net: convert unicast addr list
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 #ifdef CONFIG_PM
160 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         netif_wake_queue(adapter->netdev);
502
503         /* fire a link change interrupt to start the watchdog */
504         ew32(ICS, E1000_ICS_LSC);
505         return 0;
506 }
507
508 /**
509  * e1000_power_up_phy - restore link in case the phy was powered down
510  * @adapter: address of board private structure
511  *
512  * The phy may be powered down to save power and turn off link when the
513  * driver is unloaded and wake on lan is not enabled (among others)
514  * *** this routine MUST be followed by a call to e1000_reset ***
515  *
516  **/
517
518 void e1000_power_up_phy(struct e1000_adapter *adapter)
519 {
520         struct e1000_hw *hw = &adapter->hw;
521         u16 mii_reg = 0;
522
523         /* Just clear the power down bit to wake the phy back up */
524         if (hw->media_type == e1000_media_type_copper) {
525                 /* according to the manual, the phy will retain its
526                  * settings across a power-down/up cycle */
527                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
528                 mii_reg &= ~MII_CR_POWER_DOWN;
529                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
530         }
531 }
532
533 static void e1000_power_down_phy(struct e1000_adapter *adapter)
534 {
535         struct e1000_hw *hw = &adapter->hw;
536
537         /* Power down the PHY so no link is implied when interface is down *
538          * The PHY cannot be powered down if any of the following is true *
539          * (a) WoL is enabled
540          * (b) AMT is active
541          * (c) SoL/IDER session is active */
542         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
543            hw->media_type == e1000_media_type_copper) {
544                 u16 mii_reg = 0;
545
546                 switch (hw->mac_type) {
547                 case e1000_82540:
548                 case e1000_82545:
549                 case e1000_82545_rev_3:
550                 case e1000_82546:
551                 case e1000_82546_rev_3:
552                 case e1000_82541:
553                 case e1000_82541_rev_2:
554                 case e1000_82547:
555                 case e1000_82547_rev_2:
556                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
557                                 goto out;
558                         break;
559                 case e1000_82571:
560                 case e1000_82572:
561                 case e1000_82573:
562                 case e1000_80003es2lan:
563                 case e1000_ich8lan:
564                         if (e1000_check_mng_mode(hw) ||
565                             e1000_check_phy_reset_block(hw))
566                                 goto out;
567                         break;
568                 default:
569                         goto out;
570                 }
571                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
572                 mii_reg |= MII_CR_POWER_DOWN;
573                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
574                 mdelay(1);
575         }
576 out:
577         return;
578 }
579
580 void e1000_down(struct e1000_adapter *adapter)
581 {
582         struct e1000_hw *hw = &adapter->hw;
583         struct net_device *netdev = adapter->netdev;
584         u32 rctl, tctl;
585
586         /* signal that we're down so the interrupt handler does not
587          * reschedule our watchdog timer */
588         set_bit(__E1000_DOWN, &adapter->flags);
589
590         /* disable receives in the hardware */
591         rctl = er32(RCTL);
592         ew32(RCTL, rctl & ~E1000_RCTL_EN);
593         /* flush and sleep below */
594
595         /* can be netif_tx_disable when NETIF_F_LLTX is removed */
596         netif_stop_queue(netdev);
597
598         /* disable transmits in the hardware */
599         tctl = er32(TCTL);
600         tctl &= ~E1000_TCTL_EN;
601         ew32(TCTL, tctl);
602         /* flush both disables and wait for them to finish */
603         E1000_WRITE_FLUSH();
604         msleep(10);
605
606         napi_disable(&adapter->napi);
607
608         e1000_irq_disable(adapter);
609
610         del_timer_sync(&adapter->tx_fifo_stall_timer);
611         del_timer_sync(&adapter->watchdog_timer);
612         del_timer_sync(&adapter->phy_info_timer);
613
614         netdev->tx_queue_len = adapter->tx_queue_len;
615         adapter->link_speed = 0;
616         adapter->link_duplex = 0;
617         netif_carrier_off(netdev);
618
619         e1000_reset(adapter);
620         e1000_clean_all_tx_rings(adapter);
621         e1000_clean_all_rx_rings(adapter);
622 }
623
624 void e1000_reinit_locked(struct e1000_adapter *adapter)
625 {
626         WARN_ON(in_interrupt());
627         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628                 msleep(1);
629         e1000_down(adapter);
630         e1000_up(adapter);
631         clear_bit(__E1000_RESETTING, &adapter->flags);
632 }
633
634 void e1000_reset(struct e1000_adapter *adapter)
635 {
636         struct e1000_hw *hw = &adapter->hw;
637         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
638         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
639         bool legacy_pba_adjust = false;
640
641         /* Repartition Pba for greater than 9k mtu
642          * To take effect CTRL.RST is required.
643          */
644
645         switch (hw->mac_type) {
646         case e1000_82542_rev2_0:
647         case e1000_82542_rev2_1:
648         case e1000_82543:
649         case e1000_82544:
650         case e1000_82540:
651         case e1000_82541:
652         case e1000_82541_rev_2:
653                 legacy_pba_adjust = true;
654                 pba = E1000_PBA_48K;
655                 break;
656         case e1000_82545:
657         case e1000_82545_rev_3:
658         case e1000_82546:
659         case e1000_82546_rev_3:
660                 pba = E1000_PBA_48K;
661                 break;
662         case e1000_82547:
663         case e1000_82547_rev_2:
664                 legacy_pba_adjust = true;
665                 pba = E1000_PBA_30K;
666                 break;
667         case e1000_82571:
668         case e1000_82572:
669         case e1000_80003es2lan:
670                 pba = E1000_PBA_38K;
671                 break;
672         case e1000_82573:
673                 pba = E1000_PBA_20K;
674                 break;
675         case e1000_ich8lan:
676                 pba = E1000_PBA_8K;
677         case e1000_undefined:
678         case e1000_num_macs:
679                 break;
680         }
681
682         if (legacy_pba_adjust) {
683                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
684                         pba -= 8; /* allocate more FIFO for Tx */
685
686                 if (hw->mac_type == e1000_82547) {
687                         adapter->tx_fifo_head = 0;
688                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
689                         adapter->tx_fifo_size =
690                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
691                         atomic_set(&adapter->tx_fifo_stall, 0);
692                 }
693         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
694                 /* adjust PBA for jumbo frames */
695                 ew32(PBA, pba);
696
697                 /* To maintain wire speed transmits, the Tx FIFO should be
698                  * large enough to accomodate two full transmit packets,
699                  * rounded up to the next 1KB and expressed in KB.  Likewise,
700                  * the Rx FIFO should be large enough to accomodate at least
701                  * one full receive packet and is similarly rounded up and
702                  * expressed in KB. */
703                 pba = er32(PBA);
704                 /* upper 16 bits has Tx packet buffer allocation size in KB */
705                 tx_space = pba >> 16;
706                 /* lower 16 bits has Rx packet buffer allocation size in KB */
707                 pba &= 0xffff;
708                 /* don't include ethernet FCS because hardware appends/strips */
709                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
710                                VLAN_TAG_SIZE;
711                 min_tx_space = min_rx_space;
712                 min_tx_space *= 2;
713                 min_tx_space = ALIGN(min_tx_space, 1024);
714                 min_tx_space >>= 10;
715                 min_rx_space = ALIGN(min_rx_space, 1024);
716                 min_rx_space >>= 10;
717
718                 /* If current Tx allocation is less than the min Tx FIFO size,
719                  * and the min Tx FIFO size is less than the current Rx FIFO
720                  * allocation, take space away from current Rx allocation */
721                 if (tx_space < min_tx_space &&
722                     ((min_tx_space - tx_space) < pba)) {
723                         pba = pba - (min_tx_space - tx_space);
724
725                         /* PCI/PCIx hardware has PBA alignment constraints */
726                         switch (hw->mac_type) {
727                         case e1000_82545 ... e1000_82546_rev_3:
728                                 pba &= ~(E1000_PBA_8K - 1);
729                                 break;
730                         default:
731                                 break;
732                         }
733
734                         /* if short on rx space, rx wins and must trump tx
735                          * adjustment or use Early Receive if available */
736                         if (pba < min_rx_space) {
737                                 switch (hw->mac_type) {
738                                 case e1000_82573:
739                                         /* ERT enabled in e1000_configure_rx */
740                                         break;
741                                 default:
742                                         pba = min_rx_space;
743                                         break;
744                                 }
745                         }
746                 }
747         }
748
749         ew32(PBA, pba);
750
751         /* flow control settings */
752         /* Set the FC high water mark to 90% of the FIFO size.
753          * Required to clear last 3 LSB */
754         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
755         /* We can't use 90% on small FIFOs because the remainder
756          * would be less than 1 full frame.  In this case, we size
757          * it to allow at least a full frame above the high water
758          *  mark. */
759         if (pba < E1000_PBA_16K)
760                 fc_high_water_mark = (pba * 1024) - 1600;
761
762         hw->fc_high_water = fc_high_water_mark;
763         hw->fc_low_water = fc_high_water_mark - 8;
764         if (hw->mac_type == e1000_80003es2lan)
765                 hw->fc_pause_time = 0xFFFF;
766         else
767                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
768         hw->fc_send_xon = 1;
769         hw->fc = hw->original_fc;
770
771         /* Allow time for pending master requests to run */
772         e1000_reset_hw(hw);
773         if (hw->mac_type >= e1000_82544)
774                 ew32(WUC, 0);
775
776         if (e1000_init_hw(hw))
777                 DPRINTK(PROBE, ERR, "Hardware Error\n");
778         e1000_update_mng_vlan(adapter);
779
780         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
781         if (hw->mac_type >= e1000_82544 &&
782             hw->mac_type <= e1000_82547_rev_2 &&
783             hw->autoneg == 1 &&
784             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
785                 u32 ctrl = er32(CTRL);
786                 /* clear phy power management bit if we are in gig only mode,
787                  * which if enabled will attempt negotiation to 100Mb, which
788                  * can cause a loss of link at power off or driver unload */
789                 ctrl &= ~E1000_CTRL_SWDPIN3;
790                 ew32(CTRL, ctrl);
791         }
792
793         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
794         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
795
796         e1000_reset_adaptive(hw);
797         e1000_phy_get_info(hw, &adapter->phy_info);
798
799         if (!adapter->smart_power_down &&
800             (hw->mac_type == e1000_82571 ||
801              hw->mac_type == e1000_82572)) {
802                 u16 phy_data = 0;
803                 /* speed up time to link by disabling smart power down, ignore
804                  * the return value of this function because there is nothing
805                  * different we would do if it failed */
806                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
807                                    &phy_data);
808                 phy_data &= ~IGP02E1000_PM_SPD;
809                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
810                                     phy_data);
811         }
812
813         e1000_release_manageability(adapter);
814 }
815
816 /**
817  *  Dump the eeprom for users having checksum issues
818  **/
819 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
820 {
821         struct net_device *netdev = adapter->netdev;
822         struct ethtool_eeprom eeprom;
823         const struct ethtool_ops *ops = netdev->ethtool_ops;
824         u8 *data;
825         int i;
826         u16 csum_old, csum_new = 0;
827
828         eeprom.len = ops->get_eeprom_len(netdev);
829         eeprom.offset = 0;
830
831         data = kmalloc(eeprom.len, GFP_KERNEL);
832         if (!data) {
833                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
834                        " data\n");
835                 return;
836         }
837
838         ops->get_eeprom(netdev, &eeprom, data);
839
840         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
841                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
842         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
843                 csum_new += data[i] + (data[i + 1] << 8);
844         csum_new = EEPROM_SUM - csum_new;
845
846         printk(KERN_ERR "/*********************/\n");
847         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
848         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
849
850         printk(KERN_ERR "Offset    Values\n");
851         printk(KERN_ERR "========  ======\n");
852         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
853
854         printk(KERN_ERR "Include this output when contacting your support "
855                "provider.\n");
856         printk(KERN_ERR "This is not a software error! Something bad "
857                "happened to your hardware or\n");
858         printk(KERN_ERR "EEPROM image. Ignoring this "
859                "problem could result in further problems,\n");
860         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
861         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
862                "which is invalid\n");
863         printk(KERN_ERR "and requires you to set the proper MAC "
864                "address manually before continuing\n");
865         printk(KERN_ERR "to enable this network device.\n");
866         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
867                "to your hardware vendor\n");
868         printk(KERN_ERR "or Intel Customer Support.\n");
869         printk(KERN_ERR "/*********************/\n");
870
871         kfree(data);
872 }
873
874 /**
875  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
876  * @pdev: PCI device information struct
877  *
878  * Return true if an adapter needs ioport resources
879  **/
880 static int e1000_is_need_ioport(struct pci_dev *pdev)
881 {
882         switch (pdev->device) {
883         case E1000_DEV_ID_82540EM:
884         case E1000_DEV_ID_82540EM_LOM:
885         case E1000_DEV_ID_82540EP:
886         case E1000_DEV_ID_82540EP_LOM:
887         case E1000_DEV_ID_82540EP_LP:
888         case E1000_DEV_ID_82541EI:
889         case E1000_DEV_ID_82541EI_MOBILE:
890         case E1000_DEV_ID_82541ER:
891         case E1000_DEV_ID_82541ER_LOM:
892         case E1000_DEV_ID_82541GI:
893         case E1000_DEV_ID_82541GI_LF:
894         case E1000_DEV_ID_82541GI_MOBILE:
895         case E1000_DEV_ID_82544EI_COPPER:
896         case E1000_DEV_ID_82544EI_FIBER:
897         case E1000_DEV_ID_82544GC_COPPER:
898         case E1000_DEV_ID_82544GC_LOM:
899         case E1000_DEV_ID_82545EM_COPPER:
900         case E1000_DEV_ID_82545EM_FIBER:
901         case E1000_DEV_ID_82546EB_COPPER:
902         case E1000_DEV_ID_82546EB_FIBER:
903         case E1000_DEV_ID_82546EB_QUAD_COPPER:
904                 return true;
905         default:
906                 return false;
907         }
908 }
909
910 static const struct net_device_ops e1000_netdev_ops = {
911         .ndo_open               = e1000_open,
912         .ndo_stop               = e1000_close,
913         .ndo_start_xmit         = e1000_xmit_frame,
914         .ndo_get_stats          = e1000_get_stats,
915         .ndo_set_rx_mode        = e1000_set_rx_mode,
916         .ndo_set_mac_address    = e1000_set_mac,
917         .ndo_tx_timeout         = e1000_tx_timeout,
918         .ndo_change_mtu         = e1000_change_mtu,
919         .ndo_do_ioctl           = e1000_ioctl,
920         .ndo_validate_addr      = eth_validate_addr,
921
922         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
923         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
924         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
925 #ifdef CONFIG_NET_POLL_CONTROLLER
926         .ndo_poll_controller    = e1000_netpoll,
927 #endif
928 };
929
930 /**
931  * e1000_probe - Device Initialization Routine
932  * @pdev: PCI device information struct
933  * @ent: entry in e1000_pci_tbl
934  *
935  * Returns 0 on success, negative on failure
936  *
937  * e1000_probe initializes an adapter identified by a pci_dev structure.
938  * The OS initialization, configuring of the adapter private structure,
939  * and a hardware reset occur.
