 if (mask & TX_TRAFFIC_INTR) {
1727 val64 = TXTRAFFIC_INT_M;
1728 if (flag == ENABLE_INTRS) {
1729 temp64 = readq(&bar0->general_int_mask);
1730 temp64 &= ~((u64) val64);
1731 writeq(temp64, &bar0->general_int_mask);
1733 * Enable all the Tx side interrupts
1734 * writing 0 Enables all 64 TX interrupt levels
1736 writeq(0x0, &bar0->tx_traffic_mask);
1737 } else if (flag == DISABLE_INTRS) {
1739 * Disable Tx Traffic Intrs in the general intr mask
1742 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1743 temp64 = readq(&bar0->general_int_mask);
1745 writeq(val64, &bar0->general_int_mask);
1749 /* Rx traffic interrupts */
1750 if (mask & RX_TRAFFIC_INTR) {
1751 val64 = RXTRAFFIC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1756 /* writing 0 Enables all 8 RX interrupt levels */
1757 writeq(0x0, &bar0->rx_traffic_mask);
1758 } else if (flag == DISABLE_INTRS) {
1760 * Disable Rx Traffic Intrs in the general intr mask
1763 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1764 temp64 = readq(&bar0->general_int_mask);
1766 writeq(val64, &bar0->general_int_mask);
1772 * verify_pcc_quiescent- Checks for PCC quiescent state
1773 * Return: 1 If PCC is quiescence
1774 * 0 If PCC is not quiescence
1776 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1779 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1780 u64 val64 = readq(&bar0->adapter_status);
1782 herc = (sp->device_type == XFRAME_II_DEVICE);
1784 if (flag == FALSE) {
1785 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1786 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1789 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1793 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1794 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1795 ADAPTER_STATUS_RMAC_PCC_IDLE))
1798 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1799 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1807 * verify_xena_quiescence - Checks whether the H/W is ready
1808 * Description: Returns whether the H/W is ready to go or not. Depending
1809 * on whether adapter enable bit was written or not the comparison
1810 * differs and the calling function passes the input argument flag to
1812 * Return: 1 If xena is quiescence
1813 * 0 If Xena is not quiescence
1816 static int verify_xena_quiescence(struct s2io_nic *sp)
1819 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1820 u64 val64 = readq(&bar0->adapter_status);
1821 mode = s2io_verify_pci_mode(sp);
1823 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1824 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1827 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1828 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1831 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1832 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1835 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1836 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1839 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1840 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1843 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1844 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1847 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1848 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1851 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1852 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1857 * In PCI 33 mode, the P_PLL is not used, and therefore,
1858 * the the P_PLL_LOCK bit in the adapter_status register will
1861 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1862 sp->device_type == XFRAME_II_DEVICE && mode !=
1864 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1867 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1868 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1869 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1876 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1877 * @sp: Pointer to device specifc structure
1879 * New procedure to clear mac address reading problems on Alpha platforms
1883 static void fix_mac_address(struct s2io_nic * sp)
1885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1889 while (fix_mac[i] != END_SIGN) {
1890 writeq(fix_mac[i++], &bar0->gpio_control);
1892 val64 = readq(&bar0->gpio_control);
1897 * start_nic - Turns the device on
1898 * @nic : device private variable.
1900 * This function actually turns the device on. Before this function is
1901 * called,all Registers are configured from their reset states
1902 * and shared memory is allocated but the NIC is still quiescent. On
1903 * calling this function, the device interrupts are cleared and the NIC is
1904 * literally switched on by writing into the adapter control register.
1906 * SUCCESS on success and -1 on failure.
1909 static int start_nic(struct s2io_nic *nic)
1911 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1912 struct net_device *dev = nic->dev;
1913 register u64 val64 = 0;
1915 struct mac_info *mac_control;
1916 struct config_param *config;
1918 mac_control = &nic->mac_control;
1919 config = &nic->config;
1921 /* PRC Initialization and configuration */
1922 for (i = 0; i < config->rx_ring_num; i++) {
1923 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1924 &bar0->prc_rxd0_n[i]);
1926 val64 = readq(&bar0->prc_ctrl_n[i]);
1927 if (nic->config.bimodal)
1928 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1929 if (nic->rxd_mode == RXD_MODE_1)
1930 val64 |= PRC_CTRL_RC_ENABLED;
1932 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1933 if (nic->device_type == XFRAME_II_DEVICE)
1934 val64 |= PRC_CTRL_GROUP_READS;
1935 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1936 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1937 writeq(val64, &bar0->prc_ctrl_n[i]);
1940 if (nic->rxd_mode == RXD_MODE_3B) {
1941 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1942 val64 = readq(&bar0->rx_pa_cfg);
1943 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1944 writeq(val64, &bar0->rx_pa_cfg);
1948 * Enabling MC-RLDRAM. After enabling the device, we timeout
1949 * for around 100ms, which is approximately the time required
1950 * for the device to be ready for operation.
1952 val64 = readq(&bar0->mc_rldram_mrs);
1953 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1954 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1955 val64 = readq(&bar0->mc_rldram_mrs);
1957 msleep(100); /* Delay by around 100 ms. */
1959 /* Enabling ECC Protection. */
1960 val64 = readq(&bar0->adapter_control);
1961 val64 &= ~ADAPTER_ECC_EN;
1962 writeq(val64, &bar0->adapter_control);
1965 * Clearing any possible Link state change interrupts that
1966 * could have popped up just before Enabling the card.
1968 val64 = readq(&bar0->mac_rmac_err_reg);
1970 writeq(val64, &bar0->mac_rmac_err_reg);
1973 * Verify if the device is ready to be enabled, if so enable
1976 val64 = readq(&bar0->adapter_status);
1977 if (!verify_xena_quiescence(nic)) {
1978 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1979 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1980 (unsigned long long) val64);
1985 * With some switches, link might be already up at this point.
1986 * Because of this weird behavior, when we enable laser,
1987 * we may not get link. We need to handle this. We cannot
1988 * figure out which switch is misbehaving. So we are forced to
1989 * make a global change.
1992 /* Enabling Laser. */
1993 val64 = readq(&bar0->adapter_control);
1994 val64 |= ADAPTER_EOI_TX_ON;
1995 writeq(val64, &bar0->adapter_control);
1997 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1999 * Dont see link state interrupts initally on some switches,
2000 * so directly scheduling the link state task here.
2002 schedule_work(&nic->set_link_task);
2004 /* SXE-002: Initialize link and activity LED */
2005 subid = nic->pdev->subsystem_device;
2006 if (((subid & 0xFF) >= 0x07) &&
2007 (nic->device_type == XFRAME_I_DEVICE)) {
2008 val64 = readq(&bar0->gpio_control);
2009 val64 |= 0x0000800000000000ULL;
2010 writeq(val64, &bar0->gpio_control);
2011 val64 = 0x0411040400000000ULL;
2012 writeq(val64, (void __iomem *)bar0 + 0x2700);
2018 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2020 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2021 TxD *txdlp, int get_off)
2023 struct s2io_nic *nic = fifo_data->nic;
2024 struct sk_buff *skb;
2029 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2030 pci_unmap_single(nic->pdev, (dma_addr_t)
2031 txds->Buffer_Pointer, sizeof(u64),
2036 skb = (struct sk_buff *) ((unsigned long)
2037 txds->Host_Control);
2039 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2042 pci_unmap_single(nic->pdev, (dma_addr_t)
2043 txds->Buffer_Pointer,
2044 skb->len - skb->data_len,
2046 frg_cnt = skb_shinfo(skb)->nr_frags;
2049 for (j = 0; j < frg_cnt; j++, txds++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2051 if (!txds->Buffer_Pointer)
2053 pci_unmap_page(nic->pdev, (dma_addr_t)
2054 txds->Buffer_Pointer,
2055 frag->size, PCI_DMA_TODEVICE);
2058 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2063 * free_tx_buffers - Free all queued Tx buffers
2064 * @nic : device private variable.
2066 * Free all queued Tx buffers.
2067 * Return Value: void
2070 static void free_tx_buffers(struct s2io_nic *nic)
2072 struct net_device *dev = nic->dev;
2073 struct sk_buff *skb;
2076 struct mac_info *mac_control;
2077 struct config_param *config;
2080 mac_control = &nic->mac_control;
2081 config = &nic->config;
2083 for (i = 0; i < config->tx_fifo_num; i++) {
2084 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2085 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2087 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2094 "%s:forcibly freeing %d skbs on FIFO%d\n",
2096 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2097 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2102 * stop_nic - To stop the nic
2103 * @nic ; device private variable.
2105 * This function does exactly the opposite of what the start_nic()
2106 * function does. This function is called to stop the device.
2111 static void stop_nic(struct s2io_nic *nic)
2113 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2114 register u64 val64 = 0;
2116 struct mac_info *mac_control;
2117 struct config_param *config;
2119 mac_control = &nic->mac_control;
2120 config = &nic->config;
2122 /* Disable all interrupts */
2123 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2124 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2125 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2126 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2128 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2129 val64 = readq(&bar0->adapter_control);
2130 val64 &= ~(ADAPTER_CNTL_EN);
2131 writeq(val64, &bar0->adapter_control);
2134 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2137 struct net_device *dev = nic->dev;
2138 struct sk_buff *frag_list;
2141 /* Buffer-1 receives L3/L4 headers */
2142 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2143 (nic->pdev, skb->data, l3l4hdr_size + 4,
2144 PCI_DMA_FROMDEVICE);
2146 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2147 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2148 if (skb_shinfo(skb)->frag_list == NULL) {
2149 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2152 frag_list = skb_shinfo(skb)->frag_list;
2153 skb->truesize += frag_list->truesize;
2154 frag_list->next = NULL;
2155 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2156 frag_list->data = tmp;
2157 frag_list->tail = tmp;
2159 /* Buffer-2 receives L4 data payload */
2160 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2161 frag_list->data, dev->mtu,
2162 PCI_DMA_FROMDEVICE);
2163 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2164 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2170 * fill_rx_buffers - Allocates the Rx side skbs
2171 * @nic: device private variable
2172 * @ring_no: ring number
2174 * The function allocates Rx side skbs and puts the physical
2175 * address of these buffers into the RxD buffer pointers, so that the NIC
2176 * can DMA the received frame into these locations.
2177 * The NIC supports 3 receive modes, viz
2179 * 2. three buffer and
2180 * 3. Five buffer modes.
2181 * Each mode defines how many fragments the received frame will be split
2182 * up into by the NIC. The frame is split into L3 header, L4 Header,
2183 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2184 * is split into 3 fragments. As of now only single buffer mode is
2187 * SUCCESS on success or an appropriate -ve value on failure.
2190 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2192 struct net_device *dev = nic->dev;
2193 struct sk_buff *skb;
2195 int off, off1, size, block_no, block_no1;
2198 struct mac_info *mac_control;
2199 struct config_param *config;
2202 unsigned long flags;
2203 struct RxD_t *first_rxdp = NULL;
2205 mac_control = &nic->mac_control;
2206 config = &nic->config;
2207 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2208 atomic_read(&nic->rx_bufs_left[ring_no]);
2210 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2211 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2212 while (alloc_tab < alloc_cnt) {
2213 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2215 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2217 rxdp = mac_control->rings[ring_no].
2218 rx_blocks[block_no].rxds[off].virt_addr;
2220 if ((block_no == block_no1) && (off == off1) &&
2221 (rxdp->Host_Control)) {
2222 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2224 DBG_PRINT(INTR_DBG, " info equated\n");
2227 if (off && (off == rxd_count[nic->rxd_mode])) {
2228 mac_control->rings[ring_no].rx_curr_put_info.
2230 if (mac_control->rings[ring_no].rx_curr_put_info.
2231 block_index == mac_control->rings[ring_no].
2233 mac_control->rings[ring_no].rx_curr_put_info.
2235 block_no = mac_control->rings[ring_no].
2236 rx_curr_put_info.block_index;
2237 if (off == rxd_count[nic->rxd_mode])
2239 mac_control->rings[ring_no].rx_curr_put_info.
2241 rxdp = mac_control->rings[ring_no].
2242 rx_blocks[block_no].block_virt_addr;
2243 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2247 spin_lock_irqsave(&nic->put_lock, flags);
2248 mac_control->rings[ring_no].put_pos =
2249 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2250 spin_unlock_irqrestore(&nic->put_lock, flags);
2252 mac_control->rings[ring_no].put_pos =
2253 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2255 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2256 ((nic->rxd_mode >= RXD_MODE_3A) &&
2257 (rxdp->Control_2 & BIT(0)))) {
2258 mac_control->rings[ring_no].rx_curr_put_info.
2262 /* calculate size of skb based on ring mode */
2263 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2264 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2265 if (nic->rxd_mode == RXD_MODE_1)
2266 size += NET_IP_ALIGN;
2267 else if (nic->rxd_mode == RXD_MODE_3B)
2268 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2270 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2273 skb = dev_alloc_skb(size);
2275 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2276 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2279 first_rxdp->Control_1 |= RXD_OWN_XENA;
2283 if (nic->rxd_mode == RXD_MODE_1) {
2284 /* 1 buffer mode - normal operation mode */
2285 memset(rxdp, 0, sizeof(struct RxD1));
2286 skb_reserve(skb, NET_IP_ALIGN);
2287 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2288 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2289 PCI_DMA_FROMDEVICE);
2290 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2292 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2294 * 2 or 3 buffer mode -
2295 * Both 2 buffer mode and 3 buffer mode provides 128
2296 * byte aligned receive buffers.
2298 * 3 buffer mode provides header separation where in
2299 * skb->data will have L3/L4 headers where as
2300 * skb_shinfo(skb)->frag_list will have the L4 data
2304 memset(rxdp, 0, sizeof(struct RxD3));
2305 ba = &mac_control->rings[ring_no].ba[block_no][off];
2306 skb_reserve(skb, BUF0_LEN);
2307 tmp = (u64)(unsigned long) skb->data;
2310 skb->data = (void *) (unsigned long)tmp;
2311 skb->tail = (void *) (unsigned long)tmp;
2313 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2314 ((struct RxD3*)rxdp)->Buffer0_ptr =
2315 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2316 PCI_DMA_FROMDEVICE);
2318 pci_dma_sync_single_for_device(nic->pdev,
2319 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2320 BUF0_LEN, PCI_DMA_FROMDEVICE);
2321 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2322 if (nic->rxd_mode == RXD_MODE_3B) {
2323 /* Two buffer mode */
2326 * Buffer2 will have L3/L4 header plus
2329 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2330 (nic->pdev, skb->data, dev->mtu + 4,
2331 PCI_DMA_FROMDEVICE);
2333 /* Buffer-1 will be dummy buffer. Not used */
2334 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2335 ((struct RxD3*)rxdp)->Buffer1_ptr =
2336 pci_map_single(nic->pdev,
2338 PCI_DMA_FROMDEVICE);
2340 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2341 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2345 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2346 dev_kfree_skb_irq(skb);
2349 first_rxdp->Control_1 |=
2355 rxdp->Control_2 |= BIT(0);
2357 rxdp->Host_Control = (unsigned long) (skb);
2358 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2359 rxdp->Control_1 |= RXD_OWN_XENA;
2361 if (off == (rxd_count[nic->rxd_mode] + 1))
2363 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2365 rxdp->Control_2 |= SET_RXD_MARKER;
2366 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2369 first_rxdp->Control_1 |= RXD_OWN_XENA;
2373 atomic_inc(&nic->rx_bufs_left[ring_no]);
2378 /* Transfer ownership of first descriptor to adapter just before
2379 * exiting. Before that, use memory barrier so that ownership
2380 * and other fields are seen by adapter correctly.
2384 first_rxdp->Control_1 |= RXD_OWN_XENA;
2390 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2392 struct net_device *dev = sp->dev;
2394 struct sk_buff *skb;
2396 struct mac_info *mac_control;
2399 mac_control = &sp->mac_control;
2400 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2401 rxdp = mac_control->rings[ring_no].
2402 rx_blocks[blk].rxds[j].virt_addr;
2403 skb = (struct sk_buff *)
2404 ((unsigned long) rxdp->Host_Control);
2408 if (sp->rxd_mode == RXD_MODE_1) {
2409 pci_unmap_single(sp->pdev, (dma_addr_t)
2410 ((struct RxD1*)rxdp)->Buffer0_ptr,
2412 HEADER_ETHERNET_II_802_3_SIZE
2413 + HEADER_802_2_SIZE +
2415 PCI_DMA_FROMDEVICE);
2416 memset(rxdp, 0, sizeof(struct RxD1));
2417 } else if(sp->rxd_mode == RXD_MODE_3B) {
2418 ba = &mac_control->rings[ring_no].
