1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
48 #include <asm/uaccess.h>
49 #include <asm/unaligned.h>
51 /* These identify the driver base version and may not be removed. */
52 static char version[] =
53 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
55 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
56 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_VERSION);
60 static int debug = -1;
61 module_param (debug, int, 0);
62 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
66 || defined(CONFIG_SPARC) || defined(__ia64__) \
67 || defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
70 static int rx_copybreak = 100;
72 module_param (rx_copybreak, int, 0);
73 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
75 #define PFX DRV_NAME ": "
77 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
85 #define DE_RX_RING_SIZE 64
86 #define DE_TX_RING_SIZE 64
87 #define DE_RING_BYTES \
88 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
89 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
90 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
91 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
92 #define TX_BUFFS_AVAIL(CP) \
93 (((CP)->tx_tail <= (CP)->tx_head) ? \
94 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
95 (CP)->tx_tail - (CP)->tx_head - 1)
97 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
100 #define DE_SETUP_SKB ((struct sk_buff *) 1)
101 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
102 #define DE_SETUP_FRAME_WORDS 96
103 #define DE_EEPROM_WORDS 256
104 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
105 #define DE_MAX_MEDIA 5
107 #define DE_MEDIA_TP_AUTO 0
108 #define DE_MEDIA_BNC 1
109 #define DE_MEDIA_AUI 2
110 #define DE_MEDIA_TP 3
111 #define DE_MEDIA_TP_FD 4
112 #define DE_MEDIA_INVALID DE_MAX_MEDIA
113 #define DE_MEDIA_FIRST 0
114 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
115 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
117 #define DE_TIMER_LINK (60 * HZ)
118 #define DE_TIMER_NO_LINK (5 * HZ)
120 #define DE_NUM_REGS 16
121 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
122 #define DE_REGS_VER 1
124 /* Time in jiffies before concluding the transmitter is hung. */
125 #define TX_TIMEOUT (6*HZ)
127 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
128 to support a pre-NWay full-duplex signaling mechanism using short frames.
129 No one knows what it should be, but if left at its default value some
130 10base2(!) packets trigger a full-duplex-request interrupt. */
131 #define FULL_DUPLEX_MAGIC 0x6969
154 CacheAlign16 = 0x00008000,
155 BurstLen4 = 0x00000400,
158 NormalTxPoll = (1 << 0),
159 NormalRxPoll = (1 << 0),
161 /* Tx/Rx descriptor status bits */
164 RxErrLong = (1 << 7),
166 RxErrFIFO = (1 << 0),
167 RxErrRunt = (1 << 11),
168 RxErrFrame = (1 << 14),
170 FirstFrag = (1 << 29),
171 LastFrag = (1 << 30),
173 TxFIFOUnder = (1 << 1),
174 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
177 TxJabber = (1 << 14),
178 SetupFrame = (1 << 27),
189 TxState = (1 << 22) | (1 << 21) | (1 << 20),
190 RxState = (1 << 19) | (1 << 18) | (1 << 17),
191 LinkFail = (1 << 12),
193 RxStopped = (1 << 8),
194 TxStopped = (1 << 1),
197 TxEnable = (1 << 13),
199 RxTx = TxEnable | RxEnable,
200 FullDuplex = (1 << 9),
201 AcceptAllMulticast = (1 << 7),
202 AcceptAllPhys = (1 << 6),
204 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
205 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
208 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
209 EE_CS = 0x01, /* EEPROM chip select. */
210 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
213 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
214 EE_ENB = (0x4800 | EE_CS),
216 /* The EEPROM commands include the alway-set leading bit. */
220 RxMissedOver = (1 << 16),
221 RxMissedMask = 0xffff,
223 /* SROM-related bits */
225 MediaBlockMask = 0x3f,
226 MediaCustomCSRs = (1 << 6),
229 PM_Sleep = (1 << 31),
230 PM_Snooze = (1 << 30),
231 PM_Mask = PM_Sleep | PM_Snooze,
234 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
235 NWayRestart = (1 << 12),
236 NonselPortActive = (1 << 9),
237 LinkFailStatus = (1 << 2),
238 NetCxnErr = (1 << 1),
241 static const u32 de_intr_mask =
242 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
243 LinkPass | LinkFail | PciErr;
246 * Set the programmable burst length to 4 longwords for all:
247 * DMA errors result without these values. Cache align 16 long.
