2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
25 regVal = REG_READ(ah, reg) & ~mask;
26 regVal |= (val << shift) & mask;
28 REG_WRITE(ah, reg, regVal);
30 if (ah->ah_config.analog_shiftreg)
36 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
39 if (fbin == AR5416_BCHAN_UNUSED)
42 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
45 static inline int16_t ath9k_hw_interpolate(u16 target,
46 u16 srcLeft, u16 srcRight,
52 if (srcRight == srcLeft) {
55 rv = (int16_t) (((target - srcLeft) * targetRight +
56 (srcRight - target) * targetLeft) /
57 (srcRight - srcLeft));
62 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
63 u16 listSize, u16 *indexL,
68 if (target <= pList[0]) {
69 *indexL = *indexR = 0;
72 if (target >= pList[listSize - 1]) {
73 *indexL = *indexR = (u16) (listSize - 1);
77 for (i = 0; i < listSize - 1; i++) {
78 if (pList[i] == target) {
79 *indexL = *indexR = i;
82 if (target < pList[i + 1]) {
84 *indexR = (u16) (i + 1);
91 static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
93 struct ath_softc *sc = ah->ah_sc;
95 return sc->bus_ops->eeprom_read(ah, off, data);
98 static bool ath9k_hw_fill_4k_eeprom(struct ath_hw *ah)
100 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
101 struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
103 int addr, eep_start_loc = 0;
107 if (!ath9k_hw_use_flash(ah)) {
108 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
109 "Reading from EEPROM, not flash\n");
112 eep_data = (u16 *)eep;
114 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
115 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
116 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
117 "Unable to read eeprom region \n");
123 #undef SIZE_EEPROM_4K
126 static bool ath9k_hw_fill_def_eeprom(struct ath_hw *ah)
128 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
129 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
131 int addr, ar5416_eep_start_loc = 0x100;
133 eep_data = (u16 *)eep;
135 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
136 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
138 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
139 "Unable to read eeprom region\n");
145 #undef SIZE_EEPROM_DEF
148 static bool (*ath9k_fill_eeprom[]) (struct ath_hw *) = {
149 ath9k_hw_fill_def_eeprom,
150 ath9k_hw_fill_4k_eeprom
153 static inline bool ath9k_hw_fill_eeprom(struct ath_hw *ah)
155 return ath9k_fill_eeprom[ah->ah_eep_map](ah);
158 static int ath9k_hw_check_def_eeprom(struct ath_hw *ah)
160 struct ar5416_eeprom_def *eep =
161 (struct ar5416_eeprom_def *) &ah->ah_eeprom.def;
162 u16 *eepdata, temp, magic, magic2;
164 bool need_swap = false;
167 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
169 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
170 "Reading Magic # failed\n");
174 if (!ath9k_hw_use_flash(ah)) {
176 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
177 "Read Magic = 0x%04X\n", magic);
179 if (magic != AR5416_EEPROM_MAGIC) {
180 magic2 = swab16(magic);
182 if (magic2 == AR5416_EEPROM_MAGIC) {
183 size = sizeof(struct ar5416_eeprom_def);
185 eepdata = (u16 *) (&ah->ah_eeprom);
187 for (addr = 0; addr < size / sizeof(u16); addr++) {
188 temp = swab16(*eepdata);
192 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
193 "0x%04X ", *eepdata);
195 if (((addr + 1) % 6) == 0)
197 ATH_DBG_EEPROM, "\n");
200 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
201 "Invalid EEPROM Magic. "
202 "endianness mismatch.\n");
208 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
209 need_swap ? "True" : "False");
212 el = swab16(ah->ah_eeprom.def.baseEepHeader.length);
214 el = ah->ah_eeprom.def.baseEepHeader.length;
216 if (el > sizeof(struct ar5416_eeprom_def))
217 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
219 el = el / sizeof(u16);
221 eepdata = (u16 *)(&ah->ah_eeprom);
223 for (i = 0; i < el; i++)
230 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
231 "EEPROM Endianness is not native.. Changing \n");
233 word = swab16(eep->baseEepHeader.length);
234 eep->baseEepHeader.length = word;
236 word = swab16(eep->baseEepHeader.checksum);
237 eep->baseEepHeader.checksum = word;
239 word = swab16(eep->baseEepHeader.version);
240 eep->baseEepHeader.version = word;
242 word = swab16(eep->baseEepHeader.regDmn[0]);
243 eep->baseEepHeader.regDmn[0] = word;
245 word = swab16(eep->baseEepHeader.regDmn[1]);
246 eep->baseEepHeader.regDmn[1] = word;
248 word = swab16(eep->baseEepHeader.rfSilent);
249 eep->baseEepHeader.rfSilent = word;
251 word = swab16(eep->baseEepHeader.blueToothOptions);
252 eep->baseEepHeader.blueToothOptions = word;
254 word = swab16(eep->baseEepHeader.deviceCap);
255 eep->baseEepHeader.deviceCap = word;
257 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
258 struct modal_eep_header *pModal =
259 &eep->modalHeader[j];
260 integer = swab32(pModal->antCtrlCommon);
261 pModal->antCtrlCommon = integer;
263 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
264 integer = swab32(pModal->antCtrlChain[i]);
265 pModal->antCtrlChain[i] = integer;
268 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
269 word = swab16(pModal->spurChans[i].spurChan);
270 pModal->spurChans[i].spurChan = word;
275 if (sum != 0xffff || ar5416_get_eep_ver(ah) != AR5416_EEP_VER ||
276 ar5416_get_eep_rev(ah) < AR5416_EEP_NO_BACK_VER) {
277 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
278 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
279 sum, ar5416_get_eep_ver(ah));
286 static int ath9k_hw_check_4k_eeprom(struct ath_hw *ah)
288 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
289 struct ar5416_eeprom_4k *eep =
290 (struct ar5416_eeprom_4k *) &ah->ah_eeprom.map4k;
291 u16 *eepdata, temp, magic, magic2;
293 bool need_swap = false;
297 if (!ath9k_hw_use_flash(ah)) {
299 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
301 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
302 "Reading Magic # failed\n");
306 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
307 "Read Magic = 0x%04X\n", magic);
309 if (magic != AR5416_EEPROM_MAGIC) {
310 magic2 = swab16(magic);
312 if (magic2 == AR5416_EEPROM_MAGIC) {
314 eepdata = (u16 *) (&ah->ah_eeprom);
316 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
317 temp = swab16(*eepdata);
321 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
322 "0x%04X ", *eepdata);
324 if (((addr + 1) % 6) == 0)
326 ATH_DBG_EEPROM, "\n");
329 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
330 "Invalid EEPROM Magic. "
331 "endianness mismatch.\n");
337 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
338 need_swap ? "True" : "False");
341 el = swab16(ah->ah_eeprom.map4k.baseEepHeader.length);
343 el = ah->ah_eeprom.map4k.baseEepHeader.length;
345 if (el > sizeof(struct ar5416_eeprom_def))
346 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
348 el = el / sizeof(u16);
350 eepdata = (u16 *)(&ah->ah_eeprom);
352 for (i = 0; i < el; i++)
359 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
360 "EEPROM Endianness is not native.. Changing \n");
362 word = swab16(eep->baseEepHeader.length);
363 eep->baseEepHeader.length = word;
365 word = swab16(eep->baseEepHeader.checksum);
366 eep->baseEepHeader.checksum = word;
368 word = swab16(eep->baseEepHeader.version);
369 eep->baseEepHeader.version = word;
371 word = swab16(eep->baseEepHeader.regDmn[0]);
372 eep->baseEepHeader.regDmn[0] = word;
374 word = swab16(eep->baseEepHeader.regDmn[1]);
375 eep->baseEepHeader.regDmn[1] = word;
377 word = swab16(eep->baseEepHeader.rfSilent);
378 eep->baseEepHeader.rfSilent = word;
380 word = swab16(eep->baseEepHeader.blueToothOptions);
381 eep->baseEepHeader.blueToothOptions = word;
383 word = swab16(eep->baseEepHeader.deviceCap);
384 eep->baseEepHeader.deviceCap = word;
386 integer = swab32(eep->modalHeader.antCtrlCommon);
387 eep->modalHeader.antCtrlCommon = integer;
389 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
390 integer = swab32(eep->modalHeader.antCtrlChain[i]);
391 eep->modalHeader.antCtrlChain[i] = integer;
394 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
395 word = swab16(eep->modalHeader.spurChans[i].spurChan);
396 eep->modalHeader.spurChans[i].spurChan = word;
400 if (sum != 0xffff || ar5416_get_eep4k_ver(ah) != AR5416_EEP_VER ||
401 ar5416_get_eep4k_rev(ah) < AR5416_EEP_NO_BACK_VER) {
402 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
403 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
404 sum, ar5416_get_eep4k_ver(ah));
409 #undef EEPROM_4K_SIZE
412 static int (*ath9k_check_eeprom[]) (struct ath_hw *) = {
413 ath9k_hw_check_def_eeprom,
414 ath9k_hw_check_4k_eeprom
417 static inline int ath9k_hw_check_eeprom(struct ath_hw *ah)
419 return ath9k_check_eeprom[ah->ah_eep_map](ah);
422 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
423 u8 *pVpdList, u16 numIntercepts,
428 u16 idxL = 0, idxR = 0;
430 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
431 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
432 numIntercepts, &(idxL),
436 if (idxL == numIntercepts - 1)
437 idxL = (u16) (numIntercepts - 2);
438 if (pPwrList[idxL] == pPwrList[idxR])