2420 pci_unmap_single(sp->pdev, (dma_addr_t)
2421 ((struct RxD3*)rxdp)->Buffer0_ptr,
2423 PCI_DMA_FROMDEVICE);
2424 pci_unmap_single(sp->pdev, (dma_addr_t)
2425 ((struct RxD3*)rxdp)->Buffer1_ptr,
2427 PCI_DMA_FROMDEVICE);
2428 pci_unmap_single(sp->pdev, (dma_addr_t)
2429 ((struct RxD3*)rxdp)->Buffer2_ptr,
2431 PCI_DMA_FROMDEVICE);
2432 memset(rxdp, 0, sizeof(struct RxD3));
2434 pci_unmap_single(sp->pdev, (dma_addr_t)
2435 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2436 PCI_DMA_FROMDEVICE);
2437 pci_unmap_single(sp->pdev, (dma_addr_t)
2438 ((struct RxD3*)rxdp)->Buffer1_ptr,
2440 PCI_DMA_FROMDEVICE);
2441 pci_unmap_single(sp->pdev, (dma_addr_t)
2442 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2443 PCI_DMA_FROMDEVICE);
2444 memset(rxdp, 0, sizeof(struct RxD3));
2447 atomic_dec(&sp->rx_bufs_left[ring_no]);
2452 * free_rx_buffers - Frees all Rx buffers
2453 * @sp: device private variable.
2455 * This function will free all Rx buffers allocated by host.
2460 static void free_rx_buffers(struct s2io_nic *sp)
2462 struct net_device *dev = sp->dev;
2463 int i, blk = 0, buf_cnt = 0;
2464 struct mac_info *mac_control;
2465 struct config_param *config;
2467 mac_control = &sp->mac_control;
2468 config = &sp->config;
2470 for (i = 0; i < config->rx_ring_num; i++) {
2471 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2472 free_rxd_blk(sp,i,blk);
2474 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2475 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2476 mac_control->rings[i].rx_curr_put_info.offset = 0;
2477 mac_control->rings[i].rx_curr_get_info.offset = 0;
2478 atomic_set(&sp->rx_bufs_left[i], 0);
2479 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2480 dev->name, buf_cnt, i);
2485 * s2io_poll - Rx interrupt handler for NAPI support
2486 * @dev : pointer to the device structure.
2487 * @budget : The number of packets that were budgeted to be processed
2488 * during one pass through the 'Poll" function.
2490 * Comes into picture only if NAPI support has been incorporated. It does
2491 * the same thing that rx_intr_handler does, but not in a interrupt context
2492 * also It will process only a given number of packets.
2494 * 0 on success and 1 if there are No Rx packets to be processed.
2497 static int s2io_poll(struct net_device *dev, int *budget)
2499 struct s2io_nic *nic = dev->priv;
2500 int pkt_cnt = 0, org_pkts_to_process;
2501 struct mac_info *mac_control;
2502 struct config_param *config;
2503 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2506 atomic_inc(&nic->isr_cnt);
2507 mac_control = &nic->mac_control;
2508 config = &nic->config;
2510 nic->pkts_to_process = *budget;
2511 if (nic->pkts_to_process > dev->quota)
2512 nic->pkts_to_process = dev->quota;
2513 org_pkts_to_process = nic->pkts_to_process;
2515 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2516 readl(&bar0->rx_traffic_int);
2518 for (i = 0; i < config->rx_ring_num; i++) {
2519 rx_intr_handler(&mac_control->rings[i]);
2520 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2521 if (!nic->pkts_to_process) {
2522 /* Quota for the current iteration has been met */
2529 dev->quota -= pkt_cnt;
2531 netif_rx_complete(dev);
2533 for (i = 0; i < config->rx_ring_num; i++) {
2534 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2535 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2536 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2540 /* Re enable the Rx interrupts. */
2541 writeq(0x0, &bar0->rx_traffic_mask);
2542 readl(&bar0->rx_traffic_mask);
2543 atomic_dec(&nic->isr_cnt);
2547 dev->quota -= pkt_cnt;
2550 for (i = 0; i < config->rx_ring_num; i++) {
2551 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2552 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2553 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2557 atomic_dec(&nic->isr_cnt);
2561 #ifdef CONFIG_NET_POLL_CONTROLLER
2563 * s2io_netpoll - netpoll event handler entry point
2564 * @dev : pointer to the device structure.
2566 * This function will be called by upper layer to check for events on the
2567 * interface in situations where interrupts are disabled. It is used for
2568 * specific in-kernel networking tasks, such as remote consoles and kernel
2569 * debugging over the network (example netdump in RedHat).
2571 static void s2io_netpoll(struct net_device *dev)
2573 struct s2io_nic *nic = dev->priv;
2574 struct mac_info *mac_control;
2575 struct config_param *config;
2576 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2577 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2580 disable_irq(dev->irq);
2582 atomic_inc(&nic->isr_cnt);
2583 mac_control = &nic->mac_control;
2584 config = &nic->config;
2586 writeq(val64, &bar0->rx_traffic_int);
2587 writeq(val64, &bar0->tx_traffic_int);
2589 /* we need to free up the transmitted skbufs or else netpoll will
2590 * run out of skbs and will fail and eventually netpoll application such
2591 * as netdump will fail.
2593 for (i = 0; i < config->tx_fifo_num; i++)
2594 tx_intr_handler(&mac_control->fifos[i]);
2596 /* check for received packet and indicate up to network */
2597 for (i = 0; i < config->rx_ring_num; i++)
2598 rx_intr_handler(&mac_control->rings[i]);
2600 for (i = 0; i < config->rx_ring_num; i++) {
2601 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2602 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2603 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2607 atomic_dec(&nic->isr_cnt);
2608 enable_irq(dev->irq);
2614 * rx_intr_handler - Rx interrupt handler
2615 * @nic: device private variable.
2617 * If the interrupt is because of a received frame or if the
2618 * receive ring contains fresh as yet un-processed frames,this function is
2619 * called. It picks out the RxD at which place the last Rx processing had
2620 * stopped and sends the skb to the OSM's Rx handler and then increments
2625 static void rx_intr_handler(struct ring_info *ring_data)
2627 struct s2io_nic *nic = ring_data->nic;
2628 struct net_device *dev = (struct net_device *) nic->dev;
2629 int get_block, put_block, put_offset;
2630 struct rx_curr_get_info get_info, put_info;
2632 struct sk_buff *skb;
2636 spin_lock(&nic->rx_lock);
2637 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2638 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2639 __FUNCTION__, dev->name);
2640 spin_unlock(&nic->rx_lock);
2644 get_info = ring_data->rx_curr_get_info;
2645 get_block = get_info.block_index;
2646 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2647 put_block = put_info.block_index;
2648 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2650 spin_lock(&nic->put_lock);
2651 put_offset = ring_data->put_pos;
2652 spin_unlock(&nic->put_lock);
2654 put_offset = ring_data->put_pos;
2656 while (RXD_IS_UP2DT(rxdp)) {
2658 * If your are next to put index then it's
2659 * FIFO full condition
2661 if ((get_block == put_block) &&
2662 (get_info.offset + 1) == put_info.offset) {
2663 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2666 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2668 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2670 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2671 spin_unlock(&nic->rx_lock);
2674 if (nic->rxd_mode == RXD_MODE_1) {
2675 pci_unmap_single(nic->pdev, (dma_addr_t)
2676 ((struct RxD1*)rxdp)->Buffer0_ptr,
2678 HEADER_ETHERNET_II_802_3_SIZE +
2681 PCI_DMA_FROMDEVICE);
2682 } else if (nic->rxd_mode == RXD_MODE_3B) {
2683 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2684 ((struct RxD3*)rxdp)->Buffer0_ptr,
2685 BUF0_LEN, PCI_DMA_FROMDEVICE);
2686 pci_unmap_single(nic->pdev, (dma_addr_t)
2687 ((struct RxD3*)rxdp)->Buffer2_ptr,
2689 PCI_DMA_FROMDEVICE);
2691 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2692 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2693 PCI_DMA_FROMDEVICE);
2694 pci_unmap_single(nic->pdev, (dma_addr_t)
2695 ((struct RxD3*)rxdp)->Buffer1_ptr,
2697 PCI_DMA_FROMDEVICE);
2698 pci_unmap_single(nic->pdev, (dma_addr_t)
2699 ((struct RxD3*)rxdp)->Buffer2_ptr,
2700 dev->mtu, PCI_DMA_FROMDEVICE);
2702 prefetch(skb->data);
2703 rx_osm_handler(ring_data, rxdp);
2705 ring_data->rx_curr_get_info.offset = get_info.offset;
2706 rxdp = ring_data->rx_blocks[get_block].
2707 rxds[get_info.offset].virt_addr;
2708 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2709 get_info.offset = 0;
2710 ring_data->rx_curr_get_info.offset = get_info.offset;
2712 if (get_block == ring_data->block_count)
2714 ring_data->rx_curr_get_info.block_index = get_block;
2715 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2718 nic->pkts_to_process -= 1;
2719 if ((napi) && (!nic->pkts_to_process))
2722 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2726 /* Clear all LRO sessions before exiting */
2727 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2728 struct lro *lro = &nic->lro0_n[i];
2730 update_L3L4_header(nic, lro);
2731 queue_rx_frame(lro->parent);
2732 clear_lro_session(lro);
2737 spin_unlock(&nic->rx_lock);
2741 * tx_intr_handler - Transmit interrupt handler
2742 * @nic : device private variable
2744 * If an interrupt was raised to indicate DMA complete of the
2745 * Tx packet, this function is called. It identifies the last TxD
2746 * whose buffer was freed and frees all skbs whose data have already
2747 * DMA'ed into the NICs internal memory.
2752 static void tx_intr_handler(struct fifo_info *fifo_data)
2754 struct s2io_nic *nic = fifo_data->nic;
2755 struct net_device *dev = (struct net_device *) nic->dev;
2756 struct tx_curr_get_info get_info, put_info;
2757 struct sk_buff *skb;
2760 get_info = fifo_data->tx_curr_get_info;
2761 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2762 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2764 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2765 (get_info.offset != put_info.offset) &&
2766 (txdlp->Host_Control)) {
2767 /* Check for TxD errors */
2768 if (txdlp->Control_1 & TXD_T_CODE) {
2769 unsigned long long err;
2770 err = txdlp->Control_1 & TXD_T_CODE;
2772 nic->mac_control.stats_info->sw_stat.
2775 if ((err >> 48) == 0xA) {
2776 DBG_PRINT(TX_DBG, "TxD returned due \
2777 to loss of link\n");
2780 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2784 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2786 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2788 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2792 /* Updating the statistics block */
2793 nic->stats.tx_bytes += skb->len;
2794 dev_kfree_skb_irq(skb);
2797 if (get_info.offset == get_info.fifo_len + 1)
2798 get_info.offset = 0;
2799 txdlp = (struct TxD *) fifo_data->list_info
2800 [get_info.offset].list_virt_addr;
2801 fifo_data->tx_curr_get_info.offset =
2805 spin_lock(&nic->tx_lock);
2806 if (netif_queue_stopped(dev))
2807 netif_wake_queue(dev);
2808 spin_unlock(&nic->tx_lock);
2812 * s2io_mdio_write - Function to write in to MDIO registers
2813 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2814 * @addr : address value
2815 * @value : data value
2816 * @dev : pointer to net_device structure
2818 * This function is used to write values to the MDIO registers
2821 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2824 struct s2io_nic *sp = dev->priv;
2825 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2827 //address transaction
2828 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2829 | MDIO_MMD_DEV_ADDR(mmd_type)
2830 | MDIO_MMS_PRT_ADDR(0x0);
2831 writeq(val64, &bar0->mdio_control);
2832 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2833 writeq(val64, &bar0->mdio_control);
2838 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2839 | MDIO_MMD_DEV_ADDR(mmd_type)
2840 | MDIO_MMS_PRT_ADDR(0x0)
2841 | MDIO_MDIO_DATA(value)
2842 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2843 writeq(val64, &bar0->mdio_control);
2844 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2845 writeq(val64, &bar0->mdio_control);
2849 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2850 | MDIO_MMD_DEV_ADDR(mmd_type)
2851 | MDIO_MMS_PRT_ADDR(0x0)
2852 | MDIO_OP(MDIO_OP_READ_TRANS);
2853 writeq(val64, &bar0->mdio_control);
2854 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2855 writeq(val64, &bar0->mdio_control);
2861 * s2io_mdio_read - Function to write in to MDIO registers
2862 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2863 * @addr : address value
2864 * @dev : pointer to net_device structure
2866 * This function is used to read values to the MDIO registers
2869 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2873 struct s2io_nic *sp = dev->priv;
2874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2876 /* address transaction */
2877 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2878 | MDIO_MMD_DEV_ADDR(mmd_type)
2879 | MDIO_MMS_PRT_ADDR(0x0);
2880 writeq(val64, &bar0->mdio_control);
2881 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2882 writeq(val64, &bar0->mdio_control);
2885 /* Data transaction */
2887 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2888 | MDIO_MMD_DEV_ADDR(mmd_type)
2889 | MDIO_MMS_PRT_ADDR(0x0)
2890 | MDIO_OP(MDIO_OP_READ_TRANS);
2891 writeq(val64, &bar0->mdio_control);
2892 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2893 writeq(val64, &bar0->mdio_control);
2896 /* Read the value from regs */
2897 rval64 = readq(&bar0->mdio_control);
2898 rval64 = rval64 & 0xFFFF0000;
2899 rval64 = rval64 >> 16;
2903 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2904 * @counter : couter value to be updated
2905 * @flag : flag to indicate the status
2906 * @type : counter type
2908 * This function is to check the status of the xpak counters value
2912 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2917 for(i = 0; i <index; i++)
2922 *counter = *counter + 1;
2923 val64 = *regs_stat & mask;
2924 val64 = val64 >> (index * 0x2);
2931 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2932 "service. Excessive temperatures may "
2933 "result in premature transceiver "
2937 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2938 "service Excessive bias currents may "
2939 "indicate imminent laser diode "
2943 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2944 "service Excessive laser output "
2945 "power may saturate far-end "
2949 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2954 val64 = val64 << (index * 0x2);
2955 *regs_stat = (*regs_stat & (~mask)) | (val64);
2958 *regs_stat = *regs_stat & (~mask);
2963 * s2io_updt_xpak_counter - Function to update the xpak counters
2964 * @dev : pointer to net_device struct
2966 * This function is to upate the status of the xpak counters value
2969 static void s2io_updt_xpak_counter(struct net_device *dev)
2977 struct s2io_nic *sp = dev->priv;
2978 struct stat_block *stat_info = sp->mac_control.stats_info;
2980 /* Check the communication with the MDIO slave */
2983 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2984 if((val64 == 0xFFFF) || (val64 == 0x0000))
2986 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2987 "Returned %llx\n", (unsigned long long)val64);
2991 /* Check for the expecte value of 2040 at PMA address 0x0000 */
2994 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2995 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2996 (unsigned long long)val64);
3000 /* Loading the DOM register to MDIO register */
3002 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3003 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3005 /* Reading the Alarm flags */
3008 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3010 flag = CHECKBIT(val64, 0x7);
3012 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3013 &stat_info->xpak_stat.xpak_regs_stat,
3016 if(CHECKBIT(val64, 0x6))
3017 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3019 flag = CHECKBIT(val64, 0x3);
3021 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3022 &stat_info->xpak_stat.xpak_regs_stat,
3025 if(CHECKBIT(val64, 0x2))
3026 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3028 flag = CHECKBIT(val64, 0x1);
3030 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3031 &stat_info->xpak_stat.xpak_regs_stat,
3034 if(CHECKBIT(val64, 0x0))
3035 stat_info->xpak_stat.alarm_laser_output_power_low++;
3037 /* Reading the Warning flags */
3040 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3042 if(CHECKBIT(val64, 0x7))
3043 stat_info->xpak_stat.warn_transceiver_temp_high++;
3045 if(CHECKBIT(val64, 0x6))
3046 stat_info->xpak_stat.warn_transceiver_temp_low++;
3048 if(CHECKBIT(val64, 0x3))
3049 stat_info->xpak_stat.warn_laser_bias_current_high++;
3051 if(CHECKBIT(val64, 0x2))
3052 stat_info->xpak_stat.warn_laser_bias_current_low++;
3054 if(CHECKBIT(val64, 0x1))
3055 stat_info->xpak_stat.warn_laser_output_power_high++;
3057 if(CHECKBIT(val64, 0x0))
3058 stat_info->xpak_stat.warn_laser_output_power_low++;
3062 * alarm_intr_handler - Alarm Interrrupt handler
3063 * @nic: device private variable
3064 * Description: If the interrupt was neither because of Rx packet or Tx
3065 * complete, this function is called. If the interrupt was to indicate
3066 * a loss of link, the OSM link status handler is invoked for any other
3067 * alarm interrupt the block that raised the interrupt is displayed
3068 * and a H/W reset is issued.
