1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 spinlock_t trans_inc_lock = SPIN_LOCK_UNLOCKED;
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
69 static int ocfs2_commit_thread(void *arg);
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
76 struct ocfs2_journal *journal = NULL;
80 journal = osb->journal;
82 /* Flush all pending commits and checkpoint the journal. */
83 down_write(&journal->j_trans_barrier);
85 if (atomic_read(&journal->j_num_trans) == 0) {
86 up_write(&journal->j_trans_barrier);
87 mlog(0, "No transactions for me to flush!\n");
91 journal_lock_updates(journal->j_journal);
92 status = journal_flush(journal->j_journal);
93 journal_unlock_updates(journal->j_journal);
95 up_write(&journal->j_trans_barrier);
100 old_id = ocfs2_inc_trans_id(journal);
102 flushed = atomic_read(&journal->j_num_trans);
103 atomic_set(&journal->j_num_trans, 0);
104 up_write(&journal->j_trans_barrier);
106 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 journal->j_trans_id, flushed);
109 ocfs2_kick_vote_thread(osb);
110 wake_up(&journal->j_checkpointed);
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
118 struct ocfs2_journal_handle *retval = NULL;
120 retval = kcalloc(1, sizeof(*retval), GFP_KERNEL);
122 mlog(ML_ERROR, "Failed to allocate memory for journal "
127 retval->max_buffs = 0;
128 retval->num_locks = 0;
129 retval->k_handle = NULL;
131 INIT_LIST_HEAD(&retval->locks);
132 INIT_LIST_HEAD(&retval->inode_list);
133 retval->journal = osb->journal;
138 /* pass it NULL and it will allocate a new handle object for you. If
139 * you pass it a handle however, it may still return error, in which
140 * case it has free'd the passed handle for you. */
141 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
142 struct ocfs2_journal_handle *handle,
146 journal_t *journal = osb->journal->j_journal;
148 mlog_entry("(max_buffs = %d)\n", max_buffs);
150 if (!osb || !osb->journal->j_journal)
153 if (ocfs2_is_hard_readonly(osb)) {
158 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
159 BUG_ON(max_buffs <= 0);
161 /* JBD might support this, but our journalling code doesn't yet. */
162 if (journal_current_handle()) {
163 mlog(ML_ERROR, "Recursive transaction attempted!\n");
168 handle = ocfs2_alloc_handle(osb);
171 mlog(ML_ERROR, "Failed to allocate memory for journal "
176 handle->max_buffs = max_buffs;
178 down_read(&osb->journal->j_trans_barrier);
180 /* actually start the transaction now */
181 handle->k_handle = journal_start(journal, max_buffs);
182 if (IS_ERR(handle->k_handle)) {
183 up_read(&osb->journal->j_trans_barrier);
185 ret = PTR_ERR(handle->k_handle);
186 handle->k_handle = NULL;
189 if (is_journal_aborted(journal)) {
190 ocfs2_abort(osb->sb, "Detected aborted journal");
196 atomic_inc(&(osb->journal->j_num_trans));
197 handle->flags |= OCFS2_HANDLE_STARTED;
199 mlog_exit_ptr(handle);
204 ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
210 void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle,
216 atomic_inc(&inode->i_count);
218 /* we're obviously changing it... */
222 BUG_ON(OCFS2_I(inode)->ip_handle);
223 BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list));
225 OCFS2_I(inode)->ip_handle = handle;
226 list_del(&(OCFS2_I(inode)->ip_handle_list));
227 list_add_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list));
230 static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle)
232 struct list_head *p, *n;
234 struct ocfs2_inode_info *oi;
236 list_for_each_safe(p, n, &handle->inode_list) {
237 oi = list_entry(p, struct ocfs2_inode_info,
239 inode = &oi->vfs_inode;
241 OCFS2_I(inode)->ip_handle = NULL;
242 list_del_init(&OCFS2_I(inode)->ip_handle_list);
249 /* This is trivial so we do it out of the main commit
250 * paths. Beware, it can be called from start_trans too! */
251 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
255 BUG_ON(handle->flags & OCFS2_HANDLE_STARTED);
257 ocfs2_handle_unlock_inodes(handle);
258 /* You are allowed to add journal locks before the transaction
260 ocfs2_handle_cleanup_locks(handle->journal, handle);
267 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
269 handle_t *jbd_handle;
271 struct ocfs2_journal *journal = handle->journal;
