[PATCH] m32r: class_device -> device fallout
[linux-2.6] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  *
7  * Based on the old arch/sh/kernel/cpu/rtc.c by:
8  *
9  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
10  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file "COPYING" in the main directory of this archive
14  * for more details.
15  */
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/bcd.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/seq_file.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/io.h>
26
27 #define DRV_NAME        "sh-rtc"
28 #define DRV_VERSION     "0.1.2"
29
30 #ifdef CONFIG_CPU_SH3
31 #define rtc_reg_size            sizeof(u16)
32 #define RTC_BIT_INVERTED        0       /* No bug on SH7708, SH7709A */
33 #elif defined(CONFIG_CPU_SH4)
34 #define rtc_reg_size            sizeof(u32)
35 #define RTC_BIT_INVERTED        0x40    /* bug on SH7750, SH7750S */
36 #endif
37
38 #define RTC_REG(r)      ((r) * rtc_reg_size)
39
40 #define R64CNT          RTC_REG(0)
41
42 #define RSECCNT         RTC_REG(1)      /* RTC sec */
43 #define RMINCNT         RTC_REG(2)      /* RTC min */
44 #define RHRCNT          RTC_REG(3)      /* RTC hour */
45 #define RWKCNT          RTC_REG(4)      /* RTC week */
46 #define RDAYCNT         RTC_REG(5)      /* RTC day */
47 #define RMONCNT         RTC_REG(6)      /* RTC month */
48 #define RYRCNT          RTC_REG(7)      /* RTC year */
49 #define RSECAR          RTC_REG(8)      /* ALARM sec */
50 #define RMINAR          RTC_REG(9)      /* ALARM min */
51 #define RHRAR           RTC_REG(10)     /* ALARM hour */
52 #define RWKAR           RTC_REG(11)     /* ALARM week */
53 #define RDAYAR          RTC_REG(12)     /* ALARM day */
54 #define RMONAR          RTC_REG(13)     /* ALARM month */
55 #define RCR1            RTC_REG(14)     /* Control */
56 #define RCR2            RTC_REG(15)     /* Control */
57
58 /* ALARM Bits - or with BCD encoded value */
59 #define AR_ENB          0x80    /* Enable for alarm cmp   */
60
61 /* RCR1 Bits */
62 #define RCR1_CF         0x80    /* Carry Flag             */
63 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
64 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
65 #define RCR1_AF         0x01    /* Alarm Flag             */
66
67 /* RCR2 Bits */
68 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
69 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
70 #define RCR2_RTCEN      0x08    /* ENable RTC              */
71 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
72 #define RCR2_RESET      0x02    /* Reset bit               */
73 #define RCR2_START      0x01    /* Start bit               */
74
75 struct sh_rtc {
76         void __iomem *regbase;
77         unsigned long regsize;
78         struct resource *res;
79         unsigned int alarm_irq, periodic_irq, carry_irq;
80         struct rtc_device *rtc_dev;
81         spinlock_t lock;
82         int rearm_aie;
83 };
84
85 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
86 {
87         struct platform_device *pdev = to_platform_device(dev_id);
88         struct sh_rtc *rtc = platform_get_drvdata(pdev);
89         unsigned int tmp, events = 0;
90
91         spin_lock(&rtc->lock);
92
93         tmp = readb(rtc->regbase + RCR1);
94         tmp &= ~RCR1_CF;
95
96         if (rtc->rearm_aie) {
97                 if (tmp & RCR1_AF)
98                         tmp &= ~RCR1_AF;        /* try to clear AF again */
99                 else {
100                         tmp |= RCR1_AIE;        /* AF has cleared, rearm IRQ */
101                         rtc->rearm_aie = 0;
102                 }
103         }
104
105         writeb(tmp, rtc->regbase + RCR1);
106
107         rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
108
109         spin_unlock(&rtc->lock);
110
111         return IRQ_HANDLED;
112 }
113
114 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
115 {
116         struct platform_device *pdev = to_platform_device(dev_id);
117         struct sh_rtc *rtc = platform_get_drvdata(pdev);
118         unsigned int tmp, events = 0;
119
120         spin_lock(&rtc->lock);
121
122         tmp = readb(rtc->regbase + RCR1);
123
124         /*
125          * If AF is set then the alarm has triggered. If we clear AF while
126          * the alarm time still matches the RTC time then AF will
127          * immediately be set again, and if AIE is enabled then the alarm
128          * interrupt will immediately be retrigger. So we clear AIE here
129          * and use rtc->rearm_aie so that the carry interrupt will keep
130          * trying to clear AF and once it stays cleared it'll re-enable
131          * AIE.