3073 static void alarm_intr_handler(struct s2io_nic *nic)
3075 struct net_device *dev = (struct net_device *) nic->dev;
3076 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3077 register u64 val64 = 0, err_reg = 0;
3080 if (atomic_read(&nic->card_state) == CARD_DOWN)
3082 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3083 /* Handling the XPAK counters update */
3084 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3085 /* waiting for an hour */
3086 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3088 s2io_updt_xpak_counter(dev);
3089 /* reset the count to zero */
3090 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3093 /* Handling link status change error Intr */
3094 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3095 err_reg = readq(&bar0->mac_rmac_err_reg);
3096 writeq(err_reg, &bar0->mac_rmac_err_reg);
3097 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3098 schedule_work(&nic->set_link_task);
3102 /* Handling Ecc errors */
3103 val64 = readq(&bar0->mc_err_reg);
3104 writeq(val64, &bar0->mc_err_reg);
3105 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3106 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3107 nic->mac_control.stats_info->sw_stat.
3109 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3111 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3112 if (nic->device_type != XFRAME_II_DEVICE) {
3113 /* Reset XframeI only if critical error */
3114 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3115 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3116 netif_stop_queue(dev);
3117 schedule_work(&nic->rst_timer_task);
3118 nic->mac_control.stats_info->sw_stat.
3123 nic->mac_control.stats_info->sw_stat.
3128 /* In case of a serious error, the device will be Reset. */
3129 val64 = readq(&bar0->serr_source);
3130 if (val64 & SERR_SOURCE_ANY) {
3131 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3132 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3133 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3134 (unsigned long long)val64);
3135 netif_stop_queue(dev);
3136 schedule_work(&nic->rst_timer_task);
3137 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3141 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3142 * Error occurs, the adapter will be recycled by disabling the
3143 * adapter enable bit and enabling it again after the device
3144 * becomes Quiescent.
3146 val64 = readq(&bar0->pcc_err_reg);
3147 writeq(val64, &bar0->pcc_err_reg);
3148 if (val64 & PCC_FB_ECC_DB_ERR) {
3149 u64 ac = readq(&bar0->adapter_control);
3150 ac &= ~(ADAPTER_CNTL_EN);
3151 writeq(ac, &bar0->adapter_control);
3152 ac = readq(&bar0->adapter_control);
3153 schedule_work(&nic->set_link_task);
3155 /* Check for data parity error */
3156 val64 = readq(&bar0->pic_int_status);
3157 if (val64 & PIC_INT_GPIO) {
3158 val64 = readq(&bar0->gpio_int_reg);
3159 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3160 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3161 schedule_work(&nic->rst_timer_task);
3162 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3166 /* Check for ring full counter */
3167 if (nic->device_type & XFRAME_II_DEVICE) {
3168 val64 = readq(&bar0->ring_bump_counter1);
3169 for (i=0; i<4; i++) {
3170 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3171 cnt >>= 64 - ((i+1)*16);
3172 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3176 val64 = readq(&bar0->ring_bump_counter2);
3177 for (i=0; i<4; i++) {
3178 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3179 cnt >>= 64 - ((i+1)*16);
3180 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3185 /* Other type of interrupts are not being handled now, TODO */
3189 * wait_for_cmd_complete - waits for a command to complete.
3190 * @sp : private member of the device structure, which is a pointer to the
3191 * s2io_nic structure.
3192 * Description: Function that waits for a command to Write into RMAC
3193 * ADDR DATA registers to be completed and returns either success or
3194 * error depending on whether the command was complete or not.
3196 * SUCCESS on success and FAILURE on failure.
3199 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3201 int ret = FAILURE, cnt = 0;
3205 val64 = readq(addr);
3206 if (!(val64 & busy_bit)) {
3222 * check_pci_device_id - Checks if the device id is supported
3224 * Description: Function to check if the pci device id is supported by driver.
3225 * Return value: Actual device id if supported else PCI_ANY_ID
3227 static u16 check_pci_device_id(u16 id)
3230 case PCI_DEVICE_ID_HERC_WIN:
3231 case PCI_DEVICE_ID_HERC_UNI:
3232 return XFRAME_II_DEVICE;
3233 case PCI_DEVICE_ID_S2IO_UNI:
3234 case PCI_DEVICE_ID_S2IO_WIN:
3235 return XFRAME_I_DEVICE;
3242 * s2io_reset - Resets the card.
3243 * @sp : private member of the device structure.
3244 * Description: Function to Reset the card. This function then also
3245 * restores the previously saved PCI configuration space registers as
3246 * the card reset also resets the configuration space.
3251 static void s2io_reset(struct s2io_nic * sp)
3253 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3258 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3259 __FUNCTION__, sp->dev->name);
3261 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3262 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3264 if (sp->device_type == XFRAME_II_DEVICE) {
3266 ret = pci_set_power_state(sp->pdev, 3);
3268 ret = pci_set_power_state(sp->pdev, 0);
3270 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3278 val64 = SW_RESET_ALL;
3279 writeq(val64, &bar0->sw_reset);
3281 if (strstr(sp->product_name, "CX4")) {
3285 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3287 /* Restore the PCI state saved during initialization. */
3288 pci_restore_state(sp->pdev);
3289 pci_read_config_word(sp->pdev, 0x2, &val16);
3290 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3295 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3296 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3299 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3303 /* Set swapper to enable I/O register access */
3304 s2io_set_swapper(sp);
3306 /* Restore the MSIX table entries from local variables */
3307 restore_xmsi_data(sp);
3309 /* Clear certain PCI/PCI-X fields after reset */
3310 if (sp->device_type == XFRAME_II_DEVICE) {
3311 /* Clear "detected parity error" bit */
3312 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3314 /* Clearing PCIX Ecc status register */
3315 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3317 /* Clearing PCI_STATUS error reflected here */
3318 writeq(BIT(62), &bar0->txpic_int_reg);
3321 /* Reset device statistics maintained by OS */
3322 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3324 /* SXE-002: Configure link and activity LED to turn it off */
3325 subid = sp->pdev->subsystem_device;
3326 if (((subid & 0xFF) >= 0x07) &&
3327 (sp->device_type == XFRAME_I_DEVICE)) {
3328 val64 = readq(&bar0->gpio_control);
3329 val64 |= 0x0000800000000000ULL;
3330 writeq(val64, &bar0->gpio_control);
3331 val64 = 0x0411040400000000ULL;
3332 writeq(val64, (void __iomem *)bar0 + 0x2700);
3336 * Clear spurious ECC interrupts that would have occured on
3337 * XFRAME II cards after reset.
3339 if (sp->device_type == XFRAME_II_DEVICE) {
3340 val64 = readq(&bar0->pcc_err_reg);
3341 writeq(val64, &bar0->pcc_err_reg);
3344 sp->device_enabled_once = FALSE;
3348 * s2io_set_swapper - to set the swapper controle on the card
3349 * @sp : private member of the device structure,
3350 * pointer to the s2io_nic structure.
3351 * Description: Function to set the swapper control on the card
3352 * correctly depending on the 'endianness' of the system.
3354 * SUCCESS on success and FAILURE on failure.
3357 static int s2io_set_swapper(struct s2io_nic * sp)
3359 struct net_device *dev = sp->dev;
3360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3361 u64 val64, valt, valr;
3364 * Set proper endian settings and verify the same by reading
3365 * the PIF Feed-back register.
3368 val64 = readq(&bar0->pif_rd_swapper_fb);
3369 if (val64 != 0x0123456789ABCDEFULL) {
3371 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3372 0x8100008181000081ULL, /* FE=1, SE=0 */
3373 0x4200004242000042ULL, /* FE=0, SE=1 */
3374 0}; /* FE=0, SE=0 */
3377 writeq(value[i], &bar0->swapper_ctrl);
3378 val64 = readq(&bar0->pif_rd_swapper_fb);
3379 if (val64 == 0x0123456789ABCDEFULL)
3384 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3386 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3387 (unsigned long long) val64);
3392 valr = readq(&bar0->swapper_ctrl);
3395 valt = 0x0123456789ABCDEFULL;
3396 writeq(valt, &bar0->xmsi_address);
3397 val64 = readq(&bar0->xmsi_address);
3401 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3402 0x0081810000818100ULL, /* FE=1, SE=0 */
3403 0x0042420000424200ULL, /* FE=0, SE=1 */
3404 0}; /* FE=0, SE=0 */
3407 writeq((value[i] | valr), &bar0->swapper_ctrl);
3408 writeq(valt, &bar0->xmsi_address);
3409 val64 = readq(&bar0->xmsi_address);
3415 unsigned long long x = val64;
3416 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3417 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3421 val64 = readq(&bar0->swapper_ctrl);
3422 val64 &= 0xFFFF000000000000ULL;
3426 * The device by default set to a big endian format, so a
3427 * big endian driver need not set anything.
3429 val64 |= (SWAPPER_CTRL_TXP_FE |
3430 SWAPPER_CTRL_TXP_SE |
3431 SWAPPER_CTRL_TXD_R_FE |
3432 SWAPPER_CTRL_TXD_W_FE |
3433 SWAPPER_CTRL_TXF_R_FE |
3434 SWAPPER_CTRL_RXD_R_FE |
3435 SWAPPER_CTRL_RXD_W_FE |
3436 SWAPPER_CTRL_RXF_W_FE |
3437 SWAPPER_CTRL_XMSI_FE |
3438 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3439 if (sp->intr_type == INTA)
3440 val64 |= SWAPPER_CTRL_XMSI_SE;
3441 writeq(val64, &bar0->swapper_ctrl);
3444 * Initially we enable all bits to make it accessible by the
3445 * driver, then we selectively enable only those bits that
3448 val64 |= (SWAPPER_CTRL_TXP_FE |
3449 SWAPPER_CTRL_TXP_SE |
3450 SWAPPER_CTRL_TXD_R_FE |
3451 SWAPPER_CTRL_TXD_R_SE |
3452 SWAPPER_CTRL_TXD_W_FE |
3453 SWAPPER_CTRL_TXD_W_SE |
3454 SWAPPER_CTRL_TXF_R_FE |
3455 SWAPPER_CTRL_RXD_R_FE |
3456 SWAPPER_CTRL_RXD_R_SE |
3457 SWAPPER_CTRL_RXD_W_FE |
3458 SWAPPER_CTRL_RXD_W_SE |
3459 SWAPPER_CTRL_RXF_W_FE |
3460 SWAPPER_CTRL_XMSI_FE |
3461 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3462 if (sp->intr_type == INTA)
3463 val64 |= SWAPPER_CTRL_XMSI_SE;
3464 writeq(val64, &bar0->swapper_ctrl);
3466 val64 = readq(&bar0->swapper_ctrl);
3469 * Verifying if endian settings are accurate by reading a
3470 * feedback register.
3472 val64 = readq(&bar0->pif_rd_swapper_fb);
3473 if (val64 != 0x0123456789ABCDEFULL) {
3474 /* Endian settings are incorrect, calls for another dekko. */
3475 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3477 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3478 (unsigned long long) val64);
3485 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3487 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3489 int ret = 0, cnt = 0;
3492 val64 = readq(&bar0->xmsi_access);
3493 if (!(val64 & BIT(15)))
3499 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3506 static void restore_xmsi_data(struct s2io_nic *nic)
3508 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3512 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3513 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3514 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3515 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3516 writeq(val64, &bar0->xmsi_access);
3517 if (wait_for_msix_trans(nic, i)) {
3518 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3524 static void store_xmsi_data(struct s2io_nic *nic)
3526 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3527 u64 val64, addr, data;
3530 /* Store and display */
3531 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3532 val64 = (BIT(15) | vBIT(i, 26, 6));
3533 writeq(val64, &bar0->xmsi_access);
3534 if (wait_for_msix_trans(nic, i)) {
3535 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3538 addr = readq(&bar0->xmsi_address);
3539 data = readq(&bar0->xmsi_data);
3541 nic->msix_info[i].addr = addr;
3542 nic->msix_info[i].data = data;
3547 int s2io_enable_msi(struct s2io_nic *nic)
3549 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3550 u16 msi_ctrl, msg_val;
3551 struct config_param *config = &nic->config;
3552 struct net_device *dev = nic->dev;
3553 u64 val64, tx_mat, rx_mat;
3556 val64 = readq(&bar0->pic_control);
3558 writeq(val64, &bar0->pic_control);
3560 err = pci_enable_msi(nic->pdev);
3562 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3568 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3569 * for interrupt handling.
3571 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3573 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3574 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3576 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3578 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3580 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3581 tx_mat = readq(&bar0->tx_mat0_n[0]);
3582 for (i=0; i<config->tx_fifo_num; i++) {
3583 tx_mat |= TX_MAT_SET(i, 1);
3585 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3587 rx_mat = readq(&bar0->rx_mat);
3588 for (i=0; i<config->rx_ring_num; i++) {
3589 rx_mat |= RX_MAT_SET(i, 1);
3591 writeq(rx_mat, &bar0->rx_mat);
3593 dev->irq = nic->pdev->irq;
3597 static int s2io_enable_msi_x(struct s2io_nic *nic)
3599 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3601 u16 msi_control; /* Temp variable */
3602 int ret, i, j, msix_indx = 1;
3604 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3606 if (nic->entries == NULL) {
3607 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3610 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3613 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3615 if (nic->s2io_entries == NULL) {
3616 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3617 kfree(nic->entries);
3620 memset(nic->s2io_entries, 0,
3621 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3623 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3624 nic->entries[i].entry = i;
3625 nic->s2io_entries[i].entry = i;
3626 nic->s2io_entries[i].arg = NULL;
3627 nic->s2io_entries[i].in_use = 0;
3630 tx_mat = readq(&bar0->tx_mat0_n[0]);
3631 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3632 tx_mat |= TX_MAT_SET(i, msix_indx);
3633 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3634 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3635 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3637 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3639 if (!nic->config.bimodal) {
3640 rx_mat = readq(&bar0->rx_mat);
3641 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3642 rx_mat |= RX_MAT_SET(j, msix_indx);
3643 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3644 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3645 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3647 writeq(rx_mat, &bar0->rx_mat);
3649 tx_mat = readq(&bar0->tx_mat0_n[7]);
3650 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3651 tx_mat |= TX_MAT_SET(i, msix_indx);
3652 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3653 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3654 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3656 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3659 nic->avail_msix_vectors = 0;
3660 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3661 /* We fail init if error or we get less vectors than min required */
3662 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3663 nic->avail_msix_vectors = ret;
3664 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3667 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3668 kfree(nic->entries);
3669 kfree(nic->s2io_entries);
3670 nic->entries = NULL;
3671 nic->s2io_entries = NULL;
3672 nic->avail_msix_vectors = 0;
3675 if (!nic->avail_msix_vectors)
3676 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3679 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3680 * in the herc NIC. (Temp change, needs to be removed later)
3682 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3683 msi_control |= 0x1; /* Enable MSI */
3684 pci_write_config_word(nic->pdev, 0x42, msi_control);
3689 /* ********************************************************* *
3690 * Functions defined below concern the OS part of the driver *
3691 * ********************************************************* */
3694 * s2io_open - open entry point of the driver
3695 * @dev : pointer to the device structure.
3697 * This function is the open entry point of the driver. It mainly calls a
3698 * function to allocate Rx buffers and inserts them into the buffer
3699 * descriptors and then enables the Rx part of the NIC.
3701 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3705 static int s2io_open(struct net_device *dev)
3707 struct s2io_nic *sp = dev->priv;
3711 * Make sure you have link off by default every time
3712 * Nic is initialized
3714 netif_carrier_off(dev);
3715 sp->last_link_state = 0;
3717 /* Initialize H/W and enable interrupts */
3718 err = s2io_card_up(sp);
3720 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3722 goto hw_init_failed;
3725 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3726 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3729 goto hw_init_failed;
3732 netif_start_queue(dev);
3736 if (sp->intr_type == MSI_X) {
3739 if (sp->s2io_entries)
3740 kfree(sp->s2io_entries);
3746 * s2io_close -close entry point of the driver
3747 * @dev : device pointer.
3749 * This is the stop entry point of the driver. It needs to undo exactly
3750 * whatever was done by the open entry point,thus it's usually referred to
3751 * as the close function.Among other things this function mainly stops the
3752 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3754 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3758 static int s2io_close(struct net_device *dev)
3760 struct s2io_nic *sp = dev->priv;
3762 flush_scheduled_work();
3763 netif_stop_queue(dev);
3764 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3767 sp->device_close_flag = TRUE; /* Device is shut down. */
3772 * s2io_xmit - Tx entry point of te driver
3773 * @skb : the socket buffer containing the Tx data.
3774 * @dev : device pointer.
3776 * This function is the Tx entry point of the driver. S2IO NIC supports
3777 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3778 * NOTE: when device cant queue the pkt,just the trans_start variable will
3781 * 0 on success & 1 on failure.