441 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
442 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
443 (pPwrList[idxR] - pPwrList[idxL]));
444 pRetVpdList[i] = (u8) k;
451 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
452 struct ath9k_channel *chan,
453 struct cal_data_per_freq_4k *pRawDataSet,
454 u8 *bChans, u16 availPiers,
455 u16 tPdGainOverlap, int16_t *pMinCalPower,
456 u16 *pPdGainBoundaries, u8 *pPDADCValues,
459 #define TMP_VAL_VPD_TABLE \
460 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
463 u16 idxL = 0, idxR = 0, numPiers;
464 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
465 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
466 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
467 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
468 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
469 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
471 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
472 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
473 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
476 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
478 int16_t minDelta = 0;
479 struct chan_centers centers;
480 #define PD_GAIN_BOUNDARY_DEFAULT 58;
482 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
484 for (numPiers = 0; numPiers < availPiers; numPiers++) {
485 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
489 match = ath9k_hw_get_lower_upper_index(
490 (u8)FREQ2FBIN(centers.synth_center,
491 IS_CHAN_2GHZ(chan)), bChans, numPiers,
495 for (i = 0; i < numXpdGains; i++) {
496 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
497 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
498 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
499 pRawDataSet[idxL].pwrPdg[i],
500 pRawDataSet[idxL].vpdPdg[i],
501 AR5416_EEP4K_PD_GAIN_ICEPTS,
505 for (i = 0; i < numXpdGains; i++) {
506 pVpdL = pRawDataSet[idxL].vpdPdg[i];
507 pPwrL = pRawDataSet[idxL].pwrPdg[i];
508 pVpdR = pRawDataSet[idxR].vpdPdg[i];
509 pPwrR = pRawDataSet[idxR].pwrPdg[i];
511 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
514 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
515 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
518 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
520 AR5416_EEP4K_PD_GAIN_ICEPTS,
522 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
524 AR5416_EEP4K_PD_GAIN_ICEPTS,
527 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
529 (u8)(ath9k_hw_interpolate((u16)
534 bChans[idxL], bChans[idxR],
535 vpdTableL[i][j], vpdTableR[i][j]));
540 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
544 for (i = 0; i < numXpdGains; i++) {
545 if (i == (numXpdGains - 1))
546 pPdGainBoundaries[i] =
547 (u16)(maxPwrT4[i] / 2);
549 pPdGainBoundaries[i] =
550 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
552 pPdGainBoundaries[i] =
553 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
555 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
556 minDelta = pPdGainBoundaries[0] - 23;
557 pPdGainBoundaries[0] = 23;
563 if (AR_SREV_9280_10_OR_LATER(ah))
564 ss = (int16_t)(0 - (minPwrT4[i] / 2));
568 ss = (int16_t)((pPdGainBoundaries[i - 1] -
570 tPdGainOverlap + 1 + minDelta);
572 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
573 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
575 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
576 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
577 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
581 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
582 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
584 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
585 tgtIndex : sizeCurrVpdTable;
587 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
588 pPDADCValues[k++] = vpdTableI[i][ss++];
590 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
591 vpdTableI[i][sizeCurrVpdTable - 2]);
592 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
594 if (tgtIndex > maxIndex) {
595 while ((ss <= tgtIndex) &&
596 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
597 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
598 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
605 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
606 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
610 while (k < AR5416_NUM_PDADC_VALUES) {
611 pPDADCValues[k] = pPDADCValues[k - 1];
616 #undef TMP_VAL_VPD_TABLE
619 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
620 struct ath9k_channel *chan,
621 struct cal_data_per_freq *pRawDataSet,
622 u8 *bChans, u16 availPiers,
623 u16 tPdGainOverlap, int16_t *pMinCalPower,
624 u16 *pPdGainBoundaries, u8 *pPDADCValues,
629 u16 idxL = 0, idxR = 0, numPiers;
630 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
631 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
632 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
633 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
634 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
635 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
637 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
638 u8 minPwrT4[AR5416_NUM_PD_GAINS];
639 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
642 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
644 int16_t minDelta = 0;
645 struct chan_centers centers;
647 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
649 for (numPiers = 0; numPiers < availPiers; numPiers++) {
650 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
654 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
656 bChans, numPiers, &idxL, &idxR);
659 for (i = 0; i < numXpdGains; i++) {
660 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
661 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
662 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
663 pRawDataSet[idxL].pwrPdg[i],
664 pRawDataSet[idxL].vpdPdg[i],
665 AR5416_PD_GAIN_ICEPTS,
669 for (i = 0; i < numXpdGains; i++) {
670 pVpdL = pRawDataSet[idxL].vpdPdg[i];
671 pPwrL = pRawDataSet[idxL].pwrPdg[i];
672 pVpdR = pRawDataSet[idxR].vpdPdg[i];
673 pPwrR = pRawDataSet[idxR].pwrPdg[i];
675 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
678 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
679 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
682 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
684 AR5416_PD_GAIN_ICEPTS,
686 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
688 AR5416_PD_GAIN_ICEPTS,
691 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
693 (u8)(ath9k_hw_interpolate((u16)
698 bChans[idxL], bChans[idxR],
699 vpdTableL[i][j], vpdTableR[i][j]));
704 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
708 for (i = 0; i < numXpdGains; i++) {
709 if (i == (numXpdGains - 1))
710 pPdGainBoundaries[i] =
711 (u16)(maxPwrT4[i] / 2);
713 pPdGainBoundaries[i] =
714 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
716 pPdGainBoundaries[i] =
717 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
719 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
720 minDelta = pPdGainBoundaries[0] - 23;
721 pPdGainBoundaries[0] = 23;
727 if (AR_SREV_9280_10_OR_LATER(ah))
728 ss = (int16_t)(0 - (minPwrT4[i] / 2));
732 ss = (int16_t)((pPdGainBoundaries[i - 1] -
734 tPdGainOverlap + 1 + minDelta);
736 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
737 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
739 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
740 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
741 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
745 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
746 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
748 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
749 tgtIndex : sizeCurrVpdTable;
751 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
752 pPDADCValues[k++] = vpdTableI[i][ss++];
755 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
756 vpdTableI[i][sizeCurrVpdTable - 2]);
757 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
759 if (tgtIndex > maxIndex) {
760 while ((ss <= tgtIndex) &&
761 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
762 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
763 (ss - maxIndex + 1) * vpdStep));
764 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
771 while (i < AR5416_PD_GAINS_IN_MASK) {
772 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
776 while (k < AR5416_NUM_PDADC_VALUES) {
777 pPDADCValues[k] = pPDADCValues[k - 1];
784 static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
785 struct ath9k_channel *chan,
786 struct cal_target_power_leg *powInfo,
788 struct cal_target_power_leg *pNewPower,
789 u16 numRates, bool isExtTarget)
791 struct chan_centers centers;
794 int matchIndex = -1, lowIndex = -1;
797 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
798 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
800 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
801 IS_CHAN_2GHZ(chan))) {
804 for (i = 0; (i < numChannels) &&
805 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