132          */
133         if (tmp & RCR1_AF) {
134                 events |= RTC_AF | RTC_IRQF;
135
136                 tmp &= ~(RCR1_AF|RCR1_AIE);
137
138                 writeb(tmp, rtc->regbase + RCR1);
139
140                 rtc->rearm_aie = 1;
141
142                 rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
143         }
144
145         spin_unlock(&rtc->lock);
146         return IRQ_HANDLED;
147 }
148
149 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
150 {
151         struct platform_device *pdev = to_platform_device(dev_id);
152         struct sh_rtc *rtc = platform_get_drvdata(pdev);
153
154         spin_lock(&rtc->lock);
155
156         rtc_update_irq(&rtc->rtc_dev->class_dev, 1, RTC_PF | RTC_IRQF);
157
158         spin_unlock(&rtc->lock);
159
160         return IRQ_HANDLED;
161 }
162
163 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
164 {
165         struct sh_rtc *rtc = dev_get_drvdata(dev);
166         unsigned int tmp;
167
168         spin_lock_irq(&rtc->lock);
169
170         tmp = readb(rtc->regbase + RCR2);
171
172         if (enable) {
173                 tmp &= ~RCR2_PESMASK;
174                 tmp |= RCR2_PEF | (2 << 4);
175         } else
176                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
177
178         writeb(tmp, rtc->regbase + RCR2);
179
180         spin_unlock_irq(&rtc->lock);
181 }
182
183 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
184 {
185         struct sh_rtc *rtc = dev_get_drvdata(dev);
186         unsigned int tmp;
187
188         spin_lock_irq(&rtc->lock);
189
190         tmp = readb(rtc->regbase + RCR1);
191
192         if (!enable) {
193                 tmp &= ~RCR1_AIE;
194                 rtc->rearm_aie = 0;
195         } else if (rtc->rearm_aie == 0)
196                 tmp |= RCR1_AIE;
197
198         writeb(tmp, rtc->regbase + RCR1);
199
200         spin_unlock_irq(&rtc->lock);
201 }
202
203 static int sh_rtc_open(struct device *dev)
204 {
205         struct sh_rtc *rtc = dev_get_drvdata(dev);
206         unsigned int tmp;
207         int ret;
208
209         tmp = readb(rtc->regbase + RCR1);
210         tmp &= ~RCR1_CF;
211         tmp |= RCR1_CIE;
212         writeb(tmp, rtc->regbase + RCR1);
213
214         ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
215                           "sh-rtc period", dev);
216         if (unlikely(ret)) {
217                 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
218                         ret, rtc->periodic_irq);
219                 return ret;
220         }
221
222         ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
223                           "sh-rtc carry", dev);
224         if (unlikely(ret)) {
225                 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
226                         ret, rtc->carry_irq);
227                 free_irq(rtc->periodic_irq, dev);
228                 goto err_bad_carry;
229         }
230
231         ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
232                           "sh-rtc alarm", dev);
233         if (unlikely(ret)) {
234                 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
235                         ret, rtc->alarm_irq);
236                 goto err_bad_alarm;
237         }
238
239         return 0;
240
241 err_bad_alarm:
242         free_irq(rtc->carry_irq, dev);
243 err_bad_carry:
244         free_irq(rtc->periodic_irq, dev);
245
246         return ret;
247 }
248
249 static void sh_rtc_release(struct device *dev)
250 {
251         struct sh_rtc *rtc = dev_get_drvdata(dev);
252
253         sh_rtc_setpie(dev, 0);
254         sh_rtc_setaie(dev, 0);
255
256         free_irq(rtc->periodic_irq, dev);
257         free_irq(rtc->carry_irq, dev);
258         free_irq(rtc->alarm_irq, dev);
259 }
260
261 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
262 {
263         struct sh_rtc *rtc = dev_get_drvdata(dev);
264         unsigned int tmp;
265
266         tmp = readb(rtc->regbase + RCR1);
267         seq_printf(seq, "carry_IRQ\t: %s\n",
268                    (tmp & RCR1_CIE) ? "yes" : "no");
269
270         tmp = readb(rtc->regbase + RCR2);
271         seq_printf(seq, "periodic_IRQ\t: %s\n",
272                    (tmp & RCR2_PEF) ? "yes" : "no");