249 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
251 struct de_srom_media_block {
256 } __attribute__((packed));
258 struct de_srom_info_leaf {
262 } __attribute__((packed));
272 u16 type; /* DE_MEDIA_xxx */
289 struct net_device *dev;
292 struct de_desc *rx_ring;
293 struct de_desc *tx_ring;
294 struct ring_info tx_skb[DE_TX_RING_SIZE];
295 struct ring_info rx_skb[DE_RX_RING_SIZE];
301 struct net_device_stats net_stats;
303 struct pci_dev *pdev;
305 u16 setup_frame[DE_SETUP_FRAME_WORDS];
310 struct media_info media[DE_MAX_MEDIA];
311 struct timer_list media_timer;
315 unsigned de21040 : 1;
316 unsigned media_lock : 1;
320 static void de_set_rx_mode (struct net_device *dev);
321 static void de_tx (struct de_private *de);
322 static void de_clean_rings (struct de_private *de);
323 static void de_media_interrupt (struct de_private *de, u32 status);
324 static void de21040_media_timer (unsigned long data);
325 static void de21041_media_timer (unsigned long data);
326 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
329 static struct pci_device_id de_pci_tbl[] = {
330 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
331 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
336 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
338 static const char * const media_name[DE_MAX_MEDIA] = {
346 /* 21040 transceiver register settings:
347 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
348 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
349 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
350 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
352 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
353 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
354 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
355 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
358 #define dr32(reg) readl(de->regs + (reg))
359 #define dw32(reg,val) writel((val), de->regs + (reg))
362 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
365 if (netif_msg_rx_err (de))
367 "%s: rx err, slot %d status 0x%x len %d\n",
368 de->dev->name, rx_tail, status, len);
370 if ((status & 0x38000300) != 0x0300) {
371 /* Ingore earlier buffers. */
372 if ((status & 0xffff) != 0x7fff) {
373 if (netif_msg_rx_err(de))
374 printk(KERN_WARNING "%s: Oversized Ethernet frame "
375 "spanned multiple buffers, status %8.8x!\n",
376 de->dev->name, status);
377 de->net_stats.rx_length_errors++;
379 } else if (status & RxError) {
380 /* There was a fatal error. */
381 de->net_stats.rx_errors++; /* end of a packet.*/
382 if (status & 0x0890) de->net_stats.rx_length_errors++;
383 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
384 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
388 static void de_rx (struct de_private *de)
390 unsigned rx_tail = de->rx_tail;
391 unsigned rx_work = DE_RX_RING_SIZE;
398 struct sk_buff *skb, *copy_skb;
399 unsigned copying_skb, buflen;
401 skb = de->rx_skb[rx_tail].skb;
404 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
405 if (status & DescOwn)
408 len = ((status >> 16) & 0x7ff) - 4;
409 mapping = de->rx_skb[rx_tail].mapping;
411 if (unlikely(drop)) {
412 de->net_stats.rx_dropped++;
416 if (unlikely((status & 0x38008300) != 0x0300)) {
417 de_rx_err_acct(de, rx_tail, status, len);
421 copying_skb = (len <= rx_copybreak);
423 if (unlikely(netif_msg_rx_status(de)))
424 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
425 de->dev->name, rx_tail, status, len,
428 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
429 copy_skb = dev_alloc_skb (buflen);
430 if (unlikely(!copy_skb)) {
431 de->net_stats.rx_dropped++;
438 pci_unmap_single(de->pdev, mapping,
439 buflen, PCI_DMA_FROMDEVICE);
443 de->rx_skb[rx_tail].mapping =
444 pci_map_single(de->pdev, copy_skb->data,
445 buflen, PCI_DMA_FROMDEVICE);
446 de->rx_skb[rx_tail].skb = copy_skb;
448 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
449 skb_reserve(copy_skb, RX_OFFSET);
450 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
452 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
454 /* We'll reuse the original ring buffer. */
458 skb->protocol = eth_type_trans (skb, de->dev);
460 de->net_stats.rx_packets++;
461 de->net_stats.rx_bytes += skb->len;
463 if (rc == NET_RX_DROP)
467 if (rx_tail == (DE_RX_RING_SIZE - 1))
468 de->rx_ring[rx_tail].opts2 =
469 cpu_to_le32(RingEnd | de->rx_buf_sz);
471 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
472 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
474 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
475 rx_tail = NEXT_RX(rx_tail);
479 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
481 de->rx_tail = rx_tail;
484 static irqreturn_t de_interrupt (int irq, void *dev_instance)
486 struct net_device *dev = dev_instance;
487 struct de_private *de = netdev_priv(dev);
490 status = dr32(MacStatus);
491 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
494 if (netif_msg_intr(de))
495 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
496 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
498 dw32(MacStatus, status);
500 if (status & (RxIntr | RxEmpty)) {
502 if (status & RxEmpty)
503 dw32(RxPoll, NormalRxPoll);
506 spin_lock(&de->lock);
508 if (status & (TxIntr | TxEmpty))
511 if (status & (LinkPass | LinkFail))
512 de_media_interrupt(de, status);
514 spin_unlock(&de->lock);
516 if (status & PciErr) {
519 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
520 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
521 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
522 dev->name, status, pci_status);
528 static void de_tx (struct de_private *de)
530 unsigned tx_head = de->tx_head;
531 unsigned tx_tail = de->tx_tail;
533 while (tx_tail != tx_head) {
538 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
539 if (status & DescOwn)
542 skb = de->tx_skb[tx_tail].skb;
544 if (unlikely(skb == DE_DUMMY_SKB))
547 if (unlikely(skb == DE_SETUP_SKB)) {
548 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
549 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
553 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
554 skb->len, PCI_DMA_TODEVICE);
556 if (status & LastFrag) {
557 if (status & TxError) {
558 if (netif_msg_tx_err(de))
559 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
560 de->dev->name, status);
561 de->net_stats.tx_errors++;
563 de->net_stats.tx_window_errors++;
564 if (status & TxMaxCol)
565 de->net_stats.tx_aborted_errors++;
566 if (status & TxLinkFail)
567 de->net_stats.tx_carrier_errors++;
568 if (status & TxFIFOUnder)
569 de->net_stats.tx_fifo_errors++;
571 de->net_stats.tx_packets++;
572 de->net_stats.tx_bytes += skb->len;
573 if (netif_msg_tx_done(de))
574 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
576 dev_kfree_skb_irq(skb);
580 de->tx_skb[tx_tail].skb = NULL;
582 tx_tail = NEXT_TX(tx_tail);
585 de->tx_tail = tx_tail;
587 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
588 netif_wake_queue(de->dev);
591 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
593 struct de_private *de = netdev_priv(dev);
594 unsigned int entry, tx_free;
595 u32 mapping, len, flags = FirstFrag | LastFrag;
598 spin_lock_irq(&de->lock);
600 tx_free = TX_BUFFS_AVAIL(de);
602 netif_stop_queue(dev);
603 spin_unlock_irq(&de->lock);
610 txd = &de->tx_ring[entry];
613 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
614 if (entry == (DE_TX_RING_SIZE - 1))
616 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
619 txd->opts2 = cpu_to_le32(flags);
620 txd->addr1 = cpu_to_le32(mapping);
622 de->tx_skb[entry].skb = skb;
623 de->tx_skb[entry].mapping = mapping;
626 txd->opts1 = cpu_to_le32(DescOwn);
629 de->tx_head = NEXT_TX(entry);
630 if (netif_msg_tx_queued(de))
631 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
632 dev->name, entry, skb->len);
635 netif_stop_queue(dev);
637 spin_unlock_irq(&de->lock);
639 /* Trigger an immediate transmit demand. */
640 dw32(TxPoll, NormalTxPoll);
641 dev->trans_start = jiffies;
646 /* Set or clear the multicast filter for this adaptor.