3784 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3786 struct s2io_nic *sp = dev->priv;
3787 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3790 struct TxFIFO_element __iomem *tx_fifo;
3791 unsigned long flags;
3793 int vlan_priority = 0;
3794 struct mac_info *mac_control;
3795 struct config_param *config;
3798 mac_control = &sp->mac_control;
3799 config = &sp->config;
3801 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3802 spin_lock_irqsave(&sp->tx_lock, flags);
3803 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3804 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3806 spin_unlock_irqrestore(&sp->tx_lock, flags);
3813 /* Get Fifo number to Transmit based on vlan priority */
3814 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3815 vlan_tag = vlan_tx_tag_get(skb);
3816 vlan_priority = vlan_tag >> 13;
3817 queue = config->fifo_mapping[vlan_priority];
3820 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3821 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3822 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3825 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3826 /* Avoid "put" pointer going beyond "get" pointer */
3827 if (txdp->Host_Control ||
3828 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3829 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3830 netif_stop_queue(dev);
3832 spin_unlock_irqrestore(&sp->tx_lock, flags);
3836 /* A buffer with no data will be dropped */
3838 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3840 spin_unlock_irqrestore(&sp->tx_lock, flags);
3844 offload_type = s2io_offload_type(skb);
3845 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3846 txdp->Control_1 |= TXD_TCP_LSO_EN;
3847 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3849 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3851 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3854 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3855 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3856 txdp->Control_2 |= config->tx_intr_type;
3858 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3859 txdp->Control_2 |= TXD_VLAN_ENABLE;
3860 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3863 frg_len = skb->len - skb->data_len;
3864 if (offload_type == SKB_GSO_UDP) {
3867 ufo_size = s2io_udp_mss(skb);
3869 txdp->Control_1 |= TXD_UFO_EN;
3870 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3871 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3873 sp->ufo_in_band_v[put_off] =
3874 (u64)skb_shinfo(skb)->ip6_frag_id;
3876 sp->ufo_in_band_v[put_off] =
3877 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3879 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3880 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3882 sizeof(u64), PCI_DMA_TODEVICE);
3886 txdp->Buffer_Pointer = pci_map_single
3887 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3888 txdp->Host_Control = (unsigned long) skb;
3889 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3890 if (offload_type == SKB_GSO_UDP)
3891 txdp->Control_1 |= TXD_UFO_EN;
3893 frg_cnt = skb_shinfo(skb)->nr_frags;
3894 /* For fragmented SKB. */
3895 for (i = 0; i < frg_cnt; i++) {
3896 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3897 /* A '0' length fragment will be ignored */
3901 txdp->Buffer_Pointer = (u64) pci_map_page
3902 (sp->pdev, frag->page, frag->page_offset,
3903 frag->size, PCI_DMA_TODEVICE);
3904 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3905 if (offload_type == SKB_GSO_UDP)
3906 txdp->Control_1 |= TXD_UFO_EN;
3908 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3910 if (offload_type == SKB_GSO_UDP)
3911 frg_cnt++; /* as Txd0 was used for inband header */
3913 tx_fifo = mac_control->tx_FIFO_start[queue];
3914 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3915 writeq(val64, &tx_fifo->TxDL_Pointer);
3917 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3920 val64 |= TX_FIFO_SPECIAL_FUNC;
3922 writeq(val64, &tx_fifo->List_Control);
3927 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3929 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3931 /* Avoid "put" pointer going beyond "get" pointer */
3932 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3933 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3935 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3937 netif_stop_queue(dev);
3940 dev->trans_start = jiffies;
3941 spin_unlock_irqrestore(&sp->tx_lock, flags);
3947 s2io_alarm_handle(unsigned long data)
3949 struct s2io_nic *sp = (struct s2io_nic *)data;
3951 alarm_intr_handler(sp);
3952 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3955 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3957 int rxb_size, level;
3960 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3961 level = rx_buffer_level(sp, rxb_size, rng_n);
3963 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3965 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3966 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3967 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3968 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3970 clear_bit(0, (&sp->tasklet_status));
3973 clear_bit(0, (&sp->tasklet_status));
3974 } else if (level == LOW)
3975 tasklet_schedule(&sp->task);
3977 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3978 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3979 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3984 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3986 struct net_device *dev = (struct net_device *) dev_id;
3987 struct s2io_nic *sp = dev->priv;
3989 struct mac_info *mac_control;
3990 struct config_param *config;
3992 atomic_inc(&sp->isr_cnt);
3993 mac_control = &sp->mac_control;
3994 config = &sp->config;
3995 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3997 /* If Intr is because of Rx Traffic */
3998 for (i = 0; i < config->rx_ring_num; i++)
3999 rx_intr_handler(&mac_control->rings[i]);
4001 /* If Intr is because of Tx Traffic */
4002 for (i = 0; i < config->tx_fifo_num; i++)
4003 tx_intr_handler(&mac_control->fifos[i]);
4006 * If the Rx buffer count is below the panic threshold then
4007 * reallocate the buffers from the interrupt handler itself,
4008 * else schedule a tasklet to reallocate the buffers.
4010 for (i = 0; i < config->rx_ring_num; i++)
4011 s2io_chk_rx_buffers(sp, i);
4013 atomic_dec(&sp->isr_cnt);
4017 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4019 struct ring_info *ring = (struct ring_info *)dev_id;
4020 struct s2io_nic *sp = ring->nic;
4022 atomic_inc(&sp->isr_cnt);
4024 rx_intr_handler(ring);
4025 s2io_chk_rx_buffers(sp, ring->ring_no);
4027 atomic_dec(&sp->isr_cnt);
4031 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4033 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4034 struct s2io_nic *sp = fifo->nic;
4036 atomic_inc(&sp->isr_cnt);
4037 tx_intr_handler(fifo);
4038 atomic_dec(&sp->isr_cnt);
4041 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4043 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4046 val64 = readq(&bar0->pic_int_status);
4047 if (val64 & PIC_INT_GPIO) {
4048 val64 = readq(&bar0->gpio_int_reg);
4049 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4050 (val64 & GPIO_INT_REG_LINK_UP)) {
4052 * This is unstable state so clear both up/down
4053 * interrupt and adapter to re-evaluate the link state.
4055 val64 |= GPIO_INT_REG_LINK_DOWN;
4056 val64 |= GPIO_INT_REG_LINK_UP;
4057 writeq(val64, &bar0->gpio_int_reg);
4058 val64 = readq(&bar0->gpio_int_mask);
4059 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4060 GPIO_INT_MASK_LINK_DOWN);
4061 writeq(val64, &bar0->gpio_int_mask);
4063 else if (val64 & GPIO_INT_REG_LINK_UP) {
4064 val64 = readq(&bar0->adapter_status);
4065 /* Enable Adapter */
4066 val64 = readq(&bar0->adapter_control);
4067 val64 |= ADAPTER_CNTL_EN;
4068 writeq(val64, &bar0->adapter_control);
4069 val64 |= ADAPTER_LED_ON;
4070 writeq(val64, &bar0->adapter_control);
4071 if (!sp->device_enabled_once)
4072 sp->device_enabled_once = 1;
4074 s2io_link(sp, LINK_UP);
4076 * unmask link down interrupt and mask link-up
4079 val64 = readq(&bar0->gpio_int_mask);
4080 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4081 val64 |= GPIO_INT_MASK_LINK_UP;
4082 writeq(val64, &bar0->gpio_int_mask);
4084 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4085 val64 = readq(&bar0->adapter_status);
4086 s2io_link(sp, LINK_DOWN);
4087 /* Link is down so unmaks link up interrupt */
4088 val64 = readq(&bar0->gpio_int_mask);
4089 val64 &= ~GPIO_INT_MASK_LINK_UP;
4090 val64 |= GPIO_INT_MASK_LINK_DOWN;
4091 writeq(val64, &bar0->gpio_int_mask);
4094 val64 = readq(&bar0->gpio_int_mask);
4098 * s2io_isr - ISR handler of the device .
4099 * @irq: the irq of the device.
4100 * @dev_id: a void pointer to the dev structure of the NIC.
4101 * Description: This function is the ISR handler of the device. It
4102 * identifies the reason for the interrupt and calls the relevant
4103 * service routines. As a contongency measure, this ISR allocates the
4104 * recv buffers, if their numbers are below the panic value which is
4105 * presently set to 25% of the original number of rcv buffers allocated.
4107 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4108 * IRQ_NONE: will be returned if interrupt is not from our device
4110 static irqreturn_t s2io_isr(int irq, void *dev_id)
4112 struct net_device *dev = (struct net_device *) dev_id;
4113 struct s2io_nic *sp = dev->priv;
4114 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4117 struct mac_info *mac_control;
4118 struct config_param *config;
4120 atomic_inc(&sp->isr_cnt);
4121 mac_control = &sp->mac_control;
4122 config = &sp->config;
4125 * Identify the cause for interrupt and call the appropriate
4126 * interrupt handler. Causes for the interrupt could be;
4130 * 4. Error in any functional blocks of the NIC.
4132 reason = readq(&bar0->general_int_status);
4135 /* The interrupt was not raised by us. */
4136 atomic_dec(&sp->isr_cnt);
4139 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4140 /* Disable device and get out */
4141 atomic_dec(&sp->isr_cnt);
4146 if (reason & GEN_INTR_RXTRAFFIC) {
4147 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4148 __netif_rx_schedule(dev);
4149 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4152 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4156 * Rx handler is called by default, without checking for the
4157 * cause of interrupt.
4158 * rx_traffic_int reg is an R1 register, writing all 1's
4159 * will ensure that the actual interrupt causing bit get's
4160 * cleared and hence a read can be avoided.
4162 if (reason & GEN_INTR_RXTRAFFIC)
4163 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4165 for (i = 0; i < config->rx_ring_num; i++) {
4166 rx_intr_handler(&mac_control->rings[i]);
4171 * tx_traffic_int reg is an R1 register, writing all 1's
4172 * will ensure that the actual interrupt causing bit get's
4173 * cleared and hence a read can be avoided.
4175 if (reason & GEN_INTR_TXTRAFFIC)
4176 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4178 for (i = 0; i < config->tx_fifo_num; i++)
4179 tx_intr_handler(&mac_control->fifos[i]);
4181 if (reason & GEN_INTR_TXPIC)
4182 s2io_txpic_intr_handle(sp);
4184 * If the Rx buffer count is below the panic threshold then
4185 * reallocate the buffers from the interrupt handler itself,
4186 * else schedule a tasklet to reallocate the buffers.
4189 for (i = 0; i < config->rx_ring_num; i++)
4190 s2io_chk_rx_buffers(sp, i);
4193 writeq(0, &bar0->general_int_mask);
4194 readl(&bar0->general_int_status);
4196 atomic_dec(&sp->isr_cnt);
4203 static void s2io_updt_stats(struct s2io_nic *sp)
4205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4209 if (atomic_read(&sp->card_state) == CARD_UP) {
4210 /* Apprx 30us on a 133 MHz bus */
4211 val64 = SET_UPDT_CLICKS(10) |
4212 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4213 writeq(val64, &bar0->stat_cfg);
4216 val64 = readq(&bar0->stat_cfg);
4217 if (!(val64 & BIT(0)))
4221 break; /* Updt failed */
4224 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4229 * s2io_get_stats - Updates the device statistics structure.
4230 * @dev : pointer to the device structure.
4232 * This function updates the device statistics structure in the s2io_nic
4233 * structure and returns a pointer to the same.
4235 * pointer to the updated net_device_stats structure.
4238 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4240 struct s2io_nic *sp = dev->priv;
4241 struct mac_info *mac_control;
4242 struct config_param *config;
4245 mac_control = &sp->mac_control;
4246 config = &sp->config;
4248 /* Configure Stats for immediate updt */
4249 s2io_updt_stats(sp);
4251 sp->stats.tx_packets =
4252 le32_to_cpu(mac_control->stats_info->tmac_frms);
4253 sp->stats.tx_errors =
4254 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4255 sp->stats.rx_errors =
4256 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4257 sp->stats.multicast =
4258 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4259 sp->stats.rx_length_errors =
4260 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4262 return (&sp->stats);
4266 * s2io_set_multicast - entry point for multicast address enable/disable.
4267 * @dev : pointer to the device structure
4269 * This function is a driver entry point which gets called by the kernel
4270 * whenever multicast addresses must be enabled/disabled. This also gets
4271 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4272 * determine, if multicast address must be enabled or if promiscuous mode
4273 * is to be disabled etc.
4278 static void s2io_set_multicast(struct net_device *dev)
4281 struct dev_mc_list *mclist;
4282 struct s2io_nic *sp = dev->priv;
4283 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4284 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4286 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4289 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4290 /* Enable all Multicast addresses */
4291 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4292 &bar0->rmac_addr_data0_mem);
4293 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4294 &bar0->rmac_addr_data1_mem);
4295 val64 = RMAC_ADDR_CMD_MEM_WE |
4296 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4297 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4298 writeq(val64, &bar0->rmac_addr_cmd_mem);
4299 /* Wait till command completes */
4300 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4301 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4304 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4305 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4306 /* Disable all Multicast addresses */
4307 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4308 &bar0->rmac_addr_data0_mem);
4309 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4310 &bar0->rmac_addr_data1_mem);
4311 val64 = RMAC_ADDR_CMD_MEM_WE |
4312 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4313 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4314 writeq(val64, &bar0->rmac_addr_cmd_mem);
4315 /* Wait till command completes */
4316 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4317 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4320 sp->all_multi_pos = 0;
4323 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4324 /* Put the NIC into promiscuous mode */
4325 add = &bar0->mac_cfg;
4326 val64 = readq(&bar0->mac_cfg);
4327 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4329 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330 writel((u32) val64, add);
4331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4332 writel((u32) (val64 >> 32), (add + 4));
4334 val64 = readq(&bar0->mac_cfg);
4335 sp->promisc_flg = 1;
4336 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4338 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4339 /* Remove the NIC from promiscuous mode */
4340 add = &bar0->mac_cfg;
4341 val64 = readq(&bar0->mac_cfg);
4342 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4344 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345 writel((u32) val64, add);
4346 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4347 writel((u32) (val64 >> 32), (add + 4));
4349 val64 = readq(&bar0->mac_cfg);
4350 sp->promisc_flg = 0;
4351 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4355 /* Update individual M_CAST address list */
4356 if ((!sp->m_cast_flg) && dev->mc_count) {
4358 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4359 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4361 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4362 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4366 prev_cnt = sp->mc_addr_count;
4367 sp->mc_addr_count = dev->mc_count;
4369 /* Clear out the previous list of Mc in the H/W. */
4370 for (i = 0; i < prev_cnt; i++) {
4371 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4372 &bar0->rmac_addr_data0_mem);
4373 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4374 &bar0->rmac_addr_data1_mem);
4375 val64 = RMAC_ADDR_CMD_MEM_WE |
4376 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4377 RMAC_ADDR_CMD_MEM_OFFSET
4378 (MAC_MC_ADDR_START_OFFSET + i);
4379 writeq(val64, &bar0->rmac_addr_cmd_mem);
4381 /* Wait for command completes */
4382 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4383 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4384 DBG_PRINT(ERR_DBG, "%s: Adding ",
4386 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4391 /* Create the new Rx filter list and update the same in H/W. */
4392 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4393 i++, mclist = mclist->next) {
4394 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4397 for (j = 0; j < ETH_ALEN; j++) {
4398 mac_addr |= mclist->dmi_addr[j];
4402 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4403 &bar0->rmac_addr_data0_mem);
4404 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4405 &bar0->rmac_addr_data1_mem);
4406 val64 = RMAC_ADDR_CMD_MEM_WE |
4407 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4408 RMAC_ADDR_CMD_MEM_OFFSET
4409 (i + MAC_MC_ADDR_START_OFFSET);
4410 writeq(val64, &bar0->rmac_addr_cmd_mem);
4412 /* Wait for command completes */
4413 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4414 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4415 DBG_PRINT(ERR_DBG, "%s: Adding ",
4417 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4425 * s2io_set_mac_addr - Programs the Xframe mac address
4426 * @dev : pointer to the device structure.
4427 * @addr: a uchar pointer to the new mac address which is to be set.
4428 * Description : This procedure will program the Xframe to receive
4429 * frames with new Mac Address
4430 * Return value: SUCCESS on success and an appropriate (-)ve integer
4431 * as defined in errno.h file on failure.
4434 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4436 struct s2io_nic *sp = dev->priv;
4437 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4438 register u64 val64, mac_addr = 0;
4442 * Set the new MAC address as the new unicast filter and reflect this
4443 * change on the device address registered with the OS. It will be
4446 for (i = 0; i < ETH_ALEN; i++) {
4448 mac_addr |= addr[i];
4451 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4452 &bar0->rmac_addr_data0_mem);
4455 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4456 RMAC_ADDR_CMD_MEM_OFFSET(0);
4457 writeq(val64, &bar0->rmac_addr_cmd_mem);
4458 /* Wait till command completes */
4459 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4460 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4461 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4469 * s2io_ethtool_sset - Sets different link parameters.