940  **/
941 static int __devinit e1000_probe(struct pci_dev *pdev,
942                                  const struct pci_device_id *ent)
943 {
944         struct net_device *netdev;
945         struct e1000_adapter *adapter;
946         struct e1000_hw *hw;
947
948         static int cards_found = 0;
949         static int global_quad_port_a = 0; /* global ksp3 port a indication */
950         int i, err, pci_using_dac;
951         u16 eeprom_data = 0;
952         u16 eeprom_apme_mask = E1000_EEPROM_APME;
953         int bars, need_ioport;
954
955         /* do not allocate ioport bars when not needed */
956         need_ioport = e1000_is_need_ioport(pdev);
957         if (need_ioport) {
958                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
959                 err = pci_enable_device(pdev);
960         } else {
961                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
962                 err = pci_enable_device_mem(pdev);
963         }
964         if (err)
965                 return err;
966
967         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
968             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
969                 pci_using_dac = 1;
970         } else {
971                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
972                 if (err) {
973                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
974                         if (err) {
975                                 E1000_ERR("No usable DMA configuration, "
976                                           "aborting\n");
977                                 goto err_dma;
978                         }
979                 }
980                 pci_using_dac = 0;
981         }
982
983         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
984         if (err)
985                 goto err_pci_reg;
986
987         pci_set_master(pdev);
988
989         err = -ENOMEM;
990         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
991         if (!netdev)
992                 goto err_alloc_etherdev;
993
994         SET_NETDEV_DEV(netdev, &pdev->dev);
995
996         pci_set_drvdata(pdev, netdev);
997         adapter = netdev_priv(netdev);
998         adapter->netdev = netdev;
999         adapter->pdev = pdev;
1000         adapter->msg_enable = (1 << debug) - 1;
1001         adapter->bars = bars;
1002         adapter->need_ioport = need_ioport;
1003
1004         hw = &adapter->hw;
1005         hw->back = adapter;
1006
1007         err = -EIO;
1008         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1009         if (!hw->hw_addr)
1010                 goto err_ioremap;
1011
1012         if (adapter->need_ioport) {
1013                 for (i = BAR_1; i <= BAR_5; i++) {
1014                         if (pci_resource_len(pdev, i) == 0)
1015                                 continue;
1016                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1017                                 hw->io_base = pci_resource_start(pdev, i);
1018                                 break;
1019                         }
1020                 }
1021         }
1022
1023         netdev->netdev_ops = &e1000_netdev_ops;
1024         e1000_set_ethtool_ops(netdev);
1025         netdev->watchdog_timeo = 5 * HZ;
1026         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1027
1028         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1029
1030         adapter->bd_number = cards_found;
1031
1032         /* setup the private structure */
1033
1034         err = e1000_sw_init(adapter);
1035         if (err)
1036                 goto err_sw_init;
1037
1038         err = -EIO;
1039         /* Flash BAR mapping must happen after e1000_sw_init
1040          * because it depends on mac_type */
1041         if ((hw->mac_type == e1000_ich8lan) &&
1042            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1043                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1044                 if (!hw->flash_address)
1045                         goto err_flashmap;
1046         }
1047
1048         if (e1000_check_phy_reset_block(hw))
1049                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1050
1051         if (hw->mac_type >= e1000_82543) {
1052                 netdev->features = NETIF_F_SG |
1053                                    NETIF_F_HW_CSUM |
1054                                    NETIF_F_HW_VLAN_TX |
1055                                    NETIF_F_HW_VLAN_RX |
1056                                    NETIF_F_HW_VLAN_FILTER;
1057                 if (hw->mac_type == e1000_ich8lan)
1058                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1059         }
1060
1061         if ((hw->mac_type >= e1000_82544) &&
1062            (hw->mac_type != e1000_82547))
1063                 netdev->features |= NETIF_F_TSO;
1064
1065         if (hw->mac_type > e1000_82547_rev_2)
1066                 netdev->features |= NETIF_F_TSO6;
1067         if (pci_using_dac)
1068                 netdev->features |= NETIF_F_HIGHDMA;
1069
1070         netdev->vlan_features |= NETIF_F_TSO;
1071         netdev->vlan_features |= NETIF_F_TSO6;
1072         netdev->vlan_features |= NETIF_F_HW_CSUM;
1073         netdev->vlan_features |= NETIF_F_SG;
1074
1075         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1076
1077         /* initialize eeprom parameters */
1078         if (e1000_init_eeprom_params(hw)) {
1079                 E1000_ERR("EEPROM initialization failed\n");
1080                 goto err_eeprom;
1081         }
1082
1083         /* before reading the EEPROM, reset the controller to
1084          * put the device in a known good starting state */
1085
1086         e1000_reset_hw(hw);
1087
1088         /* make sure the EEPROM is good */
1089         if (e1000_validate_eeprom_checksum(hw) < 0) {
1090                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1091                 e1000_dump_eeprom(adapter);
1092                 /*
1093                  * set MAC address to all zeroes to invalidate and temporary
1094                  * disable this device for the user. This blocks regular
1095                  * traffic while still permitting ethtool ioctls from reaching
1096                  * the hardware as well as allowing the user to run the
1097                  * interface after manually setting a hw addr using
1098                  * `ip set address`
1099                  */
1100                 memset(hw->mac_addr, 0, netdev->addr_len);
1101         } else {
1102                 /* copy the MAC address out of the EEPROM */
1103                 if (e1000_read_mac_addr(hw))
1104                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1105         }
1106         /* don't block initalization here due to bad MAC address */
1107         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1108         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1109
1110         if (!is_valid_ether_addr(netdev->perm_addr))
1111                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1112
1113         e1000_get_bus_info(hw);
1114
1115         init_timer(&adapter->tx_fifo_stall_timer);
1116         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1117         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1118
1119         init_timer(&adapter->watchdog_timer);
1120         adapter->watchdog_timer.function = &e1000_watchdog;
1121         adapter->watchdog_timer.data = (unsigned long) adapter;
1122
1123         init_timer(&adapter->phy_info_timer);
1124         adapter->phy_info_timer.function = &e1000_update_phy_info;
1125         adapter->phy_info_timer.data = (unsigned long)adapter;
1126
1127         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1128
1129         e1000_check_options(adapter);
1130
1131         /* Initial Wake on LAN setting
1132          * If APM wake is enabled in the EEPROM,
1133          * enable the ACPI Magic Packet filter
1134          */
1135
1136         switch (hw->mac_type) {
1137         case e1000_82542_rev2_0:
1138         case e1000_82542_rev2_1:
1139         case e1000_82543:
1140                 break;
1141         case e1000_82544:
1142                 e1000_read_eeprom(hw,
1143                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1144                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1145                 break;
1146         case e1000_ich8lan:
1147                 e1000_read_eeprom(hw,
1148                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1149                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1150                 break;
1151         case e1000_82546:
1152         case e1000_82546_rev_3:
1153         case e1000_82571:
1154         case e1000_80003es2lan:
1155                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1156                         e1000_read_eeprom(hw,
1157                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158                         break;
1159                 }
1160                 /* Fall Through */
1161         default:
1162                 e1000_read_eeprom(hw,
1163                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164                 break;
1165         }
1166         if (eeprom_data & eeprom_apme_mask)
1167                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169         /* now that we have the eeprom settings, apply the special cases
1170          * where the eeprom may be wrong or the board simply won't support
1171          * wake on lan on a particular port */
1172         switch (pdev->device) {
1173         case E1000_DEV_ID_82546GB_PCIE:
1174                 adapter->eeprom_wol = 0;
1175                 break;
1176         case E1000_DEV_ID_82546EB_FIBER:
1177         case E1000_DEV_ID_82546GB_FIBER:
1178         case E1000_DEV_ID_82571EB_FIBER:
1179                 /* Wake events only supported on port A for dual fiber
1180                  * regardless of eeprom setting */
1181                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1182                         adapter->eeprom_wol = 0;
1183                 break;
1184         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1185         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1186         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1187         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1188         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1189                 /* if quad port adapter, disable WoL on all but port A */
1190                 if (global_quad_port_a != 0)
1191                         adapter->eeprom_wol = 0;
1192                 else
1193                         adapter->quad_port_a = 1;
1194                 /* Reset for multiple quad port adapters */
1195                 if (++global_quad_port_a == 4)
1196                         global_quad_port_a = 0;
1197                 break;
1198         }
1199
1200         /* initialize the wol settings based on the eeprom settings */
1201         adapter->wol = adapter->eeprom_wol;
1202         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204         /* print bus type/speed/width info */
1205         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1206                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1207                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1208                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1209                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1210                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1211                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1212                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1213                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1214                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1215                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1216                  "32-bit"));
1217
1218         printk("%pM\n", netdev->dev_addr);
1219
1220         if (hw->bus_type == e1000_bus_type_pci_express) {
1221                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1222                         "longer be supported by this driver in the future.\n",
1223                         pdev->vendor, pdev->device);
1224                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1225                         "driver instead.\n");
1226         }
1227
1228         /* reset the hardware with the new settings */
1229         e1000_reset(adapter);
1230
1231         /* If the controller is 82573 and f/w is AMT, do not set
1232          * DRV_LOAD until the interface is up.  For all other cases,
1233          * let the f/w know that the h/w is now under the control
1234          * of the driver. */
1235         if (hw->mac_type != e1000_82573 ||
1236             !e1000_check_mng_mode(hw))
1237                 e1000_get_hw_control(adapter);
1238
1239         strcpy(netdev->name, "eth%d");
1240         err = register_netdev(netdev);
1241         if (err)
1242                 goto err_register;
1243
1244         /* carrier off reporting is important to ethtool even BEFORE open */
1245         netif_carrier_off(netdev);
1246
1247         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1248
1249         cards_found++;
1250         return 0;
1251
1252 err_register:
1253         e1000_release_hw_control(adapter);
1254 err_eeprom:
1255         if (!e1000_check_phy_reset_block(hw))
1256                 e1000_phy_hw_reset(hw);
1257
1258         if (hw->flash_address)
1259                 iounmap(hw->flash_address);
1260 err_flashmap:
1261         kfree(adapter->tx_ring);
1262         kfree(adapter->rx_ring);
1263 err_sw_init:
1264         iounmap(hw->hw_addr);
1265 err_ioremap:
1266         free_netdev(netdev);
1267 err_alloc_etherdev:
1268         pci_release_selected_regions(pdev, bars);
1269 err_pci_reg:
1270 err_dma:
1271         pci_disable_device(pdev);
1272         return err;
1273 }
1274
1275 /**
1276  * e1000_remove - Device Removal Routine
1277  * @pdev: PCI device information struct
1278  *
1279  * e1000_remove is called by the PCI subsystem to alert the driver
1280  * that it should release a PCI device.  The could be caused by a
1281  * Hot-Plug event, or because the driver is going to be removed from
1282  * memory.
1283  **/
1284
1285 static void __devexit e1000_remove(struct pci_dev *pdev)
1286 {
1287         struct net_device *netdev = pci_get_drvdata(pdev);
1288         struct e1000_adapter *adapter = netdev_priv(netdev);
1289         struct e1000_hw *hw = &adapter->hw;
1290
1291         cancel_work_sync(&adapter->reset_task);
1292
1293         e1000_release_manageability(adapter);
1294
1295         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1296          * would have already happened in close and is redundant. */
1297         e1000_release_hw_control(adapter);
1298
1299         unregister_netdev(netdev);
1300
1301         if (!e1000_check_phy_reset_block(hw))
1302                 e1000_phy_hw_reset(hw);
1303
1304         kfree(adapter->tx_ring);
1305         kfree(adapter->rx_ring);
1306
1307         iounmap(hw->hw_addr);
1308         if (hw->flash_address)
1309                 iounmap(hw->flash_address);
1310         pci_release_selected_regions(pdev, adapter->bars);
1311
1312         free_netdev(netdev);
1313
1314         pci_disable_device(pdev);
1315 }
1316
1317 /**
1318  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1319  * @adapter: board private structure to initialize
1320  *
1321  * e1000_sw_init initializes the Adapter private data structure.
1322  * Fields are initialized based on PCI device information and
1323  * OS network device settings (MTU size).
1324  **/
1325
1326 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         struct net_device *netdev = adapter->netdev;
1330         struct pci_dev *pdev = adapter->pdev;
1331
1332         /* PCI config space info */
1333
1334         hw->vendor_id = pdev->vendor;
1335         hw->device_id = pdev->device;
1336         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1337         hw->subsystem_id = pdev->subsystem_device;
1338         hw->revision_id = pdev->revision;
1339
1340         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1341
1342         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1343         hw->max_frame_size = netdev->mtu +
1344                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1345         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1346
1347         /* identify the MAC */
1348
1349         if (e1000_set_mac_type(hw)) {
1350                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1351                 return -EIO;
1352         }
1353
1354         switch (hw->mac_type) {
1355         default:
1356                 break;
1357         case e1000_82541:
1358         case e1000_82547:
1359         case e1000_82541_rev_2:
1360         case e1000_82547_rev_2:
1361                 hw->phy_init_script = 1;
1362                 break;
1363         }
1364
1365         e1000_set_media_type(hw);
1366
1367         hw->wait_autoneg_complete = false;
1368         hw->tbi_compatibility_en = true;
1369         hw->adaptive_ifs = true;
1370
1371         /* Copper options */
1372
1373         if (hw->media_type == e1000_media_type_copper) {
1374                 hw->mdix = AUTO_ALL_MODES;
1375                 hw->disable_polarity_correction = false;
1376                 hw->master_slave = E1000_MASTER_SLAVE;
1377         }
1378
1379         adapter->num_tx_queues = 1;
1380         adapter->num_rx_queues = 1;
1381
1382         if (e1000_alloc_queues(adapter)) {
1383                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1384                 return -ENOMEM;
1385         }
1386
1387         /* Explicitly disable IRQ since the NIC can be in any state. */
1388         e1000_irq_disable(adapter);
1389
1390         spin_lock_init(&adapter->stats_lock);
1391
1392         set_bit(__E1000_DOWN, &adapter->flags);
1393
1394         return 0;
1395 }
1396
1397 /**
1398  * e1000_alloc_queues - Allocate memory for all rings
1399  * @adapter: board private structure to initialize
1400  *
1401  * We allocate one ring per queue at run-time since we don't know the
1402  * number of queues at compile-time.
1403  **/
1404
1405 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1406 {
1407         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1408                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1409         if (!adapter->tx_ring)
1410                 return -ENOMEM;
1411
1412         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1413                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1414         if (!adapter->rx_ring) {
1415                 kfree(adapter->tx_ring);
1416                 return -ENOMEM;
1417         }
1418
1419         return E1000_SUCCESS;
1420 }
1421
1422 /**
1423  * e1000_open - Called when a network interface is made active
1424  * @netdev: network interface device structure
1425  *
1426  * Returns 0 on success, negative value on failure
1427  *
1428  * The open entry point is called when a network interface is made
1429  * active by the system (IFF_UP).  At this point all resources needed
1430  * for transmit and receive operations are allocated, the interrupt
1431  * handler is registered with the OS, the watchdog timer is started,
1432  * and the stack is notified that the interface is ready.
1433  **/
1434
1435 static int e1000_open(struct net_device *netdev)
1436 {
1437         struct e1000_adapter *adapter = netdev_priv(netdev);
1438         struct e1000_hw *hw = &adapter->hw;
1439         int err;
1440
1441         /* disallow open during test */
1442         if (test_bit(__E1000_TESTING, &adapter->flags))
1443                 return -EBUSY;
1444
1445         netif_carrier_off(netdev);
1446
1447         /* allocate transmit descriptors */
1448         err = e1000_setup_all_tx_resources(adapter);
1449         if (err)
1450                 goto err_setup_tx;
1451
1452         /* allocate receive descriptors */
1453         err = e1000_setup_all_rx_resources(adapter);
1454         if (err)
1455                 goto err_setup_rx;
1456
1457         e1000_power_up_phy(adapter);
1458
1459         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1460         if ((hw->mng_cookie.status &
1461                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1462                 e1000_update_mng_vlan(adapter);
1463         }
1464
1465         /* If AMT is enabled, let the firmware know that the network
1466          * interface is now open */
1467         if (hw->mac_type == e1000_82573 &&
1468             e1000_check_mng_mode(hw))
1469                 e1000_get_hw_control(adapter);
1470
1471         /* before we allocate an interrupt, we must be ready to handle it.
1472          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1473          * as soon as we call pci_request_irq, so we have to setup our
1474          * clean_rx handler before we do so.  */
1475         e1000_configure(adapter);
1476
1477         err = e1000_request_irq(adapter);
1478         if (err)
1479                 goto err_req_irq;
1480
1481         /* From here on the code is the same as e1000_up() */
1482         clear_bit(__E1000_DOWN, &adapter->flags);
1483
1484         napi_enable(&adapter->napi);
1485
1486         e1000_irq_enable(adapter);
1487
1488         netif_start_queue(netdev);
1489
1490         /* fire a link status change interrupt to start the watchdog */
1491         ew32(ICS, E1000_ICS_LSC);
1492
1493         return E1000_SUCCESS;
1494
1495 err_req_irq:
1496         e1000_release_hw_control(adapter);
1497         e1000_power_down_phy(adapter);
1498         e1000_free_all_rx_resources(adapter);
1499 err_setup_rx:
1500         e1000_free_all_tx_resources(adapter);
1501 err_setup_tx:
1502         e1000_reset(adapter);
1503
1504         return err;
1505 }
1506
1507 /**
1508  * e1000_close - Disables a network interface
1509  * @netdev: network interface device structure
1510  *
1511  * Returns 0, this is not allowed to fail
1512  *
1513  * The close entry point is called when an interface is de-activated
1514  * by the OS.  The hardware is still under the drivers control, but
1515  * needs to be disabled.  A global MAC reset is issued to stop the
1516  * hardware, and all transmit and receive resources are freed.
1517  **/
1518
1519 static int e1000_close(struct net_device *netdev)
1520 {
1521         struct e1000_adapter *adapter = netdev_priv(netdev);
1522         struct e1000_hw *hw = &adapter->hw;
1523
1524         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1525         e1000_down(adapter);
1526         e1000_power_down_phy(adapter);
1527         e1000_free_irq(adapter);
1528
1529         e1000_free_all_tx_resources(adapter);
1530         e1000_free_all_rx_resources(adapter);
1531
1532         /* kill manageability vlan ID if supported, but not if a vlan with
1533          * the same ID is registered on the host OS (let 8021q kill it) */
1534         if ((hw->mng_cookie.status &
1535                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1536              !(adapter->vlgrp &&
1537                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1538                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1539         }
1540
1541         /* If AMT is enabled, let the firmware know that the network
1542          * interface is now closed */
1543         if (hw->mac_type == e1000_82573 &&
1544             e1000_check_mng_mode(hw))
1545                 e1000_release_hw_control(adapter);
1546
1547         return 0;
1548 }
1549
1550 /**
1551  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1552  * @adapter: address of board private structure
1553  * @start: address of beginning of memory
1554  * @len: length of memory
1555  **/
1556 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1557                                   unsigned long len)
1558 {
1559         struct e1000_hw *hw = &adapter->hw;
1560         unsigned long begin = (unsigned long)start;
1561         unsigned long end = begin + len;
1562
1563         /* First rev 82545 and 82546 need to not allow any memory
1564          * write location to cross 64k boundary due to errata 23 */
1565         if (hw->mac_type == e1000_82545 ||
1566             hw->mac_type == e1000_82546) {
1567                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1568         }
1569
1570         return true;
1571 }
1572
1573 /**
1574  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1575  * @adapter: board private structure
1576  * @txdr:    tx descriptor ring (for a specific queue) to setup
1577  *
1578  * Return 0 on success, negative on failure
1579  **/
1580
1581 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1582                                     struct e1000_tx_ring *txdr)
1583 {
1584         struct pci_dev *pdev = adapter->pdev;
1585         int size;
1586
1587         size = sizeof(struct e1000_buffer) * txdr->count;
1588         txdr->buffer_info = vmalloc(size);
1589         if (!txdr->buffer_info) {
1590                 DPRINTK(PROBE, ERR,
1591                 "Unable to allocate memory for the transmit descriptor ring\n");
1592                 return -ENOMEM;
1593         }
1594         memset(txdr->buffer_info, 0, size);
1595
1596         /* round up to nearest 4K */
1597
1598         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1599         txdr->size = ALIGN(txdr->size, 4096);
1600
1601         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1602         if (!txdr->desc) {
1603 setup_tx_desc_die:
1604                 vfree(txdr->buffer_info);
1605                 DPRINTK(PROBE, ERR,
1606                 "Unable to allocate memory for the transmit descriptor ring\n");
1607                 return -ENOMEM;
1608         }
1609
1610         /* Fix for errata 23, can't cross 64kB boundary */
1611         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1612                 void *olddesc = txdr->desc;
1613                 dma_addr_t olddma = txdr->dma;
1614                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1615                                      "at %p\n", txdr->size, txdr->desc);
1616                 /* Try again, without freeing the previous */
1617                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1618                 /* Failed allocation, critical failure */
1619                 if (!txdr->desc) {
1620                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1621                         goto setup_tx_desc_die;
1622                 }
1623
1624                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1625                         /* give up */
1626                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1627                                             txdr->dma);
1628                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1629                         DPRINTK(PROBE, ERR,
1630                                 "Unable to allocate aligned memory "
1631                                 "for the transmit descriptor ring\n");
1632                         vfree(txdr->buffer_info);
1633                         return -ENOMEM;
1634                 } else {
1635                         /* Free old allocation, new allocation was successful */
1636                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1637                 }
1638         }
1639         memset(txdr->desc, 0, txdr->size);
1640
1641         txdr->next_to_use = 0;
1642         txdr->next_to_clean = 0;
1643
1644         return 0;
1645 }
1646
1647 /**
1648  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1649  *                                (Descriptors) for all queues
1650  * @adapter: board private structure
1651  *
1652  * Return 0 on success, negative on failure
1653  **/
1654
1655 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1656 {
1657         int i, err = 0;
1658
1659         for (i = 0; i < adapter->num_tx_queues; i++) {
1660                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1661                 if (err) {
1662                         DPRINTK(PROBE, ERR,
1663                                 "Allocation for Tx Queue %u failed\n", i);
1664                         for (i-- ; i >= 0; i--)
1665                                 e1000_free_tx_resources(adapter,
1666                                                         &adapter->tx_ring[i]);
1667                         break;
1668                 }
1669         }
1670
1671         return err;
1672 }
1673
1674 /**
1675  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1676  * @adapter: board private structure
1677  *
1678  * Configure the Tx unit of the MAC after a reset.