277 if (!(handle->flags & OCFS2_HANDLE_STARTED)) {
278 ocfs2_commit_unstarted_handle(handle);
283 /* release inode semaphores we took during this transaction */
284 ocfs2_handle_unlock_inodes(handle);
286 /* ocfs2_extend_trans may have had to call journal_restart
287 * which will always commit the transaction, but may return
288 * error for any number of reasons. If this is the case, we
289 * clear k_handle as it's not valid any more. */
290 if (handle->k_handle) {
291 jbd_handle = handle->k_handle;
293 if (handle->flags & OCFS2_HANDLE_SYNC)
294 jbd_handle->h_sync = 1;
296 jbd_handle->h_sync = 0;
298 /* actually stop the transaction. if we've set h_sync,
299 * it'll have been committed when we return */
300 retval = journal_stop(jbd_handle);
303 mlog(ML_ERROR, "Could not commit transaction\n");
307 handle->k_handle = NULL; /* it's been free'd in journal_stop */
310 ocfs2_handle_cleanup_locks(journal, handle);
312 up_read(&journal->j_trans_barrier);
319 * 'nblocks' is what you want to add to the current
320 * transaction. extend_trans will either extend the current handle by
321 * nblocks, or commit it and start a new one with nblocks credits.
323 * WARNING: This will not release any semaphores or disk locks taken
324 * during the transaction, so make sure they were taken *before*
325 * start_trans or we'll have ordering deadlocks.
327 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
328 * good because transaction ids haven't yet been recorded on the
329 * cluster locks associated with this handle.
331 int ocfs2_extend_trans(struct ocfs2_journal_handle *handle,
337 BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
342 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
344 status = journal_extend(handle->k_handle, nblocks);
351 mlog(0, "journal_extend failed, trying journal_restart\n");
352 status = journal_restart(handle->k_handle, nblocks);
354 handle->k_handle = NULL;
358 handle->max_buffs = nblocks;
360 handle->max_buffs += nblocks;
369 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
371 struct buffer_head *bh,
379 BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
381 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %hu\n",
382 (unsigned long long)bh->b_blocknr, type,
383 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
384 "OCFS2_JOURNAL_ACCESS_CREATE" :
385 "OCFS2_JOURNAL_ACCESS_WRITE",
388 /* we can safely remove this assertion after testing. */
389 if (!buffer_uptodate(bh)) {
390 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
391 mlog(ML_ERROR, "b_blocknr=%llu\n",
392 (unsigned long long)bh->b_blocknr);
396 /* Set the current transaction information on the inode so
397 * that the locking code knows whether it can drop it's locks
398 * on this inode or not. We're protected from the commit
399 * thread updating the current transaction id until
400 * ocfs2_commit_trans() because ocfs2_start_trans() took
401 * j_trans_barrier for us. */
402 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
404 down(&OCFS2_I(inode)->ip_io_sem);
406 case OCFS2_JOURNAL_ACCESS_CREATE:
407 case OCFS2_JOURNAL_ACCESS_WRITE:
408 status = journal_get_write_access(handle->k_handle, bh);
411 case OCFS2_JOURNAL_ACCESS_UNDO:
412 status = journal_get_undo_access(handle->k_handle, bh);
417 mlog(ML_ERROR, "Uknown access type!\n");
419 up(&OCFS2_I(inode)->ip_io_sem);
422 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
429 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
430 struct buffer_head *bh)
434 BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED));
436 mlog_entry("(bh->b_blocknr=%llu)\n",
437 (unsigned long long)bh->b_blocknr);
439 status = journal_dirty_metadata(handle->k_handle, bh);
441 mlog(ML_ERROR, "Could not dirty metadata buffer. "
442 "(bh->b_blocknr=%llu)\n",
443 (unsigned long long)bh->b_blocknr);
449 int ocfs2_journal_dirty_data(handle_t *handle,
450 struct buffer_head *bh)
452 int err = journal_dirty_data(handle, bh);
455 /* TODO: When we can handle it, abort the handle and go RO on
461 /* We always assume you're adding a metadata lock at level 'ex' */
462 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
466 struct ocfs2_journal_lock *lock;