806 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
807 IS_CHAN_2GHZ(chan))) {
810 } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
811 IS_CHAN_2GHZ(chan))) &&
812 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
813 IS_CHAN_2GHZ(chan)))) {
818 if ((matchIndex == -1) && (lowIndex == -1))
822 if (matchIndex != -1) {
823 *pNewPower = powInfo[matchIndex];
825 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
827 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
830 for (i = 0; i < numRates; i++) {
831 pNewPower->tPow2x[i] =
832 (u8)ath9k_hw_interpolate(freq, clo, chi,
833 powInfo[lowIndex].tPow2x[i],
834 powInfo[lowIndex + 1].tPow2x[i]);
839 static void ath9k_hw_get_target_powers(struct ath_hw *ah,
840 struct ath9k_channel *chan,
841 struct cal_target_power_ht *powInfo,
843 struct cal_target_power_ht *pNewPower,
844 u16 numRates, bool isHt40Target)
846 struct chan_centers centers;
849 int matchIndex = -1, lowIndex = -1;
852 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
853 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
855 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
858 for (i = 0; (i < numChannels) &&
859 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
860 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
861 IS_CHAN_2GHZ(chan))) {
865 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
866 IS_CHAN_2GHZ(chan))) &&
867 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
868 IS_CHAN_2GHZ(chan)))) {
873 if ((matchIndex == -1) && (lowIndex == -1))
877 if (matchIndex != -1) {
878 *pNewPower = powInfo[matchIndex];
880 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
882 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
885 for (i = 0; i < numRates; i++) {
886 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
888 powInfo[lowIndex].tPow2x[i],
889 powInfo[lowIndex + 1].tPow2x[i]);
894 static u16 ath9k_hw_get_max_edge_power(u16 freq,
895 struct cal_ctl_edges *pRdEdgesPower,
896 bool is2GHz, int num_band_edges)
898 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
901 for (i = 0; (i < num_band_edges) &&
902 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
903 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
904 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
906 } else if ((i > 0) &&
907 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
909 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
911 pRdEdgesPower[i - 1].flag) {
913 pRdEdgesPower[i - 1].tPower;
919 return twiceMaxEdgePower;
922 static bool ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
923 struct ath9k_channel *chan,
924 int16_t *pTxPowerIndexOffset)
926 struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
927 struct cal_data_per_freq *pRawDataset;
928 u8 *pCalBChans = NULL;
929 u16 pdGainOverlap_t2;
930 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
931 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
933 int16_t tMinCalPower;
934 u16 numXpdGain, xpdMask;
935 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
936 u32 reg32, regOffset, regChainOffset;
939 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
940 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
942 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
943 AR5416_EEP_MINOR_VER_2) {
945 pEepData->modalHeader[modalIdx].pdGainOverlap;
947 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
948 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
951 if (IS_CHAN_2GHZ(chan)) {
952 pCalBChans = pEepData->calFreqPier2G;
953 numPiers = AR5416_NUM_2G_CAL_PIERS;
955 pCalBChans = pEepData->calFreqPier5G;
956 numPiers = AR5416_NUM_5G_CAL_PIERS;
961 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
962 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
963 if (numXpdGain >= AR5416_NUM_PD_GAINS)
965 xpdGainValues[numXpdGain] =
966 (u16)(AR5416_PD_GAINS_IN_MASK - i);
971 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
972 (numXpdGain - 1) & 0x3);
973 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
975 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
977 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
980 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
981 if (AR_SREV_5416_V20_OR_LATER(ah) &&
982 (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5) &&
984 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
986 regChainOffset = i * 0x1000;
988 if (pEepData->baseEepHeader.txMask & (1 << i)) {
989 if (IS_CHAN_2GHZ(chan))
990 pRawDataset = pEepData->calPierData2G[i];
992 pRawDataset = pEepData->calPierData5G[i];
994 ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
995 pRawDataset, pCalBChans,
996 numPiers, pdGainOverlap_t2,
997 &tMinCalPower, gainBoundaries,
998 pdadcValues, numXpdGain);
1000 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1002 AR_PHY_TPCRG5 + regChainOffset,
1003 SM(pdGainOverlap_t2,
1004 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1005 | SM(gainBoundaries[0],
1006 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1007 | SM(gainBoundaries[1],
1008 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1009 | SM(gainBoundaries[2],
1010 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1011 | SM(gainBoundaries[3],
1012 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1015 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1016 for (j = 0; j < 32; j++) {
1017 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1018 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1019 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1020 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1021 REG_WRITE(ah, regOffset, reg32);
1023 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1024 "PDADC (%d,%4x): %4.4x %8.8x\n",
1025 i, regChainOffset, regOffset,
1027 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1028 "PDADC: Chain %d | PDADC %3d "
1029 "Value %3d | PDADC %3d Value %3d | "
1030 "PDADC %3d Value %3d | PDADC %3d "
1032 i, 4 * j, pdadcValues[4 * j],
1033 4 * j + 1, pdadcValues[4 * j + 1],
1034 4 * j + 2, pdadcValues[4 * j + 2],
1036 pdadcValues[4 * j + 3]);
1043 *pTxPowerIndexOffset = 0;
1048 static bool ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
1049 struct ath9k_channel *chan,
1050 int16_t *pTxPowerIndexOffset)
1052 struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
1053 struct cal_data_per_freq_4k *pRawDataset;
1054 u8 *pCalBChans = NULL;
1055 u16 pdGainOverlap_t2;
1056 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
1057 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1059 int16_t tMinCalPower;
1060 u16 numXpdGain, xpdMask;
1061 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
1062 u32 reg32, regOffset, regChainOffset;
1064 xpdMask = pEepData->modalHeader.xpdGain;
1066 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1067 AR5416_EEP_MINOR_VER_2) {
1069 pEepData->modalHeader.pdGainOverlap;
1071 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1072 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1075 pCalBChans = pEepData->calFreqPier2G;
1076 numPiers = AR5416_NUM_2G_CAL_PIERS;
1080 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1081 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1082 if (numXpdGain >= AR5416_NUM_PD_GAINS)
1084 xpdGainValues[numXpdGain] =
1085 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1090 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1091 (numXpdGain - 1) & 0x3);
1092 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1094 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1096 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1099 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1100 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1101 (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5) &&
1103 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1105 regChainOffset = i * 0x1000;
1107 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1108 pRawDataset = pEepData->calPierData2G[i];
1110 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
1111 pRawDataset, pCalBChans,
1112 numPiers, pdGainOverlap_t2,
1113 &tMinCalPower, gainBoundaries,
1114 pdadcValues, numXpdGain);
1116 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1117 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1118 SM(pdGainOverlap_t2,
1119 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1120 | SM(gainBoundaries[0],
1121 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1122 | SM(gainBoundaries[1],
1123 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1124 | SM(gainBoundaries[2],
1125 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1126 | SM(gainBoundaries[3],
1127 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1130 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1131 for (j = 0; j < 32; j++) {
1132 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1133 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1134 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1135 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1136 REG_WRITE(ah, regOffset, reg32);
1138 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1139 "PDADC (%d,%4x): %4.4x %8.8x\n",