1679  **/
1680
1681 static void e1000_configure_tx(struct e1000_adapter *adapter)
1682 {
1683         u64 tdba;
1684         struct e1000_hw *hw = &adapter->hw;
1685         u32 tdlen, tctl, tipg, tarc;
1686         u32 ipgr1, ipgr2;
1687
1688         /* Setup the HW Tx Head and Tail descriptor pointers */
1689
1690         switch (adapter->num_tx_queues) {
1691         case 1:
1692         default:
1693                 tdba = adapter->tx_ring[0].dma;
1694                 tdlen = adapter->tx_ring[0].count *
1695                         sizeof(struct e1000_tx_desc);
1696                 ew32(TDLEN, tdlen);
1697                 ew32(TDBAH, (tdba >> 32));
1698                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1699                 ew32(TDT, 0);
1700                 ew32(TDH, 0);
1701                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1702                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1703                 break;
1704         }
1705
1706         /* Set the default values for the Tx Inter Packet Gap timer */
1707         if (hw->mac_type <= e1000_82547_rev_2 &&
1708             (hw->media_type == e1000_media_type_fiber ||
1709              hw->media_type == e1000_media_type_internal_serdes))
1710                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1711         else
1712                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1713
1714         switch (hw->mac_type) {
1715         case e1000_82542_rev2_0:
1716         case e1000_82542_rev2_1:
1717                 tipg = DEFAULT_82542_TIPG_IPGT;
1718                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1719                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1720                 break;
1721         case e1000_80003es2lan:
1722                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1723                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1724                 break;
1725         default:
1726                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1727                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1728                 break;
1729         }
1730         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1731         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1732         ew32(TIPG, tipg);
1733
1734         /* Set the Tx Interrupt Delay register */
1735
1736         ew32(TIDV, adapter->tx_int_delay);
1737         if (hw->mac_type >= e1000_82540)
1738                 ew32(TADV, adapter->tx_abs_int_delay);
1739
1740         /* Program the Transmit Control Register */
1741
1742         tctl = er32(TCTL);
1743         tctl &= ~E1000_TCTL_CT;
1744         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1745                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1746
1747         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1748                 tarc = er32(TARC0);
1749                 /* set the speed mode bit, we'll clear it if we're not at
1750                  * gigabit link later */
1751                 tarc |= (1 << 21);
1752                 ew32(TARC0, tarc);
1753         } else if (hw->mac_type == e1000_80003es2lan) {
1754                 tarc = er32(TARC0);
1755                 tarc |= 1;
1756                 ew32(TARC0, tarc);
1757                 tarc = er32(TARC1);
1758                 tarc |= 1;
1759                 ew32(TARC1, tarc);
1760         }
1761
1762         e1000_config_collision_dist(hw);
1763
1764         /* Setup Transmit Descriptor Settings for eop descriptor */
1765         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1766
1767         /* only set IDE if we are delaying interrupts using the timers */
1768         if (adapter->tx_int_delay)
1769                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1770
1771         if (hw->mac_type < e1000_82543)
1772                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1773         else
1774                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1775
1776         /* Cache if we're 82544 running in PCI-X because we'll
1777          * need this to apply a workaround later in the send path. */
1778         if (hw->mac_type == e1000_82544 &&
1779             hw->bus_type == e1000_bus_type_pcix)
1780                 adapter->pcix_82544 = 1;
1781
1782         ew32(TCTL, tctl);
1783
1784 }
1785
1786 /**
1787  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1788  * @adapter: board private structure
1789  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1790  *
1791  * Returns 0 on success, negative on failure
1792  **/
1793
1794 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1795                                     struct e1000_rx_ring *rxdr)
1796 {
1797         struct e1000_hw *hw = &adapter->hw;
1798         struct pci_dev *pdev = adapter->pdev;
1799         int size, desc_len;
1800
1801         size = sizeof(struct e1000_buffer) * rxdr->count;
1802         rxdr->buffer_info = vmalloc(size);
1803         if (!rxdr->buffer_info) {
1804                 DPRINTK(PROBE, ERR,
1805                 "Unable to allocate memory for the receive descriptor ring\n");
1806                 return -ENOMEM;
1807         }
1808         memset(rxdr->buffer_info, 0, size);
1809
1810         if (hw->mac_type <= e1000_82547_rev_2)
1811                 desc_len = sizeof(struct e1000_rx_desc);
1812         else
1813                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1814
1815         /* Round up to nearest 4K */
1816
1817         rxdr->size = rxdr->count * desc_len;
1818         rxdr->size = ALIGN(rxdr->size, 4096);
1819
1820         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1821
1822         if (!rxdr->desc) {
1823                 DPRINTK(PROBE, ERR,
1824                 "Unable to allocate memory for the receive descriptor ring\n");
1825 setup_rx_desc_die:
1826                 vfree(rxdr->buffer_info);
1827                 return -ENOMEM;
1828         }
1829
1830         /* Fix for errata 23, can't cross 64kB boundary */
1831         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1832                 void *olddesc = rxdr->desc;
1833                 dma_addr_t olddma = rxdr->dma;
1834                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1835                                      "at %p\n", rxdr->size, rxdr->desc);
1836                 /* Try again, without freeing the previous */
1837                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1838                 /* Failed allocation, critical failure */
1839                 if (!rxdr->desc) {
1840                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1841                         DPRINTK(PROBE, ERR,
1842                                 "Unable to allocate memory "
1843                                 "for the receive descriptor ring\n");
1844                         goto setup_rx_desc_die;
1845                 }
1846
1847                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1848                         /* give up */
1849                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1850                                             rxdr->dma);
1851                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1852                         DPRINTK(PROBE, ERR,
1853                                 "Unable to allocate aligned memory "
1854                                 "for the receive descriptor ring\n");
1855                         goto setup_rx_desc_die;
1856                 } else {
1857                         /* Free old allocation, new allocation was successful */
1858                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1859                 }
1860         }
1861         memset(rxdr->desc, 0, rxdr->size);
1862
1863         rxdr->next_to_clean = 0;
1864         rxdr->next_to_use = 0;
1865
1866         return 0;
1867 }
1868
1869 /**
1870  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1871  *                                (Descriptors) for all queues
1872  * @adapter: board private structure
1873  *
1874  * Return 0 on success, negative on failure
1875  **/
1876
1877 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1878 {
1879         int i, err = 0;
1880
1881         for (i = 0; i < adapter->num_rx_queues; i++) {
1882                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1883                 if (err) {
1884                         DPRINTK(PROBE, ERR,
1885                                 "Allocation for Rx Queue %u failed\n", i);
1886                         for (i-- ; i >= 0; i--)
1887                                 e1000_free_rx_resources(adapter,
1888                                                         &adapter->rx_ring[i]);
1889                         break;
1890                 }
1891         }
1892
1893         return err;
1894 }
1895
1896 /**
1897  * e1000_setup_rctl - configure the receive control registers
1898  * @adapter: Board private structure
1899  **/
1900 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1901 {
1902         struct e1000_hw *hw = &adapter->hw;
1903         u32 rctl;
1904
1905         rctl = er32(RCTL);
1906
1907         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1908
1909         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1910                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1911                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1912
1913         if (hw->tbi_compatibility_on == 1)
1914                 rctl |= E1000_RCTL_SBP;
1915         else
1916                 rctl &= ~E1000_RCTL_SBP;
1917
1918         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1919                 rctl &= ~E1000_RCTL_LPE;
1920         else
1921                 rctl |= E1000_RCTL_LPE;
1922
1923         /* Setup buffer sizes */
1924         rctl &= ~E1000_RCTL_SZ_4096;
1925         rctl |= E1000_RCTL_BSEX;
1926         switch (adapter->rx_buffer_len) {
1927                 case E1000_RXBUFFER_256:
1928                         rctl |= E1000_RCTL_SZ_256;
1929                         rctl &= ~E1000_RCTL_BSEX;
1930                         break;
1931                 case E1000_RXBUFFER_512:
1932                         rctl |= E1000_RCTL_SZ_512;
1933                         rctl &= ~E1000_RCTL_BSEX;
1934                         break;
1935                 case E1000_RXBUFFER_1024:
1936                         rctl |= E1000_RCTL_SZ_1024;
1937                         rctl &= ~E1000_RCTL_BSEX;
1938                         break;
1939                 case E1000_RXBUFFER_2048:
1940                 default:
1941                         rctl |= E1000_RCTL_SZ_2048;
1942                         rctl &= ~E1000_RCTL_BSEX;
1943                         break;
1944                 case E1000_RXBUFFER_4096:
1945                         rctl |= E1000_RCTL_SZ_4096;
1946                         break;
1947                 case E1000_RXBUFFER_8192:
1948                         rctl |= E1000_RCTL_SZ_8192;
1949                         break;
1950                 case E1000_RXBUFFER_16384:
1951                         rctl |= E1000_RCTL_SZ_16384;
1952                         break;
1953         }
1954
1955         ew32(RCTL, rctl);
1956 }
1957
1958 /**
1959  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1960  * @adapter: board private structure
1961  *
1962  * Configure the Rx unit of the MAC after a reset.
1963  **/
1964
1965 static void e1000_configure_rx(struct e1000_adapter *adapter)
1966 {
1967         u64 rdba;
1968         struct e1000_hw *hw = &adapter->hw;
1969         u32 rdlen, rctl, rxcsum, ctrl_ext;
1970
1971         rdlen = adapter->rx_ring[0].count *
1972                 sizeof(struct e1000_rx_desc);
1973         adapter->clean_rx = e1000_clean_rx_irq;
1974         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1975
1976         /* disable receives while setting up the descriptors */
1977         rctl = er32(RCTL);
1978         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1979
1980         /* set the Receive Delay Timer Register */
1981         ew32(RDTR, adapter->rx_int_delay);
1982
1983         if (hw->mac_type >= e1000_82540) {
1984                 ew32(RADV, adapter->rx_abs_int_delay);
1985                 if (adapter->itr_setting != 0)
1986                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1987         }
1988
1989         if (hw->mac_type >= e1000_82571) {
1990                 ctrl_ext = er32(CTRL_EXT);
1991                 /* Reset delay timers after every interrupt */
1992                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1993                 /* Auto-Mask interrupts upon ICR access */
1994                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1995                 ew32(IAM, 0xffffffff);
1996                 ew32(CTRL_EXT, ctrl_ext);
1997                 E1000_WRITE_FLUSH();
1998         }
1999
2000         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2001          * the Base and Length of the Rx Descriptor Ring */
2002         switch (adapter->num_rx_queues) {
2003         case 1:
2004         default:
2005                 rdba = adapter->rx_ring[0].dma;
2006                 ew32(RDLEN, rdlen);
2007                 ew32(RDBAH, (rdba >> 32));
2008                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2009                 ew32(RDT, 0);
2010                 ew32(RDH, 0);
2011                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2012                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2013                 break;
2014         }
2015
2016         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2017         if (hw->mac_type >= e1000_82543) {
2018                 rxcsum = er32(RXCSUM);
2019                 if (adapter->rx_csum)
2020                         rxcsum |= E1000_RXCSUM_TUOFL;
2021                 else
2022                         /* don't need to clear IPPCSE as it defaults to 0 */
2023                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2024                 ew32(RXCSUM, rxcsum);
2025         }
2026
2027         /* Enable Receives */
2028         ew32(RCTL, rctl);
2029 }
2030
2031 /**
2032  * e1000_free_tx_resources - Free Tx Resources per Queue
2033  * @adapter: board private structure
2034  * @tx_ring: Tx descriptor ring for a specific queue
2035  *
2036  * Free all transmit software resources
2037  **/
2038
2039 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2040                                     struct e1000_tx_ring *tx_ring)
2041 {
2042         struct pci_dev *pdev = adapter->pdev;
2043
2044         e1000_clean_tx_ring(adapter, tx_ring);
2045
2046         vfree(tx_ring->buffer_info);
2047         tx_ring->buffer_info = NULL;
2048
2049         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2050
2051         tx_ring->desc = NULL;
2052 }
2053
2054 /**
2055  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2056  * @adapter: board private structure
2057  *
2058  * Free all transmit software resources
2059  **/
2060
2061 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2062 {
2063         int i;
2064
2065         for (i = 0; i < adapter->num_tx_queues; i++)
2066                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2067 }
2068
2069 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2070                                              struct e1000_buffer *buffer_info)
2071 {
2072         buffer_info->dma = 0;
2073         if (buffer_info->skb) {
2074                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2075                               DMA_TO_DEVICE);
2076                 dev_kfree_skb_any(buffer_info->skb);
2077                 buffer_info->skb = NULL;
2078         }
2079         buffer_info->time_stamp = 0;
2080         /* buffer_info must be completely set up in the transmit path */
2081 }
2082
2083 /**
2084  * e1000_clean_tx_ring - Free Tx Buffers
2085  * @adapter: board private structure
2086  * @tx_ring: ring to be cleaned
2087  **/
2088
2089 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2090                                 struct e1000_tx_ring *tx_ring)
2091 {
2092         struct e1000_hw *hw = &adapter->hw;
2093         struct e1000_buffer *buffer_info;
2094         unsigned long size;
2095         unsigned int i;
2096
2097         /* Free all the Tx ring sk_buffs */
2098
2099         for (i = 0; i < tx_ring->count; i++) {
2100                 buffer_info = &tx_ring->buffer_info[i];
2101                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2102         }
2103
2104         size = sizeof(struct e1000_buffer) * tx_ring->count;
2105         memset(tx_ring->buffer_info, 0, size);
2106
2107         /* Zero out the descriptor ring */
2108
2109         memset(tx_ring->desc, 0, tx_ring->size);
2110
2111         tx_ring->next_to_use = 0;
2112         tx_ring->next_to_clean = 0;
2113         tx_ring->last_tx_tso = 0;
2114
2115         writel(0, hw->hw_addr + tx_ring->tdh);
2116         writel(0, hw->hw_addr + tx_ring->tdt);
2117 }
2118
2119 /**
2120  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2121  * @adapter: board private structure
2122  **/
2123
2124 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2125 {
2126         int i;
2127
2128         for (i = 0; i < adapter->num_tx_queues; i++)
2129                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2130 }
2131
2132 /**
2133  * e1000_free_rx_resources - Free Rx Resources
2134  * @adapter: board private structure
2135  * @rx_ring: ring to clean the resources from
2136  *
2137  * Free all receive software resources
2138  **/
2139
2140 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2141                                     struct e1000_rx_ring *rx_ring)
2142 {
2143         struct pci_dev *pdev = adapter->pdev;
2144
2145         e1000_clean_rx_ring(adapter, rx_ring);
2146
2147         vfree(rx_ring->buffer_info);
2148         rx_ring->buffer_info = NULL;
2149
2150         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2151
2152         rx_ring->desc = NULL;
2153 }
2154
2155 /**
2156  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2157  * @adapter: board private structure
2158  *
2159  * Free all receive software resources
2160  **/
2161
2162 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2163 {
2164         int i;
2165
2166         for (i = 0; i < adapter->num_rx_queues; i++)
2167                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2168 }
2169
2170 /**
2171  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2172  * @adapter: board private structure
2173  * @rx_ring: ring to free buffers from
2174  **/
2175
2176 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2177                                 struct e1000_rx_ring *rx_ring)
2178 {
2179         struct e1000_hw *hw = &adapter->hw;
2180         struct e1000_buffer *buffer_info;
2181         struct pci_dev *pdev = adapter->pdev;
2182         unsigned long size;
2183         unsigned int i;
2184
2185         /* Free all the Rx ring sk_buffs */
2186         for (i = 0; i < rx_ring->count; i++) {
2187                 buffer_info = &rx_ring->buffer_info[i];
2188                 if (buffer_info->skb) {
2189                         pci_unmap_single(pdev,
2190                                          buffer_info->dma,
2191                                          buffer_info->length,
2192                                          PCI_DMA_FROMDEVICE);
2193
2194                         dev_kfree_skb(buffer_info->skb);
2195                         buffer_info->skb = NULL;
2196                 }
2197         }
2198
2199         size = sizeof(struct e1000_buffer) * rx_ring->count;
2200         memset(rx_ring->buffer_info, 0, size);
2201
2202         /* Zero out the descriptor ring */
2203
2204         memset(rx_ring->desc, 0, rx_ring->size);
2205
2206         rx_ring->next_to_clean = 0;
2207         rx_ring->next_to_use = 0;
2208
2209         writel(0, hw->hw_addr + rx_ring->rdh);
2210         writel(0, hw->hw_addr + rx_ring->rdt);
2211 }
2212
2213 /**
2214  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2215  * @adapter: board private structure
2216  **/
2217
2218 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2219 {
2220         int i;
2221
2222         for (i = 0; i < adapter->num_rx_queues; i++)
2223                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2224 }
2225
2226 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2227  * and memory write and invalidate disabled for certain operations
2228  */
2229 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2230 {
2231         struct e1000_hw *hw = &adapter->hw;
2232         struct net_device *netdev = adapter->netdev;
2233         u32 rctl;
2234
2235         e1000_pci_clear_mwi(hw);
2236
2237         rctl = er32(RCTL);
2238         rctl |= E1000_RCTL_RST;
2239         ew32(RCTL, rctl);
2240         E1000_WRITE_FLUSH();
2241         mdelay(5);
2242
2243         if (netif_running(netdev))
2244                 e1000_clean_all_rx_rings(adapter);
2245 }
2246
2247 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2248 {
2249         struct e1000_hw *hw = &adapter->hw;
2250         struct net_device *netdev = adapter->netdev;
2251         u32 rctl;
2252
2253         rctl = er32(RCTL);
2254         rctl &= ~E1000_RCTL_RST;
2255         ew32(RCTL, rctl);
2256         E1000_WRITE_FLUSH();
2257         mdelay(5);
2258
2259         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2260                 e1000_pci_set_mwi(hw);
2261
2262         if (netif_running(netdev)) {
2263                 /* No need to loop, because 82542 supports only 1 queue */
2264                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2265                 e1000_configure_rx(adapter);
2266                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2267         }
2268 }
2269
2270 /**
2271  * e1000_set_mac - Change the Ethernet Address of the NIC
2272  * @netdev: network interface device structure
2273  * @p: pointer to an address structure
2274  *
2275  * Returns 0 on success, negative on failure
2276  **/
2277
2278 static int e1000_set_mac(struct net_device *netdev, void *p)
2279 {
2280         struct e1000_adapter *adapter = netdev_priv(netdev);
2281         struct e1000_hw *hw = &adapter->hw;
2282         struct sockaddr *addr = p;
2283
2284         if (!is_valid_ether_addr(addr->sa_data))
2285                 return -EADDRNOTAVAIL;
2286
2287         /* 82542 2.0 needs to be in reset to write receive address registers */
2288
2289         if (hw->mac_type == e1000_82542_rev2_0)
2290                 e1000_enter_82542_rst(adapter);
2291
2292         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2293         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2294
2295         e1000_rar_set(hw, hw->mac_addr, 0);
2296
2297         /* With 82571 controllers, LAA may be overwritten (with the default)
2298          * due to controller reset from the other port. */
2299         if (hw->mac_type == e1000_82571) {
2300                 /* activate the work around */
2301                 hw->laa_is_present = 1;
2302
2303                 /* Hold a copy of the LAA in RAR[14] This is done so that
2304                  * between the time RAR[0] gets clobbered  and the time it
2305                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2306                  * of the RARs and no incoming packets directed to this port
2307                  * are dropped. Eventaully the LAA will be in RAR[0] and
2308                  * RAR[14] */
2309                 e1000_rar_set(hw, hw->mac_addr,
2310                                         E1000_RAR_ENTRIES - 1);
2311         }
2312
2313         if (hw->mac_type == e1000_82542_rev2_0)
2314                 e1000_leave_82542_rst(adapter);
2315
2316         return 0;
2317 }
2318
2319 /**
2320  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2321  * @netdev: network interface device structure
2322  *
2323  * The set_rx_mode entry point is called whenever the unicast or multicast
2324  * address lists or the network interface flags are updated. This routine is
2325  * responsible for configuring the hardware for proper unicast, multicast,
2326  * promiscuous mode, and all-multi behavior.