470 lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
479 lock->jl_inode = inode;
481 list_add_tail(&(lock->jl_lock_list), &(handle->locks));
490 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
491 struct ocfs2_journal_handle *handle)
493 struct list_head *p, *n;
494 struct ocfs2_journal_lock *lock;
497 list_for_each_safe(p, n, &(handle->locks)) {
498 lock = list_entry(p, struct ocfs2_journal_lock,
500 list_del(&lock->jl_lock_list);
503 inode = lock->jl_inode;
504 ocfs2_meta_unlock(inode, 1);
505 if (atomic_read(&inode->i_count) == 1)
507 "Inode %"MLFu64", I'm doing a last iput for!",
508 OCFS2_I(inode)->ip_blkno);
510 kmem_cache_free(ocfs2_lock_cache, lock);
514 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
516 void ocfs2_set_journal_params(struct ocfs2_super *osb)
518 journal_t *journal = osb->journal->j_journal;
520 spin_lock(&journal->j_state_lock);
521 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
522 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
523 journal->j_flags |= JFS_BARRIER;
525 journal->j_flags &= ~JFS_BARRIER;
526 spin_unlock(&journal->j_state_lock);
529 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
532 struct inode *inode = NULL; /* the journal inode */
533 journal_t *j_journal = NULL;
534 struct ocfs2_dinode *di = NULL;
535 struct buffer_head *bh = NULL;
536 struct ocfs2_super *osb;
543 osb = journal->j_osb;
545 /* already have the inode for our journal */
546 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
553 if (is_bad_inode(inode)) {
554 mlog(ML_ERROR, "access error (bad inode)\n");
561 SET_INODE_JOURNAL(inode);
562 OCFS2_I(inode)->ip_open_count++;
564 status = ocfs2_meta_lock(inode, NULL, &bh, 1);
566 if (status != -ERESTARTSYS)
567 mlog(ML_ERROR, "Could not get lock on journal!\n");
572 di = (struct ocfs2_dinode *)bh->b_data;
574 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
575 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
581 mlog(0, "inode->i_size = %lld\n", inode->i_size);
582 mlog(0, "inode->i_blocks = %lu\n", inode->i_blocks);
583 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
585 /* call the kernels journal init function now */
586 j_journal = journal_init_inode(inode);
587 if (j_journal == NULL) {
588 mlog(ML_ERROR, "Linux journal layer error\n");
593 mlog(0, "Returned from journal_init_inode\n");
594 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
596 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
597 OCFS2_JOURNAL_DIRTY_FL);
599 journal->j_journal = j_journal;
600 journal->j_inode = inode;
603 ocfs2_set_journal_params(osb);
605 journal->j_state = OCFS2_JOURNAL_LOADED;
611 ocfs2_meta_unlock(inode, 1);
615 OCFS2_I(inode)->ip_open_count--;
624 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
629 struct ocfs2_journal *journal = osb->journal;
630 struct buffer_head *bh = journal->j_bh;
631 struct ocfs2_dinode *fe;
635 fe = (struct ocfs2_dinode *)bh->b_data;
636 if (!OCFS2_IS_VALID_DINODE(fe)) {
637 /* This is called from startup/shutdown which will
638 * handle the errors in a specific manner, so no need
639 * to call ocfs2_error() here. */
640 mlog(ML_ERROR, "Journal dinode %"MLFu64" has invalid "
641 "signature: %.*s", fe->i_blkno, 7, fe->i_signature);
646 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
648 flags |= OCFS2_JOURNAL_DIRTY_FL;
650 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
651 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
653 status = ocfs2_write_block(osb, bh, journal->j_inode);
663 * If the journal has been kmalloc'd it needs to be freed after this
666 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
668 struct ocfs2_journal *journal = NULL;
670 struct inode *inode = NULL;
671 int num_running_trans = 0;
678 journal = osb->journal;
682 inode = journal->j_inode;
684 if (journal->j_state != OCFS2_JOURNAL_LOADED)
687 /* need to inc inode use count as journal_destroy will iput. */
691 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
692 if (num_running_trans > 0)
693 mlog(0, "Shutting down journal: must wait on %d "
694 "running transactions!\n",
697 /* Do a commit_cache here. It will flush our journal, *and*
698 * release any locks that are still held.
