Merge branch 'linus' into x86/urgent
[linux-2.6] / arch / blackfin / kernel / time-ts.c
1 /*
2  * linux/arch/kernel/time-ts.c
3  *
4  * Based on arm clockevents implementation and old bfin time tick.
5  *
6  * Copyright(C) 2008, GeoTechnologies, Vitja Makarov
7  *
8  * This code is licenced under the GPL version 2. For details see
9  * kernel-base/COPYING.
10  */
11 #include <linux/module.h>
12 #include <linux/profile.h>
13 #include <linux/interrupt.h>
14 #include <linux/time.h>
15 #include <linux/timex.h>
16 #include <linux/irq.h>
17 #include <linux/clocksource.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpufreq.h>
20
21 #include <asm/blackfin.h>
22 #include <asm/time.h>
23 #include <asm/gptimers.h>
24
25 #if defined(CONFIG_CYCLES_CLOCKSOURCE)
26
27 /* Accelerators for sched_clock()
28  * convert from cycles(64bits) => nanoseconds (64bits)
29  *  basic equation:
30  *              ns = cycles / (freq / ns_per_sec)
31  *              ns = cycles * (ns_per_sec / freq)
32  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
33  *              ns = cycles * (10^6 / cpu_khz)
34  *
35  *      Then we use scaling math (suggested by george@mvista.com) to get:
36  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
37  *              ns = cycles * cyc2ns_scale / SC
38  *
39  *      And since SC is a constant power of two, we can convert the div
40  *  into a shift.
41  *
42  *  We can use khz divisor instead of mhz to keep a better precision, since
43  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
44  *  (mathieu.desnoyers@polymtl.ca)
45  *
46  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
47  */
48
49 static unsigned long cyc2ns_scale;
50 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
51
52 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
53 {
54         cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR) / cpu_khz;
55 }
56
57 static inline unsigned long long cycles_2_ns(cycle_t cyc)
58 {
59         return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
60 }
61
62 static cycle_t bfin_read_cycles(struct clocksource *cs)
63 {
64         return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
65 }
66
67 static struct clocksource bfin_cs_cycles = {
68         .name           = "bfin_cs_cycles",
69         .rating         = 350,
70         .read           = bfin_read_cycles,
71         .mask           = CLOCKSOURCE_MASK(64),
72         .shift          = 22,
73         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
74 };
75
76 unsigned long long sched_clock(void)
77 {
78         return cycles_2_ns(bfin_read_cycles(&bfin_cs_cycles));
79 }
80
81 static int __init bfin_cs_cycles_init(void)
82 {
83         set_cyc2ns_scale(get_cclk() / 1000);
84
85         bfin_cs_cycles.mult = \
86                 clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
87
88         if (clocksource_register(&bfin_cs_cycles))
89                 panic("failed to register clocksource");
90
91         return 0;
92 }
93 #else
94 # define bfin_cs_cycles_init()
95 #endif
96
97 #ifdef CONFIG_GPTMR0_CLOCKSOURCE
98
99 void __init setup_gptimer0(void)
100 {
101         disable_gptimers(TIMER0bit);
102
103         set_gptimer_config(TIMER0_id, \
104                 TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
105         set_gptimer_period(TIMER0_id, -1);
106         set_gptimer_pwidth(TIMER0_id, -2);
107         SSYNC();
108         enable_gptimers(TIMER0bit);
109 }
110
111 static cycle_t bfin_read_gptimer0(void)
112 {
113         return bfin_read_TIMER0_COUNTER();
114 }
115
116 static struct clocksource bfin_cs_gptimer0 = {
117         .name           = "bfin_cs_gptimer0",
118         .rating         = 400,
119         .read           = bfin_read_gptimer0,
120         .mask           = CLOCKSOURCE_MASK(32),
121         .shift          = 22,
122         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
123 };
124
125 static int __init bfin_cs_gptimer0_init(void)
126 {
127         setup_gptimer0();