273
274         return 0;
275 }
276
277 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
278 {
279         unsigned int ret = -ENOIOCTLCMD;
280
281         switch (cmd) {
282         case RTC_PIE_OFF:
283         case RTC_PIE_ON:
284                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
285                 ret = 0;
286                 break;
287         case RTC_AIE_OFF:
288         case RTC_AIE_ON:
289                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
290                 ret = 0;
291                 break;
292         }
293
294         return ret;
295 }
296
297 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
298 {
299         struct platform_device *pdev = to_platform_device(dev);
300         struct sh_rtc *rtc = platform_get_drvdata(pdev);
301         unsigned int sec128, sec2, yr, yr100, cf_bit;
302
303         do {
304                 unsigned int tmp;
305
306                 spin_lock_irq(&rtc->lock);
307
308                 tmp = readb(rtc->regbase + RCR1);
309                 tmp &= ~RCR1_CF; /* Clear CF-bit */
310                 tmp |= RCR1_CIE;
311                 writeb(tmp, rtc->regbase + RCR1);
312
313                 sec128 = readb(rtc->regbase + R64CNT);
314
315                 tm->tm_sec      = BCD2BIN(readb(rtc->regbase + RSECCNT));
316                 tm->tm_min      = BCD2BIN(readb(rtc->regbase + RMINCNT));
317                 tm->tm_hour     = BCD2BIN(readb(rtc->regbase + RHRCNT));
318                 tm->tm_wday     = BCD2BIN(readb(rtc->regbase + RWKCNT));
319                 tm->tm_mday     = BCD2BIN(readb(rtc->regbase + RDAYCNT));
320                 tm->tm_mon      = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
321
322 #if defined(CONFIG_CPU_SH4)
323                 yr  = readw(rtc->regbase + RYRCNT);
324                 yr100 = BCD2BIN(yr >> 8);
325                 yr &= 0xff;
326 #else
327                 yr  = readb(rtc->regbase + RYRCNT);
328                 yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
329 #endif
330
331                 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
332
333                 sec2 = readb(rtc->regbase + R64CNT);
334                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
335
336                 spin_unlock_irq(&rtc->lock);
337         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
338
339 #if RTC_BIT_INVERTED != 0
340         if ((sec128 & RTC_BIT_INVERTED))
341                 tm->tm_sec--;
342 #endif
343
344         dev_dbg(&dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
345                 "mday=%d, mon=%d, year=%d, wday=%d\n",
346                 __FUNCTION__,
347                 tm->tm_sec, tm->tm_min, tm->tm_hour,
348                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
349
350         if (rtc_valid_tm(tm) < 0)
351                 dev_err(dev, "invalid date\n");
352
353         return 0;
354 }
355
356 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
357 {
358         struct platform_device *pdev = to_platform_device(dev);
359         struct sh_rtc *rtc = platform_get_drvdata(pdev);
360         unsigned int tmp;
361         int year;
362
363         spin_lock_irq(&rtc->lock);
364
365         /* Reset pre-scaler & stop RTC */
366         tmp = readb(rtc->regbase + RCR2);
367         tmp |= RCR2_RESET;
368         writeb(tmp, rtc->regbase + RCR2);
369
370         writeb(BIN2BCD(tm->tm_sec),  rtc->regbase + RSECCNT);
371         writeb(BIN2BCD(tm->tm_min),  rtc->regbase + RMINCNT);
372         writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
373         writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
374         writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
375         writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
376
377 #ifdef CONFIG_CPU_SH3
378         year = tm->tm_year % 100;
379         writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
380 #else
381         year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
382                 BIN2BCD(tm->tm_year % 100);
383         writew(year, rtc->regbase + RYRCNT);
384 #endif
385
386         /* Start RTC */
387         tmp = readb(rtc->regbase + RCR2);
388         tmp &= ~RCR2_RESET;