699 * set the SHUTDOWN flag and release the trans lock.
700 * the commit thread will take the trans lock for us below. */
701 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
703 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
704 * drop the trans_lock (which we want to hold until we
705 * completely destroy the journal. */
706 if (osb->commit_task) {
707 /* Wait for the commit thread */
708 mlog(0, "Waiting for ocfs2commit to exit....\n");
709 kthread_stop(osb->commit_task);
710 osb->commit_task = NULL;
713 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
715 status = ocfs2_journal_toggle_dirty(osb, 0);
719 /* Shutdown the kernel journal system */
720 journal_destroy(journal->j_journal);
722 OCFS2_I(inode)->ip_open_count--;
724 /* unlock our journal */
725 ocfs2_meta_unlock(inode, 1);
727 brelse(journal->j_bh);
728 journal->j_bh = NULL;
730 journal->j_state = OCFS2_JOURNAL_FREE;
732 // up_write(&journal->j_trans_barrier);
739 static void ocfs2_clear_journal_error(struct super_block *sb,
745 olderr = journal_errno(journal);
747 mlog(ML_ERROR, "File system error %d recorded in "
748 "journal %u.\n", olderr, slot);
749 mlog(ML_ERROR, "File system on device %s needs checking.\n",
752 journal_ack_err(journal);
753 journal_clear_err(journal);
757 int ocfs2_journal_load(struct ocfs2_journal *journal)
760 struct ocfs2_super *osb;
767 osb = journal->j_osb;
769 status = journal_load(journal->j_journal);
771 mlog(ML_ERROR, "Failed to load journal!\n");
775 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
777 status = ocfs2_journal_toggle_dirty(osb, 1);
783 /* Launch the commit thread */
784 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt-%d",
786 if (IS_ERR(osb->commit_task)) {
787 status = PTR_ERR(osb->commit_task);
788 osb->commit_task = NULL;
789 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
800 /* 'full' flag tells us whether we clear out all blocks or if we just
801 * mark the journal clean */
802 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
811 status = journal_wipe(journal->j_journal, full);
817 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
827 * JBD Might read a cached version of another nodes journal file. We
828 * don't want this as this file changes often and we get no
829 * notification on those changes. The only way to be sure that we've
830 * got the most up to date version of those blocks then is to force
831 * read them off disk. Just searching through the buffer cache won't
832 * work as there may be pages backing this file which are still marked
833 * up to date. We know things can't change on this file underneath us
834 * as we have the lock by now :)
836 static int ocfs2_force_read_journal(struct inode *inode)
840 u64 v_blkno, p_blkno;
841 #define CONCURRENT_JOURNAL_FILL 32
842 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
846 BUG_ON(inode->i_blocks !=
847 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
849 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
851 mlog(0, "Force reading %lu blocks\n",
852 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9)));
856 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
858 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
866 if (p_blocks > CONCURRENT_JOURNAL_FILL)
867 p_blocks = CONCURRENT_JOURNAL_FILL;
869 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
870 p_blkno, p_blocks, bhs, 0,
877 for(i = 0; i < p_blocks; i++) {
886 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
893 struct ocfs2_la_recovery_item {
894 struct list_head lri_list;
896 struct ocfs2_dinode *lri_la_dinode;
897 struct ocfs2_dinode *lri_tl_dinode;
900 /* Does the second half of the recovery process. By this point, the
901 * node is marked clean and can actually be considered recovered,
902 * hence it's no longer in the recovery map, but there's still some
903 * cleanup we can do which shouldn't happen within the recovery thread
904 * as locking in that context becomes very difficult if we are to take
905 * recovering nodes into account.