4470 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4471 * @info: pointer to the structure with parameters given by ethtool to set
4474 * The function sets different link parameters provided by the user onto
4480 static int s2io_ethtool_sset(struct net_device *dev,
4481 struct ethtool_cmd *info)
4483 struct s2io_nic *sp = dev->priv;
4484 if ((info->autoneg == AUTONEG_ENABLE) ||
4485 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4488 s2io_close(sp->dev);
4496 * s2io_ethtol_gset - Return link specific information.
4497 * @sp : private member of the device structure, pointer to the
4498 * s2io_nic structure.
4499 * @info : pointer to the structure with parameters given by ethtool
4500 * to return link information.
4502 * Returns link specific information like speed, duplex etc.. to ethtool.
4504 * return 0 on success.
4507 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4509 struct s2io_nic *sp = dev->priv;
4510 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4511 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4512 info->port = PORT_FIBRE;
4513 /* info->transceiver?? TODO */
4515 if (netif_carrier_ok(sp->dev)) {
4516 info->speed = 10000;
4517 info->duplex = DUPLEX_FULL;
4523 info->autoneg = AUTONEG_DISABLE;
4528 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4529 * @sp : private member of the device structure, which is a pointer to the
4530 * s2io_nic structure.
4531 * @info : pointer to the structure with parameters given by ethtool to
4532 * return driver information.
4534 * Returns driver specefic information like name, version etc.. to ethtool.
4539 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4540 struct ethtool_drvinfo *info)
4542 struct s2io_nic *sp = dev->priv;
4544 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4545 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4546 strncpy(info->fw_version, "", sizeof(info->fw_version));
4547 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4548 info->regdump_len = XENA_REG_SPACE;
4549 info->eedump_len = XENA_EEPROM_SPACE;
4550 info->testinfo_len = S2IO_TEST_LEN;
4551 info->n_stats = S2IO_STAT_LEN;
4555 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4556 * @sp: private member of the device structure, which is a pointer to the
4557 * s2io_nic structure.
4558 * @regs : pointer to the structure with parameters given by ethtool for
4559 * dumping the registers.
4560 * @reg_space: The input argumnet into which all the registers are dumped.
4562 * Dumps the entire register space of xFrame NIC into the user given
4568 static void s2io_ethtool_gregs(struct net_device *dev,
4569 struct ethtool_regs *regs, void *space)
4573 u8 *reg_space = (u8 *) space;
4574 struct s2io_nic *sp = dev->priv;
4576 regs->len = XENA_REG_SPACE;
4577 regs->version = sp->pdev->subsystem_device;
4579 for (i = 0; i < regs->len; i += 8) {
4580 reg = readq(sp->bar0 + i);
4581 memcpy((reg_space + i), ®, 8);
4586 * s2io_phy_id - timer function that alternates adapter LED.
4587 * @data : address of the private member of the device structure, which
4588 * is a pointer to the s2io_nic structure, provided as an u32.
4589 * Description: This is actually the timer function that alternates the
4590 * adapter LED bit of the adapter control bit to set/reset every time on
4591 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4592 * once every second.
4594 static void s2io_phy_id(unsigned long data)
4596 struct s2io_nic *sp = (struct s2io_nic *) data;
4597 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4601 subid = sp->pdev->subsystem_device;
4602 if ((sp->device_type == XFRAME_II_DEVICE) ||
4603 ((subid & 0xFF) >= 0x07)) {
4604 val64 = readq(&bar0->gpio_control);
4605 val64 ^= GPIO_CTRL_GPIO_0;
4606 writeq(val64, &bar0->gpio_control);
4608 val64 = readq(&bar0->adapter_control);
4609 val64 ^= ADAPTER_LED_ON;
4610 writeq(val64, &bar0->adapter_control);
4613 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4617 * s2io_ethtool_idnic - To physically identify the nic on the system.
4618 * @sp : private member of the device structure, which is a pointer to the
4619 * s2io_nic structure.
4620 * @id : pointer to the structure with identification parameters given by
4622 * Description: Used to physically identify the NIC on the system.
4623 * The Link LED will blink for a time specified by the user for
4625 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4626 * identification is possible only if it's link is up.
4628 * int , returns 0 on success
4631 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4633 u64 val64 = 0, last_gpio_ctrl_val;
4634 struct s2io_nic *sp = dev->priv;
4635 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4638 subid = sp->pdev->subsystem_device;
4639 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4640 if ((sp->device_type == XFRAME_I_DEVICE) &&
4641 ((subid & 0xFF) < 0x07)) {
4642 val64 = readq(&bar0->adapter_control);
4643 if (!(val64 & ADAPTER_CNTL_EN)) {
4645 "Adapter Link down, cannot blink LED\n");
4649 if (sp->id_timer.function == NULL) {
4650 init_timer(&sp->id_timer);
4651 sp->id_timer.function = s2io_phy_id;
4652 sp->id_timer.data = (unsigned long) sp;
4654 mod_timer(&sp->id_timer, jiffies);
4656 msleep_interruptible(data * HZ);
4658 msleep_interruptible(MAX_FLICKER_TIME);
4659 del_timer_sync(&sp->id_timer);
4661 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4662 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4663 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4670 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4671 * @sp : private member of the device structure, which is a pointer to the
4672 * s2io_nic structure.
4673 * @ep : pointer to the structure with pause parameters given by ethtool.
4675 * Returns the Pause frame generation and reception capability of the NIC.
4679 static void s2io_ethtool_getpause_data(struct net_device *dev,
4680 struct ethtool_pauseparam *ep)
4683 struct s2io_nic *sp = dev->priv;
4684 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4686 val64 = readq(&bar0->rmac_pause_cfg);
4687 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4688 ep->tx_pause = TRUE;
4689 if (val64 & RMAC_PAUSE_RX_ENABLE)
4690 ep->rx_pause = TRUE;
4691 ep->autoneg = FALSE;
4695 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4696 * @sp : private member of the device structure, which is a pointer to the
4697 * s2io_nic structure.
4698 * @ep : pointer to the structure with pause parameters given by ethtool.
4700 * It can be used to set or reset Pause frame generation or reception
4701 * support of the NIC.
4703 * int, returns 0 on Success
4706 static int s2io_ethtool_setpause_data(struct net_device *dev,
4707 struct ethtool_pauseparam *ep)
4710 struct s2io_nic *sp = dev->priv;
4711 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4713 val64 = readq(&bar0->rmac_pause_cfg);
4715 val64 |= RMAC_PAUSE_GEN_ENABLE;
4717 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4719 val64 |= RMAC_PAUSE_RX_ENABLE;
4721 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4722 writeq(val64, &bar0->rmac_pause_cfg);
4727 * read_eeprom - reads 4 bytes of data from user given offset.
4728 * @sp : private member of the device structure, which is a pointer to the
4729 * s2io_nic structure.
4730 * @off : offset at which the data must be written
4731 * @data : Its an output parameter where the data read at the given
4734 * Will read 4 bytes of data from the user given offset and return the
4736 * NOTE: Will allow to read only part of the EEPROM visible through the
4739 * -1 on failure and 0 on success.
4742 #define S2IO_DEV_ID 5
4743 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4748 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4750 if (sp->device_type == XFRAME_I_DEVICE) {
4751 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4752 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4753 I2C_CONTROL_CNTL_START;
4754 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4756 while (exit_cnt < 5) {
4757 val64 = readq(&bar0->i2c_control);
4758 if (I2C_CONTROL_CNTL_END(val64)) {
4759 *data = I2C_CONTROL_GET_DATA(val64);
4768 if (sp->device_type == XFRAME_II_DEVICE) {
4769 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4770 SPI_CONTROL_BYTECNT(0x3) |
4771 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4772 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773 val64 |= SPI_CONTROL_REQ;
4774 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4775 while (exit_cnt < 5) {
4776 val64 = readq(&bar0->spi_control);
4777 if (val64 & SPI_CONTROL_NACK) {
4780 } else if (val64 & SPI_CONTROL_DONE) {
4781 *data = readq(&bar0->spi_data);
4794 * write_eeprom - actually writes the relevant part of the data value.
4795 * @sp : private member of the device structure, which is a pointer to the
4796 * s2io_nic structure.
4797 * @off : offset at which the data must be written
4798 * @data : The data that is to be written
4799 * @cnt : Number of bytes of the data that are actually to be written into
4800 * the Eeprom. (max of 3)
4802 * Actually writes the relevant part of the data value into the Eeprom
4803 * through the I2C bus.
4805 * 0 on success, -1 on failure.
4808 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4810 int exit_cnt = 0, ret = -1;
4812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4814 if (sp->device_type == XFRAME_I_DEVICE) {
4815 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4816 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4817 I2C_CONTROL_CNTL_START;
4818 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4820 while (exit_cnt < 5) {
4821 val64 = readq(&bar0->i2c_control);
4822 if (I2C_CONTROL_CNTL_END(val64)) {
4823 if (!(val64 & I2C_CONTROL_NACK))
4832 if (sp->device_type == XFRAME_II_DEVICE) {
4833 int write_cnt = (cnt == 8) ? 0 : cnt;
4834 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4836 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4837 SPI_CONTROL_BYTECNT(write_cnt) |
4838 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4839 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840 val64 |= SPI_CONTROL_REQ;
4841 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4842 while (exit_cnt < 5) {
4843 val64 = readq(&bar0->spi_control);
4844 if (val64 & SPI_CONTROL_NACK) {
4847 } else if (val64 & SPI_CONTROL_DONE) {
4857 static void s2io_vpd_read(struct s2io_nic *nic)
4861 int i=0, cnt, fail = 0;
4862 int vpd_addr = 0x80;
4864 if (nic->device_type == XFRAME_II_DEVICE) {
4865 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4869 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4872 strcpy(nic->serial_num, "NOT AVAILABLE");
4874 vpd_data = kmalloc(256, GFP_KERNEL);
4878 for (i = 0; i < 256; i +=4 ) {
4879 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4880 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4881 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4882 for (cnt = 0; cnt <5; cnt++) {
4884 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4889 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4893 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4894 (u32 *)&vpd_data[i]);
4898 /* read serial number of adapter */
4899 for (cnt = 0; cnt < 256; cnt++) {
4900 if ((vpd_data[cnt] == 'S') &&
4901 (vpd_data[cnt+1] == 'N') &&
4902 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4903 memset(nic->serial_num, 0, VPD_STRING_LEN);
4904 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4911 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4912 memset(nic->product_name, 0, vpd_data[1]);
4913 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4919 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4920 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4921 * @eeprom : pointer to the user level structure provided by ethtool,
4922 * containing all relevant information.
4923 * @data_buf : user defined value to be written into Eeprom.
4924 * Description: Reads the values stored in the Eeprom at given offset
4925 * for a given length. Stores these values int the input argument data
4926 * buffer 'data_buf' and returns these to the caller (ethtool.)
4931 static int s2io_ethtool_geeprom(struct net_device *dev,
4932 struct ethtool_eeprom *eeprom, u8 * data_buf)
4936 struct s2io_nic *sp = dev->priv;
4938 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4940 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4941 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4943 for (i = 0; i < eeprom->len; i += 4) {
4944 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4945 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4949 memcpy((data_buf + i), &valid, 4);
4955 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4956 * @sp : private member of the device structure, which is a pointer to the
4957 * s2io_nic structure.
4958 * @eeprom : pointer to the user level structure provided by ethtool,
4959 * containing all relevant information.
4960 * @data_buf ; user defined value to be written into Eeprom.
4962 * Tries to write the user provided value in the Eeprom, at the offset
4963 * given by the user.
4965 * 0 on success, -EFAULT on failure.
4968 static int s2io_ethtool_seeprom(struct net_device *dev,
4969 struct ethtool_eeprom *eeprom,
4972 int len = eeprom->len, cnt = 0;
4973 u64 valid = 0, data;
4974 struct s2io_nic *sp = dev->priv;
4976 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4978 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4979 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4985 data = (u32) data_buf[cnt] & 0x000000FF;
4987 valid = (u32) (data << 24);
4991 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4993 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4995 "write into the specified offset\n");
5006 * s2io_register_test - reads and writes into all clock domains.
5007 * @sp : private member of the device structure, which is a pointer to the
5008 * s2io_nic structure.
5009 * @data : variable that returns the result of each of the test conducted b
5012 * Read and write into all clock domains. The NIC has 3 clock domains,
5013 * see that registers in all the three regions are accessible.
5018 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5021 u64 val64 = 0, exp_val;
5024 val64 = readq(&bar0->pif_rd_swapper_fb);
5025 if (val64 != 0x123456789abcdefULL) {
5027 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5030 val64 = readq(&bar0->rmac_pause_cfg);
5031 if (val64 != 0xc000ffff00000000ULL) {
5033 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5036 val64 = readq(&bar0->rx_queue_cfg);
5037 if (sp->device_type == XFRAME_II_DEVICE)
5038 exp_val = 0x0404040404040404ULL;
5040 exp_val = 0x0808080808080808ULL;
5041 if (val64 != exp_val) {
5043 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5046 val64 = readq(&bar0->xgxs_efifo_cfg);
5047 if (val64 != 0x000000001923141EULL) {
5049 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5052 val64 = 0x5A5A5A5A5A5A5A5AULL;
5053 writeq(val64, &bar0->xmsi_data);
5054 val64 = readq(&bar0->xmsi_data);
5055 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5057 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5060 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5061 writeq(val64, &bar0->xmsi_data);
5062 val64 = readq(&bar0->xmsi_data);
5063 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5065 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5073 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5074 * @sp : private member of the device structure, which is a pointer to the
5075 * s2io_nic structure.
5076 * @data:variable that returns the result of each of the test conducted by
5079 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5085 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5088 u64 ret_data, org_4F0, org_7F0;
5089 u8 saved_4F0 = 0, saved_7F0 = 0;
5090 struct net_device *dev = sp->dev;
5092 /* Test Write Error at offset 0 */
5093 /* Note that SPI interface allows write access to all areas
5094 * of EEPROM. Hence doing all negative testing only for Xframe I.
5096 if (sp->device_type == XFRAME_I_DEVICE)
5097 if (!write_eeprom(sp, 0, 0, 3))
5100 /* Save current values at offsets 0x4F0 and 0x7F0 */
5101 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5103 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5106 /* Test Write at offset 4f0 */
5107 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5109 if (read_eeprom(sp, 0x4F0, &ret_data))
5112 if (ret_data != 0x012345) {
5113 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5114 "Data written %llx Data read %llx\n",
5115 dev->name, (unsigned long long)0x12345,
5116 (unsigned long long)ret_data);
5120 /* Reset the EEPROM data go FFFF */
5121 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5123 /* Test Write Request Error at offset 0x7c */
5124 if (sp->device_type == XFRAME_I_DEVICE)
5125 if (!write_eeprom(sp, 0x07C, 0, 3))
5128 /* Test Write Request at offset 0x7f0 */
5129 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5131 if (read_eeprom(sp, 0x7F0, &ret_data))
5134 if (ret_data != 0x012345) {
5135 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5136 "Data written %llx Data read %llx\n",
5137 dev->name, (unsigned long long)0x12345,
5138 (unsigned long long)ret_data);
5142 /* Reset the EEPROM data go FFFF */
5143 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5145 if (sp->device_type == XFRAME_I_DEVICE) {
5146 /* Test Write Error at offset 0x80 */
5147 if (!write_eeprom(sp, 0x080, 0, 3))
5150 /* Test Write Error at offset 0xfc */
5151 if (!write_eeprom(sp, 0x0FC, 0, 3))
5154 /* Test Write Error at offset 0x100 */
5155 if (!write_eeprom(sp, 0x100, 0, 3))
5158 /* Test Write Error at offset 4ec */
5159 if (!write_eeprom(sp, 0x4EC, 0, 3))
5163 /* Restore values at offsets 0x4F0 and 0x7F0 */
5165 write_eeprom(sp, 0x4F0, org_4F0, 3);
5167 write_eeprom(sp, 0x7F0, org_7F0, 3);
5174 * s2io_bist_test - invokes the MemBist test of the card .
5175 * @sp : private member of the device structure, which is a pointer to the
5176 * s2io_nic structure.
5177 * @data:variable that returns the result of each of the test conducted by
5180 * This invokes the MemBist test of the card. We give around
5181 * 2 secs time for the Test to complete. If it's still not complete
5182 * within this peiod, we consider that the test failed.
5184 * 0 on success and -1 on failure.
5187 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5190 int cnt = 0, ret = -1;
5192 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5193 bist |= PCI_BIST_START;
5194 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5197 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5198 if (!(bist & PCI_BIST_START)) {
5199 *data = (bist & PCI_BIST_CODE_MASK);
5211 * s2io-link_test - verifies the link state of the nic
5212 * @sp ; private member of the device structure, which is a pointer to the
5213 * s2io_nic structure.