1140 i, regChainOffset, regOffset,
1142 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1143 "PDADC: Chain %d | "
1144 "PDADC %3d Value %3d | "
1145 "PDADC %3d Value %3d | "
1146 "PDADC %3d Value %3d | "
1147 "PDADC %3d Value %3d |\n",
1148 i, 4 * j, pdadcValues[4 * j],
1149 4 * j + 1, pdadcValues[4 * j + 1],
1150 4 * j + 2, pdadcValues[4 * j + 2],
1152 pdadcValues[4 * j + 3]);
1159 *pTxPowerIndexOffset = 0;
1164 static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
1165 struct ath9k_channel *chan,
1166 int16_t *ratesArray,
1168 u16 AntennaReduction,
1169 u16 twiceMaxRegulatoryPower,
1172 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
1173 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
1175 struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
1176 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1177 static const u16 tpScaleReductionTable[5] =
1178 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1181 int16_t twiceLargestAntenna;
1182 struct cal_ctl_data *rep;
1183 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1186 struct cal_target_power_leg targetPowerOfdmExt = {
1187 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1190 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1193 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1194 u16 ctlModesFor11a[] =
1195 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1196 u16 ctlModesFor11g[] =
1197 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1200 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1201 struct chan_centers centers;
1203 u16 twiceMinEdgePower;
1205 tx_chainmask = ah->ah_txchainmask;
1207 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
1209 twiceLargestAntenna = max(
1210 pEepData->modalHeader
1211 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1212 pEepData->modalHeader
1213 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1215 twiceLargestAntenna = max((u8)twiceLargestAntenna,
1216 pEepData->modalHeader
1217 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1219 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1220 twiceLargestAntenna, 0);
1222 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1224 if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
1225 maxRegAllowedPower -=
1226 (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
1229 scaledPower = min(powerLimit, maxRegAllowedPower);
1231 switch (ar5416_get_ntxchains(tx_chainmask)) {
1235 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1238 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1242 scaledPower = max((u16)0, scaledPower);
1244 if (IS_CHAN_2GHZ(chan)) {
1245 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1246 SUB_NUM_CTL_MODES_AT_2G_40;
1247 pCtlMode = ctlModesFor11g;
1249 ath9k_hw_get_legacy_target_powers(ah, chan,
1250 pEepData->calTargetPowerCck,
1251 AR5416_NUM_2G_CCK_TARGET_POWERS,
1252 &targetPowerCck, 4, false);
1253 ath9k_hw_get_legacy_target_powers(ah, chan,
1254 pEepData->calTargetPower2G,
1255 AR5416_NUM_2G_20_TARGET_POWERS,
1256 &targetPowerOfdm, 4, false);
1257 ath9k_hw_get_target_powers(ah, chan,
1258 pEepData->calTargetPower2GHT20,
1259 AR5416_NUM_2G_20_TARGET_POWERS,
1260 &targetPowerHt20, 8, false);
1262 if (IS_CHAN_HT40(chan)) {
1263 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1264 ath9k_hw_get_target_powers(ah, chan,
1265 pEepData->calTargetPower2GHT40,
1266 AR5416_NUM_2G_40_TARGET_POWERS,
1267 &targetPowerHt40, 8, true);
1268 ath9k_hw_get_legacy_target_powers(ah, chan,
1269 pEepData->calTargetPowerCck,
1270 AR5416_NUM_2G_CCK_TARGET_POWERS,
1271 &targetPowerCckExt, 4, true);
1272 ath9k_hw_get_legacy_target_powers(ah, chan,
1273 pEepData->calTargetPower2G,
1274 AR5416_NUM_2G_20_TARGET_POWERS,
1275 &targetPowerOfdmExt, 4, true);
1278 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1279 SUB_NUM_CTL_MODES_AT_5G_40;
1280 pCtlMode = ctlModesFor11a;
1282 ath9k_hw_get_legacy_target_powers(ah, chan,
1283 pEepData->calTargetPower5G,
1284 AR5416_NUM_5G_20_TARGET_POWERS,
1285 &targetPowerOfdm, 4, false);
1286 ath9k_hw_get_target_powers(ah, chan,
1287 pEepData->calTargetPower5GHT20,
1288 AR5416_NUM_5G_20_TARGET_POWERS,
1289 &targetPowerHt20, 8, false);
1291 if (IS_CHAN_HT40(chan)) {
1292 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1293 ath9k_hw_get_target_powers(ah, chan,
1294 pEepData->calTargetPower5GHT40,
1295 AR5416_NUM_5G_40_TARGET_POWERS,
1296 &targetPowerHt40, 8, true);
1297 ath9k_hw_get_legacy_target_powers(ah, chan,
1298 pEepData->calTargetPower5G,
1299 AR5416_NUM_5G_20_TARGET_POWERS,
1300 &targetPowerOfdmExt, 4, true);
1304 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1305 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1306 (pCtlMode[ctlMode] == CTL_2GHT40);
1308 freq = centers.synth_center;
1309 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1310 freq = centers.ext_center;
1312 freq = centers.ctl_center;
1314 if (ar5416_get_eep_ver(ah) == 14 && ar5416_get_eep_rev(ah) <= 2)
1315 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1317 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1318 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1319 "EXT_ADDITIVE %d\n",
1320 ctlMode, numCtlModes, isHt40CtlMode,
1321 (pCtlMode[ctlMode] & EXT_ADDITIVE));
1323 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1324 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1325 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1326 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1328 i, cfgCtl, pCtlMode[ctlMode],
1329 pEepData->ctlIndex[i], chan->channel);
1331 if ((((cfgCtl & ~CTL_MODE_M) |
1332 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1333 pEepData->ctlIndex[i]) ||
1334 (((cfgCtl & ~CTL_MODE_M) |
1335 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1336 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1337 rep = &(pEepData->ctlData[i]);
1339 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1340 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1341 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1343 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1344 " MATCH-EE_IDX %d: ch %d is2 %d "
1345 "2xMinEdge %d chainmask %d chains %d\n",
1346 i, freq, IS_CHAN_2GHZ(chan),
1347 twiceMinEdgePower, tx_chainmask,
1348 ar5416_get_ntxchains
1350 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1351 twiceMaxEdgePower = min(twiceMaxEdgePower,
1354 twiceMaxEdgePower = twiceMinEdgePower;
1360 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1362 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1363 " SEL-Min ctlMode %d pCtlMode %d "
1364 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1365 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1366 scaledPower, minCtlPower);
1368 switch (pCtlMode[ctlMode]) {
1370 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1371 targetPowerCck.tPow2x[i] =
1372 min((u16)targetPowerCck.tPow2x[i],
1378 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1379 targetPowerOfdm.tPow2x[i] =
1380 min((u16)targetPowerOfdm.tPow2x[i],
1386 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1387 targetPowerHt20.tPow2x[i] =
1388 min((u16)targetPowerHt20.tPow2x[i],
1393 targetPowerCckExt.tPow2x[0] = min((u16)
1394 targetPowerCckExt.tPow2x[0],
1399 targetPowerOfdmExt.tPow2x[0] = min((u16)
1400 targetPowerOfdmExt.tPow2x[0],
1405 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1406 targetPowerHt40.tPow2x[i] =
1407 min((u16)targetPowerHt40.tPow2x[i],
1416 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1417 ratesArray[rate18mb] = ratesArray[rate24mb] =
1418 targetPowerOfdm.tPow2x[0];
1419 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1420 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1421 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1422 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1424 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1425 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1427 if (IS_CHAN_2GHZ(chan)) {
1428 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1429 ratesArray[rate2s] = ratesArray[rate2l] =
1430 targetPowerCck.tPow2x[1];
1431 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1432 targetPowerCck.tPow2x[2];
1434 ratesArray[rate11s] = ratesArray[rate11l] =
1435 targetPowerCck.tPow2x[3];
1438 if (IS_CHAN_HT40(chan)) {
1439 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1440 ratesArray[rateHt40_0 + i] =
1441 targetPowerHt40.tPow2x[i];
1443 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1444 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1445 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1446 if (IS_CHAN_2GHZ(chan)) {
1447 ratesArray[rateExtCck] =
1448 targetPowerCckExt.tPow2x[0];
1454 static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
1455 struct ath9k_channel *chan,
1456 int16_t *ratesArray,
1458 u16 AntennaReduction,
1459 u16 twiceMaxRegulatoryPower,
1462 struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
1463 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1464 static const u16 tpScaleReductionTable[5] =
1465 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1468 int16_t twiceLargestAntenna;