907 * NOTE: This function can and will sleep on recovery of other nodes
908 * during cluster locking, just like any other ocfs2 process.
910 void ocfs2_complete_recovery(void *data)
913 struct ocfs2_super *osb = data;
914 struct ocfs2_journal *journal = osb->journal;
915 struct ocfs2_dinode *la_dinode, *tl_dinode;
916 struct ocfs2_la_recovery_item *item;
917 struct list_head *p, *n;
918 LIST_HEAD(tmp_la_list);
922 mlog(0, "completing recovery from keventd\n");
924 spin_lock(&journal->j_lock);
925 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
926 spin_unlock(&journal->j_lock);
928 list_for_each_safe(p, n, &tmp_la_list) {
929 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
930 list_del_init(&item->lri_list);
932 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
934 la_dinode = item->lri_la_dinode;
936 mlog(0, "Clean up local alloc %"MLFu64"\n",
939 ret = ocfs2_complete_local_alloc_recovery(osb,
947 tl_dinode = item->lri_tl_dinode;
949 mlog(0, "Clean up truncate log %"MLFu64"\n",
952 ret = ocfs2_complete_truncate_log_recovery(osb,
960 ret = ocfs2_recover_orphans(osb, item->lri_slot);
967 mlog(0, "Recovery completion\n");
971 /* NOTE: This function always eats your references to la_dinode and
972 * tl_dinode, either manually on error, or by passing them to
973 * ocfs2_complete_recovery */
974 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
976 struct ocfs2_dinode *la_dinode,
977 struct ocfs2_dinode *tl_dinode)
979 struct ocfs2_la_recovery_item *item;
981 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_KERNEL);
983 /* Though we wish to avoid it, we are in fact safe in
984 * skipping local alloc cleanup as fsck.ocfs2 is more
985 * than capable of reclaiming unused space. */
996 INIT_LIST_HEAD(&item->lri_list);
997 item->lri_la_dinode = la_dinode;
998 item->lri_slot = slot_num;
999 item->lri_tl_dinode = tl_dinode;
1001 spin_lock(&journal->j_lock);
1002 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1003 queue_work(ocfs2_wq, &journal->j_recovery_work);
1004 spin_unlock(&journal->j_lock);
1007 /* Called by the mount code to queue recovery the last part of
1008 * recovery for it's own slot. */
1009 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1011 struct ocfs2_journal *journal = osb->journal;
1014 /* No need to queue up our truncate_log as regular
1015 * cleanup will catch that. */
1016 ocfs2_queue_recovery_completion(journal,
1018 osb->local_alloc_copy,
1020 ocfs2_schedule_truncate_log_flush(osb, 0);
1022 osb->local_alloc_copy = NULL;
1027 static int __ocfs2_recovery_thread(void *arg)
1029 int status, node_num;
1030 struct ocfs2_super *osb = arg;
1034 status = ocfs2_wait_on_mount(osb);
1040 status = ocfs2_super_lock(osb, 1);
1046 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1047 node_num = ocfs2_node_map_first_set_bit(osb,
1048 &osb->recovery_map);
1049 if (node_num == O2NM_INVALID_NODE_NUM) {
1050 mlog(0, "Out of nodes to recover.\n");
1054 status = ocfs2_recover_node(osb, node_num);
1057 "Error %d recovering node %d on device (%u,%u)!\n",
1059 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1060 mlog(ML_ERROR, "Volume requires unmount.\n");
1064 ocfs2_recovery_map_clear(osb, node_num);
1066 ocfs2_super_unlock(osb, 1);
1068 /* We always run recovery on our own orphan dir - the dead
1069 * node(s) may have voted "no" on an inode delete earlier. A
1070 * revote is therefore required. */
1071 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1075 down(&osb->recovery_lock);
1077 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1078 up(&osb->recovery_lock);
1082 osb->recovery_thread_task = NULL;