389         tmp |= RCR2_RTCEN | RCR2_START;
390         writeb(tmp, rtc->regbase + RCR2);
391
392         spin_unlock_irq(&rtc->lock);
393
394         return 0;
395 }
396
397 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
398 {
399         unsigned int byte;
400         int value = 0xff;       /* return 0xff for ignored values */
401
402         byte = readb(rtc->regbase + reg_off);
403         if (byte & AR_ENB) {
404                 byte &= ~AR_ENB;        /* strip the enable bit */
405                 value = BCD2BIN(byte);
406         }
407
408         return value;
409 }
410
411 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
412 {
413         struct platform_device *pdev = to_platform_device(dev);
414         struct sh_rtc *rtc = platform_get_drvdata(pdev);
415         struct rtc_time* tm = &wkalrm->time;
416
417         spin_lock_irq(&rtc->lock);
418
419         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
420         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
421         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
422         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
423         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
424         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
425         if (tm->tm_mon > 0)
426                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
427         tm->tm_year     = 0xffff;
428
429         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
430
431         spin_unlock_irq(&rtc->lock);
432
433         return 0;
434 }
435
436 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
437                                             int value, int reg_off)
438 {
439         /* < 0 for a value that is ignored */
440         if (value < 0)
441                 writeb(0, rtc->regbase + reg_off);
442         else
443                 writeb(BIN2BCD(value) | AR_ENB,  rtc->regbase + reg_off);
444 }
445
446 static int sh_rtc_check_alarm(struct rtc_time* tm)
447 {
448         /*
449          * The original rtc says anything > 0xc0 is "don't care" or "match
450          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
451          * The original rtc doesn't support years - some things use -1 and
452          * some 0xffff. We use -1 to make out tests easier.
453          */
454         if (tm->tm_year == 0xffff)
455                 tm->tm_year = -1;
456         if (tm->tm_mon >= 0xff)
457                 tm->tm_mon = -1;
458         if (tm->tm_mday >= 0xff)
459                 tm->tm_mday = -1;
460         if (tm->tm_wday >= 0xff)
461                 tm->tm_wday = -1;
462         if (tm->tm_hour >= 0xff)
463                 tm->tm_hour = -1;
464         if (tm->tm_min >= 0xff)
465                 tm->tm_min = -1;
466         if (tm->tm_sec >= 0xff)
467                 tm->tm_sec = -1;
468
469         if (tm->tm_year > 9999 ||
470                 tm->tm_mon >= 12 ||
471                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
472                 tm->tm_wday >= 7 ||
473                 tm->tm_hour >= 24 ||
474                 tm->tm_min >= 60 ||
475                 tm->tm_sec >= 60)
476                 return -EINVAL;
477
478         return 0;
479 }
480
481 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
482 {
483         struct platform_device *pdev = to_platform_device(dev);
484         struct sh_rtc *rtc = platform_get_drvdata(pdev);
485         unsigned int rcr1;
486         struct rtc_time *tm = &wkalrm->time;
487         int mon, err;
488
489         err = sh_rtc_check_alarm(tm);
490         if (unlikely(err < 0))
491                 return err;
492
493         spin_lock_irq(&rtc->lock);
494
495         /* disable alarm interrupt and clear the alarm flag */
496         rcr1 = readb(rtc->regbase + RCR1);
497         rcr1 &= ~(RCR1_AF|RCR1_AIE);
498         writeb(rcr1, rtc->regbase + RCR1);
499
500         rtc->rearm_aie = 0;
501
502         /* set alarm time */
503         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
504         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
505         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
506         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
507         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