1469 struct cal_ctl_data_4k *rep;
1470 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1473 struct cal_target_power_leg targetPowerOfdmExt = {
1474 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1477 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1480 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1481 u16 ctlModesFor11g[] =
1482 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1485 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1486 struct chan_centers centers;
1488 u16 twiceMinEdgePower;
1490 tx_chainmask = ah->ah_txchainmask;
1492 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
1494 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
1496 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1497 twiceLargestAntenna, 0);
1499 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1501 if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
1502 maxRegAllowedPower -=
1503 (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
1506 scaledPower = min(powerLimit, maxRegAllowedPower);
1507 scaledPower = max((u16)0, scaledPower);
1509 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
1510 pCtlMode = ctlModesFor11g;
1512 ath9k_hw_get_legacy_target_powers(ah, chan,
1513 pEepData->calTargetPowerCck,
1514 AR5416_NUM_2G_CCK_TARGET_POWERS,
1515 &targetPowerCck, 4, false);
1516 ath9k_hw_get_legacy_target_powers(ah, chan,
1517 pEepData->calTargetPower2G,
1518 AR5416_NUM_2G_20_TARGET_POWERS,
1519 &targetPowerOfdm, 4, false);
1520 ath9k_hw_get_target_powers(ah, chan,
1521 pEepData->calTargetPower2GHT20,
1522 AR5416_NUM_2G_20_TARGET_POWERS,
1523 &targetPowerHt20, 8, false);
1525 if (IS_CHAN_HT40(chan)) {
1526 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1527 ath9k_hw_get_target_powers(ah, chan,
1528 pEepData->calTargetPower2GHT40,
1529 AR5416_NUM_2G_40_TARGET_POWERS,
1530 &targetPowerHt40, 8, true);
1531 ath9k_hw_get_legacy_target_powers(ah, chan,
1532 pEepData->calTargetPowerCck,
1533 AR5416_NUM_2G_CCK_TARGET_POWERS,
1534 &targetPowerCckExt, 4, true);
1535 ath9k_hw_get_legacy_target_powers(ah, chan,
1536 pEepData->calTargetPower2G,
1537 AR5416_NUM_2G_20_TARGET_POWERS,
1538 &targetPowerOfdmExt, 4, true);
1541 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1542 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1543 (pCtlMode[ctlMode] == CTL_2GHT40);
1545 freq = centers.synth_center;
1546 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1547 freq = centers.ext_center;
1549 freq = centers.ctl_center;
1551 if (ar5416_get_eep_ver(ah) == 14 &&
1552 ar5416_get_eep_rev(ah) <= 2)
1553 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1555 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1556 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1557 "EXT_ADDITIVE %d\n",
1558 ctlMode, numCtlModes, isHt40CtlMode,
1559 (pCtlMode[ctlMode] & EXT_ADDITIVE));
1561 for (i = 0; (i < AR5416_NUM_CTLS) &&
1562 pEepData->ctlIndex[i]; i++) {
1563 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1564 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1565 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1567 i, cfgCtl, pCtlMode[ctlMode],
1568 pEepData->ctlIndex[i], chan->channel);
1570 if ((((cfgCtl & ~CTL_MODE_M) |
1571 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1572 pEepData->ctlIndex[i]) ||
1573 (((cfgCtl & ~CTL_MODE_M) |
1574 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1575 ((pEepData->ctlIndex[i] & CTL_MODE_M) |
1577 rep = &(pEepData->ctlData[i]);
1580 ath9k_hw_get_max_edge_power(freq,
1581 rep->ctlEdges[ar5416_get_ntxchains
1582 (tx_chainmask) - 1],
1584 AR5416_EEP4K_NUM_BAND_EDGES);
1586 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1587 " MATCH-EE_IDX %d: ch %d is2 %d "
1588 "2xMinEdge %d chainmask %d chains %d\n",
1589 i, freq, IS_CHAN_2GHZ(chan),
1590 twiceMinEdgePower, tx_chainmask,
1591 ar5416_get_ntxchains
1593 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1595 min(twiceMaxEdgePower,
1598 twiceMaxEdgePower = twiceMinEdgePower;
1604 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
1606 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1607 " SEL-Min ctlMode %d pCtlMode %d "
1608 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1609 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1610 scaledPower, minCtlPower);
1612 switch (pCtlMode[ctlMode]) {
1614 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
1616 targetPowerCck.tPow2x[i] =
1617 min((u16)targetPowerCck.tPow2x[i],
1622 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
1624 targetPowerOfdm.tPow2x[i] =
1625 min((u16)targetPowerOfdm.tPow2x[i],
1630 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
1632 targetPowerHt20.tPow2x[i] =
1633 min((u16)targetPowerHt20.tPow2x[i],
1638 targetPowerCckExt.tPow2x[0] = min((u16)
1639 targetPowerCckExt.tPow2x[0],
1643 targetPowerOfdmExt.tPow2x[0] = min((u16)
1644 targetPowerOfdmExt.tPow2x[0],
1648 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
1650 targetPowerHt40.tPow2x[i] =
1651 min((u16)targetPowerHt40.tPow2x[i],
1660 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1661 ratesArray[rate18mb] = ratesArray[rate24mb] =
1662 targetPowerOfdm.tPow2x[0];
1663 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1664 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1665 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1666 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1668 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1669 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1671 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1672 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
1673 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1674 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1676 if (IS_CHAN_HT40(chan)) {
1677 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1678 ratesArray[rateHt40_0 + i] =
1679 targetPowerHt40.tPow2x[i];
1681 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1682 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1683 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1684 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
1689 static int ath9k_hw_def_set_txpower(struct ath_hw *ah,
1690 struct ath9k_channel *chan,
1692 u8 twiceAntennaReduction,
1693 u8 twiceMaxRegulatoryPower,
1696 struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
1697 struct modal_eep_header *pModal =
1698 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1699 int16_t ratesArray[Ar5416RateSize];
1700 int16_t txPowerIndexOffset = 0;
1701 u8 ht40PowerIncForPdadc = 2;
1704 memset(ratesArray, 0, sizeof(ratesArray));
1706 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1707 AR5416_EEP_MINOR_VER_2) {
1708 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1711 if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
1712 &ratesArray[0], cfgCtl,
1713 twiceAntennaReduction,
1714 twiceMaxRegulatoryPower,
1716 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1717 "ath9k_hw_set_txpower: unable to set "
1718 "tx power per rate table\n");
1722 if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1723 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1724 "ath9k_hw_set_txpower: unable to set power table\n");
1728 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1729 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1730 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1731 ratesArray[i] = AR5416_MAX_RATE_POWER;
1734 if (AR_SREV_9280_10_OR_LATER(ah)) {
1735 for (i = 0; i < Ar5416RateSize; i++)
1736 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1739 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1740 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1741 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1742 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1743 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1744 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1745 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1746 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1747 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1748 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1750 if (IS_CHAN_2GHZ(chan)) {
1751 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1752 ATH9K_POW_SM(ratesArray[rate2s], 24)
1753 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1754 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1755 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1756 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1757 ATH9K_POW_SM(ratesArray[rate11s], 24)
1758 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1759 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1760 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1763 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1764 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1765 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1766 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1767 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1768 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1769 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1770 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1771 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1772 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1774 if (IS_CHAN_HT40(chan)) {
