2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
37 #include <linux/delay.h>
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
49 /* serialize freq changes */
50 static DEFINE_MUTEX(fidvid_mutex);
52 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54 static int cpu_family = CPU_OPTERON;
57 static inline const struct cpumask *cpu_core_mask(int cpu)
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
66 return 800 + (fid * 100);
69 /* Return a frequency in KHz, given an input fid */
70 static u32 find_khz_freq_from_fid(u32 fid)
72 return 1000 * find_freq_from_fid(fid);
75 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
78 return data[pstate].frequency;
81 /* Return the vco fid for an input fid
83 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
84 * only from corresponding high fids. This returns "high" fid corresponding to
87 static u32 convert_fid_to_vco_fid(u32 fid)
89 if (fid < HI_FID_TABLE_BOTTOM)
96 * Return 1 if the pending bit is set. Unless we just instructed the processor
97 * to transition to a new state, seeing this bit set is really bad news.
99 static int pending_bit_stuck(void)
103 if (cpu_family == CPU_HW_PSTATE)
106 rdmsr(MSR_FIDVID_STATUS, lo, hi);
107 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
111 * Update the global current fid / vid values from the status msr.
112 * Returns 1 on error.
114 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
119 if (cpu_family == CPU_HW_PSTATE) {
120 if (data->currpstate == HW_PSTATE_INVALID) {
121 /* read (initial) hw pstate if not yet set */
122 rdmsr(MSR_PSTATE_STATUS, lo, hi);
123 i = lo & HW_PSTATE_MASK;
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
129 if (i >= data->numps)
130 data->currpstate = HW_PSTATE_0;
132 data->currpstate = i;
138 dprintk("detected change pending stuck\n");
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 } while (lo & MSR_S_LO_CHANGE_PENDING);
144 data->currvid = hi & MSR_S_HI_CURRENT_VID;
145 data->currfid = lo & MSR_S_LO_CURRENT_FID;
150 /* the isochronous relief time */
151 static void count_off_irt(struct powernow_k8_data *data)
153 udelay((1 << data->irt) * 10);
157 /* the voltage stabilization time */
158 static void count_off_vst(struct powernow_k8_data *data)
160 udelay(data->vstable * VST_UNITS_20US);
164 /* need to init the control msr to a safe value (for each cpu) */
165 static void fidvid_msr_init(void)
170 rdmsr(MSR_FIDVID_STATUS, lo, hi);
171 vid = hi & MSR_S_HI_CURRENT_VID;
172 fid = lo & MSR_S_LO_CURRENT_FID;
173 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
174 hi = MSR_C_HI_STP_GNT_BENIGN;
175 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
176 wrmsr(MSR_FIDVID_CTL, lo, hi);
179 /* write the new fid value along with the other control fields to the msr */
180 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
183 u32 savevid = data->currvid;
186 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
187 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
193 lo |= MSR_C_LO_INIT_FID_VID;
195 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
196 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
199 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
202 "Hardware error - pending bit very stuck - "
203 "no further pstate changes possible\n");
206 } while (query_current_values_with_pending_wait(data));
210 if (savevid != data->currvid) {
212 "vid change on fid trans, old 0x%x, new 0x%x\n",
213 savevid, data->currvid);
217 if (fid != data->currfid) {
219 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
227 /* Write a new vid to the hardware */
228 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
231 u32 savefid = data->currfid;
234 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
235 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240 lo |= (vid << MSR_C_LO_VID_SHIFT);
241 lo |= MSR_C_LO_INIT_FID_VID;
243 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
244 vid, lo, STOP_GRANT_5NS);
247 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
249 printk(KERN_ERR PFX "internal error - pending bit "
250 "very stuck - no further pstate "
251 "changes possible\n");
254 } while (query_current_values_with_pending_wait(data));
256 if (savefid != data->currfid) {
257 printk(KERN_ERR PFX "fid changed on vid trans, old "
259 savefid, data->currfid);
263 if (vid != data->currvid) {
264 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
279 u32 reqvid, u32 step)
281 if ((data->currvid - reqvid) > step)
282 reqvid = data->currvid - step;
284 if (write_new_vid(data, reqvid))
292 /* Change hardware pstate by single MSR write */
293 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
295 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
296 data->currpstate = pstate;
300 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
301 static int transition_fid_vid(struct powernow_k8_data *data,
302 u32 reqfid, u32 reqvid)
304 if (core_voltage_pre_transition(data, reqvid))
307 if (core_frequency_transition(data, reqfid))
310 if (core_voltage_post_transition(data, reqvid))
313 if (query_current_values_with_pending_wait(data))
316 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
317 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
320 reqfid, reqvid, data->currfid, data->currvid);