508         mon = tm->tm_mon;
509         if (mon >= 0)
510                 mon += 1;
511         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
512
513         if (wkalrm->enabled) {
514                 rcr1 |= RCR1_AIE;
515                 writeb(rcr1, rtc->regbase + RCR1);
516         }
517
518         spin_unlock_irq(&rtc->lock);
519
520         return 0;
521 }
522
523 static struct rtc_class_ops sh_rtc_ops = {
524         .open           = sh_rtc_open,
525         .release        = sh_rtc_release,
526         .ioctl          = sh_rtc_ioctl,
527         .read_time      = sh_rtc_read_time,
528         .set_time       = sh_rtc_set_time,
529         .read_alarm     = sh_rtc_read_alarm,
530         .set_alarm      = sh_rtc_set_alarm,
531         .proc           = sh_rtc_proc,
532 };
533
534 static int __devinit sh_rtc_probe(struct platform_device *pdev)
535 {
536         struct sh_rtc *rtc;
537         struct resource *res;
538         int ret = -ENOENT;
539
540         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
541         if (unlikely(!rtc))
542                 return -ENOMEM;
543
544         spin_lock_init(&rtc->lock);
545
546         rtc->periodic_irq = platform_get_irq(pdev, 0);
547         if (unlikely(rtc->periodic_irq < 0)) {
548                 dev_err(&pdev->dev, "No IRQ for period\n");
549                 goto err_badres;
550         }
551
552         rtc->carry_irq = platform_get_irq(pdev, 1);
553         if (unlikely(rtc->carry_irq < 0)) {
554                 dev_err(&pdev->dev, "No IRQ for carry\n");
555                 goto err_badres;
556         }
557
558         rtc->alarm_irq = platform_get_irq(pdev, 2);
559         if (unlikely(rtc->alarm_irq < 0)) {
560                 dev_err(&pdev->dev, "No IRQ for alarm\n");
561                 goto err_badres;
562         }
563
564         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
565         if (unlikely(res == NULL)) {
566                 dev_err(&pdev->dev, "No IO resource\n");
567                 goto err_badres;
568         }
569
570         rtc->regsize = res->end - res->start + 1;
571
572         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
573         if (unlikely(!rtc->res)) {
574                 ret = -EBUSY;
575                 goto err_badres;
576         }
577
578         rtc->regbase = (void __iomem *)rtc->res->start;
579         if (unlikely(!rtc->regbase)) {
580                 ret = -EINVAL;
581                 goto err_badmap;
582         }
583
584         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
585                                            &sh_rtc_ops, THIS_MODULE);
586         if (IS_ERR(rtc)) {
587                 ret = PTR_ERR(rtc->rtc_dev);
588                 goto err_badmap;
589         }
590
591         platform_set_drvdata(pdev, rtc);
592
593         return 0;
594
595 err_badmap:
596         release_resource(rtc->res);
597 err_badres:
598         kfree(rtc);
599
600         return ret;
601 }
602
603 static int __devexit sh_rtc_remove(struct platform_device *pdev)
604 {
605         struct sh_rtc *rtc = platform_get_drvdata(pdev);
606
607         if (likely(rtc->rtc_dev))
608                 rtc_device_unregister(rtc->rtc_dev);
609
610         sh_rtc_setpie(&pdev->dev, 0);
611         sh_rtc_setaie(&pdev->dev, 0);
612
613         release_resource(rtc->res);
614
615         platform_set_drvdata(pdev, NULL);
616
617         kfree(rtc);
618
619         return 0;
620 }
621 static struct platform_driver sh_rtc_platform_driver = {
622         .driver         = {
623                 .name   = DRV_NAME,
624                 .owner  = THIS_MODULE,
625         },
626         .probe          = sh_rtc_probe,
627         .remove         = __devexit_p(sh_rtc_remove),
628 };
629
630 static int __init sh_rtc_init(void)
631 {
632         return platform_driver_register(&sh_rtc_platform_driver);
633 }
634
635 static void __exit sh_rtc_exit(void)
636 {
637         platform_driver_unregister(&sh_rtc_platform_driver);
638 }
639
640 module_init(sh_rtc_init);
641 module_exit(sh_rtc_exit);
642
643 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
644 MODULE_VERSION(DRV_VERSION);
645 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
646 MODULE_LICENSE("GPL");