1775 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1776 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1777 ht40PowerIncForPdadc, 24)
1778 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1779 ht40PowerIncForPdadc, 16)
1780 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1781 ht40PowerIncForPdadc, 8)
1782 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1783 ht40PowerIncForPdadc, 0));
1784 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1785 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1786 ht40PowerIncForPdadc, 24)
1787 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1788 ht40PowerIncForPdadc, 16)
1789 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1790 ht40PowerIncForPdadc, 8)
1791 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1792 ht40PowerIncForPdadc, 0));
1794 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1795 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1796 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1797 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1798 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1801 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1802 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1803 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1807 if (IS_CHAN_HT40(chan))
1809 else if (IS_CHAN_HT20(chan))
1812 if (AR_SREV_9280_10_OR_LATER(ah))
1813 ah->regulatory.max_power_level =
1814 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1816 ah->regulatory.max_power_level = ratesArray[i];
1821 static int ath9k_hw_4k_set_txpower(struct ath_hw *ah,
1822 struct ath9k_channel *chan,
1824 u8 twiceAntennaReduction,
1825 u8 twiceMaxRegulatoryPower,
1828 struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
1829 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
1830 int16_t ratesArray[Ar5416RateSize];
1831 int16_t txPowerIndexOffset = 0;
1832 u8 ht40PowerIncForPdadc = 2;
1835 memset(ratesArray, 0, sizeof(ratesArray));
1837 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1838 AR5416_EEP_MINOR_VER_2) {
1839 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1842 if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
1843 &ratesArray[0], cfgCtl,
1844 twiceAntennaReduction,
1845 twiceMaxRegulatoryPower,
1847 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1848 "ath9k_hw_set_txpower: unable to set "
1849 "tx power per rate table\n");
1853 if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1854 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1855 "ath9k_hw_set_txpower: unable to set power table\n");
1859 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1860 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1861 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1862 ratesArray[i] = AR5416_MAX_RATE_POWER;
1865 if (AR_SREV_9280_10_OR_LATER(ah)) {
1866 for (i = 0; i < Ar5416RateSize; i++)
1867 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1870 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1871 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1872 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1873 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1874 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1875 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1876 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1877 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1878 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1879 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1881 if (IS_CHAN_2GHZ(chan)) {
1882 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1883 ATH9K_POW_SM(ratesArray[rate2s], 24)
1884 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1885 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1886 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1887 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1888 ATH9K_POW_SM(ratesArray[rate11s], 24)
1889 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1890 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1891 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1894 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1895 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1896 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1897 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1898 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1899 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1900 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1901 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1902 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1903 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1905 if (IS_CHAN_HT40(chan)) {
1906 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1907 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1908 ht40PowerIncForPdadc, 24)
1909 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1910 ht40PowerIncForPdadc, 16)
1911 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1912 ht40PowerIncForPdadc, 8)
1913 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1914 ht40PowerIncForPdadc, 0));
1915 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1916 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1917 ht40PowerIncForPdadc, 24)
1918 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1919 ht40PowerIncForPdadc, 16)
1920 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1921 ht40PowerIncForPdadc, 8)
1922 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1923 ht40PowerIncForPdadc, 0));
1925 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1926 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1927 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1928 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1929 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1934 if (IS_CHAN_HT40(chan))
1936 else if (IS_CHAN_HT20(chan))
1939 if (AR_SREV_9280_10_OR_LATER(ah))
1940 ah->regulatory.max_power_level =
1941 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1943 ah->regulatory.max_power_level = ratesArray[i];
1948 static int (*ath9k_set_txpower[]) (struct ath_hw *,
1949 struct ath9k_channel *,
1950 u16, u8, u8, u8) = {
1951 ath9k_hw_def_set_txpower,
1952 ath9k_hw_4k_set_txpower
1955 int ath9k_hw_set_txpower(struct ath_hw *ah,
1956 struct ath9k_channel *chan,
1958 u8 twiceAntennaReduction,
1959 u8 twiceMaxRegulatoryPower,
1962 return ath9k_set_txpower[ah->ah_eep_map](ah, chan, cfgCtl,
1963 twiceAntennaReduction, twiceMaxRegulatoryPower,
1967 static void ath9k_hw_set_def_addac(struct ath_hw *ah,
1968 struct ath9k_channel *chan)
1970 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
1971 struct modal_eep_header *pModal;
1972 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
1975 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
1978 if (ar5416_get_eep_rev(ah) < AR5416_EEP_MINOR_VER_7)
1981 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1983 if (pModal->xpaBiasLvl != 0xff) {
1984 biaslevel = pModal->xpaBiasLvl;
1986 u16 resetFreqBin, freqBin, freqCount = 0;
1987 struct chan_centers centers;
1989 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
1991 resetFreqBin = FREQ2FBIN(centers.synth_center,
1992 IS_CHAN_2GHZ(chan));
1993 freqBin = XPA_LVL_FREQ(0) & 0xff;
1994 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
1998 while (freqCount < 3) {
1999 if (XPA_LVL_FREQ(freqCount) == 0x0)
2002 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2003 if (resetFreqBin >= freqBin)
2004 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
2011 if (IS_CHAN_2GHZ(chan)) {
2012 INI_RA(&ah->ah_iniAddac, 7, 1) = (INI_RA(&ah->ah_iniAddac,
2013 7, 1) & (~0x18)) | biaslevel << 3;
2015 INI_RA(&ah->ah_iniAddac, 6, 1) = (INI_RA(&ah->ah_iniAddac,
2016 6, 1) & (~0xc0)) | biaslevel << 6;
2021 static void ath9k_hw_set_4k_addac(struct ath_hw *ah,
2022 struct ath9k_channel *chan)
2024 struct modal_eep_4k_header *pModal;
2025 struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
2028 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
2031 if (ar5416_get_eep_rev(ah) < AR5416_EEP_MINOR_VER_7)
2034 pModal = &eep->modalHeader;
2036 if (pModal->xpaBiasLvl != 0xff) {
2037 biaslevel = pModal->xpaBiasLvl;
2038 INI_RA(&ah->ah_iniAddac, 7, 1) =
2039 (INI_RA(&ah->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
2043 static void (*ath9k_set_addac[]) (struct ath_hw *, struct ath9k_channel *) = {
2044 ath9k_hw_set_def_addac,
2045 ath9k_hw_set_4k_addac
2048 void ath9k_hw_set_addac(struct ath_hw *ah, struct ath9k_channel *chan)
2050 ath9k_set_addac[ah->ah_eep_map](ah, chan);
2053 /* XXX: Clean me up, make me more legible */
2054 static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hw *ah,
2055 struct ath9k_channel *chan)
2057 #define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK)
2058 struct modal_eep_header *pModal;
2059 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