324 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
325 smp_processor_id(), data->currfid, data->currvid);
330 /* Phase 1 - core voltage transition ... setup voltage */
331 static int core_voltage_pre_transition(struct powernow_k8_data *data,
334 u32 rvosteps = data->rvo;
335 u32 savefid = data->currfid;
338 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
339 "reqvid 0x%x, rvo 0x%x\n",
341 data->currfid, data->currvid, reqvid, data->rvo);
343 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
344 maxvid = 0x1f & (maxvid >> 16);
345 dprintk("ph1 maxvid=0x%x\n", maxvid);
346 if (reqvid < maxvid) /* lower numbers are higher voltages */
349 while (data->currvid > reqvid) {
350 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
351 data->currvid, reqvid);
352 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
356 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
357 if (data->currvid == maxvid) {
360 dprintk("ph1: changing vid for rvo, req 0x%x\n",
362 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
368 if (query_current_values_with_pending_wait(data))
371 if (savefid != data->currfid) {
372 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
377 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
378 data->currfid, data->currvid);
383 /* Phase 2 - core frequency transition */
384 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
386 u32 vcoreqfid, vcocurrfid, vcofiddiff;
387 u32 fid_interval, savevid = data->currvid;
389 if ((reqfid < HI_FID_TABLE_BOTTOM) &&
390 (data->currfid < HI_FID_TABLE_BOTTOM)) {
391 printk(KERN_ERR PFX "ph2: illegal lo-lo transition "
392 "0x%x 0x%x\n", reqfid, data->currfid);
396 if (data->currfid == reqfid) {
397 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
402 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
405 data->currfid, data->currvid, reqfid);
407 vcoreqfid = convert_fid_to_vco_fid(reqfid);
408 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
409 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
410 : vcoreqfid - vcocurrfid;
412 while (vcofiddiff > 2) {
413 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
415 if (reqfid > data->currfid) {
416 if (data->currfid > LO_FID_TABLE_TOP) {
417 if (write_new_fid(data,
418 data->currfid + fid_interval))
423 2 + convert_fid_to_vco_fid(data->currfid)))
427 if (write_new_fid(data, data->currfid - fid_interval))
431 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
432 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
433 : vcoreqfid - vcocurrfid;
436 if (write_new_fid(data, reqfid))
439 if (query_current_values_with_pending_wait(data))
442 if (data->currfid != reqfid) {
444 "ph2: mismatch, failed fid transition, "
445 "curr 0x%x, req 0x%x\n",
446 data->currfid, reqfid);
450 if (savevid != data->currvid) {
451 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
452 savevid, data->currvid);
456 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
457 data->currfid, data->currvid);
462 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
463 static int core_voltage_post_transition(struct powernow_k8_data *data,
466 u32 savefid = data->currfid;
467 u32 savereqvid = reqvid;
469 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
471 data->currfid, data->currvid);
473 if (reqvid != data->currvid) {
474 if (write_new_vid(data, reqvid))
477 if (savefid != data->currfid) {
479 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
480 savefid, data->currfid);
484 if (data->currvid != reqvid) {
486 "ph3: failed vid transition\n, "
487 "req 0x%x, curr 0x%x",
488 reqvid, data->currvid);
493 if (query_current_values_with_pending_wait(data))
496 if (savereqvid != data->currvid) {
497 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
501 if (savefid != data->currfid) {
502 dprintk("ph3 failed, currfid changed 0x%x\n",
507 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
508 data->currfid, data->currvid);
513 static int check_supported_cpu(unsigned int cpu)
516 u32 eax, ebx, ecx, edx;
519 oldmask = current->cpus_allowed;
520 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
522 if (smp_processor_id() != cpu) {
523 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
527 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
530 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
531 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
532 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
535 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
536 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
537 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
539 "Processor cpuid %x not supported\n", eax);
543 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
544 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
546 "No frequency change capabilities detected\n");
550 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
551 if ((edx & P_STATE_TRANSITION_CAPABLE)
552 != P_STATE_TRANSITION_CAPABLE) {
554 "Power state transitions not supported\n");
557 } else { /* must be a HW Pstate capable processor */
558 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
559 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
560 cpu_family = CPU_HW_PSTATE;
568 set_cpus_allowed_ptr(current, &oldmask);
572 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