2327  **/
2328
2329 static void e1000_set_rx_mode(struct net_device *netdev)
2330 {
2331         struct e1000_adapter *adapter = netdev_priv(netdev);
2332         struct e1000_hw *hw = &adapter->hw;
2333         struct netdev_hw_addr *ha;
2334         bool use_uc = false;
2335         struct dev_addr_list *mc_ptr;
2336         u32 rctl;
2337         u32 hash_value;
2338         int i, rar_entries = E1000_RAR_ENTRIES;
2339         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2340                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2341                                 E1000_NUM_MTA_REGISTERS;
2342         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2343
2344         if (!mcarray) {
2345                 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2346                 return;
2347         }
2348
2349         if (hw->mac_type == e1000_ich8lan)
2350                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2351
2352         /* reserve RAR[14] for LAA over-write work-around */
2353         if (hw->mac_type == e1000_82571)
2354                 rar_entries--;
2355
2356         /* Check for Promiscuous and All Multicast modes */
2357
2358         rctl = er32(RCTL);
2359
2360         if (netdev->flags & IFF_PROMISC) {
2361                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2362                 rctl &= ~E1000_RCTL_VFE;
2363         } else {
2364                 if (netdev->flags & IFF_ALLMULTI) {
2365                         rctl |= E1000_RCTL_MPE;
2366                 } else {
2367                         rctl &= ~E1000_RCTL_MPE;
2368                 }
2369                 if (adapter->hw.mac_type != e1000_ich8lan)
2370                         rctl |= E1000_RCTL_VFE;
2371         }
2372
2373         if (netdev->uc_count > rar_entries - 1) {
2374                 rctl |= E1000_RCTL_UPE;
2375         } else if (!(netdev->flags & IFF_PROMISC)) {
2376                 rctl &= ~E1000_RCTL_UPE;
2377                 use_uc = true;
2378         }
2379
2380         ew32(RCTL, rctl);
2381
2382         /* 82542 2.0 needs to be in reset to write receive address registers */
2383
2384         if (hw->mac_type == e1000_82542_rev2_0)
2385                 e1000_enter_82542_rst(adapter);
2386
2387         /* load the first 14 addresses into the exact filters 1-14. Unicast
2388          * addresses take precedence to avoid disabling unicast filtering
2389          * when possible.
2390          *
2391          * RAR 0 is used for the station MAC adddress
2392          * if there are not 14 addresses, go ahead and clear the filters
2393          * -- with 82571 controllers only 0-13 entries are filled here
2394          */
2395         i = 1;
2396         if (use_uc)
2397                 list_for_each_entry(ha, &netdev->uc_list, list) {
2398                         if (i == rar_entries)
2399                                 break;
2400                         e1000_rar_set(hw, ha->addr, i++);
2401                 }
2402
2403         WARN_ON(i == rar_entries);
2404
2405         mc_ptr = netdev->mc_list;
2406
2407         for (; i < rar_entries; i++) {
2408                 if (mc_ptr) {
2409                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2410                         mc_ptr = mc_ptr->next;
2411                 } else {
2412                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2413                         E1000_WRITE_FLUSH();
2414                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2415                         E1000_WRITE_FLUSH();
2416                 }
2417         }
2418
2419         /* load any remaining addresses into the hash table */
2420
2421         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2422                 u32 hash_reg, hash_bit, mta;
2423                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2424                 hash_reg = (hash_value >> 5) & 0x7F;
2425                 hash_bit = hash_value & 0x1F;
2426                 mta = (1 << hash_bit);
2427                 mcarray[hash_reg] |= mta;
2428         }
2429
2430         /* write the hash table completely, write from bottom to avoid
2431          * both stupid write combining chipsets, and flushing each write */
2432         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2433                 /*
2434                  * If we are on an 82544 has an errata where writing odd
2435                  * offsets overwrites the previous even offset, but writing
2436                  * backwards over the range solves the issue by always
2437                  * writing the odd offset first
2438                  */
2439                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2440         }
2441         E1000_WRITE_FLUSH();
2442
2443         if (hw->mac_type == e1000_82542_rev2_0)
2444                 e1000_leave_82542_rst(adapter);
2445
2446         kfree(mcarray);
2447 }
2448
2449 /* Need to wait a few seconds after link up to get diagnostic information from
2450  * the phy */
2451
2452 static void e1000_update_phy_info(unsigned long data)
2453 {
2454         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2455         struct e1000_hw *hw = &adapter->hw;
2456         e1000_phy_get_info(hw, &adapter->phy_info);
2457 }
2458
2459 /**
2460  * e1000_82547_tx_fifo_stall - Timer Call-back
2461  * @data: pointer to adapter cast into an unsigned long
2462  **/
2463
2464 static void e1000_82547_tx_fifo_stall(unsigned long data)
2465 {
2466         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2467         struct e1000_hw *hw = &adapter->hw;
2468         struct net_device *netdev = adapter->netdev;
2469         u32 tctl;
2470
2471         if (atomic_read(&adapter->tx_fifo_stall)) {
2472                 if ((er32(TDT) == er32(TDH)) &&
2473                    (er32(TDFT) == er32(TDFH)) &&
2474                    (er32(TDFTS) == er32(TDFHS))) {
2475                         tctl = er32(TCTL);
2476                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2477                         ew32(TDFT, adapter->tx_head_addr);
2478                         ew32(TDFH, adapter->tx_head_addr);
2479                         ew32(TDFTS, adapter->tx_head_addr);
2480                         ew32(TDFHS, adapter->tx_head_addr);
2481                         ew32(TCTL, tctl);
2482                         E1000_WRITE_FLUSH();
2483
2484                         adapter->tx_fifo_head = 0;
2485                         atomic_set(&adapter->tx_fifo_stall, 0);
2486                         netif_wake_queue(netdev);
2487                 } else {
2488                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2489                 }
2490         }
2491 }
2492
2493 /**
2494  * e1000_watchdog - Timer Call-back
2495  * @data: pointer to adapter cast into an unsigned long
2496  **/
2497 static void e1000_watchdog(unsigned long data)
2498 {
2499         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2500         struct e1000_hw *hw = &adapter->hw;
2501         struct net_device *netdev = adapter->netdev;
2502         struct e1000_tx_ring *txdr = adapter->tx_ring;
2503         u32 link, tctl;
2504         s32 ret_val;
2505
2506         ret_val = e1000_check_for_link(hw);
2507         if ((ret_val == E1000_ERR_PHY) &&
2508             (hw->phy_type == e1000_phy_igp_3) &&
2509             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2510                 /* See e1000_kumeran_lock_loss_workaround() */
2511                 DPRINTK(LINK, INFO,
2512                         "Gigabit has been disabled, downgrading speed\n");
2513         }
2514
2515         if (hw->mac_type == e1000_82573) {
2516                 e1000_enable_tx_pkt_filtering(hw);
2517                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2518                         e1000_update_mng_vlan(adapter);
2519         }
2520
2521         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2522            !(er32(TXCW) & E1000_TXCW_ANE))
2523                 link = !hw->serdes_link_down;
2524         else
2525                 link = er32(STATUS) & E1000_STATUS_LU;
2526
2527         if (link) {
2528                 if (!netif_carrier_ok(netdev)) {
2529                         u32 ctrl;
2530                         bool txb2b = true;
2531                         e1000_get_speed_and_duplex(hw,
2532                                                    &adapter->link_speed,
2533                                                    &adapter->link_duplex);
2534
2535                         ctrl = er32(CTRL);
2536                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2537                                "Flow Control: %s\n",
2538                                netdev->name,
2539                                adapter->link_speed,
2540                                adapter->link_duplex == FULL_DUPLEX ?
2541                                 "Full Duplex" : "Half Duplex",
2542                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2543                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2544                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2545                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2546
2547                         /* tweak tx_queue_len according to speed/duplex
2548                          * and adjust the timeout factor */
2549                         netdev->tx_queue_len = adapter->tx_queue_len;
2550                         adapter->tx_timeout_factor = 1;
2551                         switch (adapter->link_speed) {
2552                         case SPEED_10:
2553                                 txb2b = false;
2554                                 netdev->tx_queue_len = 10;
2555                                 adapter->tx_timeout_factor = 8;
2556                                 break;
2557                         case SPEED_100:
2558                                 txb2b = false;
2559                                 netdev->tx_queue_len = 100;
2560                                 /* maybe add some timeout factor ? */
2561                                 break;
2562                         }
2563
2564                         if ((hw->mac_type == e1000_82571 ||
2565                              hw->mac_type == e1000_82572) &&
2566                             !txb2b) {
2567                                 u32 tarc0;
2568                                 tarc0 = er32(TARC0);
2569                                 tarc0 &= ~(1 << 21);
2570                                 ew32(TARC0, tarc0);
2571                         }
2572
2573                         /* disable TSO for pcie and 10/100 speeds, to avoid
2574                          * some hardware issues */
2575                         if (!adapter->tso_force &&
2576                             hw->bus_type == e1000_bus_type_pci_express){
2577                                 switch (adapter->link_speed) {
2578                                 case SPEED_10:
2579                                 case SPEED_100:
2580                                         DPRINTK(PROBE,INFO,
2581                                         "10/100 speed: disabling TSO\n");
2582                                         netdev->features &= ~NETIF_F_TSO;
2583                                         netdev->features &= ~NETIF_F_TSO6;
2584                                         break;
2585                                 case SPEED_1000:
2586                                         netdev->features |= NETIF_F_TSO;
2587                                         netdev->features |= NETIF_F_TSO6;
2588                                         break;
2589                                 default:
2590                                         /* oops */
2591                                         break;
2592                                 }
2593                         }
2594
2595                         /* enable transmits in the hardware, need to do this
2596                          * after setting TARC0 */
2597                         tctl = er32(TCTL);
2598                         tctl |= E1000_TCTL_EN;
2599                         ew32(TCTL, tctl);
2600
2601                         netif_carrier_on(netdev);
2602                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2603                         adapter->smartspeed = 0;
2604                 } else {
2605                         /* make sure the receive unit is started */
2606                         if (hw->rx_needs_kicking) {
2607                                 u32 rctl = er32(RCTL);
2608                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2609                         }
2610                 }
2611         } else {
2612                 if (netif_carrier_ok(netdev)) {
2613                         adapter->link_speed = 0;
2614                         adapter->link_duplex = 0;
2615                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2616                                netdev->name);
2617                         netif_carrier_off(netdev);
2618                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2619
2620                         /* 80003ES2LAN workaround--
2621                          * For packet buffer work-around on link down event;
2622                          * disable receives in the ISR and
2623                          * reset device here in the watchdog
2624                          */
2625                         if (hw->mac_type == e1000_80003es2lan)
2626                                 /* reset device */
2627                                 schedule_work(&adapter->reset_task);
2628                 }
2629
2630                 e1000_smartspeed(adapter);
2631         }
2632
2633         e1000_update_stats(adapter);
2634
2635         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2636         adapter->tpt_old = adapter->stats.tpt;
2637         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2638         adapter->colc_old = adapter->stats.colc;
2639
2640         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2641         adapter->gorcl_old = adapter->stats.gorcl;
2642         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2643         adapter->gotcl_old = adapter->stats.gotcl;
2644
2645         e1000_update_adaptive(hw);
2646
2647         if (!netif_carrier_ok(netdev)) {
2648                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2649                         /* We've lost link, so the controller stops DMA,
2650                          * but we've got queued Tx work that's never going
2651                          * to get done, so reset controller to flush Tx.
2652                          * (Do the reset outside of interrupt context). */
2653                         adapter->tx_timeout_count++;
2654                         schedule_work(&adapter->reset_task);
2655                         /* return immediately since reset is imminent */
2656                         return;
2657                 }
2658         }
2659
2660         /* Cause software interrupt to ensure rx ring is cleaned */
2661         ew32(ICS, E1000_ICS_RXDMT0);
2662
2663         /* Force detection of hung controller every watchdog period */
2664         adapter->detect_tx_hung = true;
2665
2666         /* With 82571 controllers, LAA may be overwritten due to controller
2667          * reset from the other port. Set the appropriate LAA in RAR[0] */
2668         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2669                 e1000_rar_set(hw, hw->mac_addr, 0);
2670
2671         /* Reset the timer */
2672         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2673 }
2674
2675 enum latency_range {
2676         lowest_latency = 0,
2677         low_latency = 1,
2678         bulk_latency = 2,
2679         latency_invalid = 255
2680 };
2681
2682 /**
2683  * e1000_update_itr - update the dynamic ITR value based on statistics
2684  *      Stores a new ITR value based on packets and byte
2685  *      counts during the last interrupt.  The advantage of per interrupt
2686  *      computation is faster updates and more accurate ITR for the current
2687  *      traffic pattern.  Constants in this function were computed
2688  *      based on theoretical maximum wire speed and thresholds were set based
2689  *      on testing data as well as attempting to minimize response time
2690  *      while increasing bulk throughput.