647 Note that we only use exclusion around actually queueing the
648 new frame, not around filling de->setup_frame. This is non-deterministic
649 when re-entered but still correct. */
652 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
654 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
656 struct de_private *de = netdev_priv(dev);
658 struct dev_mc_list *mclist;
662 memset(hash_table, 0, sizeof(hash_table));
663 set_bit_le(255, hash_table); /* Broadcast entry */
664 /* This should work on big-endian machines as well. */
665 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
666 i++, mclist = mclist->next) {
667 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
669 set_bit_le(index, hash_table);
671 for (i = 0; i < 32; i++) {
672 *setup_frm++ = hash_table[i];
673 *setup_frm++ = hash_table[i];
675 setup_frm = &de->setup_frame[13*6];
678 /* Fill the final entry with our physical address. */
679 eaddrs = (u16 *)dev->dev_addr;
680 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
681 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
682 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
685 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
687 struct de_private *de = netdev_priv(dev);
688 struct dev_mc_list *mclist;
692 /* We have <= 14 addresses so we can use the wonderful
693 16 address perfect filtering of the Tulip. */
694 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
695 i++, mclist = mclist->next) {
696 eaddrs = (u16 *)mclist->dmi_addr;
697 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
698 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
699 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
701 /* Fill the unused entries with the broadcast address. */
702 memset(setup_frm, 0xff, (15-i)*12);
703 setup_frm = &de->setup_frame[15*6];
705 /* Fill the final entry with our physical address. */
706 eaddrs = (u16 *)dev->dev_addr;
707 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
708 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
709 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
713 static void __de_set_rx_mode (struct net_device *dev)
715 struct de_private *de = netdev_priv(dev);
720 struct de_desc *dummy_txd = NULL;
722 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
724 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
725 macmode |= AcceptAllMulticast | AcceptAllPhys;
729 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
730 /* Too many to filter well -- accept all multicasts. */
731 macmode |= AcceptAllMulticast;
735 /* Note that only the low-address shortword of setup_frame is valid!
736 The values are doubled for big-endian architectures. */
737 if (dev->mc_count > 14) /* Must use a multicast hash table. */
738 build_setup_frame_hash (de->setup_frame, dev);
740 build_setup_frame_perfect (de->setup_frame, dev);
743 * Now add this frame to the Tx list.
748 /* Avoid a chip errata by prefixing a dummy entry. */
750 de->tx_skb[entry].skb = DE_DUMMY_SKB;
752 dummy_txd = &de->tx_ring[entry];
753 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
754 cpu_to_le32(RingEnd) : 0;
755 dummy_txd->addr1 = 0;
757 /* Must set DescOwned later to avoid race with chip */
759 entry = NEXT_TX(entry);
762 de->tx_skb[entry].skb = DE_SETUP_SKB;
763 de->tx_skb[entry].mapping = mapping =
764 pci_map_single (de->pdev, de->setup_frame,
765 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
767 /* Put the setup frame on the Tx list. */
768 txd = &de->tx_ring[entry];
769 if (entry == (DE_TX_RING_SIZE - 1))
770 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
772 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
773 txd->addr1 = cpu_to_le32(mapping);
776 txd->opts1 = cpu_to_le32(DescOwn);
780 dummy_txd->opts1 = cpu_to_le32(DescOwn);
784 de->tx_head = NEXT_TX(entry);
786 if (TX_BUFFS_AVAIL(de) == 0)
787 netif_stop_queue(dev);
789 /* Trigger an immediate transmit demand. */
790 dw32(TxPoll, NormalTxPoll);
793 if (macmode != dr32(MacMode))
794 dw32(MacMode, macmode);
797 static void de_set_rx_mode (struct net_device *dev)
800 struct de_private *de = netdev_priv(dev);
802 spin_lock_irqsave (&de->lock, flags);
803 __de_set_rx_mode(dev);
804 spin_unlock_irqrestore (&de->lock, flags);
807 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
809 if (unlikely(rx_missed & RxMissedOver))
810 de->net_stats.rx_missed_errors += RxMissedMask;
812 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
815 static void __de_get_stats(struct de_private *de)
817 u32 tmp = dr32(RxMissed); /* self-clearing */
819 de_rx_missed(de, tmp);
822 static struct net_device_stats *de_get_stats(struct net_device *dev)
824 struct de_private *de = netdev_priv(dev);
826 /* The chip only need report frame silently dropped. */
827 spin_lock_irq(&de->lock);
828 if (netif_running(dev) && netif_device_present(dev))
830 spin_unlock_irq(&de->lock);
832 return &de->net_stats;
835 static inline int de_is_running (struct de_private *de)
837 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
840 static void de_stop_rxtx (struct de_private *de)
843 unsigned int i = 1300/100;
845 macmode = dr32(MacMode);
846 if (macmode & RxTx) {
847 dw32(MacMode, macmode & ~RxTx);
851 /* wait until in-flight frame completes.