578 for (j = 0; j < data->numps; j++) {
579 if (pst[j].vid > LEAST_VID) {
580 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
584 if (pst[j].vid < data->rvo) {
586 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
590 if (pst[j].vid < maxvid + data->rvo) {
591 /* vid + rvo >= maxvid */
592 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
596 if (pst[j].fid > MAX_FID) {
597 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
601 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
602 /* Only first fid is allowed to be in "low" range */
603 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
604 "0x%x\n", j, pst[j].fid);
607 if (pst[j].fid < lastfid)
608 lastfid = pst[j].fid;
611 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
614 if (lastfid > LO_FID_TABLE_TOP)
615 printk(KERN_INFO FW_BUG PFX
616 "first fid not from lo freq table\n");
621 static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
623 data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
626 static void print_basics(struct powernow_k8_data *data)
629 for (j = 0; j < data->numps; j++) {
630 if (data->powernow_table[j].frequency !=
631 CPUFREQ_ENTRY_INVALID) {
632 if (cpu_family == CPU_HW_PSTATE) {
634 " %d : pstate %d (%d MHz)\n", j,
635 data->powernow_table[j].index,
636 data->powernow_table[j].frequency/1000);
639 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
641 data->powernow_table[j].index & 0xff,
642 data->powernow_table[j].frequency/1000,
643 data->powernow_table[j].index >> 8);
648 printk(KERN_INFO PFX "Only %d pstates on battery\n",
652 static int fill_powernow_table(struct powernow_k8_data *data,
653 struct pst_s *pst, u8 maxvid)
655 struct cpufreq_frequency_table *powernow_table;
659 /* use ACPI support to get full speed on mains power */
660 printk(KERN_WARNING PFX
661 "Only %d pstates usable (use ACPI driver for full "
662 "range\n", data->batps);
663 data->numps = data->batps;
666 for (j = 1; j < data->numps; j++) {
667 if (pst[j-1].fid >= pst[j].fid) {
668 printk(KERN_ERR PFX "PST out of sequence\n");
673 if (data->numps < 2) {
674 printk(KERN_ERR PFX "no p states to transition\n");
678 if (check_pst_table(data, pst, maxvid))
681 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
682 * (data->numps + 1)), GFP_KERNEL);
683 if (!powernow_table) {
684 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
688 for (j = 0; j < data->numps; j++) {
690 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
691 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
692 freq = find_khz_freq_from_fid(pst[j].fid);
693 powernow_table[j].frequency = freq;
695 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
696 powernow_table[data->numps].index = 0;
698 if (query_current_values_with_pending_wait(data)) {
699 kfree(powernow_table);
703 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
704 data->powernow_table = powernow_table;
705 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
708 for (j = 0; j < data->numps; j++)
709 if ((pst[j].fid == data->currfid) &&
710 (pst[j].vid == data->currvid))
713 dprintk("currfid/vid do not match PST, ignoring\n");
717 /* Find and validate the PSB/PST table in BIOS. */
718 static int find_psb_table(struct powernow_k8_data *data)
727 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
728 /* Scan BIOS looking for the signature. */
729 /* It can not be at ffff0 - it is too big. */
731 psb = phys_to_virt(i);
732 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
735 dprintk("found PSB header at 0x%p\n", psb);
737 dprintk("table vers: 0x%x\n", psb->tableversion);
738 if (psb->tableversion != PSB_VERSION_1_4) {
739 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
743 dprintk("flags: 0x%x\n", psb->flags1);
745 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
749 data->vstable = psb->vstable;
750 dprintk("voltage stabilization time: %d(*20us)\n",
753 dprintk("flags2: 0x%x\n", psb->flags2);
754 data->rvo = psb->flags2 & 3;
755 data->irt = ((psb->flags2) >> 2) & 3;
756 mvs = ((psb->flags2) >> 4) & 3;
757 data->vidmvs = 1 << mvs;
758 data->batps = ((psb->flags2) >> 6) & 3;
760 dprintk("ramp voltage offset: %d\n", data->rvo);
761 dprintk("isochronous relief time: %d\n", data->irt);
762 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
764 dprintk("numpst: 0x%x\n", psb->num_tables);
765 cpst = psb->num_tables;
766 if ((psb->cpuid == 0x00000fc0) ||
767 (psb->cpuid == 0x00000fe0)) {
768 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
769 if ((thiscpuid == 0x00000fc0) ||
770 (thiscpuid == 0x00000fe0))
774 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
778 data->plllock = psb->plllocktime;
779 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
780 dprintk("maxfid: 0x%x\n", psb->maxfid);
781 dprintk("maxvid: 0x%x\n", psb->maxvid);
782 maxvid = psb->maxvid;
784 data->numps = psb->numps;
785 dprintk("numpstates: 0x%x\n", data->numps);
786 return fill_powernow_table(data,
787 (struct pst_s *)(psb+1), maxvid);
790 * If you see this message, complain to BIOS manufacturer. If
791 * he tells you "we do not support Linux" or some similar
792 * nonsense, remember that Windows 2000 uses the same legacy
793 * mechanism that the old Linux PSB driver uses. Tell them it
794 * is broken with Windows 2000.