1083 mb(); /* sync with ocfs2_recovery_thread_running */
1084 wake_up(&osb->recovery_event);
1086 up(&osb->recovery_lock);
1089 /* no one is callint kthread_stop() for us so the kthread() api
1090 * requires that we call do_exit(). And it isn't exported, but
1091 * complete_and_exit() seems to be a minimal wrapper around it. */
1092 complete_and_exit(NULL, status);
1096 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1098 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1099 node_num, osb->node_num);
1101 down(&osb->recovery_lock);
1102 if (osb->disable_recovery)
1105 /* People waiting on recovery will wait on
1106 * the recovery map to empty. */
1107 if (!ocfs2_recovery_map_set(osb, node_num))
1108 mlog(0, "node %d already be in recovery.\n", node_num);
1110 mlog(0, "starting recovery thread...\n");
1112 if (osb->recovery_thread_task)
1115 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1116 "ocfs2rec-%d", osb->osb_id);
1117 if (IS_ERR(osb->recovery_thread_task)) {
1118 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1119 osb->recovery_thread_task = NULL;
1123 up(&osb->recovery_lock);
1124 wake_up(&osb->recovery_event);
1129 /* Does the actual journal replay and marks the journal inode as
1130 * clean. Will only replay if the journal inode is marked dirty. */
1131 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1138 struct inode *inode = NULL;
1139 struct ocfs2_dinode *fe;
1140 journal_t *journal = NULL;
1141 struct buffer_head *bh = NULL;
1143 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1145 if (inode == NULL) {
1150 if (is_bad_inode(inode)) {
1157 SET_INODE_JOURNAL(inode);
1159 status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1160 OCFS2_META_LOCK_RECOVERY);
1162 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1163 if (status != -ERESTARTSYS)
1164 mlog(ML_ERROR, "Could not lock journal!\n");
1169 fe = (struct ocfs2_dinode *) bh->b_data;
1171 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1173 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1174 mlog(0, "No recovery required for node %d\n", node_num);
1178 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1180 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1182 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1184 status = ocfs2_force_read_journal(inode);
1190 mlog(0, "calling journal_init_inode\n");
1191 journal = journal_init_inode(inode);
1192 if (journal == NULL) {
1193 mlog(ML_ERROR, "Linux journal layer error\n");
1198 status = journal_load(journal);
1203 journal_destroy(journal);
1207 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1209 /* wipe the journal */
1210 mlog(0, "flushing the journal.\n");
1211 journal_lock_updates(journal);
1212 status = journal_flush(journal);
1213 journal_unlock_updates(journal);
1217 /* This will mark the node clean */
1218 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1219 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1220 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1222 status = ocfs2_write_block(osb, bh, inode);
1229 journal_destroy(journal);
1232 /* drop the lock on this nodes journal */
1234 ocfs2_meta_unlock(inode, 1);
1247 * Do the most important parts of node recovery:
1248 * - Replay it's journal
1249 * - Stamp a clean local allocator file
1250 * - Stamp a clean truncate log
1251 * - Mark the node clean
1253 * If this function completes without error, a node in OCFS2 can be
1254 * said to have been safely recovered. As a result, failure during the
1255 * second part of a nodes recovery process (local alloc recovery) is
1256 * far less concerning.