852 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
853 * Typically expect this loop to end in < 50 us on 100BT.
856 if (!de_is_running(de))
861 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
864 static inline void de_start_rxtx (struct de_private *de)
868 macmode = dr32(MacMode);
869 if ((macmode & RxTx) != RxTx) {
870 dw32(MacMode, macmode | RxTx);
875 static void de_stop_hw (struct de_private *de)
883 dw32(MacStatus, dr32(MacStatus));
888 de->tx_head = de->tx_tail = 0;
891 static void de_link_up(struct de_private *de)
893 if (!netif_carrier_ok(de->dev)) {
894 netif_carrier_on(de->dev);
895 if (netif_msg_link(de))
896 printk(KERN_INFO "%s: link up, media %s\n",
897 de->dev->name, media_name[de->media_type]);
901 static void de_link_down(struct de_private *de)
903 if (netif_carrier_ok(de->dev)) {
904 netif_carrier_off(de->dev);
905 if (netif_msg_link(de))
906 printk(KERN_INFO "%s: link down\n", de->dev->name);
910 static void de_set_media (struct de_private *de)
912 unsigned media = de->media_type;
913 u32 macmode = dr32(MacMode);
915 if (de_is_running(de))
916 printk(KERN_WARNING "%s: chip is running while changing media!\n", de->dev->name);
919 dw32(CSR11, FULL_DUPLEX_MAGIC);
920 dw32(CSR13, 0); /* Reset phy */
921 dw32(CSR14, de->media[media].csr14);
922 dw32(CSR15, de->media[media].csr15);
923 dw32(CSR13, de->media[media].csr13);
925 /* must delay 10ms before writing to other registers,
930 if (media == DE_MEDIA_TP_FD)
931 macmode |= FullDuplex;
933 macmode &= ~FullDuplex;
935 if (netif_msg_link(de)) {
936 printk(KERN_INFO "%s: set link %s\n"
937 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
938 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
939 de->dev->name, media_name[media],
940 de->dev->name, dr32(MacMode), dr32(SIAStatus),
941 dr32(CSR13), dr32(CSR14), dr32(CSR15),
942 de->dev->name, macmode, de->media[media].csr13,
943 de->media[media].csr14, de->media[media].csr15);
945 if (macmode != dr32(MacMode))
946 dw32(MacMode, macmode);
949 static void de_next_media (struct de_private *de, u32 *media,
950 unsigned int n_media)
954 for (i = 0; i < n_media; i++) {
955 if (de_ok_to_advertise(de, media[i])) {
956 de->media_type = media[i];
962 static void de21040_media_timer (unsigned long data)
964 struct de_private *de = (struct de_private *) data;
965 struct net_device *dev = de->dev;
966 u32 status = dr32(SIAStatus);
967 unsigned int carrier;
970 carrier = (status & NetCxnErr) ? 0 : 1;
973 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
976 de->media_timer.expires = jiffies + DE_TIMER_LINK;
977 add_timer(&de->media_timer);
978 if (!netif_carrier_ok(dev))
981 if (netif_msg_timer(de))
982 printk(KERN_INFO "%s: %s link ok, status %x\n",
983 dev->name, media_name[de->media_type],
993 if (de->media_type == DE_MEDIA_AUI) {
994 u32 next_state = DE_MEDIA_TP;
995 de_next_media(de, &next_state, 1);
997 u32 next_state = DE_MEDIA_AUI;
998 de_next_media(de, &next_state, 1);
1001 spin_lock_irqsave(&de->lock, flags);
1003 spin_unlock_irqrestore(&de->lock, flags);
1008 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1009 add_timer(&de->media_timer);
1011 if (netif_msg_timer(de))
1012 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1013 dev->name, media_name[de->media_type], status);
1016 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1018 switch (new_media) {
1019 case DE_MEDIA_TP_AUTO:
1020 if (!(de->media_advertise & ADVERTISED_Autoneg))
1022 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1026 if (!(de->media_advertise & ADVERTISED_BNC))
1030 if (!(de->media_advertise & ADVERTISED_AUI))
1034 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1037 case DE_MEDIA_TP_FD:
1038 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1046 static void de21041_media_timer (unsigned long data)
1048 struct de_private *de = (struct de_private *) data;
1049 struct net_device *dev = de->dev;
1050 u32 status = dr32(SIAStatus);
1051 unsigned int carrier;
1052 unsigned long flags;
1054 carrier = (status & NetCxnErr) ? 0 : 1;
1057 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1058 de->media_type == DE_MEDIA_TP ||
1059 de->media_type == DE_MEDIA_TP_FD) &&
1060 (status & LinkFailStatus))
1063 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1064 add_timer(&de->media_timer);
1065 if (!netif_carrier_ok(dev))
1068 if (netif_msg_timer(de))
1069 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1070 dev->name, media_name[de->media_type],
1071 dr32(MacMode), status);
1077 /* if media type locked, don't switch media */
1081 /* if activity detected, use that as hint for new media type */
1082 if (status & NonselPortActive) {
1083 unsigned int have_media = 1;
1085 /* if AUI/BNC selected, then activity is on TP port */
1086 if (de->media_type == DE_MEDIA_AUI ||
1087 de->media_type == DE_MEDIA_BNC) {
1088 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1089 de->media_type = DE_MEDIA_TP_AUTO;
1094 /* TP selected. If there is only TP and BNC, then it's BNC */
1095 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1096 de_ok_to_advertise(de, DE_MEDIA_BNC))
1097 de->media_type = DE_MEDIA_BNC;
1099 /* TP selected. If there is only TP and AUI, then it's AUI */
1100 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1101 de_ok_to_advertise(de, DE_MEDIA_AUI))
1102 de->media_type = DE_MEDIA_AUI;
1104 /* otherwise, ignore the hint */
1113 * Absent or ambiguous activity hint, move to next advertised
1114 * media state. If de->media_type is left unchanged, this
1115 * simply resets the PHY and reloads the current media settings.