5214 * @data: variable that returns the result of each of the test conducted by
5217 * The function verifies the link state of the NIC and updates the input
5218 * argument 'data' appropriately.
5223 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5228 val64 = readq(&bar0->adapter_status);
5229 if(!(LINK_IS_UP(val64)))
5238 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5239 * @sp - private member of the device structure, which is a pointer to the
5240 * s2io_nic structure.
5241 * @data - variable that returns the result of each of the test
5242 * conducted by the driver.
5244 * This is one of the offline test that tests the read and write
5245 * access to the RldRam chip on the NIC.
5250 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5252 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5254 int cnt, iteration = 0, test_fail = 0;
5256 val64 = readq(&bar0->adapter_control);
5257 val64 &= ~ADAPTER_ECC_EN;
5258 writeq(val64, &bar0->adapter_control);
5260 val64 = readq(&bar0->mc_rldram_test_ctrl);
5261 val64 |= MC_RLDRAM_TEST_MODE;
5262 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5264 val64 = readq(&bar0->mc_rldram_mrs);
5265 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5266 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5268 val64 |= MC_RLDRAM_MRS_ENABLE;
5269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5271 while (iteration < 2) {
5272 val64 = 0x55555555aaaa0000ULL;
5273 if (iteration == 1) {
5274 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5276 writeq(val64, &bar0->mc_rldram_test_d0);
5278 val64 = 0xaaaa5a5555550000ULL;
5279 if (iteration == 1) {
5280 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5282 writeq(val64, &bar0->mc_rldram_test_d1);
5284 val64 = 0x55aaaaaaaa5a0000ULL;
5285 if (iteration == 1) {
5286 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5288 writeq(val64, &bar0->mc_rldram_test_d2);
5290 val64 = (u64) (0x0000003ffffe0100ULL);
5291 writeq(val64, &bar0->mc_rldram_test_add);
5293 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5295 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5297 for (cnt = 0; cnt < 5; cnt++) {
5298 val64 = readq(&bar0->mc_rldram_test_ctrl);
5299 if (val64 & MC_RLDRAM_TEST_DONE)
5307 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5308 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5310 for (cnt = 0; cnt < 5; cnt++) {
5311 val64 = readq(&bar0->mc_rldram_test_ctrl);
5312 if (val64 & MC_RLDRAM_TEST_DONE)
5320 val64 = readq(&bar0->mc_rldram_test_ctrl);
5321 if (!(val64 & MC_RLDRAM_TEST_PASS))
5329 /* Bring the adapter out of test mode */
5330 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5336 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5337 * @sp : private member of the device structure, which is a pointer to the
5338 * s2io_nic structure.
5339 * @ethtest : pointer to a ethtool command specific structure that will be
5340 * returned to the user.
5341 * @data : variable that returns the result of each of the test
5342 * conducted by the driver.
5344 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5345 * the health of the card.
5350 static void s2io_ethtool_test(struct net_device *dev,
5351 struct ethtool_test *ethtest,
5354 struct s2io_nic *sp = dev->priv;
5355 int orig_state = netif_running(sp->dev);
5357 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5358 /* Offline Tests. */
5360 s2io_close(sp->dev);
5362 if (s2io_register_test(sp, &data[0]))
5363 ethtest->flags |= ETH_TEST_FL_FAILED;
5367 if (s2io_rldram_test(sp, &data[3]))
5368 ethtest->flags |= ETH_TEST_FL_FAILED;
5372 if (s2io_eeprom_test(sp, &data[1]))
5373 ethtest->flags |= ETH_TEST_FL_FAILED;
5375 if (s2io_bist_test(sp, &data[4]))
5376 ethtest->flags |= ETH_TEST_FL_FAILED;
5386 "%s: is not up, cannot run test\n",
5395 if (s2io_link_test(sp, &data[2]))
5396 ethtest->flags |= ETH_TEST_FL_FAILED;
5405 static void s2io_get_ethtool_stats(struct net_device *dev,
5406 struct ethtool_stats *estats,
5410 struct s2io_nic *sp = dev->priv;
5411 struct stat_block *stat_info = sp->mac_control.stats_info;
5413 s2io_updt_stats(sp);
5415 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5416 le32_to_cpu(stat_info->tmac_frms);
5418 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5419 le32_to_cpu(stat_info->tmac_data_octets);
5420 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5422 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5423 le32_to_cpu(stat_info->tmac_mcst_frms);
5425 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5426 le32_to_cpu(stat_info->tmac_bcst_frms);
5427 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5429 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5430 le32_to_cpu(stat_info->tmac_ttl_octets);
5432 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5433 le32_to_cpu(stat_info->tmac_ucst_frms);
5435 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5436 le32_to_cpu(stat_info->tmac_nucst_frms);
5438 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5439 le32_to_cpu(stat_info->tmac_any_err_frms);
5440 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5441 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5443 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5444 le32_to_cpu(stat_info->tmac_vld_ip);
5446 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5447 le32_to_cpu(stat_info->tmac_drop_ip);
5449 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5450 le32_to_cpu(stat_info->tmac_icmp);
5452 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5453 le32_to_cpu(stat_info->tmac_rst_tcp);
5454 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5455 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_udp);
5458 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5459 le32_to_cpu(stat_info->rmac_vld_frms);
5461 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5462 le32_to_cpu(stat_info->rmac_data_octets);
5463 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5466 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5467 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5469 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5470 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5471 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5472 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5477 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5478 le32_to_cpu(stat_info->rmac_ttl_octets);
5480 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5481 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5483 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5484 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5486 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5487 le32_to_cpu(stat_info->rmac_discarded_frms);
5489 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5490 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5492 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5494 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5495 le32_to_cpu(stat_info->rmac_usized_frms);
5497 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5498 le32_to_cpu(stat_info->rmac_osized_frms);
5500 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5501 le32_to_cpu(stat_info->rmac_frag_frms);
5503 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5504 le32_to_cpu(stat_info->rmac_jabber_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5509 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5510 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5512 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5513 le32_to_cpu(stat_info->rmac_ip);
5514 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5515 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5517 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5518 le32_to_cpu(stat_info->rmac_drop_ip);
5520 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5521 le32_to_cpu(stat_info->rmac_icmp);
5522 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5524 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5525 le32_to_cpu(stat_info->rmac_udp);
5527 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_err_drp_udp);
5529 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5530 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5531 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5532 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5533 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5538 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5539 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5540 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5541 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5542 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5543 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5544 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5545 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5547 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5548 le32_to_cpu(stat_info->rmac_pause_cnt);
5549 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5550 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5552 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5553 le32_to_cpu(stat_info->rmac_accepted_ip);
5554 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5555 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5556 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5557 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5558 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5559 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5560 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5561 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5562 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5563 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5564 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5565 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5566 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5567 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5568 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5569 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5570 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5571 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5572 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5576 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5580 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5590 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5591 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5592 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5593 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5594 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5595 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5596 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5597 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5598 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5599 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5600 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5601 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5602 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5603 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5604 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5605 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5606 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5607 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5608 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5609 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5610 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5611 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5612 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5613 if (stat_info->sw_stat.num_aggregations) {
5614 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5617 * Since 64-bit divide does not work on all platforms,
5618 * do repeated subtraction.
5620 while (tmp >= stat_info->sw_stat.num_aggregations) {
5621 tmp -= stat_info->sw_stat.num_aggregations;
5624 tmp_stats[i++] = count;
5630 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5632 return (XENA_REG_SPACE);
5636 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5638 struct s2io_nic *sp = dev->priv;
5640 return (sp->rx_csum);
5643 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5645 struct s2io_nic *sp = dev->priv;
5655 static int s2io_get_eeprom_len(struct net_device *dev)
5657 return (XENA_EEPROM_SPACE);
5660 static int s2io_ethtool_self_test_count(struct net_device *dev)
5662 return (S2IO_TEST_LEN);
5665 static void s2io_ethtool_get_strings(struct net_device *dev,
5666 u32 stringset, u8 * data)
5668 switch (stringset) {
5670 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5673 memcpy(data, ðtool_stats_keys,
5674 sizeof(ethtool_stats_keys));
5677 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5679 return (S2IO_STAT_LEN);
5682 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5685 dev->features |= NETIF_F_IP_CSUM;
5687 dev->features &= ~NETIF_F_IP_CSUM;
5692 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5694 return (dev->features & NETIF_F_TSO) != 0;
5696 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5699 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5701 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5706 static const struct ethtool_ops netdev_ethtool_ops = {
5707 .get_settings = s2io_ethtool_gset,
5708 .set_settings = s2io_ethtool_sset,
5709 .get_drvinfo = s2io_ethtool_gdrvinfo,
5710 .get_regs_len = s2io_ethtool_get_regs_len,
5711 .get_regs = s2io_ethtool_gregs,
5712 .get_link = ethtool_op_get_link,
5713 .get_eeprom_len = s2io_get_eeprom_len,
5714 .get_eeprom = s2io_ethtool_geeprom,
5715 .set_eeprom = s2io_ethtool_seeprom,
5716 .get_pauseparam = s2io_ethtool_getpause_data,
5717 .set_pauseparam = s2io_ethtool_setpause_data,
5718 .get_rx_csum = s2io_ethtool_get_rx_csum,
5719 .set_rx_csum = s2io_ethtool_set_rx_csum,
5720 .get_tx_csum = ethtool_op_get_tx_csum,
5721 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5722 .get_sg = ethtool_op_get_sg,
5723 .set_sg = ethtool_op_set_sg,
5724 .get_tso = s2io_ethtool_op_get_tso,
5725 .set_tso = s2io_ethtool_op_set_tso,
5726 .get_ufo = ethtool_op_get_ufo,
5727 .set_ufo = ethtool_op_set_ufo,
5728 .self_test_count = s2io_ethtool_self_test_count,
5729 .self_test = s2io_ethtool_test,
5730 .get_strings = s2io_ethtool_get_strings,
5731 .phys_id = s2io_ethtool_idnic,
5732 .get_stats_count = s2io_ethtool_get_stats_count,
5733 .get_ethtool_stats = s2io_get_ethtool_stats
5737 * s2io_ioctl - Entry point for the Ioctl
5738 * @dev : Device pointer.
5739 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5740 * a proprietary structure used to pass information to the driver.
5741 * @cmd : This is used to distinguish between the different commands that
5742 * can be passed to the IOCTL functions.
5744 * Currently there are no special functionality supported in IOCTL, hence
5745 * function always return EOPNOTSUPPORTED
5748 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5754 * s2io_change_mtu - entry point to change MTU size for the device.
5755 * @dev : device pointer.
5756 * @new_mtu : the new MTU size for the device.
5757 * Description: A driver entry point to change MTU size for the device.
5758 * Before changing the MTU the device must be stopped.
5760 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5764 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5766 struct s2io_nic *sp = dev->priv;
5768 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5769 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5775 if (netif_running(dev)) {
5777 netif_stop_queue(dev);
5778 if (s2io_card_up(sp)) {
5779 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5782 if (netif_queue_stopped(dev))
5783 netif_wake_queue(dev);
5784 } else { /* Device is down */
5785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5786 u64 val64 = new_mtu;
5788 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5795 * s2io_tasklet - Bottom half of the ISR.
5796 * @dev_adr : address of the device structure in dma_addr_t format.
5798 * This is the tasklet or the bottom half of the ISR. This is
5799 * an extension of the ISR which is scheduled by the scheduler to be run
5800 * when the load on the CPU is low. All low priority tasks of the ISR can
5801 * be pushed into the tasklet. For now the tasklet is used only to
5802 * replenish the Rx buffers in the Rx buffer descriptors.
5807 static void s2io_tasklet(unsigned long dev_addr)
5809 struct net_device *dev = (struct net_device *) dev_addr;
5810 struct s2io_nic *sp = dev->priv;
5812 struct mac_info *mac_control;
5813 struct config_param *config;
5815 mac_control = &sp->mac_control;
5816 config = &sp->config;
5818 if (!TASKLET_IN_USE) {
5819 for (i = 0; i < config->rx_ring_num; i++) {
5820 ret = fill_rx_buffers(sp, i);
5821 if (ret == -ENOMEM) {
5822 DBG_PRINT(ERR_DBG, "%s: Out of ",
5824 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5826 } else if (ret == -EFILL) {
5828 "%s: Rx Ring %d is full\n",
5833 clear_bit(0, (&sp->tasklet_status));
5838 * s2io_set_link - Set the LInk status
5839 * @data: long pointer to device private structue
5840 * Description: Sets the link status for the adapter
5843 static void s2io_set_link(struct work_struct *work)
5845 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5846 struct net_device *dev = nic->dev;
5847 struct XENA_dev_config __iomem *bar0 = nic->bar0;
5851 if (test_and_set_bit(0, &(nic->link_state))) {
5852 /* The card is being reset, no point doing anything */
5856 subid = nic->pdev->subsystem_device;
5857 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5859 * Allow a small delay for the NICs self initiated
5860 * cleanup to complete.
5865 val64 = readq(&bar0->adapter_status);
5866 if (LINK_IS_UP(val64)) {
5867 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5868 if (verify_xena_quiescence(nic)) {
5869 val64 = readq(&bar0->adapter_control);
5870 val64 |= ADAPTER_CNTL_EN;
5871 writeq(val64, &bar0->adapter_control);
5872 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5873 nic->device_type, subid)) {
5874 val64 = readq(&bar0->gpio_control);
5875 val64 |= GPIO_CTRL_GPIO_0;
5876 writeq(val64, &bar0->gpio_control);
5877 val64 = readq(&bar0->gpio_control);
5879 val64 |= ADAPTER_LED_ON;
5880 writeq(val64, &bar0->adapter_control);
5882 nic->device_enabled_once = TRUE;
5884 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5885 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5886 netif_stop_queue(dev);
5889 val64 = readq(&bar0->adapter_status);
5890 if (!LINK_IS_UP(val64)) {
5891 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5892 DBG_PRINT(ERR_DBG, " Link down after enabling ");
5893 DBG_PRINT(ERR_DBG, "device \n");
5895 s2io_link(nic, LINK_UP);
5897 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5899 val64 = readq(&bar0->gpio_control);
5900 val64 &= ~GPIO_CTRL_GPIO_0;
5901 writeq(val64, &bar0->gpio_control);
5902 val64 = readq(&bar0->gpio_control);
5904 s2io_link(nic, LINK_DOWN);
5906 clear_bit(0, &(nic->link_state));
5909 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5911 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5912 u64 *temp2, int size)
5914 struct net_device *dev = sp->dev;
5915 struct sk_buff *frag_list;
5917 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5920 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5922 * As Rx frame are not going to be processed,
5923 * using same mapped address for the Rxd
5926 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5928 *skb = dev_alloc_skb(size);
5930 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5931 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5934 /* storing the mapped addr in a temp variable
5935 * such it will be used for next rxd whose
5936 * Host Control is NULL
5938 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5939 pci_map_single( sp->pdev, (*skb)->data,
5940 size - NET_IP_ALIGN,
5941 PCI_DMA_FROMDEVICE);
5942 rxdp->Host_Control = (unsigned long) (*skb);
5944 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5945 /* Two buffer Mode */
5947 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5948 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5949 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5951 *skb = dev_alloc_skb(size);
5953 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5957 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5958 pci_map_single(sp->pdev, (*skb)->data,
5960 PCI_DMA_FROMDEVICE);
5961 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5962 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5963 PCI_DMA_FROMDEVICE);
5964 rxdp->Host_Control = (unsigned long) (*skb);
5966 /* Buffer-1 will be dummy buffer not used */
5967 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5968 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5969 PCI_DMA_FROMDEVICE);
5971 } else if ((rxdp->Host_Control == 0)) {
5972 /* Three buffer mode */
5974 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5975 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5976 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5978 *skb = dev_alloc_skb(size);
5980 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5984 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5985 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5986 PCI_DMA_FROMDEVICE);
5987 /* Buffer-1 receives L3/L4 headers */
5988 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5989 pci_map_single( sp->pdev, (*skb)->data,
5991 PCI_DMA_FROMDEVICE);
5993 * skb_shinfo(skb)->frag_list will have L4
5996 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
5998 if (skb_shinfo(*skb)->frag_list == NULL) {
5999 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6000 failed\n ", dev->name);
6003 frag_list = skb_shinfo(*skb)->frag_list;
6004 frag_list->next = NULL;
6006 * Buffer-2 receives L4 data payload
6008 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6009 pci_map_single( sp->pdev, frag_list->data,
6010 dev->mtu, PCI_DMA_FROMDEVICE);
6015 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6018 struct net_device *dev = sp->dev;
6019 if (sp->rxd_mode == RXD_MODE_1) {
6020 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6021 } else if (sp->rxd_mode == RXD_MODE_3B) {
6022 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6023 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6024 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6026 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6027 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6028 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6032 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6034 int i, j, k, blk_cnt = 0, size;
6035 struct mac_info * mac_control = &sp->mac_control;
6036 struct config_param *config = &sp->config;
6037 struct net_device *dev = sp->dev;
6038 struct RxD_t *rxdp = NULL;
6039 struct sk_buff *skb = NULL;
6040 struct buffAdd *ba = NULL;
6041 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6043 /* Calculate the size based on ring mode */
6044 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6045 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6046 if (sp->rxd_mode == RXD_MODE_1)
6047 size += NET_IP_ALIGN;
6048 else if (sp->rxd_mode == RXD_MODE_3B)
6049 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6051 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6053 for (i = 0; i < config->rx_ring_num; i++) {
6054 blk_cnt = config->rx_cfg[i].num_rxd /
6055 (rxd_count[sp->rxd_mode] +1);
6057 for (j = 0; j < blk_cnt; j++) {
6058 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6059 rxdp = mac_control->rings[i].