2060 int i, regChainOffset;
2063 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2065 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
2067 REG_WRITE(ah, AR_PHY_SWITCH_COM,
2068 ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
2070 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2071 if (AR_SREV_9280(ah)) {
2076 if (AR_SREV_5416_V20_OR_LATER(ah) &&
2077 (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5)
2079 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2081 regChainOffset = i * 0x1000;
2083 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2084 pModal->antCtrlChain[i]);
2086 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2088 AR_PHY_TIMING_CTRL4(0) +
2090 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2091 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2092 SM(pModal->iqCalICh[i],
2093 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2094 SM(pModal->iqCalQCh[i],
2095 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2097 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2098 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
2099 txRxAttenLocal = pModal->txRxAttenCh[i];
2100 if (AR_SREV_9280_10_OR_LATER(ah)) {
2104 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
2110 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
2116 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2122 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
2132 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
2135 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
2142 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
2143 | SM(pModal->bswAtten[i],
2144 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
2147 if (AR_SREV_9280_10_OR_LATER(ah)) {
2151 AR9280_PHY_RXGAIN_TXRX_ATTEN,
2156 AR9280_PHY_RXGAIN_TXRX_MARGIN,
2157 pModal->rxTxMarginCh[i]);
2160 AR_PHY_RXGAIN + regChainOffset,
2164 ~AR_PHY_RXGAIN_TXRX_ATTEN) |
2166 AR_PHY_RXGAIN_TXRX_ATTEN));
2173 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
2174 SM(pModal->rxTxMarginCh[i],
2175 AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
2180 if (AR_SREV_9280_10_OR_LATER(ah)) {
2181 if (IS_CHAN_2GHZ(chan)) {
2182 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2184 AR_AN_RF2G1_CH0_OB_S,
2186 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2188 AR_AN_RF2G1_CH0_DB_S,
2190 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2192 AR_AN_RF2G1_CH1_OB_S,
2194 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2196 AR_AN_RF2G1_CH1_DB_S,
2199 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2200 AR_AN_RF5G1_CH0_OB5,
2201 AR_AN_RF5G1_CH0_OB5_S,
2203 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2204 AR_AN_RF5G1_CH0_DB5,
2205 AR_AN_RF5G1_CH0_DB5_S,
2207 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2208 AR_AN_RF5G1_CH1_OB5,
2209 AR_AN_RF5G1_CH1_OB5_S,
2211 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2212 AR_AN_RF5G1_CH1_DB5,
2213 AR_AN_RF5G1_CH1_DB5_S,
2216 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2217 AR_AN_TOP2_XPABIAS_LVL,
2218 AR_AN_TOP2_XPABIAS_LVL_S,
2219 pModal->xpaBiasLvl);
2220 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2221 AR_AN_TOP2_LOCALBIAS,
2222 AR_AN_TOP2_LOCALBIAS_S,
2223 pModal->local_bias);
2224 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
2225 pModal->force_xpaon);
2226 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
2227 pModal->force_xpaon);
2230 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2231 pModal->switchSettling);
2232 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2233 pModal->adcDesiredSize);
2235 if (!AR_SREV_9280_10_OR_LATER(ah))
2236 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
2237 AR_PHY_DESIRED_SZ_PGA,
2238 pModal->pgaDesiredSize);
2240 REG_WRITE(ah, AR_PHY_RF_CTL4,
2241 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
2242 | SM(pModal->txEndToXpaOff,
2243 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
2244 | SM(pModal->txFrameToXpaOn,
2245 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
2246 | SM(pModal->txFrameToXpaOn,
2247 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2249 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2250 pModal->txEndToRxOn);
2251 if (AR_SREV_9280_10_OR_LATER(ah)) {
2252 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2254 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
2255 AR_PHY_EXT_CCA0_THRESH62,
2258 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
2260 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
2261 AR_PHY_EXT_CCA_THRESH62,
2265 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
2266 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
2267 AR_PHY_TX_END_DATA_START,
2268 pModal->txFrameToDataStart);
2269 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2270 pModal->txFrameToPaOn);
2273 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
2274 if (IS_CHAN_HT40(chan))
2275 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2276 AR_PHY_SETTLING_SWITCH,
2277 pModal->swSettleHt40);
2280 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
2281 if (IS_CHAN_HT20(chan))
2282 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
2283 eep->baseEepHeader.dacLpMode);
2284 else if (eep->baseEepHeader.dacHiPwrMode_5G)
2285 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
2287 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
2288 eep->baseEepHeader.dacLpMode);
2290 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
2291 pModal->miscBits >> 2);
2295 #undef AR5416_VER_MASK
2298 static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hw *ah,
2299 struct ath9k_channel *chan)
2301 struct modal_eep_4k_header *pModal;
2302 struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
2305 u8 ob[5], db1[5], db2[5];
2306 u8 ant_div_control1, ant_div_control2;
2310 pModal = &eep->modalHeader;
2312 txRxAttenLocal = 23;
2314 REG_WRITE(ah, AR_PHY_SWITCH_COM,
2315 ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
2318 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2319 pModal->antCtrlChain[0]);
2321 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2322 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
2323 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2324 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2325 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2326 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2328 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2329 AR5416_EEP_MINOR_VER_3) {
2330 txRxAttenLocal = pModal->txRxAttenCh[0];
2331 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2332 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
2333 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2334 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
2335 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2336 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2337 pModal->xatten2Margin[0]);
2338 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2339 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
2342 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2343 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
2344 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2345 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
2347 if (AR_SREV_9285_11(ah))
2348 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
2350 /* Initialize Ant Diversity settings from EEPROM */
2351 if (pModal->version == 3) {
2352 ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
2353 ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
2354 regVal = REG_READ(ah, 0x99ac);
2355 regVal &= (~(0x7f000000));
2356 regVal |= ((ant_div_control1 & 0x1) << 24);
2357 regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
2358 regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
2359 regVal |= ((ant_div_control2 & 0x3) << 25);
2360 regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
2361 REG_WRITE(ah, 0x99ac, regVal);
2362 regVal = REG_READ(ah, 0x99ac);
2363 regVal = REG_READ(ah, 0xa208);
2364 regVal &= (~(0x1 << 13));
2365 regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
2366 REG_WRITE(ah, 0xa208, regVal);
2367 regVal = REG_READ(ah, 0xa208);
2370 if (pModal->version >= 2) {
2371 ob[0] = (pModal->ob_01 & 0xf);
2372 ob[1] = (pModal->ob_01 >> 4) & 0xf;
2373 ob[2] = (pModal->ob_234 & 0xf);
2374 ob[3] = ((pModal->ob_234 >> 4) & 0xf);
2375 ob[4] = ((pModal->ob_234 >> 8) & 0xf);
2377 db1[0] = (pModal->db1_01 & 0xf);
2378 db1[1] = ((pModal->db1_01 >> 4) & 0xf);
2379 db1[2] = (pModal->db1_234 & 0xf);
2380 db1[3] = ((pModal->db1_234 >> 4) & 0xf);
2381 db1[4] = ((pModal->db1_234 >> 8) & 0xf);
2383 db2[0] = (pModal->db2_01 & 0xf);
2384 db2[1] = ((pModal->db2_01 >> 4) & 0xf);
2385 db2[2] = (pModal->db2_234 & 0xf);
2386 db2[3] = ((pModal->db2_234 >> 4) & 0xf);
2387 db2[4] = ((pModal->db2_234 >> 8) & 0xf);
2389 } else if (pModal->version == 1) {
2391 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2392 "EEPROM Model version is set to 1 \n");
2393 ob[0] = (pModal->ob_01 & 0xf);
2394 ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
2395 db1[0] = (pModal->db1_01 & 0xf);
2396 db1[1] = db1[2] = db1[3] =