1258 static int ocfs2_recover_node(struct ocfs2_super *osb,
1263 struct ocfs2_slot_info *si = osb->slot_info;
1264 struct ocfs2_dinode *la_copy = NULL;
1265 struct ocfs2_dinode *tl_copy = NULL;
1267 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1268 node_num, osb->node_num);
1270 mlog(0, "checking node %d\n", node_num);
1272 /* Should not ever be called to recover ourselves -- in that
1273 * case we should've called ocfs2_journal_load instead. */
1274 if (osb->node_num == node_num)
1277 slot_num = ocfs2_node_num_to_slot(si, node_num);
1278 if (slot_num == OCFS2_INVALID_SLOT) {
1280 mlog(0, "no slot for this node, so no recovery required.\n");
1284 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1286 status = ocfs2_replay_journal(osb, node_num, slot_num);
1292 /* Stamp a clean local alloc file AFTER recovering the journal... */
1293 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1299 /* An error from begin_truncate_log_recovery is not
1300 * serious enough to warrant halting the rest of
1302 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1306 /* Likewise, this would be a strange but ultimately not so
1307 * harmful place to get an error... */
1308 ocfs2_clear_slot(si, slot_num);
1309 status = ocfs2_update_disk_slots(osb, si);
1313 /* This will kfree the memory pointed to by la_copy and tl_copy */
1314 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1324 /* Test node liveness by trylocking his journal. If we get the lock,
1325 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1326 * still alive (we couldn't get the lock) and < 0 on error. */
1327 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1331 struct inode *inode = NULL;
1333 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1335 if (inode == NULL) {
1336 mlog(ML_ERROR, "access error\n");
1340 if (is_bad_inode(inode)) {
1341 mlog(ML_ERROR, "access error (bad inode)\n");
1347 SET_INODE_JOURNAL(inode);
1349 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1350 status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1352 if (status != -EAGAIN)
1357 ocfs2_meta_unlock(inode, 1);
1365 /* Call this underneath ocfs2_super_lock. It also assumes that the
1366 * slot info struct has been updated from disk. */
1367 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1369 int status, i, node_num;
1370 struct ocfs2_slot_info *si = osb->slot_info;
1372 /* This is called with the super block cluster lock, so we
1373 * know that the slot map can't change underneath us. */
1375 spin_lock(&si->si_lock);
1376 for(i = 0; i < si->si_num_slots; i++) {
1377 if (i == osb->slot_num)
1379 if (ocfs2_is_empty_slot(si, i))
1382 node_num = si->si_global_node_nums[i];
1383 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1385 spin_unlock(&si->si_lock);
1387 /* Ok, we have a slot occupied by another node which
1388 * is not in the recovery map. We trylock his journal
1389 * file here to test if he's alive. */
1390 status = ocfs2_trylock_journal(osb, i);
1392 /* Since we're called from mount, we know that
1393 * the recovery thread can't race us on
1394 * setting / checking the recovery bits. */
1395 ocfs2_recovery_thread(osb, node_num);
1396 } else if ((status < 0) && (status != -EAGAIN)) {
1401 spin_lock(&si->si_lock);
1403 spin_unlock(&si->si_lock);
1411 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1415 int have_disk_lock = 0;
1416 struct inode *inode = NULL;
1418 struct inode *orphan_dir_inode = NULL;
1419 unsigned long offset, blk, local;
1420 struct buffer_head *bh = NULL;
1421 struct ocfs2_dir_entry *de;
1422 struct super_block *sb = osb->sb;
1423 struct ocfs2_inode_info *oi;
1425 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1427 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1428 ORPHAN_DIR_SYSTEM_INODE,
1430 if (!orphan_dir_inode) {
1436 down(&orphan_dir_inode->i_sem);
1437 status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1439 up(&orphan_dir_inode->i_sem);
1447 while(offset < i_size_read(orphan_dir_inode)) {
1448 blk = offset >> sb->s_blocksize_bits;