2691  *      this functionality is controlled by the InterruptThrottleRate module
2692  *      parameter (see e1000_param.c)
2693  * @adapter: pointer to adapter
2694  * @itr_setting: current adapter->itr
2695  * @packets: the number of packets during this measurement interval
2696  * @bytes: the number of bytes during this measurement interval
2697  **/
2698 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2699                                      u16 itr_setting, int packets, int bytes)
2700 {
2701         unsigned int retval = itr_setting;
2702         struct e1000_hw *hw = &adapter->hw;
2703
2704         if (unlikely(hw->mac_type < e1000_82540))
2705                 goto update_itr_done;
2706
2707         if (packets == 0)
2708                 goto update_itr_done;
2709
2710         switch (itr_setting) {
2711         case lowest_latency:
2712                 /* jumbo frames get bulk treatment*/
2713                 if (bytes/packets > 8000)
2714                         retval = bulk_latency;
2715                 else if ((packets < 5) && (bytes > 512))
2716                         retval = low_latency;
2717                 break;
2718         case low_latency:  /* 50 usec aka 20000 ints/s */
2719                 if (bytes > 10000) {
2720                         /* jumbo frames need bulk latency setting */
2721                         if (bytes/packets > 8000)
2722                                 retval = bulk_latency;
2723                         else if ((packets < 10) || ((bytes/packets) > 1200))
2724                                 retval = bulk_latency;
2725                         else if ((packets > 35))
2726                                 retval = lowest_latency;
2727                 } else if (bytes/packets > 2000)
2728                         retval = bulk_latency;
2729                 else if (packets <= 2 && bytes < 512)
2730                         retval = lowest_latency;
2731                 break;
2732         case bulk_latency: /* 250 usec aka 4000 ints/s */
2733                 if (bytes > 25000) {
2734                         if (packets > 35)
2735                                 retval = low_latency;
2736                 } else if (bytes < 6000) {
2737                         retval = low_latency;
2738                 }
2739                 break;
2740         }
2741
2742 update_itr_done:
2743         return retval;
2744 }
2745
2746 static void e1000_set_itr(struct e1000_adapter *adapter)
2747 {
2748         struct e1000_hw *hw = &adapter->hw;
2749         u16 current_itr;
2750         u32 new_itr = adapter->itr;
2751
2752         if (unlikely(hw->mac_type < e1000_82540))
2753                 return;
2754
2755         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2756         if (unlikely(adapter->link_speed != SPEED_1000)) {
2757                 current_itr = 0;
2758                 new_itr = 4000;
2759                 goto set_itr_now;
2760         }
2761
2762         adapter->tx_itr = e1000_update_itr(adapter,
2763                                     adapter->tx_itr,
2764                                     adapter->total_tx_packets,
2765                                     adapter->total_tx_bytes);
2766         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2767         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2768                 adapter->tx_itr = low_latency;
2769
2770         adapter->rx_itr = e1000_update_itr(adapter,
2771                                     adapter->rx_itr,
2772                                     adapter->total_rx_packets,
2773                                     adapter->total_rx_bytes);
2774         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2775         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2776                 adapter->rx_itr = low_latency;
2777
2778         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2779
2780         switch (current_itr) {
2781         /* counts and packets in update_itr are dependent on these numbers */
2782         case lowest_latency:
2783                 new_itr = 70000;
2784                 break;
2785         case low_latency:
2786                 new_itr = 20000; /* aka hwitr = ~200 */
2787                 break;
2788         case bulk_latency:
2789                 new_itr = 4000;
2790                 break;
2791         default:
2792                 break;
2793         }
2794
2795 set_itr_now:
2796         if (new_itr != adapter->itr) {
2797                 /* this attempts to bias the interrupt rate towards Bulk
2798                  * by adding intermediate steps when interrupt rate is
2799                  * increasing */
2800                 new_itr = new_itr > adapter->itr ?
2801                              min(adapter->itr + (new_itr >> 2), new_itr) :
2802                              new_itr;
2803                 adapter->itr = new_itr;
2804                 ew32(ITR, 1000000000 / (new_itr * 256));
2805         }
2806
2807         return;
2808 }
2809
2810 #define E1000_TX_FLAGS_CSUM             0x00000001
2811 #define E1000_TX_FLAGS_VLAN             0x00000002
2812 #define E1000_TX_FLAGS_TSO              0x00000004
2813 #define E1000_TX_FLAGS_IPV4             0x00000008
2814 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2815 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2816
2817 static int e1000_tso(struct e1000_adapter *adapter,
2818                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2819 {
2820         struct e1000_context_desc *context_desc;
2821         struct e1000_buffer *buffer_info;
2822         unsigned int i;
2823         u32 cmd_length = 0;
2824         u16 ipcse = 0, tucse, mss;
2825         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2826         int err;
2827
2828         if (skb_is_gso(skb)) {
2829                 if (skb_header_cloned(skb)) {
2830                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2831                         if (err)
2832                                 return err;
2833                 }
2834
2835                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2836                 mss = skb_shinfo(skb)->gso_size;
2837                 if (skb->protocol == htons(ETH_P_IP)) {
2838                         struct iphdr *iph = ip_hdr(skb);
2839                         iph->tot_len = 0;
2840                         iph->check = 0;
2841                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2842                                                                  iph->daddr, 0,
2843                                                                  IPPROTO_TCP,
2844                                                                  0);
2845                         cmd_length = E1000_TXD_CMD_IP;
2846                         ipcse = skb_transport_offset(skb) - 1;
2847                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2848                         ipv6_hdr(skb)->payload_len = 0;
2849                         tcp_hdr(skb)->check =
2850                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2851                                                  &ipv6_hdr(skb)->daddr,
2852                                                  0, IPPROTO_TCP, 0);
2853                         ipcse = 0;
2854                 }
2855                 ipcss = skb_network_offset(skb);
2856                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2857                 tucss = skb_transport_offset(skb);
2858                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2859                 tucse = 0;
2860
2861                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2862                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2863
2864                 i = tx_ring->next_to_use;
2865                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2866                 buffer_info = &tx_ring->buffer_info[i];
2867
2868                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2869                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2870                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2871                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2872                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2873                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2874                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2875                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2876                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2877
2878                 buffer_info->time_stamp = jiffies;
2879                 buffer_info->next_to_watch = i;
2880
2881                 if (++i == tx_ring->count) i = 0;
2882                 tx_ring->next_to_use = i;
2883
2884                 return true;
2885         }
2886         return false;
2887 }
2888
2889 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2890                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2891 {
2892         struct e1000_context_desc *context_desc;
2893         struct e1000_buffer *buffer_info;
2894         unsigned int i;
2895         u8 css;
2896         u32 cmd_len = E1000_TXD_CMD_DEXT;
2897
2898         if (skb->ip_summed != CHECKSUM_PARTIAL)
2899                 return false;
2900
2901         switch (skb->protocol) {
2902         case cpu_to_be16(ETH_P_IP):
2903                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2904                         cmd_len |= E1000_TXD_CMD_TCP;
2905                 break;
2906         case cpu_to_be16(ETH_P_IPV6):
2907                 /* XXX not handling all IPV6 headers */
2908                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2909                         cmd_len |= E1000_TXD_CMD_TCP;
2910                 break;
2911         default:
2912                 if (unlikely(net_ratelimit()))
2913                         DPRINTK(DRV, WARNING,
2914                                 "checksum_partial proto=%x!\n", skb->protocol);
2915                 break;
2916         }
2917
2918         css = skb_transport_offset(skb);
2919
2920         i = tx_ring->next_to_use;
2921         buffer_info = &tx_ring->buffer_info[i];
2922         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2923
2924         context_desc->lower_setup.ip_config = 0;
2925         context_desc->upper_setup.tcp_fields.tucss = css;
2926         context_desc->upper_setup.tcp_fields.tucso =
2927                 css + skb->csum_offset;
2928         context_desc->upper_setup.tcp_fields.tucse = 0;
2929         context_desc->tcp_seg_setup.data = 0;
2930         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2931
2932         buffer_info->time_stamp = jiffies;
2933         buffer_info->next_to_watch = i;
2934
2935         if (unlikely(++i == tx_ring->count)) i = 0;
2936         tx_ring->next_to_use = i;
2937
2938         return true;
2939 }
2940
2941 #define E1000_MAX_TXD_PWR       12
2942 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2943
2944 static int e1000_tx_map(struct e1000_adapter *adapter,
2945                         struct e1000_tx_ring *tx_ring,
2946                         struct sk_buff *skb, unsigned int first,
2947                         unsigned int max_per_txd, unsigned int nr_frags,
2948                         unsigned int mss)
2949 {
2950         struct e1000_hw *hw = &adapter->hw;
2951         struct e1000_buffer *buffer_info;
2952         unsigned int len = skb_headlen(skb);
2953         unsigned int offset, size, count = 0, i;
2954         unsigned int f;
2955         dma_addr_t *map;
2956
2957         i = tx_ring->next_to_use;
2958
2959         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2960                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2961                 return 0;
2962         }
2963
2964         map = skb_shinfo(skb)->dma_maps;
2965         offset = 0;
2966
2967         while (len) {
2968                 buffer_info = &tx_ring->buffer_info[i];
2969                 size = min(len, max_per_txd);
2970                 /* Workaround for Controller erratum --
2971                  * descriptor for non-tso packet in a linear SKB that follows a
2972                  * tso gets written back prematurely before the data is fully
2973                  * DMA'd to the controller */
2974                 if (!skb->data_len && tx_ring->last_tx_tso &&
2975                     !skb_is_gso(skb)) {
2976                         tx_ring->last_tx_tso = 0;
2977                         size -= 4;
2978                 }
2979
2980                 /* Workaround for premature desc write-backs
2981                  * in TSO mode.  Append 4-byte sentinel desc */
2982                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2983                         size -= 4;
2984                 /* work-around for errata 10 and it applies
2985                  * to all controllers in PCI-X mode
2986                  * The fix is to make sure that the first descriptor of a
2987                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2988                  */
2989                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2990                                 (size > 2015) && count == 0))
2991                         size = 2015;
2992
2993                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2994                  * terminating buffers within evenly-aligned dwords. */
2995                 if (unlikely(adapter->pcix_82544 &&
2996                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2997                    size > 4))
2998                         size -= 4;
2999
3000                 buffer_info->length = size;
3001                 buffer_info->dma = map[0] + offset;
3002                 buffer_info->time_stamp = jiffies;
3003                 buffer_info->next_to_watch = i;
3004
3005                 len -= size;
3006                 offset += size;
3007                 count++;
3008                 if (len) {
3009                         i++;
3010                         if (unlikely(i == tx_ring->count))
3011                                 i = 0;
3012                 }
3013         }
3014
3015         for (f = 0; f < nr_frags; f++) {
3016                 struct skb_frag_struct *frag;
3017
3018                 frag = &skb_shinfo(skb)->frags[f];
3019                 len = frag->size;
3020                 offset = 0;
3021
3022                 while (len) {
3023                         i++;
3024                         if (unlikely(i == tx_ring->count))
3025                                 i = 0;
3026
3027                         buffer_info = &tx_ring->buffer_info[i];
3028                         size = min(len, max_per_txd);
3029                         /* Workaround for premature desc write-backs
3030                          * in TSO mode.  Append 4-byte sentinel desc */
3031                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3032                                 size -= 4;
3033                         /* Workaround for potential 82544 hang in PCI-X.
3034                          * Avoid terminating buffers within evenly-aligned
3035                          * dwords. */
3036                         if (unlikely(adapter->pcix_82544 &&
3037                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3038                            size > 4))
3039                                 size -= 4;
3040
3041                         buffer_info->length = size;
3042                         buffer_info->dma = map[f + 1] + offset;
3043                         buffer_info->time_stamp = jiffies;
3044                         buffer_info->next_to_watch = i;
3045
3046                         len -= size;
3047                         offset += size;
3048                         count++;
3049                 }
3050         }
3051
3052         tx_ring->buffer_info[i].skb = skb;
3053         tx_ring->buffer_info[first].next_to_watch = i;
3054
3055         return count;
3056 }
3057
3058 static void e1000_tx_queue(struct e1000_adapter *adapter,
3059                            struct e1000_tx_ring *tx_ring, int tx_flags,
3060                            int count)
3061 {
3062         struct e1000_hw *hw = &adapter->hw;
3063         struct e1000_tx_desc *tx_desc = NULL;
3064         struct e1000_buffer *buffer_info;
3065         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3066         unsigned int i;
3067
3068         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3069                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3070                              E1000_TXD_CMD_TSE;
3071                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3072
3073                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3074                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3075         }
3076
3077         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3078                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3079                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3080         }
3081
3082         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3083                 txd_lower |= E1000_TXD_CMD_VLE;
3084                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3085         }
3086
3087         i = tx_ring->next_to_use;
3088
3089         while (count--) {
3090                 buffer_info = &tx_ring->buffer_info[i];
3091                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3092                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3093                 tx_desc->lower.data =
3094                         cpu_to_le32(txd_lower | buffer_info->length);
3095                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3096                 if (unlikely(++i == tx_ring->count)) i = 0;
3097         }
3098
3099         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3100
3101         /* Force memory writes to complete before letting h/w
3102          * know there are new descriptors to fetch.  (Only
3103          * applicable for weak-ordered memory model archs,
3104          * such as IA-64). */
3105         wmb();
3106
3107         tx_ring->next_to_use = i;
3108         writel(i, hw->hw_addr + tx_ring->tdt);
3109         /* we need this if more than one processor can write to our tail
3110          * at a time, it syncronizes IO on IA64/Altix systems */
3111         mmiowb();
3112 }
3113
3114 /**
3115  * 82547 workaround to avoid controller hang in half-duplex environment.
3116  * The workaround is to avoid queuing a large packet that would span
3117  * the internal Tx FIFO ring boundary by notifying the stack to resend
3118  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3119  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3120  * to the beginning of the Tx FIFO.
3121  **/
3122
3123 #define E1000_FIFO_HDR                  0x10
3124 #define E1000_82547_PAD_LEN             0x3E0
3125
3126 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3127                                        struct sk_buff *skb)
3128 {
3129         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3130         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3131
3132         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3133
3134         if (adapter->link_duplex != HALF_DUPLEX)
3135                 goto no_fifo_stall_required;
3136
3137         if (atomic_read(&adapter->tx_fifo_stall))
3138                 return 1;
3139
3140         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3141                 atomic_set(&adapter->tx_fifo_stall, 1);
3142                 return 1;
3143         }
3144
3145 no_fifo_stall_required:
3146         adapter->tx_fifo_head += skb_fifo_len;
3147         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3148                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3149         return 0;
3150 }
3151
3152 #define MINIMUM_DHCP_PACKET_SIZE 282
3153 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3154                                     struct sk_buff *skb)
3155 {
3156         struct e1000_hw *hw =  &adapter->hw;
3157         u16 length, offset;
3158         if (vlan_tx_tag_present(skb)) {
3159                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3160                         ( hw->mng_cookie.status &
3161                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3162                         return 0;
3163         }
3164         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3165                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3166                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3167                         const struct iphdr *ip =
3168                                 (struct iphdr *)((u8 *)skb->data+14);
3169                         if (IPPROTO_UDP == ip->protocol) {
3170                                 struct udphdr *udp =
3171                                         (struct udphdr *)((u8 *)ip +
3172                                                 (ip->ihl << 2));
3173                                 if (ntohs(udp->dest) == 67) {
3174                                         offset = (u8 *)udp + 8 - skb->data;
3175                                         length = skb->len - offset;
3176
3177                                         return e1000_mng_write_dhcp_info(hw,
3178                                                         (u8 *)udp + 8,
3179                                                         length);
3180                                 }
3181                         }
3182                 }
3183         }
3184         return 0;
3185 }
3186
3187 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3188 {
3189         struct e1000_adapter *adapter = netdev_priv(netdev);
3190         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3191
3192         netif_stop_queue(netdev);
3193         /* Herbert's original patch had:
3194          *  smp_mb__after_netif_stop_queue();
3195          * but since that doesn't exist yet, just open code it. */
3196         smp_mb();
3197
3198         /* We need to check again in a case another CPU has just
3199          * made room available. */
3200         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3201                 return -EBUSY;
3202
3203         /* A reprieve! */
3204         netif_start_queue(netdev);
3205         ++adapter->restart_queue;
3206         return 0;
3207 }
3208
3209 static int e1000_maybe_stop_tx(struct net_device *netdev,
3210                                struct e1000_tx_ring *tx_ring, int size)
3211 {
3212         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3213                 return 0;
3214         return __e1000_maybe_stop_tx(netdev, size);
3215 }
3216
3217 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3218 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3219 {
3220         struct e1000_adapter *adapter = netdev_priv(netdev);
3221         struct e1000_hw *hw = &adapter->hw;
3222         struct e1000_tx_ring *tx_ring;
3223         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3224         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3225         unsigned int tx_flags = 0;
3226         unsigned int len = skb->len - skb->data_len;
3227         unsigned int nr_frags;
3228         unsigned int mss;
3229         int count = 0;
3230         int tso;
3231         unsigned int f;
3232
3233         /* This goes back to the question of how to logically map a tx queue
3234          * to a flow.  Right now, performance is impacted slightly negatively
3235          * if using multiple tx queues.  If the stack breaks away from a
3236          * single qdisc implementation, we can look at this again. */
3237         tx_ring = adapter->tx_ring;
3238
3239         if (unlikely(skb->len <= 0)) {
3240                 dev_kfree_skb_any(skb);
3241                 return NETDEV_TX_OK;
3242         }
3243
3244         /* 82571 and newer doesn't need the workaround that limited descriptor
3245          * length to 4kB */
3246         if (hw->mac_type >= e1000_82571)
3247                 max_per_txd = 8192;
3248
3249         mss = skb_shinfo(skb)->gso_size;
3250         /* The controller does a simple calculation to
3251          * make sure there is enough room in the FIFO before
3252          * initiating the DMA for each buffer.  The calc is:
3253          * 4 = ceil(buffer len/mss).  To make sure we don't
3254          * overrun the FIFO, adjust the max buffer len if mss
3255          * drops. */
3256         if (mss) {
3257                 u8 hdr_len;
3258                 max_per_txd = min(mss << 2, max_per_txd);
3259                 max_txd_pwr = fls(max_per_txd) - 1;
3260
3261                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3262                 * points to just header, pull a few bytes of payload from
3263                 * frags into skb->data */
3264                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3265                 if (skb->data_len && hdr_len == len) {
3266                         switch (hw->mac_type) {
3267                                 unsigned int pull_size;
3268                         case e1000_82544:
3269                                 /* Make sure we have room to chop off 4 bytes,
3270                                  * and that the end alignment will work out to
3271                                  * this hardware's requirements
3272                                  * NOTE: this is a TSO only workaround
3273                                  * if end byte alignment not correct move us
3274                                  * into the next dword */
3275                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3276                                         break;
3277                                 /* fall through */
3278                         case e1000_82571:
3279                         case e1000_82572:
3280                         case e1000_82573:
3281                         case e1000_ich8lan:
3282                                 pull_size = min((unsigned int)4, skb->data_len);
3283                                 if (!__pskb_pull_tail(skb, pull_size)) {
3284                                         DPRINTK(DRV, ERR,
3285                                                 "__pskb_pull_tail failed.\n");
3286                                         dev_kfree_skb_any(skb);
3287                                         return NETDEV_TX_OK;
3288                                 }
3289                                 len = skb->len - skb->data_len;
3290                                 break;
3291                         default:
3292                                 /* do nothing */
3293                                 break;
3294                         }
3295                 }
3296         }
3297
3298         /* reserve a descriptor for the offload context */
3299         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3300                 count++;
3301         count++;
3302
3303         /* Controller Erratum workaround */
3304         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3305                 count++;
3306
3307         count += TXD_USE_COUNT(len, max_txd_pwr);
3308
3309         if (adapter->pcix_82544)
3310                 count++;
3311
3312         /* work-around for errata 10 and it applies to all controllers
3313          * in PCI-X mode, so add one more descriptor to the count
3314          */
3315         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3316                         (len > 2015)))
3317                 count++;
3318
3319         nr_frags = skb_shinfo(skb)->nr_frags;
3320         for (f = 0; f < nr_frags; f++)
3321                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3322                                        max_txd_pwr);
3323         if (adapter->pcix_82544)
3324                 count += nr_frags;
3325
3326
3327         if (hw->tx_pkt_filtering &&
3328             (hw->mac_type == e1000_82573))
3329                 e1000_transfer_dhcp_info(adapter, skb);
3330
3331         /* need: count + 2 desc gap to keep tail from touching
3332          * head, otherwise try next time */
3333         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3334                 return NETDEV_TX_BUSY;
3335
3336         if (unlikely(hw->mac_type == e1000_82547)) {
3337                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3338                         netif_stop_queue(netdev);
3339                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3340                         return NETDEV_TX_BUSY;
3341                 }
3342         }
3343
3344         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3345                 tx_flags |= E1000_TX_FLAGS_VLAN;
3346                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3347         }
3348
3349         first = tx_ring->next_to_use;
3350
3351         tso = e1000_tso(adapter, tx_ring, skb);
3352         if (tso < 0) {
3353                 dev_kfree_skb_any(skb);
3354                 return NETDEV_TX_OK;
3355         }
3356
3357         if (likely(tso)) {
3358                 tx_ring->last_tx_tso = 1;
3359                 tx_flags |= E1000_TX_FLAGS_TSO;
3360         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3361                 tx_flags |= E1000_TX_FLAGS_CSUM;
3362
3363         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3364          * 82571 hardware supports TSO capabilities for IPv6 as well...