6060 rx_blocks[j].rxds[k].virt_addr;
6061 if(sp->rxd_mode >= RXD_MODE_3A)
6062 ba = &mac_control->rings[i].ba[j][k];
6063 set_rxd_buffer_pointer(sp, rxdp, ba,
6064 &skb,(u64 *)&temp0_64,
6066 (u64 *)&temp2_64, size);
6068 set_rxd_buffer_size(sp, rxdp, size);
6070 /* flip the Ownership bit to Hardware */
6071 rxdp->Control_1 |= RXD_OWN_XENA;
6079 static int s2io_add_isr(struct s2io_nic * sp)
6082 struct net_device *dev = sp->dev;
6085 if (sp->intr_type == MSI)
6086 ret = s2io_enable_msi(sp);
6087 else if (sp->intr_type == MSI_X)
6088 ret = s2io_enable_msi_x(sp);
6090 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6091 sp->intr_type = INTA;
6094 /* Store the values of the MSIX table in the struct s2io_nic structure */
6095 store_xmsi_data(sp);
6097 /* After proper initialization of H/W, register ISR */
6098 if (sp->intr_type == MSI) {
6099 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6100 IRQF_SHARED, sp->name, dev);
6102 pci_disable_msi(sp->pdev);
6103 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6108 if (sp->intr_type == MSI_X) {
6111 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6112 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6113 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6115 err = request_irq(sp->entries[i].vector,
6116 s2io_msix_fifo_handle, 0, sp->desc[i],
6117 sp->s2io_entries[i].arg);
6118 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6119 (unsigned long long)sp->msix_info[i].addr);
6121 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6123 err = request_irq(sp->entries[i].vector,
6124 s2io_msix_ring_handle, 0, sp->desc[i],
6125 sp->s2io_entries[i].arg);
6126 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6127 (unsigned long long)sp->msix_info[i].addr);
6130 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6131 "failed\n", dev->name, i);
6132 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6135 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6138 if (sp->intr_type == INTA) {
6139 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6142 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6149 static void s2io_rem_isr(struct s2io_nic * sp)
6152 struct net_device *dev = sp->dev;
6154 if (sp->intr_type == MSI_X) {
6158 for (i=1; (sp->s2io_entries[i].in_use ==
6159 MSIX_REGISTERED_SUCCESS); i++) {
6160 int vector = sp->entries[i].vector;
6161 void *arg = sp->s2io_entries[i].arg;
6163 free_irq(vector, arg);
6165 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6166 msi_control &= 0xFFFE; /* Disable MSI */
6167 pci_write_config_word(sp->pdev, 0x42, msi_control);
6169 pci_disable_msix(sp->pdev);
6171 free_irq(sp->pdev->irq, dev);
6172 if (sp->intr_type == MSI) {
6175 pci_disable_msi(sp->pdev);
6176 pci_read_config_word(sp->pdev, 0x4c, &val);
6178 pci_write_config_word(sp->pdev, 0x4c, val);
6181 /* Waiting till all Interrupt handlers are complete */
6185 if (!atomic_read(&sp->isr_cnt))
6191 static void s2io_card_down(struct s2io_nic * sp)
6194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6195 unsigned long flags;
6196 register u64 val64 = 0;
6198 del_timer_sync(&sp->alarm_timer);
6199 /* If s2io_set_link task is executing, wait till it completes. */
6200 while (test_and_set_bit(0, &(sp->link_state))) {
6203 atomic_set(&sp->card_state, CARD_DOWN);
6205 /* disable Tx and Rx traffic on the NIC */
6211 tasklet_kill(&sp->task);
6213 /* Check if the device is Quiescent and then Reset the NIC */
6215 /* As per the HW requirement we need to replenish the
6216 * receive buffer to avoid the ring bump. Since there is
6217 * no intention of processing the Rx frame at this pointwe are
6218 * just settting the ownership bit of rxd in Each Rx
6219 * ring to HW and set the appropriate buffer size
6220 * based on the ring mode
6222 rxd_owner_bit_reset(sp);
6224 val64 = readq(&bar0->adapter_status);
6225 if (verify_xena_quiescence(sp)) {
6226 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6234 "s2io_close:Device not Quiescent ");
6235 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6236 (unsigned long long) val64);
6242 spin_lock_irqsave(&sp->tx_lock, flags);
6243 /* Free all Tx buffers */
6244 free_tx_buffers(sp);
6245 spin_unlock_irqrestore(&sp->tx_lock, flags);
6247 /* Free all Rx buffers */
6248 spin_lock_irqsave(&sp->rx_lock, flags);
6249 free_rx_buffers(sp);
6250 spin_unlock_irqrestore(&sp->rx_lock, flags);
6252 clear_bit(0, &(sp->link_state));
6255 static int s2io_card_up(struct s2io_nic * sp)
6258 struct mac_info *mac_control;
6259 struct config_param *config;
6260 struct net_device *dev = (struct net_device *) sp->dev;
6263 /* Initialize the H/W I/O registers */
6264 if (init_nic(sp) != 0) {
6265 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6272 * Initializing the Rx buffers. For now we are considering only 1
6273 * Rx ring and initializing buffers into 30 Rx blocks
6275 mac_control = &sp->mac_control;
6276 config = &sp->config;
6278 for (i = 0; i < config->rx_ring_num; i++) {
6279 if ((ret = fill_rx_buffers(sp, i))) {
6280 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6283 free_rx_buffers(sp);
6286 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6287 atomic_read(&sp->rx_bufs_left[i]));
6289 /* Maintain the state prior to the open */
6290 if (sp->promisc_flg)
6291 sp->promisc_flg = 0;
6292 if (sp->m_cast_flg) {
6294 sp->all_multi_pos= 0;
6297 /* Setting its receive mode */
6298 s2io_set_multicast(dev);
6301 /* Initialize max aggregatable pkts per session based on MTU */
6302 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6303 /* Check if we can use(if specified) user provided value */
6304 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6305 sp->lro_max_aggr_per_sess = lro_max_pkts;
6308 /* Enable Rx Traffic and interrupts on the NIC */
6309 if (start_nic(sp)) {
6310 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6312 free_rx_buffers(sp);
6316 /* Add interrupt service routine */
6317 if (s2io_add_isr(sp) != 0) {
6318 if (sp->intr_type == MSI_X)
6321 free_rx_buffers(sp);
6325 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6327 /* Enable tasklet for the device */
6328 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6330 /* Enable select interrupts */
6331 if (sp->intr_type != INTA)
6332 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6334 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6335 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6336 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6337 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6341 atomic_set(&sp->card_state, CARD_UP);
6346 * s2io_restart_nic - Resets the NIC.
6347 * @data : long pointer to the device private structure
6349 * This function is scheduled to be run by the s2io_tx_watchdog
6350 * function after 0.5 secs to reset the NIC. The idea is to reduce
6351 * the run time of the watch dog routine which is run holding a
6355 static void s2io_restart_nic(struct work_struct *work)
6357 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6358 struct net_device *dev = sp->dev;
6361 if (s2io_card_up(sp)) {
6362 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6365 netif_wake_queue(dev);
6366 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6372 * s2io_tx_watchdog - Watchdog for transmit side.
6373 * @dev : Pointer to net device structure
6375 * This function is triggered if the Tx Queue is stopped
6376 * for a pre-defined amount of time when the Interface is still up.
6377 * If the Interface is jammed in such a situation, the hardware is
6378 * reset (by s2io_close) and restarted again (by s2io_open) to
6379 * overcome any problem that might have been caused in the hardware.
6384 static void s2io_tx_watchdog(struct net_device *dev)
6386 struct s2io_nic *sp = dev->priv;
6388 if (netif_carrier_ok(dev)) {
6389 schedule_work(&sp->rst_timer_task);
6390 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6395 * rx_osm_handler - To perform some OS related operations on SKB.
6396 * @sp: private member of the device structure,pointer to s2io_nic structure.
6397 * @skb : the socket buffer pointer.
6398 * @len : length of the packet
6399 * @cksum : FCS checksum of the frame.
6400 * @ring_no : the ring from which this RxD was extracted.
6402 * This function is called by the Rx interrupt serivce routine to perform
6403 * some OS related operations on the SKB before passing it to the upper
6404 * layers. It mainly checks if the checksum is OK, if so adds it to the
6405 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6406 * to the upper layer. If the checksum is wrong, it increments the Rx
6407 * packet error count, frees the SKB and returns error.
6409 * SUCCESS on success and -1 on failure.
6411 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6413 struct s2io_nic *sp = ring_data->nic;
6414 struct net_device *dev = (struct net_device *) sp->dev;
6415 struct sk_buff *skb = (struct sk_buff *)
6416 ((unsigned long) rxdp->Host_Control);
6417 int ring_no = ring_data->ring_no;
6418 u16 l3_csum, l4_csum;
6419 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6425 /* Check for parity error */
6427 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6431 * Drop the packet if bad transfer code. Exception being
6432 * 0x5, which could be due to unsupported IPv6 extension header.
6433 * In this case, we let stack handle the packet.
6434 * Note that in this case, since checksum will be incorrect,
6435 * stack will validate the same.
6437 if (err && ((err >> 48) != 0x5)) {
6438 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6440 sp->stats.rx_crc_errors++;
6442 atomic_dec(&sp->rx_bufs_left[ring_no]);
6443 rxdp->Host_Control = 0;
6448 /* Updating statistics */
6449 rxdp->Host_Control = 0;
6451 sp->stats.rx_packets++;
6452 if (sp->rxd_mode == RXD_MODE_1) {
6453 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6455 sp->stats.rx_bytes += len;
6458 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6459 int get_block = ring_data->rx_curr_get_info.block_index;
6460 int get_off = ring_data->rx_curr_get_info.offset;
6461 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6462 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6463 unsigned char *buff = skb_push(skb, buf0_len);
6465 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6466 sp->stats.rx_bytes += buf0_len + buf2_len;
6467 memcpy(buff, ba->ba_0, buf0_len);
6469 if (sp->rxd_mode == RXD_MODE_3A) {
6470 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6472 skb_put(skb, buf1_len);
6473 skb->len += buf2_len;
6474 skb->data_len += buf2_len;
6475 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6476 sp->stats.rx_bytes += buf1_len;
6479 skb_put(skb, buf2_len);
6482 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6483 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6485 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6486 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6487 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6489 * NIC verifies if the Checksum of the received
6490 * frame is Ok or not and accordingly returns
6491 * a flag in the RxD.
6493 skb->ip_summed = CHECKSUM_UNNECESSARY;
6499 ret = s2io_club_tcp_session(skb->data, &tcp,
6500 &tcp_len, &lro, rxdp, sp);
6502 case 3: /* Begin anew */
6505 case 1: /* Aggregate */
6507 lro_append_pkt(sp, lro,
6511 case 4: /* Flush session */
6513 lro_append_pkt(sp, lro,
6515 queue_rx_frame(lro->parent);
6516 clear_lro_session(lro);
6517 sp->mac_control.stats_info->
6518 sw_stat.flush_max_pkts++;
6521 case 2: /* Flush both */
6522 lro->parent->data_len =
6524 sp->mac_control.stats_info->
6525 sw_stat.sending_both++;
6526 queue_rx_frame(lro->parent);
6527 clear_lro_session(lro);
6529 case 0: /* sessions exceeded */
6530 case -1: /* non-TCP or not
6534 * First pkt in session not
6535 * L3/L4 aggregatable
6540 "%s: Samadhana!!\n",
6547 * Packet with erroneous checksum, let the
6548 * upper layers deal with it.
6550 skb->ip_summed = CHECKSUM_NONE;
6553 skb->ip_summed = CHECKSUM_NONE;
6557 skb->protocol = eth_type_trans(skb, dev);
6558 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6559 /* Queueing the vlan frame to the upper layer */
6561 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6562 RXD_GET_VLAN_TAG(rxdp->Control_2));
6564 vlan_hwaccel_rx(skb, sp->vlgrp,
6565 RXD_GET_VLAN_TAG(rxdp->Control_2));
6568 netif_receive_skb(skb);
6574 queue_rx_frame(skb);
6576 dev->last_rx = jiffies;
6578 atomic_dec(&sp->rx_bufs_left[ring_no]);
6583 * s2io_link - stops/starts the Tx queue.
6584 * @sp : private member of the device structure, which is a pointer to the
6585 * s2io_nic structure.
6586 * @link : inidicates whether link is UP/DOWN.
6588 * This function stops/starts the Tx queue depending on whether the link
6589 * status of the NIC is is down or up. This is called by the Alarm
6590 * interrupt handler whenever a link change interrupt comes up.
6595 static void s2io_link(struct s2io_nic * sp, int link)
6597 struct net_device *dev = (struct net_device *) sp->dev;
6599 if (link != sp->last_link_state) {
6600 if (link == LINK_DOWN) {
6601 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6602 netif_carrier_off(dev);
6604 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6605 netif_carrier_on(dev);
6608 sp->last_link_state = link;
6612 * get_xena_rev_id - to identify revision ID of xena.
6613 * @pdev : PCI Dev structure
6615 * Function to identify the Revision ID of xena.
6617 * returns the revision ID of the device.
6620 static int get_xena_rev_id(struct pci_dev *pdev)
6624 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6629 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6630 * @sp : private member of the device structure, which is a pointer to the
6631 * s2io_nic structure.
6633 * This function initializes a few of the PCI and PCI-X configuration registers
6634 * with recommended values.
6639 static void s2io_init_pci(struct s2io_nic * sp)
6641 u16 pci_cmd = 0, pcix_cmd = 0;
6643 /* Enable Data Parity Error Recovery in PCI-X command register. */
6644 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6646 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6648 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6651 /* Set the PErr Response bit in PCI command register. */
6652 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6653 pci_write_config_word(sp->pdev, PCI_COMMAND,
6654 (pci_cmd | PCI_COMMAND_PARITY));
6655 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6658 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6660 if ( tx_fifo_num > 8) {
6661 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6663 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6666 if ( rx_ring_num > 8) {
6667 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6669 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6672 if (*dev_intr_type != INTA)
6675 #ifndef CONFIG_PCI_MSI
6676 if (*dev_intr_type != INTA) {
6677 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6678 "MSI/MSI-X. Defaulting to INTA\n");
6679 *dev_intr_type = INTA;
6682 if (*dev_intr_type > MSI_X) {
6683 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6684 "Defaulting to INTA\n");
6685 *dev_intr_type = INTA;
6688 if ((*dev_intr_type == MSI_X) &&
6689 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6690 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6691 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6692 "Defaulting to INTA\n");
6693 *dev_intr_type = INTA;
6695 if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6697 if (rx_ring_mode > 3) {
6698 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6699 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6706 * s2io_init_nic - Initialization of the adapter .
6707 * @pdev : structure containing the PCI related information of the device.
6708 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6710 * The function initializes an adapter identified by the pci_dec structure.
6711 * All OS related initialization including memory and device structure and
6712 * initlaization of the device private variable is done. Also the swapper
6713 * control register is initialized to enable read and write into the I/O
6714 * registers of the device.
6716 * returns 0 on success and negative on failure.