1450 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1454 up(&orphan_dir_inode->i_sem);
1462 while(offset < i_size_read(orphan_dir_inode)
1463 && local < sb->s_blocksize) {
1464 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1466 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1468 up(&orphan_dir_inode->i_sem);
1475 local += le16_to_cpu(de->rec_len);
1476 offset += le16_to_cpu(de->rec_len);
1478 /* I guess we silently fail on no inode? */
1479 if (!le64_to_cpu(de->inode))
1481 if (de->file_type > OCFS2_FT_MAX) {
1483 "block %llu contains invalid de: "
1484 "inode = %"MLFu64", rec_len = %u, "
1485 "name_len = %u, file_type = %u, "
1487 (unsigned long long)bh->b_blocknr,
1488 le64_to_cpu(de->inode),
1489 le16_to_cpu(de->rec_len),
1496 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1498 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1501 iter = ocfs2_iget(osb, le64_to_cpu(de->inode));
1505 mlog(0, "queue orphan %"MLFu64"\n",
1506 OCFS2_I(iter)->ip_blkno);
1507 OCFS2_I(iter)->ip_next_orphan = inode;
1512 up(&orphan_dir_inode->i_sem);
1514 ocfs2_meta_unlock(orphan_dir_inode, 0);
1517 iput(orphan_dir_inode);
1518 orphan_dir_inode = NULL;
1521 oi = OCFS2_I(inode);
1522 mlog(0, "iput orphan %"MLFu64"\n", oi->ip_blkno);
1524 iter = oi->ip_next_orphan;
1526 spin_lock(&oi->ip_lock);
1527 /* Delete voting may have set these on the assumption
1528 * that the other node would wipe them successfully.
1529 * If they are still in the node's orphan dir, we need
1530 * to reset that state. */
1531 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1533 /* Set the proper information to get us going into
1534 * ocfs2_delete_inode. */
1535 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1536 oi->ip_orphaned_slot = slot;
1537 spin_unlock(&oi->ip_lock);
1546 ocfs2_meta_unlock(orphan_dir_inode, 0);
1548 if (orphan_dir_inode)
1549 iput(orphan_dir_inode);
1554 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1556 /* This check is good because ocfs2 will wait on our recovery
1557 * thread before changing it to something other than MOUNTED
1559 wait_event(osb->osb_mount_event,
1560 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1561 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1563 /* If there's an error on mount, then we may never get to the
1564 * MOUNTED flag, but this is set right before
1565 * dismount_volume() so we can trust it. */
1566 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1567 mlog(0, "mount error, exiting!\n");
1574 static int ocfs2_commit_thread(void *arg)
1577 struct ocfs2_super *osb = arg;
1578 struct ocfs2_journal *journal = osb->journal;
1580 /* we can trust j_num_trans here because _should_stop() is only set in
1581 * shutdown and nobody other than ourselves should be able to start
1582 * transactions. committing on shutdown might take a few iterations
1583 * as final transactions put deleted inodes on the list */
1584 while (!(kthread_should_stop() &&
1585 atomic_read(&journal->j_num_trans) == 0)) {
1587 wait_event_interruptible_timeout(osb->checkpoint_event,
1588 atomic_read(&journal->j_num_trans)
1589 || kthread_should_stop(),
1590 OCFS2_CHECKPOINT_INTERVAL);
1592 status = ocfs2_commit_cache(osb);
1596 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1598 "commit_thread: %u transactions pending on "
1600 atomic_read(&journal->j_num_trans));
1607 /* Look for a dirty journal without taking any cluster locks. Used for
1608 * hard readonly access to determine whether the file system journals
1609 * require recovery. */
1610 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1614 struct buffer_head *di_bh;
1615 struct ocfs2_dinode *di;
1616 struct inode *journal = NULL;
1618 for(slot = 0; slot < osb->max_slots; slot++) {
1619 journal = ocfs2_get_system_file_inode(osb,
1620 JOURNAL_SYSTEM_INODE,
1622 if (!journal || is_bad_inode(journal)) {
1629 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1636 di = (struct ocfs2_dinode *) di_bh->b_data;
1638 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1639 OCFS2_JOURNAL_DIRTY_FL)