1117 if (de->media_type == DE_MEDIA_AUI) {
1118 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1119 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1120 } else if (de->media_type == DE_MEDIA_BNC) {
1121 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1122 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1124 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1125 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1129 spin_lock_irqsave(&de->lock, flags);
1131 spin_unlock_irqrestore(&de->lock, flags);
1136 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1137 add_timer(&de->media_timer);
1139 if (netif_msg_timer(de))
1140 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1141 dev->name, media_name[de->media_type], status);
1144 static void de_media_interrupt (struct de_private *de, u32 status)
1146 if (status & LinkPass) {
1148 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1152 BUG_ON(!(status & LinkFail));
1154 if (netif_carrier_ok(de->dev)) {
1156 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1160 static int de_reset_mac (struct de_private *de)
1165 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1169 if (dr32(BusMode) == 0xffffffff)
1172 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1173 dw32 (BusMode, CmdReset);
1176 dw32 (BusMode, de_bus_mode);
1179 for (tmp = 0; tmp < 5; tmp++) {
1186 status = dr32(MacStatus);
1187 if (status & (RxState | TxState))
1189 if (status == 0xffffffff)
1194 static void de_adapter_wake (struct de_private *de)
1201 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1202 if (pmctl & PM_Mask) {
1204 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1206 /* de4x5.c delays, so we do too */
1211 static void de_adapter_sleep (struct de_private *de)
1218 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1220 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1223 static int de_init_hw (struct de_private *de)
1225 struct net_device *dev = de->dev;
1229 de_adapter_wake(de);
1231 macmode = dr32(MacMode) & ~MacModeClear;
1233 rc = de_reset_mac(de);
1237 de_set_media(de); /* reset phy */
1239 dw32(RxRingAddr, de->ring_dma);
1240 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1242 dw32(MacMode, RxTx | macmode);
1244 dr32(RxMissed); /* self-clearing */
1246 dw32(IntrMask, de_intr_mask);
1248 de_set_rx_mode(dev);
1253 static int de_refill_rx (struct de_private *de)
1257 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1258 struct sk_buff *skb;
1260 skb = dev_alloc_skb(de->rx_buf_sz);
1266 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1267 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1268 de->rx_skb[i].skb = skb;
1270 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1271 if (i == (DE_RX_RING_SIZE - 1))
1272 de->rx_ring[i].opts2 =
1273 cpu_to_le32(RingEnd | de->rx_buf_sz);
1275 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1276 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1277 de->rx_ring[i].addr2 = 0;
1287 static int de_init_rings (struct de_private *de)
1289 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1290 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1293 de->tx_head = de->tx_tail = 0;
1295 return de_refill_rx (de);
1298 static int de_alloc_rings (struct de_private *de)
1300 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1303 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1304 return de_init_rings(de);
1307 static void de_clean_rings (struct de_private *de)
1311 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1312 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1314 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1315 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1318 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1319 if (de->rx_skb[i].skb) {
1320 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1321 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1322 dev_kfree_skb(de->rx_skb[i].skb);
1326 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1327 struct sk_buff *skb = de->tx_skb[i].skb;
1328 if ((skb) && (skb != DE_DUMMY_SKB)) {
1329 if (skb != DE_SETUP_SKB) {
1330 de->net_stats.tx_dropped++;
1331 pci_unmap_single(de->pdev,
1332 de->tx_skb[i].mapping,
1333 skb->len, PCI_DMA_TODEVICE);
1336 pci_unmap_single(de->pdev,
1337 de->tx_skb[i].mapping,
1338 sizeof(de->setup_frame),
1344 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1345 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1348 static void de_free_rings (struct de_private *de)
1351 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1356 static int de_open (struct net_device *dev)
1358 struct de_private *de = netdev_priv(dev);
1361 if (netif_msg_ifup(de))
1362 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1364 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1366 rc = de_alloc_rings(de);
1368 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1375 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1377 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1378 dev->name, dev->irq, rc);
1382 rc = de_init_hw(de);
1384 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1386 goto err_out_free_irq;
1389 netif_start_queue(dev);
1390 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1395 free_irq(dev->irq, dev);
1401 static int de_close (struct net_device *dev)
1403 struct de_private *de = netdev_priv(dev);
1404 unsigned long flags;
1406 if (netif_msg_ifdown(de))