2397 db1[4] = ((pModal->db1_01 >> 4) & 0xf);
2398 db2[0] = (pModal->db2_01 & 0xf);
2399 db2[1] = db2[2] = db2[3] =
2400 db2[4] = ((pModal->db2_01 >> 4) & 0xf);
2403 for (i = 0; i < 5; i++) {
2404 ob[i] = pModal->ob_01;
2405 db1[i] = pModal->db1_01;
2406 db2[i] = pModal->db1_01;
2410 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2411 AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
2412 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2413 AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
2414 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2415 AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
2416 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2417 AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
2418 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2419 AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
2421 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2422 AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
2423 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2424 AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
2425 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2426 AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
2427 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2428 AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
2429 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2430 AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
2432 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2433 AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
2434 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2435 AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
2436 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2437 AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
2438 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2439 AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
2440 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2441 AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
2444 if (AR_SREV_9285_11(ah))
2445 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
2447 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2448 pModal->switchSettling);
2449 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2450 pModal->adcDesiredSize);
2452 REG_WRITE(ah, AR_PHY_RF_CTL4,
2453 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
2454 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
2455 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
2456 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2458 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2459 pModal->txEndToRxOn);
2460 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2462 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
2465 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2466 AR5416_EEP_MINOR_VER_2) {
2467 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
2468 pModal->txFrameToDataStart);
2469 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2470 pModal->txFrameToPaOn);
2473 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2474 AR5416_EEP_MINOR_VER_3) {
2475 if (IS_CHAN_HT40(chan))
2476 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2477 AR_PHY_SETTLING_SWITCH,
2478 pModal->swSettleHt40);
2484 static bool (*ath9k_eeprom_set_board_values[])(struct ath_hw *,
2485 struct ath9k_channel *) = {
2486 ath9k_hw_eeprom_set_def_board_values,
2487 ath9k_hw_eeprom_set_4k_board_values
2490 bool ath9k_hw_eeprom_set_board_values(struct ath_hw *ah,
2491 struct ath9k_channel *chan)
2493 return ath9k_eeprom_set_board_values[ah->ah_eep_map](ah, chan);
2496 static u16 ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hw *ah,
2497 struct ath9k_channel *chan)
2499 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
2500 struct modal_eep_header *pModal =
2501 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2503 return pModal->antCtrlCommon & 0xFFFF;
2506 static u16 ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hw *ah,
2507 struct ath9k_channel *chan)
2509 struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
2510 struct modal_eep_4k_header *pModal = &eep->modalHeader;
2512 return pModal->antCtrlCommon & 0xFFFF;
2515 static u16 (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hw *,
2516 struct ath9k_channel *) = {
2517 ath9k_hw_get_def_eeprom_antenna_cfg,
2518 ath9k_hw_get_4k_eeprom_antenna_cfg
2521 u16 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hw *ah,
2522 struct ath9k_channel *chan)
2524 return ath9k_get_eeprom_antenna_cfg[ah->ah_eep_map](ah, chan);
2527 static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hw *ah,
2528 enum ieee80211_band freq_band)
2533 static u8 ath9k_hw_get_def_num_ant_config(struct ath_hw *ah,
2534 enum ieee80211_band freq_band)
2536 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
2537 struct modal_eep_header *pModal =
2538 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
2539 struct base_eep_header *pBase = &eep->baseEepHeader;
2544 if (pBase->version >= 0x0E0D)
2545 if (pModal->useAnt1)
2546 num_ant_config += 1;
2548 return num_ant_config;
2551 static u8 (*ath9k_get_num_ant_config[])(struct ath_hw *,
2552 enum ieee80211_band) = {
2553 ath9k_hw_get_def_num_ant_config,
2554 ath9k_hw_get_4k_num_ant_config
2557 u8 ath9k_hw_get_num_ant_config(struct ath_hw *ah,
2558 enum ieee80211_band freq_band)
2560 return ath9k_get_num_ant_config[ah->ah_eep_map](ah, freq_band);
2563 u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hw *ah, u16 i, bool is2GHz)
2565 #define EEP_MAP4K_SPURCHAN \
2566 (ah->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
2567 #define EEP_DEF_SPURCHAN \
2568 (ah->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
2569 u16 spur_val = AR_NO_SPUR;
2571 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2572 "Getting spur idx %d is2Ghz. %d val %x\n",
2573 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
2575 switch (ah->ah_config.spurmode) {
2578 case SPUR_ENABLE_IOCTL:
2579 spur_val = ah->ah_config.spurchans[i][is2GHz];
2580 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2581 "Getting spur val from new loc. %d\n", spur_val);
2583 case SPUR_ENABLE_EEPROM:
2584 if (ah->ah_eep_map == EEP_MAP_4KBITS)
2585 spur_val = EEP_MAP4K_SPURCHAN;
2587 spur_val = EEP_DEF_SPURCHAN;
2593 #undef EEP_DEF_SPURCHAN
2594 #undef EEP_MAP4K_SPURCHAN
2597 static u32 ath9k_hw_get_eeprom_4k(struct ath_hw *ah,
2598 enum eeprom_param param)
2600 struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
2601 struct modal_eep_4k_header *pModal = &eep->modalHeader;
2602 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
2605 case EEP_NFTHRESH_2:
2606 return pModal[1].noiseFloorThreshCh[0];
2607 case AR_EEPROM_MAC(0):
2608 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2609 case AR_EEPROM_MAC(1):
2610 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2611 case AR_EEPROM_MAC(2):
2612 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2614 return pBase->regDmn[0];
2616 return pBase->regDmn[1];
2618 return pBase->deviceCap;
2620 return pBase->opCapFlags;
2622 return pBase->rfSilent;
2624 return pModal->ob_01;
2626 return pModal->db1_01;
2628 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
2630 return pBase->txMask;
2632 return pBase->rxMask;
2638 static u32 ath9k_hw_get_eeprom_def(struct ath_hw *ah,
2639 enum eeprom_param param)
2641 #define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK)
2642 struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
2643 struct modal_eep_header *pModal = eep->modalHeader;
2644 struct base_eep_header *pBase = &eep->baseEepHeader;
2647 case EEP_NFTHRESH_5:
2648 return pModal[0].noiseFloorThreshCh[0];
2649 case EEP_NFTHRESH_2:
2650 return pModal[1].noiseFloorThreshCh[0];
2651 case AR_EEPROM_MAC(0):
2652 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2653 case AR_EEPROM_MAC(1):
2654 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2655 case AR_EEPROM_MAC(2):
2656 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2658 return pBase->regDmn[0];
2660 return pBase->regDmn[1];
2662 return pBase->deviceCap;
2664 return pBase->opCapFlags;
2666 return pBase->rfSilent;
2668 return pModal[0].ob;
2670 return pModal[0].db;
2672 return pModal[1].ob;
2674 return pModal[1].db;
2676 return AR5416_VER_MASK;
2678 return pBase->txMask;
2680 return pBase->rxMask;
2681 case EEP_RXGAIN_TYPE:
2682 return pBase->rxGainType;
2683 case EEP_TXGAIN_TYPE:
2684 return pBase->txGainType;
2685 case EEP_DAC_HPWR_5G:
2686 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
2687 return pBase->dacHiPwrMode_5G;
2693 #undef AR5416_VER_MASK
2696 static u32 (*ath9k_get_eeprom[])(struct ath_hw *, enum eeprom_param) = {
2697 ath9k_hw_get_eeprom_def,
2698 ath9k_hw_get_eeprom_4k
2701 u32 ath9k_hw_get_eeprom(struct ath_hw *ah,
2702 enum eeprom_param param)
2704 return ath9k_get_eeprom[ah->ah_eep_map](ah, param);
2707 int ath9k_hw_eeprom_attach(struct ath_hw *ah)
2711 if (AR_SREV_9285(ah))
2712 ah->ah_eep_map = EEP_MAP_4KBITS;
2714 ah->ah_eep_map = EEP_MAP_DEFAULT;
2716 if (!ath9k_hw_fill_eeprom(ah))
2719 status = ath9k_hw_check_eeprom(ah);