128
129         bfin_cs_gptimer0.mult = \
130                 clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
131
132         if (clocksource_register(&bfin_cs_gptimer0))
133                 panic("failed to register clocksource");
134
135         return 0;
136 }
137 #else
138 # define bfin_cs_gptimer0_init()
139 #endif
140
141 #ifdef CONFIG_CORE_TIMER_IRQ_L1
142 __attribute__((l1_text))
143 #endif
144 irqreturn_t timer_interrupt(int irq, void *dev_id);
145
146 static int bfin_timer_set_next_event(unsigned long, \
147                 struct clock_event_device *);
148
149 static void bfin_timer_set_mode(enum clock_event_mode, \
150                 struct clock_event_device *);
151
152 static struct clock_event_device clockevent_bfin = {
153 #if defined(CONFIG_TICKSOURCE_GPTMR0)
154         .name           = "bfin_gptimer0",
155         .rating         = 300,
156         .irq            = IRQ_TIMER0,
157 #else
158         .name           = "bfin_core_timer",
159         .rating         = 350,
160         .irq            = IRQ_CORETMR,
161 #endif
162         .shift          = 32,
163         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
164         .set_next_event = bfin_timer_set_next_event,
165         .set_mode       = bfin_timer_set_mode,
166 };
167
168 static struct irqaction bfin_timer_irq = {
169 #if defined(CONFIG_TICKSOURCE_GPTMR0)
170         .name           = "Blackfin GPTimer0",
171 #else
172         .name           = "Blackfin CoreTimer",
173 #endif
174         .flags          = IRQF_DISABLED | IRQF_TIMER | \
175                           IRQF_IRQPOLL | IRQF_PERCPU,
176         .handler        = timer_interrupt,
177         .dev_id         = &clockevent_bfin,
178 };
179
180 #if defined(CONFIG_TICKSOURCE_GPTMR0)
181 static int bfin_timer_set_next_event(unsigned long cycles,
182                                      struct clock_event_device *evt)
183 {
184         disable_gptimers(TIMER0bit);
185
186         /* it starts counting three SCLK cycles after the TIMENx bit is set */
187         set_gptimer_pwidth(TIMER0_id, cycles - 3);
188         enable_gptimers(TIMER0bit);
189         return 0;
190 }
191
192 static void bfin_timer_set_mode(enum clock_event_mode mode,
193                                 struct clock_event_device *evt)
194 {
195         switch (mode) {
196         case CLOCK_EVT_MODE_PERIODIC: {
197                 set_gptimer_config(TIMER0_id, \
198                         TIMER_OUT_DIS | TIMER_IRQ_ENA | \
199                         TIMER_PERIOD_CNT | TIMER_MODE_PWM);
200                 set_gptimer_period(TIMER0_id, get_sclk() / HZ);
201                 set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
202                 enable_gptimers(TIMER0bit);
203                 break;
204         }
205         case CLOCK_EVT_MODE_ONESHOT:
206                 disable_gptimers(TIMER0bit);
207                 set_gptimer_config(TIMER0_id, \
208                         TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
209                 set_gptimer_period(TIMER0_id, 0);
210                 break;
211         case CLOCK_EVT_MODE_UNUSED:
212         case CLOCK_EVT_MODE_SHUTDOWN:
213                 disable_gptimers(TIMER0bit);
214                 break;
215         case CLOCK_EVT_MODE_RESUME:
216                 break;
217         }
218 }
219
220 static void bfin_timer_ack(void)
221 {
222         set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
223 }
224
225 static void __init bfin_timer_init(void)
226 {
227         disable_gptimers(TIMER0bit);
228 }
229
230 static unsigned long  __init bfin_clockevent_check(void)
231 {
232         setup_irq(IRQ_TIMER0, &bfin_timer_irq);
233         return get_sclk();
234 }
235
236 #else /* CONFIG_TICKSOURCE_CORETMR */
237
238 static int bfin_timer_set_next_event(unsigned long cycles,
239                                 struct clock_event_device *evt)
240 {
241         bfin_write_TCNTL(TMPWR);
242         CSYNC();
243         bfin_write_TCOUNT(cycles);