1407 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1409 del_timer_sync(&de->media_timer);
1411 spin_lock_irqsave(&de->lock, flags);
1413 netif_stop_queue(dev);
1414 netif_carrier_off(dev);
1415 spin_unlock_irqrestore(&de->lock, flags);
1417 free_irq(dev->irq, dev);
1420 de_adapter_sleep(de);
1424 static void de_tx_timeout (struct net_device *dev)
1426 struct de_private *de = netdev_priv(dev);
1428 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1429 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1430 de->rx_tail, de->tx_head, de->tx_tail);
1432 del_timer_sync(&de->media_timer);
1434 disable_irq(dev->irq);
1435 spin_lock_irq(&de->lock);
1438 netif_stop_queue(dev);
1439 netif_carrier_off(dev);
1441 spin_unlock_irq(&de->lock);
1442 enable_irq(dev->irq);
1444 /* Update the error counts. */
1447 synchronize_irq(dev->irq);
1454 netif_wake_queue(dev);
1457 static void __de_get_regs(struct de_private *de, u8 *buf)
1460 u32 *rbuf = (u32 *)buf;
1463 for (i = 0; i < DE_NUM_REGS; i++)
1464 rbuf[i] = dr32(i * 8);
1466 /* handle self-clearing RxMissed counter, CSR8 */
1467 de_rx_missed(de, rbuf[8]);
1470 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1472 ecmd->supported = de->media_supported;
1473 ecmd->transceiver = XCVR_INTERNAL;
1474 ecmd->phy_address = 0;
1475 ecmd->advertising = de->media_advertise;
1477 switch (de->media_type) {
1479 ecmd->port = PORT_AUI;
1483 ecmd->port = PORT_BNC;
1487 ecmd->port = PORT_TP;
1488 ecmd->speed = SPEED_10;
1492 if (dr32(MacMode) & FullDuplex)
1493 ecmd->duplex = DUPLEX_FULL;
1495 ecmd->duplex = DUPLEX_HALF;
1498 ecmd->autoneg = AUTONEG_DISABLE;
1500 ecmd->autoneg = AUTONEG_ENABLE;
1502 /* ignore maxtxpkt, maxrxpkt for now */
1507 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1510 unsigned int media_lock;
1512 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1514 if (de->de21040 && ecmd->speed == 2)
1516 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1518 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1520 if (de->de21040 && ecmd->port == PORT_BNC)
1522 if (ecmd->transceiver != XCVR_INTERNAL)
1524 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1526 if (ecmd->advertising & ~de->media_supported)
1528 if (ecmd->autoneg == AUTONEG_ENABLE &&
1529 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1532 switch (ecmd->port) {
1534 new_media = DE_MEDIA_AUI;
1535 if (!(ecmd->advertising & ADVERTISED_AUI))
1539 new_media = DE_MEDIA_BNC;
1540 if (!(ecmd->advertising & ADVERTISED_BNC))
1544 if (ecmd->autoneg == AUTONEG_ENABLE)
1545 new_media = DE_MEDIA_TP_AUTO;
1546 else if (ecmd->duplex == DUPLEX_FULL)
1547 new_media = DE_MEDIA_TP_FD;
1549 new_media = DE_MEDIA_TP;
1550 if (!(ecmd->advertising & ADVERTISED_TP))
1552 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1557 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1559 if ((new_media == de->media_type) &&
1560 (media_lock == de->media_lock) &&
1561 (ecmd->advertising == de->media_advertise))
1562 return 0; /* nothing to change */
1567 de->media_type = new_media;
1568 de->media_lock = media_lock;
1569 de->media_advertise = ecmd->advertising;
1575 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1577 struct de_private *de = netdev_priv(dev);
1579 strcpy (info->driver, DRV_NAME);
1580 strcpy (info->version, DRV_VERSION);
1581 strcpy (info->bus_info, pci_name(de->pdev));
1582 info->eedump_len = DE_EEPROM_SIZE;
1585 static int de_get_regs_len(struct net_device *dev)
1587 return DE_REGS_SIZE;
1590 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1592 struct de_private *de = netdev_priv(dev);
1595 spin_lock_irq(&de->lock);
1596 rc = __de_get_settings(de, ecmd);
1597 spin_unlock_irq(&de->lock);
1602 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1604 struct de_private *de = netdev_priv(dev);
1607 spin_lock_irq(&de->lock);
1608 rc = __de_set_settings(de, ecmd);
1609 spin_unlock_irq(&de->lock);
1614 static u32 de_get_msglevel(struct net_device *dev)
1616 struct de_private *de = netdev_priv(dev);
1618 return de->msg_enable;
1621 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1623 struct de_private *de = netdev_priv(dev);
1625 de->msg_enable = msglvl;
1628 static int de_get_eeprom(struct net_device *dev,
1629 struct ethtool_eeprom *eeprom, u8 *data)
1631 struct de_private *de = netdev_priv(dev);
1635 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1636 (eeprom->len != DE_EEPROM_SIZE))
1638 memcpy(data, de->ee_data, eeprom->len);
1643 static int de_nway_reset(struct net_device *dev)
1645 struct de_private *de = netdev_priv(dev);
1648 if (de->media_type != DE_MEDIA_TP_AUTO)
1650 if (netif_carrier_ok(de->dev))
1653 status = dr32(SIAStatus);
1654 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1655 if (netif_msg_link(de))
1656 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1657 de->dev->name, status, dr32(SIAStatus));
1661 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1664 struct de_private *de = netdev_priv(dev);
1666 regs->version = (DE_REGS_VER << 2) | de->de21040;
1668 spin_lock_irq(&de->lock);
1669 __de_get_regs(de, data);
1670 spin_unlock_irq(&de->lock);
1673 static const struct ethtool_ops de_ethtool_ops = {
1674 .get_link = ethtool_op_get_link,
1675 .get_drvinfo = de_get_drvinfo,
1676 .get_regs_len = de_get_regs_len,
1677 .get_settings = de_get_settings,
1678 .set_settings = de_set_settings,
1679 .get_msglevel = de_get_msglevel,
1680 .set_msglevel = de_set_msglevel,