3365          * no longer assume, we must. */
3366         if (likely(skb->protocol == htons(ETH_P_IP)))
3367                 tx_flags |= E1000_TX_FLAGS_IPV4;
3368
3369         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3370                              nr_frags, mss);
3371
3372         if (count) {
3373                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3374                 /* Make sure there is space in the ring for the next send. */
3375                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3376
3377         } else {
3378                 dev_kfree_skb_any(skb);
3379                 tx_ring->buffer_info[first].time_stamp = 0;
3380                 tx_ring->next_to_use = first;
3381         }
3382
3383         return NETDEV_TX_OK;
3384 }
3385
3386 /**
3387  * e1000_tx_timeout - Respond to a Tx Hang
3388  * @netdev: network interface device structure
3389  **/
3390
3391 static void e1000_tx_timeout(struct net_device *netdev)
3392 {
3393         struct e1000_adapter *adapter = netdev_priv(netdev);
3394
3395         /* Do the reset outside of interrupt context */
3396         adapter->tx_timeout_count++;
3397         schedule_work(&adapter->reset_task);
3398 }
3399
3400 static void e1000_reset_task(struct work_struct *work)
3401 {
3402         struct e1000_adapter *adapter =
3403                 container_of(work, struct e1000_adapter, reset_task);
3404
3405         e1000_reinit_locked(adapter);
3406 }
3407
3408 /**
3409  * e1000_get_stats - Get System Network Statistics
3410  * @netdev: network interface device structure
3411  *
3412  * Returns the address of the device statistics structure.
3413  * The statistics are actually updated from the timer callback.
3414  **/
3415
3416 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3417 {
3418         struct e1000_adapter *adapter = netdev_priv(netdev);
3419
3420         /* only return the current stats */
3421         return &adapter->net_stats;
3422 }
3423
3424 /**
3425  * e1000_change_mtu - Change the Maximum Transfer Unit
3426  * @netdev: network interface device structure
3427  * @new_mtu: new value for maximum frame size
3428  *
3429  * Returns 0 on success, negative on failure
3430  **/
3431
3432 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3433 {
3434         struct e1000_adapter *adapter = netdev_priv(netdev);
3435         struct e1000_hw *hw = &adapter->hw;
3436         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3437         u16 eeprom_data = 0;
3438
3439         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3440             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3441                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3442                 return -EINVAL;
3443         }
3444
3445         /* Adapter-specific max frame size limits. */
3446         switch (hw->mac_type) {
3447         case e1000_undefined ... e1000_82542_rev2_1:
3448         case e1000_ich8lan:
3449                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3450                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3451                         return -EINVAL;
3452                 }
3453                 break;
3454         case e1000_82573:
3455                 /* Jumbo Frames not supported if:
3456                  * - this is not an 82573L device
3457                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3458                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3459                                   &eeprom_data);
3460                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3461                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3462                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3463                                 DPRINTK(PROBE, ERR,
3464                                         "Jumbo Frames not supported.\n");
3465                                 return -EINVAL;
3466                         }
3467                         break;
3468                 }
3469                 /* ERT will be enabled later to enable wire speed receives */
3470
3471                 /* fall through to get support */
3472         case e1000_82571:
3473         case e1000_82572:
3474         case e1000_80003es2lan:
3475 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3476                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3477                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3478                         return -EINVAL;
3479                 }
3480                 break;
3481         default:
3482                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3483                 break;
3484         }
3485
3486         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3487          * means we reserve 2 more, this pushes us to allocate from the next
3488          * larger slab size
3489          * i.e. RXBUFFER_2048 --> size-4096 slab */
3490
3491         if (max_frame <= E1000_RXBUFFER_256)
3492                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3493         else if (max_frame <= E1000_RXBUFFER_512)
3494                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3495         else if (max_frame <= E1000_RXBUFFER_1024)
3496                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3497         else if (max_frame <= E1000_RXBUFFER_2048)
3498                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3499         else if (max_frame <= E1000_RXBUFFER_4096)
3500                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3501         else if (max_frame <= E1000_RXBUFFER_8192)
3502                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3503         else if (max_frame <= E1000_RXBUFFER_16384)
3504                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3505
3506         /* adjust allocation if LPE protects us, and we aren't using SBP */
3507         if (!hw->tbi_compatibility_on &&
3508             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3509              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3510                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3511
3512         netdev->mtu = new_mtu;
3513         hw->max_frame_size = max_frame;
3514
3515         if (netif_running(netdev))
3516                 e1000_reinit_locked(adapter);
3517
3518         return 0;
3519 }
3520
3521 /**
3522  * e1000_update_stats - Update the board statistics counters
3523  * @adapter: board private structure
3524  **/
3525
3526 void e1000_update_stats(struct e1000_adapter *adapter)
3527 {
3528         struct e1000_hw *hw = &adapter->hw;
3529         struct pci_dev *pdev = adapter->pdev;
3530         unsigned long flags;
3531         u16 phy_tmp;
3532
3533 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3534
3535         /*
3536          * Prevent stats update while adapter is being reset, or if the pci
3537          * connection is down.
3538          */
3539         if (adapter->link_speed == 0)
3540                 return;
3541         if (pci_channel_offline(pdev))
3542                 return;
3543
3544         spin_lock_irqsave(&adapter->stats_lock, flags);
3545
3546         /* these counters are modified from e1000_tbi_adjust_stats,
3547          * called from the interrupt context, so they must only
3548          * be written while holding adapter->stats_lock
3549          */
3550
3551         adapter->stats.crcerrs += er32(CRCERRS);
3552         adapter->stats.gprc += er32(GPRC);
3553         adapter->stats.gorcl += er32(GORCL);
3554         adapter->stats.gorch += er32(GORCH);
3555         adapter->stats.bprc += er32(BPRC);
3556         adapter->stats.mprc += er32(MPRC);
3557         adapter->stats.roc += er32(ROC);
3558
3559         if (hw->mac_type != e1000_ich8lan) {
3560                 adapter->stats.prc64 += er32(PRC64);
3561                 adapter->stats.prc127 += er32(PRC127);
3562                 adapter->stats.prc255 += er32(PRC255);
3563                 adapter->stats.prc511 += er32(PRC511);
3564                 adapter->stats.prc1023 += er32(PRC1023);
3565                 adapter->stats.prc1522 += er32(PRC1522);
3566         }
3567
3568         adapter->stats.symerrs += er32(SYMERRS);
3569         adapter->stats.mpc += er32(MPC);
3570         adapter->stats.scc += er32(SCC);
3571         adapter->stats.ecol += er32(ECOL);
3572         adapter->stats.mcc += er32(MCC);
3573         adapter->stats.latecol += er32(LATECOL);
3574         adapter->stats.dc += er32(DC);
3575         adapter->stats.sec += er32(SEC);
3576         adapter->stats.rlec += er32(RLEC);
3577         adapter->stats.xonrxc += er32(XONRXC);
3578         adapter->stats.xontxc += er32(XONTXC);
3579         adapter->stats.xoffrxc += er32(XOFFRXC);
3580         adapter->stats.xofftxc += er32(XOFFTXC);
3581         adapter->stats.fcruc += er32(FCRUC);
3582         adapter->stats.gptc += er32(GPTC);
3583         adapter->stats.gotcl += er32(GOTCL);
3584         adapter->stats.gotch += er32(GOTCH);
3585         adapter->stats.rnbc += er32(RNBC);
3586         adapter->stats.ruc += er32(RUC);
3587         adapter->stats.rfc += er32(RFC);
3588         adapter->stats.rjc += er32(RJC);
3589         adapter->stats.torl += er32(TORL);
3590         adapter->stats.torh += er32(TORH);
3591         adapter->stats.totl += er32(TOTL);
3592         adapter->stats.toth += er32(TOTH);
3593         adapter->stats.tpr += er32(TPR);
3594
3595         if (hw->mac_type != e1000_ich8lan) {
3596                 adapter->stats.ptc64 += er32(PTC64);
3597                 adapter->stats.ptc127 += er32(PTC127);
3598                 adapter->stats.ptc255 += er32(PTC255);
3599                 adapter->stats.ptc511 += er32(PTC511);
3600                 adapter->stats.ptc1023 += er32(PTC1023);
3601                 adapter->stats.ptc1522 += er32(PTC1522);
3602         }
3603
3604         adapter->stats.mptc += er32(MPTC);
3605         adapter->stats.bptc += er32(BPTC);
3606
3607         /* used for adaptive IFS */
3608
3609         hw->tx_packet_delta = er32(TPT);
3610         adapter->stats.tpt += hw->tx_packet_delta;
3611         hw->collision_delta = er32(COLC);
3612         adapter->stats.colc += hw->collision_delta;
3613
3614         if (hw->mac_type >= e1000_82543) {
3615                 adapter->stats.algnerrc += er32(ALGNERRC);
3616                 adapter->stats.rxerrc += er32(RXERRC);
3617                 adapter->stats.tncrs += er32(TNCRS);
3618                 adapter->stats.cexterr += er32(CEXTERR);
3619                 adapter->stats.tsctc += er32(TSCTC);
3620                 adapter->stats.tsctfc += er32(TSCTFC);
3621         }
3622         if (hw->mac_type > e1000_82547_rev_2) {
3623                 adapter->stats.iac += er32(IAC);
3624                 adapter->stats.icrxoc += er32(ICRXOC);
3625
3626                 if (hw->mac_type != e1000_ich8lan) {
3627                         adapter->stats.icrxptc += er32(ICRXPTC);
3628                         adapter->stats.icrxatc += er32(ICRXATC);
3629                         adapter->stats.ictxptc += er32(ICTXPTC);
3630                         adapter->stats.ictxatc += er32(ICTXATC);
3631                         adapter->stats.ictxqec += er32(ICTXQEC);
3632                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3633                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3634                 }
3635         }
3636
3637         /* Fill out the OS statistics structure */
3638         adapter->net_stats.multicast = adapter->stats.mprc;
3639         adapter->net_stats.collisions = adapter->stats.colc;
3640
3641         /* Rx Errors */
3642
3643         /* RLEC on some newer hardware can be incorrect so build
3644         * our own version based on RUC and ROC */
3645         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3646                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3647                 adapter->stats.ruc + adapter->stats.roc +
3648                 adapter->stats.cexterr;
3649         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3650         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3651         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3652         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3653         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3654
3655         /* Tx Errors */
3656         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3657         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3658         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3659         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3660         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3661         if (hw->bad_tx_carr_stats_fd &&
3662             adapter->link_duplex == FULL_DUPLEX) {
3663                 adapter->net_stats.tx_carrier_errors = 0;
3664                 adapter->stats.tncrs = 0;
3665         }
3666
3667         /* Tx Dropped needs to be maintained elsewhere */
3668
3669         /* Phy Stats */
3670         if (hw->media_type == e1000_media_type_copper) {
3671                 if ((adapter->link_speed == SPEED_1000) &&
3672                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3673                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3674                         adapter->phy_stats.idle_errors += phy_tmp;
3675                 }
3676
3677                 if ((hw->mac_type <= e1000_82546) &&
3678                    (hw->phy_type == e1000_phy_m88) &&
3679                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3680                         adapter->phy_stats.receive_errors += phy_tmp;
3681         }
3682
3683         /* Management Stats */
3684         if (hw->has_smbus) {
3685                 adapter->stats.mgptc += er32(MGTPTC);
3686                 adapter->stats.mgprc += er32(MGTPRC);
3687                 adapter->stats.mgpdc += er32(MGTPDC);
3688         }
3689
3690         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3691 }
3692
3693 /**
3694  * e1000_intr_msi - Interrupt Handler
3695  * @irq: interrupt number
3696  * @data: pointer to a network interface device structure
3697  **/
3698
3699 static irqreturn_t e1000_intr_msi(int irq, void *data)
3700 {
3701         struct net_device *netdev = data;
3702         struct e1000_adapter *adapter = netdev_priv(netdev);
3703         struct e1000_hw *hw = &adapter->hw;
3704         u32 icr = er32(ICR);
3705
3706         /* in NAPI mode read ICR disables interrupts using IAM */
3707
3708         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3709                 hw->get_link_status = 1;
3710                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3711                  * link down event; disable receives here in the ISR and reset
3712                  * adapter in watchdog */
3713                 if (netif_carrier_ok(netdev) &&
3714                     (hw->mac_type == e1000_80003es2lan)) {
3715                         /* disable receives */
3716                         u32 rctl = er32(RCTL);
3717                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3718                 }
3719                 /* guard against interrupt when we're going down */
3720                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3721                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3722         }
3723
3724         if (likely(napi_schedule_prep(&adapter->napi))) {
3725                 adapter->total_tx_bytes = 0;
3726                 adapter->total_tx_packets = 0;
3727                 adapter->total_rx_bytes = 0;
3728                 adapter->total_rx_packets = 0;
3729                 __napi_schedule(&adapter->napi);
3730         } else
3731                 e1000_irq_enable(adapter);
3732
3733         return IRQ_HANDLED;
3734 }
3735
3736 /**
3737  * e1000_intr - Interrupt Handler
3738  * @irq: interrupt number
3739  * @data: pointer to a network interface device structure
3740  **/
3741
3742 static irqreturn_t e1000_intr(int irq, void *data)
3743 {
3744         struct net_device *netdev = data;
3745         struct e1000_adapter *adapter = netdev_priv(netdev);
3746         struct e1000_hw *hw = &adapter->hw;
3747         u32 rctl, icr = er32(ICR);
3748
3749         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3750                 return IRQ_NONE;  /* Not our interrupt */
3751
3752         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3753          * not set, then the adapter didn't send an interrupt */
3754         if (unlikely(hw->mac_type >= e1000_82571 &&
3755                      !(icr & E1000_ICR_INT_ASSERTED)))
3756                 return IRQ_NONE;
3757
3758         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3759          * need for the IMC write */
3760
3761         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3762                 hw->get_link_status = 1;
3763                 /* 80003ES2LAN workaround--
3764                  * For packet buffer work-around on link down event;
3765                  * disable receives here in the ISR and
3766                  * reset adapter in watchdog
3767                  */
3768                 if (netif_carrier_ok(netdev) &&
3769                     (hw->mac_type == e1000_80003es2lan)) {
3770                         /* disable receives */
3771                         rctl = er32(RCTL);
3772                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3773                 }
3774                 /* guard against interrupt when we're going down */
3775                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3776                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3777         }
3778
3779         if (unlikely(hw->mac_type < e1000_82571)) {
3780                 /* disable interrupts, without the synchronize_irq bit */
3781                 ew32(IMC, ~0);
3782                 E1000_WRITE_FLUSH();
3783         }
3784         if (likely(napi_schedule_prep(&adapter->napi))) {
3785                 adapter->total_tx_bytes = 0;
3786                 adapter->total_tx_packets = 0;
3787                 adapter->total_rx_bytes = 0;
3788                 adapter->total_rx_packets = 0;
3789                 __napi_schedule(&adapter->napi);
3790         } else {
3791                 /* this really should not happen! if it does it is basically a
3792                  * bug, but not a hard error, so enable ints and continue */
3793                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3794                         e1000_irq_enable(adapter);
3795         }
3796
3797         return IRQ_HANDLED;
3798 }
3799
3800 /**
3801  * e1000_clean - NAPI Rx polling callback
3802  * @adapter: board private structure
3803  **/
3804 static int e1000_clean(struct napi_struct *napi, int budget)
3805 {
3806         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3807         struct net_device *poll_dev = adapter->netdev;
3808         int tx_cleaned = 0, work_done = 0;
3809
3810         adapter = netdev_priv(poll_dev);
3811
3812         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3813
3814         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3815                           &work_done, budget);
3816
3817         if (!tx_cleaned)
3818                 work_done = budget;
3819
3820         /* If budget not fully consumed, exit the polling mode */
3821         if (work_done < budget) {
3822                 if (likely(adapter->itr_setting & 3))
3823                         e1000_set_itr(adapter);
3824                 napi_complete(napi);
3825                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3826                         e1000_irq_enable(adapter);
3827         }
3828
3829         return work_done;
3830 }
3831
3832 /**
3833  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3834  * @adapter: board private structure
3835  **/
3836 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3837                                struct e1000_tx_ring *tx_ring)
3838 {
3839         struct e1000_hw *hw = &adapter->hw;
3840         struct net_device *netdev = adapter->netdev;
3841         struct e1000_tx_desc *tx_desc, *eop_desc;
3842         struct e1000_buffer *buffer_info;
3843         unsigned int i, eop;
3844         unsigned int count = 0;
3845         unsigned int total_tx_bytes=0, total_tx_packets=0;
3846
3847         i = tx_ring->next_to_clean;
3848         eop = tx_ring->buffer_info[i].next_to_watch;
3849         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850
3851         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3852                (count < tx_ring->count)) {
3853                 bool cleaned = false;
3854                 for ( ; !cleaned; count++) {
3855                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3856                         buffer_info = &tx_ring->buffer_info[i];
3857                         cleaned = (i == eop);
3858
3859                         if (cleaned) {
3860                                 struct sk_buff *skb = buffer_info->skb;
3861                                 unsigned int segs, bytecount;
3862                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3863                                 /* multiply data chunks by size of headers */
3864                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3865                                             skb->len;
3866                                 total_tx_packets += segs;
3867                                 total_tx_bytes += bytecount;
3868                         }
3869                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3870                         tx_desc->upper.data = 0;
3871
3872                         if (unlikely(++i == tx_ring->count)) i = 0;
3873                 }
3874
3875                 eop = tx_ring->buffer_info[i].next_to_watch;
3876                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3877         }
3878
3879         tx_ring->next_to_clean = i;
3880
3881 #define TX_WAKE_THRESHOLD 32
3882         if (unlikely(count && netif_carrier_ok(netdev) &&
3883                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3884                 /* Make sure that anybody stopping the queue after this
3885                  * sees the new next_to_clean.