244         CSYNC();
245         bfin_write_TCNTL(TMPWR | TMREN);
246         return 0;
247 }
248
249 static void bfin_timer_set_mode(enum clock_event_mode mode,
250                                 struct clock_event_device *evt)
251 {
252         switch (mode) {
253         case CLOCK_EVT_MODE_PERIODIC: {
254                 unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
255                 bfin_write_TCNTL(TMPWR);
256                 CSYNC();
257                 bfin_write_TSCALE(TIME_SCALE - 1);
258                 bfin_write_TPERIOD(tcount);
259                 bfin_write_TCOUNT(tcount);
260                 CSYNC();
261                 bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
262                 break;
263         }
264         case CLOCK_EVT_MODE_ONESHOT:
265                 bfin_write_TCNTL(TMPWR);
266                 CSYNC();
267                 bfin_write_TSCALE(TIME_SCALE - 1);
268                 bfin_write_TPERIOD(0);
269                 bfin_write_TCOUNT(0);
270                 break;
271         case CLOCK_EVT_MODE_UNUSED:
272         case CLOCK_EVT_MODE_SHUTDOWN:
273                 bfin_write_TCNTL(0);
274                 CSYNC();
275                 break;
276         case CLOCK_EVT_MODE_RESUME:
277                 break;
278         }
279 }
280
281 static void bfin_timer_ack(void)
282 {
283 }
284
285 static void __init bfin_timer_init(void)
286 {
287         /* power up the timer, but don't enable it just yet */
288         bfin_write_TCNTL(TMPWR);
289         CSYNC();
290
291         /*
292          * the TSCALE prescaler counter.
293          */
294         bfin_write_TSCALE(TIME_SCALE - 1);
295         bfin_write_TPERIOD(0);
296         bfin_write_TCOUNT(0);
297
298         CSYNC();
299 }
300
301 static unsigned long  __init bfin_clockevent_check(void)
302 {
303         setup_irq(IRQ_CORETMR, &bfin_timer_irq);
304         return get_cclk() / TIME_SCALE;
305 }
306
307 void __init setup_core_timer(void)
308 {
309         bfin_timer_init();
310         bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL);
311 }
312 #endif /* CONFIG_TICKSOURCE_GPTMR0 */
313
314 /*
315  * timer_interrupt() needs to keep up the real-time clock,
316  * as well as call the "do_timer()" routine every clocktick
317  */
318 irqreturn_t timer_interrupt(int irq, void *dev_id)
319 {
320         struct clock_event_device *evt = dev_id;
321         smp_mb();
322         evt->event_handler(evt);
323         bfin_timer_ack();
324         return IRQ_HANDLED;
325 }
326
327 static int __init bfin_clockevent_init(void)
328 {
329         unsigned long timer_clk;
330
331         timer_clk = bfin_clockevent_check();
332
333         bfin_timer_init();
334
335         clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift);
336         clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin);
337         clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin);
338         clockevent_bfin.cpumask = cpumask_of(0);
339         clockevents_register_device(&clockevent_bfin);
340
341         return 0;
342 }
343
344 void __init time_init(void)
345 {
346         time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
347
348 #ifdef CONFIG_RTC_DRV_BFIN
349         /* [#2663] hack to filter junk RTC values that would cause
350          * userspace to have to deal with time values greater than
351          * 2^31 seconds (which uClibc cannot cope with yet)
352          */
353         if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
354                 printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
355                 bfin_write_RTC_STAT(0);
356         }
357 #endif
358
359         /* Initialize xtime. From now on, xtime is updated with timer interrupts */
360         xtime.tv_sec = secs_since_1970;
361         xtime.tv_nsec = 0;
362         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
363
364         bfin_cs_cycles_init();
365         bfin_cs_gptimer0_init();
366         bfin_clockevent_init();
367 }