1681 .get_eeprom = de_get_eeprom,
1682 .nway_reset = de_nway_reset,
1683 .get_regs = de_get_regs,
1686 static void __devinit de21040_get_mac_address (struct de_private *de)
1690 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1693 for (i = 0; i < 6; i++) {
1694 int value, boguscnt = 100000;
1696 value = dr32(ROMCmd);
1697 } while (value < 0 && --boguscnt > 0);
1698 de->dev->dev_addr[i] = value;
1701 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1705 static void __devinit de21040_get_media_info(struct de_private *de)
1709 de->media_type = DE_MEDIA_TP;
1710 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1711 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1712 de->media_advertise = de->media_supported;
1714 for (i = 0; i < DE_MAX_MEDIA; i++) {
1718 case DE_MEDIA_TP_FD:
1719 de->media[i].type = i;
1720 de->media[i].csr13 = t21040_csr13[i];
1721 de->media[i].csr14 = t21040_csr14[i];
1722 de->media[i].csr15 = t21040_csr15[i];
1725 de->media[i].type = DE_MEDIA_INVALID;
1731 /* Note: this routine returns extra data bits for size detection. */
1732 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1735 unsigned retval = 0;
1736 void __iomem *ee_addr = regs + ROMCmd;
1737 int read_cmd = location | (EE_READ_CMD << addr_len);
1739 writel(EE_ENB & ~EE_CS, ee_addr);
1740 writel(EE_ENB, ee_addr);
1742 /* Shift the read command bits out. */
1743 for (i = 4 + addr_len; i >= 0; i--) {
1744 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1745 writel(EE_ENB | dataval, ee_addr);
1747 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1749 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1751 writel(EE_ENB, ee_addr);
1754 for (i = 16; i > 0; i--) {
1755 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1757 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1758 writel(EE_ENB, ee_addr);
1762 /* Terminate the EEPROM access. */
1763 writel(EE_ENB & ~EE_CS, ee_addr);
1767 static void __devinit de21041_get_srom_info (struct de_private *de)
1769 unsigned i, sa_offset = 0, ofs;
1770 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1771 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1772 struct de_srom_info_leaf *il;
1775 /* download entire eeprom */
1776 for (i = 0; i < DE_EEPROM_WORDS; i++)
1777 ((__le16 *)ee_data)[i] =
1778 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1780 /* DEC now has a specification but early board makers
1781 just put the address in the first EEPROM locations. */
1782 /* This does memcmp(eedata, eedata+16, 8) */
1784 #ifndef CONFIG_MIPS_COBALT
1786 for (i = 0; i < 8; i ++)
1787 if (ee_data[i] != ee_data[16+i])
1792 /* store MAC address */
1793 for (i = 0; i < 6; i ++)
1794 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1796 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1797 ofs = ee_data[SROMC0InfoLeaf];
1798 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1801 /* get pointer to info leaf */
1802 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1804 /* paranoia checks */
1805 if (il->n_blocks == 0)
1807 if ((sizeof(ee_data) - ofs) <
1808 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1811 /* get default media type */
1812 switch (get_unaligned(&il->default_media)) {
1813 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1814 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1815 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1816 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1819 if (netif_msg_probe(de))
1820 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1822 media_name[de->media_type]);
1824 /* init SIA register values to defaults */
1825 for (i = 0; i < DE_MAX_MEDIA; i++) {
1826 de->media[i].type = DE_MEDIA_INVALID;
1827 de->media[i].csr13 = 0xffff;
1828 de->media[i].csr14 = 0xffff;
1829 de->media[i].csr15 = 0xffff;
1832 /* parse media blocks to see what medias are supported,
1833 * and if any custom CSR values are provided
1835 bufp = ((void *)il) + sizeof(*il);
1836 for (i = 0; i < il->n_blocks; i++) {
1837 struct de_srom_media_block *ib = bufp;
1840 /* index based on media type in media block */
1841 switch(ib->opts & MediaBlockMask) {
1842 case 0: /* 10baseT */
1843 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1844 | SUPPORTED_Autoneg;
1846 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1849 de->media_supported |= SUPPORTED_BNC;
1853 de->media_supported |= SUPPORTED_AUI;
1856 case 4: /* 10baseT-FD */
1857 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1858 | SUPPORTED_Autoneg;
1859 idx = DE_MEDIA_TP_FD;
1860 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1866 de->media[idx].type = idx;
1868 if (netif_msg_probe(de))
1869 printk(KERN_INFO "de%d: media block #%u: %s",
1871 media_name[de->media[idx].type]);
1873 bufp += sizeof (ib->opts);
1875 if (ib->opts & MediaCustomCSRs) {
1876 de->media[idx].csr13 = get_unaligned(&ib->csr13);
1877 de->media[idx].csr14 = get_unaligned(&ib->csr14);
1878 de->media[idx].csr15 = get_unaligned(&ib->csr15);
1879 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1882 if (netif_msg_probe(de))
1883 printk(" (%x,%x,%x)\n",
1884 de->media[idx].csr13,
1885 de->media[idx].csr14,
1886 de->media[idx].csr15);
1888 } else if (netif_msg_probe(de))
1891 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1895 de->media_advertise = de->media_supported;
1898 /* fill in defaults, for cases where custom CSRs not used */
1899 for (i = 0; i < DE_MAX_MEDIA; i++) {