3886                  */
3887                 smp_mb();
3888                 if (netif_queue_stopped(netdev)) {
3889                         netif_wake_queue(netdev);
3890                         ++adapter->restart_queue;
3891                 }
3892         }
3893
3894         if (adapter->detect_tx_hung) {
3895                 /* Detect a transmit hang in hardware, this serializes the
3896                  * check with the clearing of time_stamp and movement of i */
3897                 adapter->detect_tx_hung = false;
3898                 if (tx_ring->buffer_info[i].time_stamp &&
3899                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3900                                (adapter->tx_timeout_factor * HZ))
3901                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902
3903                         /* detected Tx unit hang */
3904                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3905                                         "  Tx Queue             <%lu>\n"
3906                                         "  TDH                  <%x>\n"
3907                                         "  TDT                  <%x>\n"
3908                                         "  next_to_use          <%x>\n"
3909                                         "  next_to_clean        <%x>\n"
3910                                         "buffer_info[next_to_clean]\n"
3911                                         "  time_stamp           <%lx>\n"
3912                                         "  next_to_watch        <%x>\n"
3913                                         "  jiffies              <%lx>\n"
3914                                         "  next_to_watch.status <%x>\n",
3915                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3916                                         sizeof(struct e1000_tx_ring)),
3917                                 readl(hw->hw_addr + tx_ring->tdh),
3918                                 readl(hw->hw_addr + tx_ring->tdt),
3919                                 tx_ring->next_to_use,
3920                                 tx_ring->next_to_clean,
3921                                 tx_ring->buffer_info[i].time_stamp,
3922                                 eop,
3923                                 jiffies,
3924                                 eop_desc->upper.fields.status);
3925                         netif_stop_queue(netdev);
3926                 }
3927         }
3928         adapter->total_tx_bytes += total_tx_bytes;
3929         adapter->total_tx_packets += total_tx_packets;
3930         adapter->net_stats.tx_bytes += total_tx_bytes;
3931         adapter->net_stats.tx_packets += total_tx_packets;
3932         return (count < tx_ring->count);
3933 }
3934
3935 /**
3936  * e1000_rx_checksum - Receive Checksum Offload for 82543
3937  * @adapter:     board private structure
3938  * @status_err:  receive descriptor status and error fields
3939  * @csum:        receive descriptor csum field
3940  * @sk_buff:     socket buffer with received data
3941  **/
3942
3943 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944                               u32 csum, struct sk_buff *skb)
3945 {
3946         struct e1000_hw *hw = &adapter->hw;
3947         u16 status = (u16)status_err;
3948         u8 errors = (u8)(status_err >> 24);
3949         skb->ip_summed = CHECKSUM_NONE;
3950
3951         /* 82543 or newer only */
3952         if (unlikely(hw->mac_type < e1000_82543)) return;
3953         /* Ignore Checksum bit is set */
3954         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3955         /* TCP/UDP checksum error bit is set */
3956         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3957                 /* let the stack verify checksum errors */
3958                 adapter->hw_csum_err++;
3959                 return;
3960         }
3961         /* TCP/UDP Checksum has not been calculated */
3962         if (hw->mac_type <= e1000_82547_rev_2) {
3963                 if (!(status & E1000_RXD_STAT_TCPCS))
3964                         return;
3965         } else {
3966                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3967                         return;
3968         }
3969         /* It must be a TCP or UDP packet with a valid checksum */
3970         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3971                 /* TCP checksum is good */
3972                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3973         } else if (hw->mac_type > e1000_82547_rev_2) {
3974                 /* IP fragment with UDP payload */
3975                 /* Hardware complements the payload checksum, so we undo it
3976                  * and then put the value in host order for further stack use.
3977                  */
3978                 __sum16 sum = (__force __sum16)htons(csum);
3979                 skb->csum = csum_unfold(~sum);
3980                 skb->ip_summed = CHECKSUM_COMPLETE;
3981         }
3982         adapter->hw_csum_good++;
3983 }
3984
3985 /**
3986  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3987  * @adapter: board private structure
3988  **/
3989 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3990                                struct e1000_rx_ring *rx_ring,
3991                                int *work_done, int work_to_do)
3992 {
3993         struct e1000_hw *hw = &adapter->hw;
3994         struct net_device *netdev = adapter->netdev;
3995         struct pci_dev *pdev = adapter->pdev;
3996         struct e1000_rx_desc *rx_desc, *next_rxd;
3997         struct e1000_buffer *buffer_info, *next_buffer;
3998         unsigned long flags;
3999         u32 length;
4000         u8 last_byte;
4001         unsigned int i;
4002         int cleaned_count = 0;
4003         bool cleaned = false;
4004         unsigned int total_rx_bytes=0, total_rx_packets=0;
4005
4006         i = rx_ring->next_to_clean;
4007         rx_desc = E1000_RX_DESC(*rx_ring, i);
4008         buffer_info = &rx_ring->buffer_info[i];
4009
4010         while (rx_desc->status & E1000_RXD_STAT_DD) {
4011                 struct sk_buff *skb;
4012                 u8 status;
4013
4014                 if (*work_done >= work_to_do)
4015                         break;
4016                 (*work_done)++;
4017
4018                 status = rx_desc->status;
4019                 skb = buffer_info->skb;
4020                 buffer_info->skb = NULL;
4021
4022                 prefetch(skb->data - NET_IP_ALIGN);
4023
4024                 if (++i == rx_ring->count) i = 0;
4025                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4026                 prefetch(next_rxd);
4027
4028                 next_buffer = &rx_ring->buffer_info[i];
4029
4030                 cleaned = true;
4031                 cleaned_count++;
4032                 pci_unmap_single(pdev,
4033                                  buffer_info->dma,
4034                                  buffer_info->length,
4035                                  PCI_DMA_FROMDEVICE);
4036
4037                 length = le16_to_cpu(rx_desc->length);
4038
4039                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4040                         /* All receives must fit into a single buffer */
4041                         E1000_DBG("%s: Receive packet consumed multiple"
4042                                   " buffers\n", netdev->name);
4043                         /* recycle */
4044                         buffer_info->skb = skb;
4045                         goto next_desc;
4046                 }
4047
4048                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4049                         last_byte = *(skb->data + length - 1);
4050                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051                                        last_byte)) {
4052                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4053                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4054                                                        length, skb->data);
4055                                 spin_unlock_irqrestore(&adapter->stats_lock,
4056                                                        flags);
4057                                 length--;
4058                         } else {
4059                                 /* recycle */
4060                                 buffer_info->skb = skb;
4061                                 goto next_desc;
4062                         }
4063                 }
4064
4065                 /* adjust length to remove Ethernet CRC, this must be
4066                  * done after the TBI_ACCEPT workaround above */
4067                 length -= 4;
4068
4069                 /* probably a little skewed due to removing CRC */
4070                 total_rx_bytes += length;
4071                 total_rx_packets++;
4072
4073                 /* code added for copybreak, this should improve
4074                  * performance for small packets with large amounts
4075                  * of reassembly being done in the stack */
4076                 if (length < copybreak) {
4077                         struct sk_buff *new_skb =
4078                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4079                         if (new_skb) {
4080                                 skb_reserve(new_skb, NET_IP_ALIGN);
4081                                 skb_copy_to_linear_data_offset(new_skb,
4082                                                                -NET_IP_ALIGN,
4083                                                                (skb->data -
4084                                                                 NET_IP_ALIGN),
4085                                                                (length +
4086                                                                 NET_IP_ALIGN));
4087                                 /* save the skb in buffer_info as good */
4088                                 buffer_info->skb = skb;
4089                                 skb = new_skb;
4090                         }
4091                         /* else just continue with the old one */
4092                 }
4093                 /* end copybreak code */
4094                 skb_put(skb, length);
4095
4096                 /* Receive Checksum Offload */
4097                 e1000_rx_checksum(adapter,
4098                                   (u32)(status) |
4099                                   ((u32)(rx_desc->errors) << 24),
4100                                   le16_to_cpu(rx_desc->csum), skb);
4101
4102                 skb->protocol = eth_type_trans(skb, netdev);
4103
4104                 if (unlikely(adapter->vlgrp &&
4105                             (status & E1000_RXD_STAT_VP))) {
4106                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4107                                                  le16_to_cpu(rx_desc->special));
4108                 } else {
4109                         netif_receive_skb(skb);
4110                 }
4111
4112 next_desc:
4113                 rx_desc->status = 0;
4114
4115                 /* return some buffers to hardware, one at a time is too slow */
4116                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4117                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4118                         cleaned_count = 0;
4119                 }
4120
4121                 /* use prefetched values */
4122                 rx_desc = next_rxd;
4123                 buffer_info = next_buffer;
4124         }
4125         rx_ring->next_to_clean = i;
4126
4127         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4128         if (cleaned_count)
4129                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4130
4131         adapter->total_rx_packets += total_rx_packets;
4132         adapter->total_rx_bytes += total_rx_bytes;
4133         adapter->net_stats.rx_bytes += total_rx_bytes;
4134         adapter->net_stats.rx_packets += total_rx_packets;
4135         return cleaned;
4136 }
4137
4138 /**
4139  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4140  * @adapter: address of board private structure
4141  **/
4142
4143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4144                                    struct e1000_rx_ring *rx_ring,
4145                                    int cleaned_count)
4146 {
4147         struct e1000_hw *hw = &adapter->hw;
4148         struct net_device *netdev = adapter->netdev;
4149         struct pci_dev *pdev = adapter->pdev;
4150         struct e1000_rx_desc *rx_desc;
4151         struct e1000_buffer *buffer_info;
4152         struct sk_buff *skb;
4153         unsigned int i;
4154         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4155
4156         i = rx_ring->next_to_use;
4157         buffer_info = &rx_ring->buffer_info[i];
4158
4159         while (cleaned_count--) {
4160                 skb = buffer_info->skb;
4161                 if (skb) {
4162                         skb_trim(skb, 0);
4163                         goto map_skb;
4164                 }
4165
4166                 skb = netdev_alloc_skb(netdev, bufsz);
4167                 if (unlikely(!skb)) {
4168                         /* Better luck next round */
4169                         adapter->alloc_rx_buff_failed++;
4170                         break;
4171                 }
4172
4173                 /* Fix for errata 23, can't cross 64kB boundary */
4174                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4175                         struct sk_buff *oldskb = skb;
4176                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4177                                              "at %p\n", bufsz, skb->data);
4178                         /* Try again, without freeing the previous */
4179                         skb = netdev_alloc_skb(netdev, bufsz);
4180                         /* Failed allocation, critical failure */
4181                         if (!skb) {
4182                                 dev_kfree_skb(oldskb);
4183                                 break;
4184                         }
4185
4186                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4187                                 /* give up */
4188                                 dev_kfree_skb(skb);
4189                                 dev_kfree_skb(oldskb);
4190                                 break; /* while !buffer_info->skb */
4191                         }
4192
4193                         /* Use new allocation */
4194                         dev_kfree_skb(oldskb);
4195                 }
4196                 /* Make buffer alignment 2 beyond a 16 byte boundary
4197                  * this will result in a 16 byte aligned IP header after
4198                  * the 14 byte MAC header is removed
4199                  */
4200                 skb_reserve(skb, NET_IP_ALIGN);
4201
4202                 buffer_info->skb = skb;
4203                 buffer_info->length = adapter->rx_buffer_len;
4204 map_skb:
4205                 buffer_info->dma = pci_map_single(pdev,
4206                                                   skb->data,
4207                                                   adapter->rx_buffer_len,
4208                                                   PCI_DMA_FROMDEVICE);
4209
4210                 /* Fix for errata 23, can't cross 64kB boundary */
4211                 if (!e1000_check_64k_bound(adapter,
4212                                         (void *)(unsigned long)buffer_info->dma,
4213                                         adapter->rx_buffer_len)) {
4214                         DPRINTK(RX_ERR, ERR,
4215                                 "dma align check failed: %u bytes at %p\n",
4216                                 adapter->rx_buffer_len,
4217                                 (void *)(unsigned long)buffer_info->dma);
4218                         dev_kfree_skb(skb);
4219                         buffer_info->skb = NULL;
4220
4221                         pci_unmap_single(pdev, buffer_info->dma,
4222                                          adapter->rx_buffer_len,
4223                                          PCI_DMA_FROMDEVICE);
4224
4225                         break; /* while !buffer_info->skb */
4226                 }
4227                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4228                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4229
4230                 if (unlikely(++i == rx_ring->count))
4231                         i = 0;
4232                 buffer_info = &rx_ring->buffer_info[i];
4233         }
4234
4235         if (likely(rx_ring->next_to_use != i)) {
4236                 rx_ring->next_to_use = i;
4237                 if (unlikely(i-- == 0))
4238                         i = (rx_ring->count - 1);
4239
4240                 /* Force memory writes to complete before letting h/w
4241                  * know there are new descriptors to fetch.  (Only
4242                  * applicable for weak-ordered memory model archs,
4243                  * such as IA-64). */
4244                 wmb();
4245                 writel(i, hw->hw_addr + rx_ring->rdt);
4246         }
4247 }
4248
4249 /**
4250  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4251  * @adapter:
4252  **/
4253
4254 static void e1000_smartspeed(struct e1000_adapter *adapter)
4255 {
4256         struct e1000_hw *hw = &adapter->hw;
4257         u16 phy_status;
4258         u16 phy_ctrl;
4259
4260         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4261            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4262                 return;
4263
4264         if (adapter->smartspeed == 0) {
4265                 /* If Master/Slave config fault is asserted twice,
4266                  * we assume back-to-back */
4267                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4268                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4269                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4270                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4271                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4272                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4273                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4274                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4275                                             phy_ctrl);
4276                         adapter->smartspeed++;
4277                         if (!e1000_phy_setup_autoneg(hw) &&
4278                            !e1000_read_phy_reg(hw, PHY_CTRL,
4279                                                &phy_ctrl)) {
4280                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4281                                              MII_CR_RESTART_AUTO_NEG);
4282                                 e1000_write_phy_reg(hw, PHY_CTRL,
4283                                                     phy_ctrl);
4284                         }
4285                 }
4286                 return;
4287         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4288                 /* If still no link, perhaps using 2/3 pair cable */
4289                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4290                 phy_ctrl |= CR_1000T_MS_ENABLE;
4291                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4292                 if (!e1000_phy_setup_autoneg(hw) &&
4293                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4294                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4295                                      MII_CR_RESTART_AUTO_NEG);
4296                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4297                 }
4298         }
4299         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4300         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4301                 adapter->smartspeed = 0;
4302 }
4303
4304 /**
4305  * e1000_ioctl -
4306  * @netdev:
4307  * @ifreq:
4308  * @cmd:
4309  **/
4310
4311 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4312 {
4313         switch (cmd) {
4314         case SIOCGMIIPHY:
4315         case SIOCGMIIREG:
4316         case SIOCSMIIREG:
4317                 return e1000_mii_ioctl(netdev, ifr, cmd);
4318         default:
4319                 return -EOPNOTSUPP;
4320         }
4321 }
4322
4323 /**
4324  * e1000_mii_ioctl -
4325  * @netdev:
4326  * @ifreq:
4327  * @cmd:
4328  **/
4329
4330 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4331                            int cmd)
4332 {
4333         struct e1000_adapter *adapter = netdev_priv(netdev);
4334         struct e1000_hw *hw = &adapter->hw;
4335         struct mii_ioctl_data *data = if_mii(ifr);
4336         int retval;
4337         u16 mii_reg;
4338         u16 spddplx;
4339         unsigned long flags;
4340
4341         if (hw->media_type != e1000_media_type_copper)
4342                 return -EOPNOTSUPP;