6719 static int __devinit
6720 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6722 struct s2io_nic *sp;
6723 struct net_device *dev;
6725 int dma_flag = FALSE;
6726 u32 mac_up, mac_down;
6727 u64 val64 = 0, tmp64 = 0;
6728 struct XENA_dev_config __iomem *bar0 = NULL;
6730 struct mac_info *mac_control;
6731 struct config_param *config;
6733 u8 dev_intr_type = intr_type;
6735 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6738 if ((ret = pci_enable_device(pdev))) {
6740 "s2io_init_nic: pci_enable_device failed\n");
6744 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6745 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6747 if (pci_set_consistent_dma_mask
6748 (pdev, DMA_64BIT_MASK)) {
6750 "Unable to obtain 64bit DMA for \
6751 consistent allocations\n");
6752 pci_disable_device(pdev);
6755 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6756 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6758 pci_disable_device(pdev);
6761 if (dev_intr_type != MSI_X) {
6762 if (pci_request_regions(pdev, s2io_driver_name)) {
6763 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6764 pci_disable_device(pdev);
6769 if (!(request_mem_region(pci_resource_start(pdev, 0),
6770 pci_resource_len(pdev, 0), s2io_driver_name))) {
6771 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6772 pci_disable_device(pdev);
6775 if (!(request_mem_region(pci_resource_start(pdev, 2),
6776 pci_resource_len(pdev, 2), s2io_driver_name))) {
6777 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6778 release_mem_region(pci_resource_start(pdev, 0),
6779 pci_resource_len(pdev, 0));
6780 pci_disable_device(pdev);
6785 dev = alloc_etherdev(sizeof(struct s2io_nic));
6787 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6788 pci_disable_device(pdev);
6789 pci_release_regions(pdev);
6793 pci_set_master(pdev);
6794 pci_set_drvdata(pdev, dev);
6795 SET_MODULE_OWNER(dev);
6796 SET_NETDEV_DEV(dev, &pdev->dev);
6798 /* Private member variable initialized to s2io NIC structure */
6800 memset(sp, 0, sizeof(struct s2io_nic));
6803 sp->high_dma_flag = dma_flag;
6804 sp->device_enabled_once = FALSE;
6805 if (rx_ring_mode == 1)
6806 sp->rxd_mode = RXD_MODE_1;
6807 if (rx_ring_mode == 2)
6808 sp->rxd_mode = RXD_MODE_3B;
6809 if (rx_ring_mode == 3)
6810 sp->rxd_mode = RXD_MODE_3A;
6812 sp->intr_type = dev_intr_type;
6814 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6815 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6816 sp->device_type = XFRAME_II_DEVICE;
6818 sp->device_type = XFRAME_I_DEVICE;
6822 /* Initialize some PCI/PCI-X fields of the NIC. */
6826 * Setting the device configuration parameters.
6827 * Most of these parameters can be specified by the user during
6828 * module insertion as they are module loadable parameters. If
6829 * these parameters are not not specified during load time, they
6830 * are initialized with default values.
6832 mac_control = &sp->mac_control;
6833 config = &sp->config;
6835 /* Tx side parameters. */
6836 config->tx_fifo_num = tx_fifo_num;
6837 for (i = 0; i < MAX_TX_FIFOS; i++) {
6838 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6839 config->tx_cfg[i].fifo_priority = i;
6842 /* mapping the QoS priority to the configured fifos */
6843 for (i = 0; i < MAX_TX_FIFOS; i++)
6844 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6847 for (i = 0; i < config->tx_fifo_num; i++) {
6848 config->tx_cfg[i].f_no_snoop =
6849 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6850 if (config->tx_cfg[i].fifo_len < 65) {
6851 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6855 /* + 2 because one Txd for skb->data and one Txd for UFO */
6856 config->max_txds = MAX_SKB_FRAGS + 2;
6858 /* Rx side parameters. */
6859 config->rx_ring_num = rx_ring_num;
6860 for (i = 0; i < MAX_RX_RINGS; i++) {
6861 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6862 (rxd_count[sp->rxd_mode] + 1);
6863 config->rx_cfg[i].ring_priority = i;
6866 for (i = 0; i < rx_ring_num; i++) {
6867 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6868 config->rx_cfg[i].f_no_snoop =
6869 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6872 /* Setting Mac Control parameters */
6873 mac_control->rmac_pause_time = rmac_pause_time;
6874 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6875 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6878 /* Initialize Ring buffer parameters. */
6879 for (i = 0; i < config->rx_ring_num; i++)
6880 atomic_set(&sp->rx_bufs_left[i], 0);
6882 /* Initialize the number of ISRs currently running */
6883 atomic_set(&sp->isr_cnt, 0);
6885 /* initialize the shared memory used by the NIC and the host */
6886 if (init_shared_mem(sp)) {
6887 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6890 goto mem_alloc_failed;
6893 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6894 pci_resource_len(pdev, 0));
6896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6899 goto bar0_remap_failed;
6902 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6903 pci_resource_len(pdev, 2));
6905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6908 goto bar1_remap_failed;
6911 dev->irq = pdev->irq;
6912 dev->base_addr = (unsigned long) sp->bar0;
6914 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6915 for (j = 0; j < MAX_TX_FIFOS; j++) {
6916 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
6917 (sp->bar1 + (j * 0x00020000));
6920 /* Driver entry points */
6921 dev->open = &s2io_open;
6922 dev->stop = &s2io_close;
6923 dev->hard_start_xmit = &s2io_xmit;
6924 dev->get_stats = &s2io_get_stats;
6925 dev->set_multicast_list = &s2io_set_multicast;
6926 dev->do_ioctl = &s2io_ioctl;
6927 dev->change_mtu = &s2io_change_mtu;
6928 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6929 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6930 dev->vlan_rx_register = s2io_vlan_rx_register;
6931 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6934 * will use eth_mac_addr() for dev->set_mac_address
6935 * mac address will be set every time dev->open() is called
6937 dev->poll = s2io_poll;
6940 #ifdef CONFIG_NET_POLL_CONTROLLER
6941 dev->poll_controller = s2io_netpoll;
6944 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6945 if (sp->high_dma_flag == TRUE)
6946 dev->features |= NETIF_F_HIGHDMA;
6947 dev->features |= NETIF_F_TSO;
6948 dev->features |= NETIF_F_TSO6;
6949 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
6950 dev->features |= NETIF_F_UFO;
6951 dev->features |= NETIF_F_HW_CSUM;
6954 dev->tx_timeout = &s2io_tx_watchdog;
6955 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6956 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6957 INIT_WORK(&sp->set_link_task, s2io_set_link);
6959 pci_save_state(sp->pdev);
6961 /* Setting swapper control on the NIC, for proper reset operation */
6962 if (s2io_set_swapper(sp)) {
6963 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6966 goto set_swap_failed;
6969 /* Verify if the Herc works on the slot its placed into */
6970 if (sp->device_type & XFRAME_II_DEVICE) {
6971 mode = s2io_verify_pci_mode(sp);
6973 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6974 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6976 goto set_swap_failed;
6980 /* Not needed for Herc */
6981 if (sp->device_type & XFRAME_I_DEVICE) {
6983 * Fix for all "FFs" MAC address problems observed on
6986 fix_mac_address(sp);
6991 * MAC address initialization.
6992 * For now only one mac address will be read and used.
6995 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6996 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6997 writeq(val64, &bar0->rmac_addr_cmd_mem);
6998 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6999 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7000 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7001 mac_down = (u32) tmp64;
7002 mac_up = (u32) (tmp64 >> 32);
7004 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7006 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7007 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7008 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7009 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7010 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7011 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7013 /* Set the factory defined MAC address initially */
7014 dev->addr_len = ETH_ALEN;
7015 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7017 /* reset Nic and bring it to known state */
7021 * Initialize the tasklet status and link state flags
7022 * and the card state parameter
7024 atomic_set(&(sp->card_state), 0);
7025 sp->tasklet_status = 0;
7028 /* Initialize spinlocks */
7029 spin_lock_init(&sp->tx_lock);
7032 spin_lock_init(&sp->put_lock);
7033 spin_lock_init(&sp->rx_lock);
7036 * SXE-002: Configure link and activity LED to init state
7039 subid = sp->pdev->subsystem_device;
7040 if ((subid & 0xFF) >= 0x07) {
7041 val64 = readq(&bar0->gpio_control);
7042 val64 |= 0x0000800000000000ULL;
7043 writeq(val64, &bar0->gpio_control);
7044 val64 = 0x0411040400000000ULL;
7045 writeq(val64, (void __iomem *) bar0 + 0x2700);
7046 val64 = readq(&bar0->gpio_control);
7049 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7051 if (register_netdev(dev)) {
7052 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7054 goto register_failed;
7057 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7058 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7059 sp->product_name, get_xena_rev_id(sp->pdev));
7060 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7061 s2io_driver_version);
7062 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7063 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7064 sp->def_mac_addr[0].mac_addr[0],
7065 sp->def_mac_addr[0].mac_addr[1],
7066 sp->def_mac_addr[0].mac_addr[2],
7067 sp->def_mac_addr[0].mac_addr[3],
7068 sp->def_mac_addr[0].mac_addr[4],
7069 sp->def_mac_addr[0].mac_addr[5]);
7070 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7071 if (sp->device_type & XFRAME_II_DEVICE) {
7072 mode = s2io_print_pci_mode(sp);
7074 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7076 unregister_netdev(dev);
7077 goto set_swap_failed;
7080 switch(sp->rxd_mode) {
7082 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7086 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7090 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7096 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7097 switch(sp->intr_type) {
7099 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7102 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7105 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7109 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7112 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7113 " enabled\n", dev->name);
7114 /* Initialize device name */
7115 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7117 /* Initialize bimodal Interrupts */
7118 sp->config.bimodal = bimodal;
7119 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7120 sp->config.bimodal = 0;
7121 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7126 * Make Link state as off at this point, when the Link change
7127 * interrupt comes the state will be automatically changed to
7130 netif_carrier_off(dev);
7141 free_shared_mem(sp);
7142 pci_disable_device(pdev);
7143 if (dev_intr_type != MSI_X)
7144 pci_release_regions(pdev);
7146 release_mem_region(pci_resource_start(pdev, 0),
7147 pci_resource_len(pdev, 0));
7148 release_mem_region(pci_resource_start(pdev, 2),
7149 pci_resource_len(pdev, 2));
7151 pci_set_drvdata(pdev, NULL);
7158 * s2io_rem_nic - Free the PCI device
7159 * @pdev: structure containing the PCI related information of the device.
7160 * Description: This function is called by the Pci subsystem to release a
7161 * PCI device and free up all resource held up by the device. This could
7162 * be in response to a Hot plug event or when the driver is to be removed
7166 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7168 struct net_device *dev =
7169 (struct net_device *) pci_get_drvdata(pdev);
7170 struct s2io_nic *sp;
7173 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7178 unregister_netdev(dev);
7180 free_shared_mem(sp);
7183 if (sp->intr_type != MSI_X)
7184 pci_release_regions(pdev);
7186 release_mem_region(pci_resource_start(pdev, 0),
7187 pci_resource_len(pdev, 0));
7188 release_mem_region(pci_resource_start(pdev, 2),
7189 pci_resource_len(pdev, 2));
7191 pci_set_drvdata(pdev, NULL);
7193 pci_disable_device(pdev);
7197 * s2io_starter - Entry point for the driver
7198 * Description: This function is the entry point for the driver. It verifies
7199 * the module loadable parameters and initializes PCI configuration space.
7202 int __init s2io_starter(void)
7204 return pci_register_driver(&s2io_driver);
7208 * s2io_closer - Cleanup routine for the driver
7209 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7212 static __exit void s2io_closer(void)
7214 pci_unregister_driver(&s2io_driver);
7215 DBG_PRINT(INIT_DBG, "cleanup done\n");
7218 module_init(s2io_starter);
7219 module_exit(s2io_closer);
7221 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7222 struct tcphdr **tcp, struct RxD_t *rxdp)
7225 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7227 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7228 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7234 * By default the VLAN field in the MAC is stripped by the card, if this
7235 * feature is turned off in rx_pa_cfg register, then the ip_off field
7236 * has to be shifted by a further 2 bytes
7239 case 0: /* DIX type */
7240 case 4: /* DIX type with VLAN */
7241 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7243 /* LLC, SNAP etc are considered non-mergeable */
7248 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7249 ip_len = (u8)((*ip)->ihl);
7251 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7256 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7259 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7260 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7261 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7266 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7268 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7271 static void initiate_new_session(struct lro *lro, u8 *l2h,
7272 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7274 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7278 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7279 lro->tcp_ack = ntohl(tcp->ack_seq);
7281 lro->total_len = ntohs(ip->tot_len);
7284 * check if we saw TCP timestamp. Other consistency checks have
7285 * already been done.
7287 if (tcp->doff == 8) {
7289 ptr = (u32 *)(tcp+1);
7291 lro->cur_tsval = *(ptr+1);
7292 lro->cur_tsecr = *(ptr+2);
7297 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7299 struct iphdr *ip = lro->iph;
7300 struct tcphdr *tcp = lro->tcph;
7302 struct stat_block *statinfo = sp->mac_control.stats_info;
7303 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7305 /* Update L3 header */
7306 ip->tot_len = htons(lro->total_len);
7308 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7311 /* Update L4 header */
7312 tcp->ack_seq = lro->tcp_ack;
7313 tcp->window = lro->window;
7315 /* Update tsecr field if this session has timestamps enabled */
7317 u32 *ptr = (u32 *)(tcp + 1);
7318 *(ptr+2) = lro->cur_tsecr;
7321 /* Update counters required for calculation of
7322 * average no. of packets aggregated.
7324 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7325 statinfo->sw_stat.num_aggregations++;
7328 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7329 struct tcphdr *tcp, u32 l4_pyld)
7331 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7332 lro->total_len += l4_pyld;
7333 lro->frags_len += l4_pyld;
7334 lro->tcp_next_seq += l4_pyld;
7337 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7338 lro->tcp_ack = tcp->ack_seq;
7339 lro->window = tcp->window;
7343 /* Update tsecr and tsval from this packet */
7344 ptr = (u32 *) (tcp + 1);
7345 lro->cur_tsval = *(ptr + 1);
7346 lro->cur_tsecr = *(ptr + 2);
7350 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7351 struct tcphdr *tcp, u32 tcp_pyld_len)
7355 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7357 if (!tcp_pyld_len) {
7358 /* Runt frame or a pure ack */
7362 if (ip->ihl != 5) /* IP has options */
7365 /* If we see CE codepoint in IP header, packet is not mergeable */
7366 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7369 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7370 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7371 tcp->ece || tcp->cwr || !tcp->ack) {
7373 * Currently recognize only the ack control word and
7374 * any other control field being set would result in
7375 * flushing the LRO session
7381 * Allow only one TCP timestamp option. Don't aggregate if
7382 * any other options are detected.
7384 if (tcp->doff != 5 && tcp->doff != 8)
7387 if (tcp->doff == 8) {
7388 ptr = (u8 *)(tcp + 1);
7389 while (*ptr == TCPOPT_NOP)
7391 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7394 /* Ensure timestamp value increases monotonically */
7396 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7399 /* timestamp echo reply should be non-zero */
7400 if (*((u32 *)(ptr+6)) == 0)
7408 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7409 struct RxD_t *rxdp, struct s2io_nic *sp)
7412 struct tcphdr *tcph;
7415 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7417 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7418 ip->saddr, ip->daddr);
7423 tcph = (struct tcphdr *)*tcp;
7424 *tcp_len = get_l4_pyld_length(ip, tcph);
7425 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7426 struct lro *l_lro = &sp->lro0_n[i];
7427 if (l_lro->in_use) {
7428 if (check_for_socket_match(l_lro, ip, tcph))
7430 /* Sock pair matched */
7433 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7434 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7435 "0x%x, actual 0x%x\n", __FUNCTION__,
7436 (*lro)->tcp_next_seq,
7439 sp->mac_control.stats_info->
7440 sw_stat.outof_sequence_pkts++;
7445 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7446 ret = 1; /* Aggregate */
7448 ret = 2; /* Flush both */
7454 /* Before searching for available LRO objects,
7455 * check if the pkt is L3/L4 aggregatable. If not
7456 * don't create new LRO session. Just send this
7459 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7463 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7464 struct lro *l_lro = &sp->lro0_n[i];
7465 if (!(l_lro->in_use)) {
7467 ret = 3; /* Begin anew */
7473 if (ret == 0) { /* sessions exceeded */
7474 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7482 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7485 update_L3L4_header(sp, *lro);
7488 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7489 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7490 update_L3L4_header(sp, *lro);
7491 ret = 4; /* Flush the LRO */
7495 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7503 static void clear_lro_session(struct lro *lro)
7505 static u16 lro_struct_size = sizeof(struct lro);
7507 memset(lro, 0, lro_struct_size);
7510 static void queue_rx_frame(struct sk_buff *skb)
7512 struct net_device *dev = skb->dev;
7514 skb->protocol = eth_type_trans(skb, dev);
7516 netif_receive_skb(skb);
7521 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7522 struct sk_buff *skb,
7525 struct sk_buff *first = lro->parent;
7527 first->len += tcp_len;
7528 first->data_len = lro->frags_len;
7529 skb_pull(skb, (skb->len - tcp_len));
7530 if (skb_shinfo(first)->frag_list)
7531 lro->last_frag->next = skb;
7533 skb_shinfo(first)->frag_list = skb;
7534 first->truesize += skb->truesize;
7535 lro->last_frag = skb;
7536 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;