1900 if (de->media[i].csr13 == 0xffff)
1901 de->media[i].csr13 = t21041_csr13[i];
1902 if (de->media[i].csr14 == 0xffff)
1903 de->media[i].csr14 = t21041_csr14[i];
1904 if (de->media[i].csr15 == 0xffff)
1905 de->media[i].csr15 = t21041_csr15[i];
1908 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1913 /* for error cases, it's ok to assume we support all these */
1914 for (i = 0; i < DE_MAX_MEDIA; i++)
1915 de->media[i].type = i;
1916 de->media_supported =
1917 SUPPORTED_10baseT_Half |
1918 SUPPORTED_10baseT_Full |
1926 static const struct net_device_ops de_netdev_ops = {
1927 .ndo_open = de_open,
1928 .ndo_stop = de_close,
1929 .ndo_set_multicast_list = de_set_rx_mode,
1930 .ndo_start_xmit = de_start_xmit,
1931 .ndo_get_stats = de_get_stats,
1932 .ndo_tx_timeout = de_tx_timeout,
1933 .ndo_change_mtu = eth_change_mtu,
1934 .ndo_set_mac_address = eth_mac_addr,
1935 .ndo_validate_addr = eth_validate_addr,
1938 static int __devinit de_init_one (struct pci_dev *pdev,
1939 const struct pci_device_id *ent)
1941 struct net_device *dev;
1942 struct de_private *de;
1945 unsigned long pciaddr;
1946 static int board_idx = -1;
1952 printk("%s", version);
1955 /* allocate a new ethernet device structure, and fill in defaults */
1956 dev = alloc_etherdev(sizeof(struct de_private));
1960 dev->netdev_ops = &de_netdev_ops;
1961 SET_NETDEV_DEV(dev, &pdev->dev);
1962 dev->ethtool_ops = &de_ethtool_ops;
1963 dev->watchdog_timeo = TX_TIMEOUT;
1965 de = netdev_priv(dev);
1966 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1969 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1970 de->board_idx = board_idx;
1971 spin_lock_init (&de->lock);
1972 init_timer(&de->media_timer);
1974 de->media_timer.function = de21040_media_timer;
1976 de->media_timer.function = de21041_media_timer;
1977 de->media_timer.data = (unsigned long) de;
1979 netif_carrier_off(dev);
1980 netif_stop_queue(dev);
1982 /* wake up device, assign resources */
1983 rc = pci_enable_device(pdev);
1987 /* reserve PCI resources to ensure driver atomicity */
1988 rc = pci_request_regions(pdev, DRV_NAME);
1990 goto err_out_disable;
1992 /* check for invalid IRQ value */
1993 if (pdev->irq < 2) {
1995 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1996 pdev->irq, pci_name(pdev));
2000 dev->irq = pdev->irq;
2002 /* obtain and check validity of PCI I/O address */
2003 pciaddr = pci_resource_start(pdev, 1);
2006 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2010 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2012 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
2013 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
2017 /* remap CSR registers */
2018 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2021 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2022 (unsigned long long)pci_resource_len(pdev, 1),
2023 pciaddr, pci_name(pdev));
2026 dev->base_addr = (unsigned long) regs;
2029 de_adapter_wake(de);
2031 /* make sure hardware is not running */
2032 rc = de_reset_mac(de);
2034 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2039 /* get MAC address, initialize default media type and
2040 * get list of supported media
2043 de21040_get_mac_address(de);
2044 de21040_get_media_info(de);
2046 de21041_get_srom_info(de);
2049 /* register new network interface with kernel */
2050 rc = register_netdev(dev);
2054 /* print info about board and interface just registered */
2055 printk (KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
2057 de->de21040 ? "21040" : "21041",
2062 pci_set_drvdata(pdev, dev);
2064 /* enable busmastering */
2065 pci_set_master(pdev);
2067 /* put adapter to sleep */
2068 de_adapter_sleep(de);
2076 pci_release_regions(pdev);
2078 pci_disable_device(pdev);
2084 static void __devexit de_remove_one (struct pci_dev *pdev)
2086 struct net_device *dev = pci_get_drvdata(pdev);
2087 struct de_private *de = netdev_priv(dev);
2090 unregister_netdev(dev);
2093 pci_release_regions(pdev);
2094 pci_disable_device(pdev);
2095 pci_set_drvdata(pdev, NULL);
2101 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2103 struct net_device *dev = pci_get_drvdata (pdev);
2104 struct de_private *de = netdev_priv(dev);
2107 if (netif_running (dev)) {
2108 del_timer_sync(&de->media_timer);
2110 disable_irq(dev->irq);
2111 spin_lock_irq(&de->lock);
2114 netif_stop_queue(dev);
2115 netif_device_detach(dev);
2116 netif_carrier_off(dev);
2118 spin_unlock_irq(&de->lock);
2119 enable_irq(dev->irq);
2121 /* Update the error counts. */
2124 synchronize_irq(dev->irq);
2127 de_adapter_sleep(de);
2128 pci_disable_device(pdev);
2130 netif_device_detach(dev);
2136 static int de_resume (struct pci_dev *pdev)
2138 struct net_device *dev = pci_get_drvdata (pdev);
2139 struct de_private *de = netdev_priv(dev);
2143 if (netif_device_present(dev))
2145 if (!netif_running(dev))
2147 if ((retval = pci_enable_device(pdev))) {
2148 printk (KERN_ERR "%s: pci_enable_device failed in resume\n",
2154 netif_device_attach(dev);
2160 #endif /* CONFIG_PM */
2162 static struct pci_driver de_driver = {
2164 .id_table = de_pci_tbl,
2165 .probe = de_init_one,
2166 .remove = __devexit_p(de_remove_one),
2168 .suspend = de_suspend,
2169 .resume = de_resume,
2173 static int __init de_init (void)
2176 printk("%s", version);
2178 return pci_register_driver(&de_driver);
2181 static void __exit de_exit (void)
2183 pci_unregister_driver (&de_driver);
2186 module_init(de_init);
2187 module_exit(de_exit);