4343
4344         switch (cmd) {
4345         case SIOCGMIIPHY:
4346                 data->phy_id = hw->phy_addr;
4347                 break;
4348         case SIOCGMIIREG:
4349                 if (!capable(CAP_NET_ADMIN))
4350                         return -EPERM;
4351                 spin_lock_irqsave(&adapter->stats_lock, flags);
4352                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4353                                    &data->val_out)) {
4354                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4355                         return -EIO;
4356                 }
4357                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4358                 break;
4359         case SIOCSMIIREG:
4360                 if (!capable(CAP_NET_ADMIN))
4361                         return -EPERM;
4362                 if (data->reg_num & ~(0x1F))
4363                         return -EFAULT;
4364                 mii_reg = data->val_in;
4365                 spin_lock_irqsave(&adapter->stats_lock, flags);
4366                 if (e1000_write_phy_reg(hw, data->reg_num,
4367                                         mii_reg)) {
4368                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4369                         return -EIO;
4370                 }
4371                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4372                 if (hw->media_type == e1000_media_type_copper) {
4373                         switch (data->reg_num) {
4374                         case PHY_CTRL:
4375                                 if (mii_reg & MII_CR_POWER_DOWN)
4376                                         break;
4377                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4378                                         hw->autoneg = 1;
4379                                         hw->autoneg_advertised = 0x2F;
4380                                 } else {
4381                                         if (mii_reg & 0x40)
4382                                                 spddplx = SPEED_1000;
4383                                         else if (mii_reg & 0x2000)
4384                                                 spddplx = SPEED_100;
4385                                         else
4386                                                 spddplx = SPEED_10;
4387                                         spddplx += (mii_reg & 0x100)
4388                                                    ? DUPLEX_FULL :
4389                                                    DUPLEX_HALF;
4390                                         retval = e1000_set_spd_dplx(adapter,
4391                                                                     spddplx);
4392                                         if (retval)
4393                                                 return retval;
4394                                 }
4395                                 if (netif_running(adapter->netdev))
4396                                         e1000_reinit_locked(adapter);
4397                                 else
4398                                         e1000_reset(adapter);
4399                                 break;
4400                         case M88E1000_PHY_SPEC_CTRL:
4401                         case M88E1000_EXT_PHY_SPEC_CTRL:
4402                                 if (e1000_phy_reset(hw))
4403                                         return -EIO;
4404                                 break;
4405                         }
4406                 } else {
4407                         switch (data->reg_num) {
4408                         case PHY_CTRL:
4409                                 if (mii_reg & MII_CR_POWER_DOWN)
4410                                         break;
4411                                 if (netif_running(adapter->netdev))
4412                                         e1000_reinit_locked(adapter);
4413                                 else
4414                                         e1000_reset(adapter);
4415                                 break;
4416                         }
4417                 }
4418                 break;
4419         default:
4420                 return -EOPNOTSUPP;
4421         }
4422         return E1000_SUCCESS;
4423 }
4424
4425 void e1000_pci_set_mwi(struct e1000_hw *hw)
4426 {
4427         struct e1000_adapter *adapter = hw->back;
4428         int ret_val = pci_set_mwi(adapter->pdev);
4429
4430         if (ret_val)
4431                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4432 }
4433
4434 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4435 {
4436         struct e1000_adapter *adapter = hw->back;
4437
4438         pci_clear_mwi(adapter->pdev);
4439 }
4440
4441 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4442 {
4443         struct e1000_adapter *adapter = hw->back;
4444         return pcix_get_mmrbc(adapter->pdev);
4445 }
4446
4447 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4448 {
4449         struct e1000_adapter *adapter = hw->back;
4450         pcix_set_mmrbc(adapter->pdev, mmrbc);
4451 }
4452
4453 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4454 {
4455     struct e1000_adapter *adapter = hw->back;
4456     u16 cap_offset;
4457
4458     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4459     if (!cap_offset)
4460         return -E1000_ERR_CONFIG;
4461
4462     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4463
4464     return E1000_SUCCESS;
4465 }
4466
4467 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4468 {
4469         outl(value, port);
4470 }
4471
4472 static void e1000_vlan_rx_register(struct net_device *netdev,
4473                                    struct vlan_group *grp)
4474 {
4475         struct e1000_adapter *adapter = netdev_priv(netdev);
4476         struct e1000_hw *hw = &adapter->hw;
4477         u32 ctrl, rctl;
4478
4479         if (!test_bit(__E1000_DOWN, &adapter->flags))
4480                 e1000_irq_disable(adapter);
4481         adapter->vlgrp = grp;
4482
4483         if (grp) {
4484                 /* enable VLAN tag insert/strip */
4485                 ctrl = er32(CTRL);
4486                 ctrl |= E1000_CTRL_VME;
4487                 ew32(CTRL, ctrl);
4488
4489                 if (adapter->hw.mac_type != e1000_ich8lan) {
4490                         /* enable VLAN receive filtering */
4491                         rctl = er32(RCTL);
4492                         rctl &= ~E1000_RCTL_CFIEN;
4493                         ew32(RCTL, rctl);
4494                         e1000_update_mng_vlan(adapter);
4495                 }
4496         } else {
4497                 /* disable VLAN tag insert/strip */
4498                 ctrl = er32(CTRL);
4499                 ctrl &= ~E1000_CTRL_VME;
4500                 ew32(CTRL, ctrl);
4501
4502                 if (adapter->hw.mac_type != e1000_ich8lan) {
4503                         if (adapter->mng_vlan_id !=
4504                             (u16)E1000_MNG_VLAN_NONE) {
4505                                 e1000_vlan_rx_kill_vid(netdev,
4506                                                        adapter->mng_vlan_id);
4507                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4508                         }
4509                 }
4510         }
4511
4512         if (!test_bit(__E1000_DOWN, &adapter->flags))
4513                 e1000_irq_enable(adapter);
4514 }
4515
4516 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4517 {
4518         struct e1000_adapter *adapter = netdev_priv(netdev);
4519         struct e1000_hw *hw = &adapter->hw;
4520         u32 vfta, index;
4521
4522         if ((hw->mng_cookie.status &
4523              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4524             (vid == adapter->mng_vlan_id))
4525                 return;
4526         /* add VID to filter table */
4527         index = (vid >> 5) & 0x7F;
4528         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4529         vfta |= (1 << (vid & 0x1F));
4530         e1000_write_vfta(hw, index, vfta);
4531 }
4532
4533 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4534 {
4535         struct e1000_adapter *adapter = netdev_priv(netdev);
4536         struct e1000_hw *hw = &adapter->hw;
4537         u32 vfta, index;
4538
4539         if (!test_bit(__E1000_DOWN, &adapter->flags))
4540                 e1000_irq_disable(adapter);
4541         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4542         if (!test_bit(__E1000_DOWN, &adapter->flags))
4543                 e1000_irq_enable(adapter);
4544
4545         if ((hw->mng_cookie.status &
4546              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4547             (vid == adapter->mng_vlan_id)) {
4548                 /* release control to f/w */
4549                 e1000_release_hw_control(adapter);
4550                 return;
4551         }
4552
4553         /* remove VID from filter table */
4554         index = (vid >> 5) & 0x7F;
4555         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4556         vfta &= ~(1 << (vid & 0x1F));
4557         e1000_write_vfta(hw, index, vfta);
4558 }
4559
4560 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4561 {
4562         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4563
4564         if (adapter->vlgrp) {
4565                 u16 vid;
4566                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4567                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4568                                 continue;
4569                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4570                 }
4571         }
4572 }
4573
4574 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4575 {
4576         struct e1000_hw *hw = &adapter->hw;
4577
4578         hw->autoneg = 0;
4579
4580         /* Fiber NICs only allow 1000 gbps Full duplex */
4581         if ((hw->media_type == e1000_media_type_fiber) &&
4582                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4583                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4584                 return -EINVAL;
4585         }
4586
4587         switch (spddplx) {
4588         case SPEED_10 + DUPLEX_HALF:
4589                 hw->forced_speed_duplex = e1000_10_half;
4590                 break;
4591         case SPEED_10 + DUPLEX_FULL:
4592                 hw->forced_speed_duplex = e1000_10_full;
4593                 break;
4594         case SPEED_100 + DUPLEX_HALF:
4595                 hw->forced_speed_duplex = e1000_100_half;
4596                 break;
4597         case SPEED_100 + DUPLEX_FULL:
4598                 hw->forced_speed_duplex = e1000_100_full;
4599                 break;
4600         case SPEED_1000 + DUPLEX_FULL:
4601                 hw->autoneg = 1;
4602                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4603                 break;
4604         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4605         default:
4606                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4607                 return -EINVAL;
4608         }
4609         return 0;
4610 }
4611
4612 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4613 {
4614         struct net_device *netdev = pci_get_drvdata(pdev);
4615         struct e1000_adapter *adapter = netdev_priv(netdev);
4616         struct e1000_hw *hw = &adapter->hw;
4617         u32 ctrl, ctrl_ext, rctl, status;
4618         u32 wufc = adapter->wol;
4619 #ifdef CONFIG_PM
4620         int retval = 0;
4621 #endif
4622
4623         netif_device_detach(netdev);
4624
4625         if (netif_running(netdev)) {
4626                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4627                 e1000_down(adapter);
4628         }
4629
4630 #ifdef CONFIG_PM
4631         retval = pci_save_state(pdev);
4632         if (retval)
4633                 return retval;
4634 #endif
4635
4636         status = er32(STATUS);
4637         if (status & E1000_STATUS_LU)
4638                 wufc &= ~E1000_WUFC_LNKC;
4639
4640         if (wufc) {
4641                 e1000_setup_rctl(adapter);
4642                 e1000_set_rx_mode(netdev);
4643
4644                 /* turn on all-multi mode if wake on multicast is enabled */
4645                 if (wufc & E1000_WUFC_MC) {
4646                         rctl = er32(RCTL);
4647                         rctl |= E1000_RCTL_MPE;
4648                         ew32(RCTL, rctl);
4649                 }
4650
4651                 if (hw->mac_type >= e1000_82540) {
4652                         ctrl = er32(CTRL);
4653                         /* advertise wake from D3Cold */
4654                         #define E1000_CTRL_ADVD3WUC 0x00100000
4655                         /* phy power management enable */
4656                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4657                         ctrl |= E1000_CTRL_ADVD3WUC |
4658                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4659                         ew32(CTRL, ctrl);
4660                 }
4661
4662                 if (hw->media_type == e1000_media_type_fiber ||
4663                    hw->media_type == e1000_media_type_internal_serdes) {
4664                         /* keep the laser running in D3 */
4665                         ctrl_ext = er32(CTRL_EXT);
4666                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4667                         ew32(CTRL_EXT, ctrl_ext);
4668                 }
4669
4670                 /* Allow time for pending master requests to run */
4671                 e1000_disable_pciex_master(hw);
4672
4673                 ew32(WUC, E1000_WUC_PME_EN);
4674                 ew32(WUFC, wufc);
4675         } else {
4676                 ew32(WUC, 0);
4677                 ew32(WUFC, 0);
4678         }
4679
4680         e1000_release_manageability(adapter);
4681
4682         *enable_wake = !!wufc;
4683
4684         /* make sure adapter isn't asleep if manageability is enabled */
4685         if (adapter->en_mng_pt)
4686                 *enable_wake = true;
4687
4688         if (hw->phy_type == e1000_phy_igp_3)
4689                 e1000_phy_powerdown_workaround(hw);
4690
4691         if (netif_running(netdev))
4692                 e1000_free_irq(adapter);
4693
4694         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4695          * would have already happened in close and is redundant. */
4696         e1000_release_hw_control(adapter);
4697
4698         pci_disable_device(pdev);
4699
4700         return 0;
4701 }
4702
4703 #ifdef CONFIG_PM
4704 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4705 {
4706         int retval;
4707         bool wake;
4708
4709         retval = __e1000_shutdown(pdev, &wake);
4710         if (retval)
4711                 return retval;
4712
4713         if (wake) {
4714                 pci_prepare_to_sleep(pdev);
4715         } else {
4716                 pci_wake_from_d3(pdev, false);
4717                 pci_set_power_state(pdev, PCI_D3hot);
4718         }
4719
4720         return 0;
4721 }
4722
4723 static int e1000_resume(struct pci_dev *pdev)
4724 {
4725         struct net_device *netdev = pci_get_drvdata(pdev);
4726         struct e1000_adapter *adapter = netdev_priv(netdev);
4727         struct e1000_hw *hw = &adapter->hw;
4728         u32 err;
4729
4730         pci_set_power_state(pdev, PCI_D0);
4731         pci_restore_state(pdev);
4732
4733         if (adapter->need_ioport)
4734                 err = pci_enable_device(pdev);
4735         else
4736                 err = pci_enable_device_mem(pdev);
4737         if (err) {
4738                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4739                 return err;
4740         }
4741         pci_set_master(pdev);
4742
4743         pci_enable_wake(pdev, PCI_D3hot, 0);
4744         pci_enable_wake(pdev, PCI_D3cold, 0);
4745
4746         if (netif_running(netdev)) {
4747                 err = e1000_request_irq(adapter);
4748                 if (err)
4749                         return err;
4750         }
4751
4752         e1000_power_up_phy(adapter);
4753         e1000_reset(adapter);
4754         ew32(WUS, ~0);
4755
4756         e1000_init_manageability(adapter);
4757
4758         if (netif_running(netdev))
4759                 e1000_up(adapter);
4760
4761         netif_device_attach(netdev);
4762
4763         /* If the controller is 82573 and f/w is AMT, do not set
4764          * DRV_LOAD until the interface is up.  For all other cases,
4765          * let the f/w know that the h/w is now under the control
4766          * of the driver. */
4767         if (hw->mac_type != e1000_82573 ||
4768             !e1000_check_mng_mode(hw))
4769                 e1000_get_hw_control(adapter);
4770
4771         return 0;
4772 }
4773 #endif
4774
4775 static void e1000_shutdown(struct pci_dev *pdev)
4776 {
4777         bool wake;
4778
4779         __e1000_shutdown(pdev, &wake);
4780
4781         if (system_state == SYSTEM_POWER_OFF) {
4782                 pci_wake_from_d3(pdev, wake);
4783                 pci_set_power_state(pdev, PCI_D3hot);
4784         }
4785 }
4786
4787 #ifdef CONFIG_NET_POLL_CONTROLLER
4788 /*
4789  * Polling 'interrupt' - used by things like netconsole to send skbs
4790  * without having to re-enable interrupts. It's not called while
4791  * the interrupt routine is executing.
4792  */
4793 static void e1000_netpoll(struct net_device *netdev)
4794 {
4795         struct e1000_adapter *adapter = netdev_priv(netdev);
4796
4797         disable_irq(adapter->pdev->irq);
4798         e1000_intr(adapter->pdev->irq, netdev);
4799         enable_irq(adapter->pdev->irq);
4800 }
4801 #endif
4802
4803 /**
4804  * e1000_io_error_detected - called when PCI error is detected
4805  * @pdev: Pointer to PCI device
4806  * @state: The current pci conneection state
4807  *
4808  * This function is called after a PCI bus error affecting
4809  * this device has been detected.
4810  */
4811 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4812                                                 pci_channel_state_t state)
4813 {
4814         struct net_device *netdev = pci_get_drvdata(pdev);
4815         struct e1000_adapter *adapter = netdev_priv(netdev);
4816
4817         netif_device_detach(netdev);
4818
4819         if (netif_running(netdev))
4820                 e1000_down(adapter);
4821         pci_disable_device(pdev);
4822
4823         /* Request a slot slot reset. */
4824         return PCI_ERS_RESULT_NEED_RESET;
4825 }
4826
4827 /**
4828  * e1000_io_slot_reset - called after the pci bus has been reset.
4829  * @pdev: Pointer to PCI device
4830  *
4831  * Restart the card from scratch, as if from a cold-boot. Implementation
4832  * resembles the first-half of the e1000_resume routine.
4833  */
4834 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4835 {
4836         struct net_device *netdev = pci_get_drvdata(pdev);
4837         struct e1000_adapter *adapter = netdev_priv(netdev);
4838         struct e1000_hw *hw = &adapter->hw;
4839         int err;
4840
4841         if (adapter->need_ioport)
4842                 err = pci_enable_device(pdev);
4843         else
4844                 err = pci_enable_device_mem(pdev);
4845         if (err) {
4846                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4847                 return PCI_ERS_RESULT_DISCONNECT;
4848         }
4849         pci_set_master(pdev);
4850
4851         pci_enable_wake(pdev, PCI_D3hot, 0);
4852         pci_enable_wake(pdev, PCI_D3cold, 0);
4853
4854         e1000_reset(adapter);
4855         ew32(WUS, ~0);
4856
4857         return PCI_ERS_RESULT_RECOVERED;
4858 }
4859
4860 /**
4861  * e1000_io_resume - called when traffic can start flowing again.
4862  * @pdev: Pointer to PCI device
4863  *
4864  * This callback is called when the error recovery driver tells us that
4865  * its OK to resume normal operation. Implementation resembles the
4866  * second-half of the e1000_resume routine.
4867  */
4868 static void e1000_io_resume(struct pci_dev *pdev)
4869 {
4870         struct net_device *netdev = pci_get_drvdata(pdev);
4871         struct e1000_adapter *adapter = netdev_priv(netdev);
4872         struct e1000_hw *hw = &adapter->hw;
4873
4874         e1000_init_manageability(adapter);
4875
4876         if (netif_running(netdev)) {
4877                 if (e1000_up(adapter)) {
4878                         printk("e1000: can't bring device back up after reset\n");
4879                         return;
4880                 }
4881         }
4882
4883         netif_device_attach(netdev);
4884
4885         /* If the controller is 82573 and f/w is AMT, do not set
4886          * DRV_LOAD until the interface is up.  For all other cases,
4887          * let the f/w know that the h/w is now under the control
4888          * of the driver. */
4889         if (hw->mac_type != e1000_82573 ||
4890             !e1000_check_mng_mode(hw))
4891                 e1000_get_hw_control(adapter);
4892
4893 }
4894
4895 /* e1000_main.c */