796 * The reference to the AMD documentation is chapter 9 in the
797 * BIOS and Kernel Developer's Guide, which is available on
800 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
804 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
807 acpi_integer control;
809 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
812 control = data->acpi_data.states[index].control; data->irt = (control
813 >> IRT_SHIFT) & IRT_MASK; data->rvo = (control >>
814 RVO_SHIFT) & RVO_MASK; data->exttype = (control
815 >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
816 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1
817 << ((control >> MVS_SHIFT) & MVS_MASK); data->vstable =
818 (control >> VST_SHIFT) & VST_MASK; }
820 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
822 struct cpufreq_frequency_table *powernow_table;
823 int ret_val = -ENODEV;
824 acpi_integer space_id;
826 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
827 dprintk("register performance failed: bad ACPI data\n");
831 /* verify the data contained in the ACPI structures */
832 if (data->acpi_data.state_count <= 1) {
833 dprintk("No ACPI P-States\n");
837 space_id = data->acpi_data.control_register.space_id;
838 if ((space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
839 (space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
840 dprintk("Invalid control/status registers (%x - %x)\n",
841 data->acpi_data.control_register.space_id,
846 /* fill in data->powernow_table */
847 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
848 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
849 if (!powernow_table) {
850 dprintk("powernow_table memory alloc failure\n");
854 if (cpu_family == CPU_HW_PSTATE)
855 ret_val = fill_powernow_table_pstate(data, powernow_table);
857 ret_val = fill_powernow_table_fidvid(data, powernow_table);
861 powernow_table[data->acpi_data.state_count].frequency =
863 powernow_table[data->acpi_data.state_count].index = 0;
864 data->powernow_table = powernow_table;
867 data->numps = data->acpi_data.state_count;
868 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
870 powernow_k8_acpi_pst_values(data, 0);
872 /* notify BIOS that we exist */
873 acpi_processor_notify_smm(THIS_MODULE);
875 if (!alloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
877 "unable to alloc powernow_k8_data cpumask\n");
885 kfree(powernow_table);
888 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
890 /* data->acpi_data.state_count informs us at ->exit()
891 * whether ACPI was used */
892 data->acpi_data.state_count = 0;
897 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
898 struct cpufreq_frequency_table *powernow_table)
902 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
903 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
905 for (i = 0; i < data->acpi_data.state_count; i++) {
908 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
909 if (index > data->max_hw_pstate) {
910 printk(KERN_ERR PFX "invalid pstate %d - "
911 "bad value %d.\n", i, index);
912 printk(KERN_ERR PFX "Please report to BIOS "
914 invalidate_entry(data, i);
917 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
918 if (!(hi & HW_PSTATE_VALID_MASK)) {
919 dprintk("invalid pstate %d, ignoring\n", index);
920 invalidate_entry(data, i);
924 powernow_table[i].index = index;
926 powernow_table[i].frequency =
927 data->acpi_data.states[i].core_frequency * 1000;
932 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
933 struct cpufreq_frequency_table *powernow_table)
938 for (i = 0; i < data->acpi_data.state_count; i++) {
942 acpi_integer status, control;
945 status = data->acpi_data.states[i].status;
946 fid = status & EXT_FID_MASK;
947 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
949 control = data->acpi_data.states[i].control;
950 fid = control & FID_MASK;
951 vid = (control >> VID_SHIFT) & VID_MASK;
954 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
956 index = fid | (vid<<8);
957 powernow_table[i].index = index;
959 freq = find_khz_freq_from_fid(fid);
960 powernow_table[i].frequency = freq;
962 /* verify frequency is OK */
963 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
964 dprintk("invalid freq %u kHz, ignoring\n", freq);
965 invalidate_entry(data, i);
969 /* verify voltage is OK -
970 * BIOSs are using "off" to indicate invalid */
971 if (vid == VID_OFF) {
972 dprintk("invalid vid %u, ignoring\n", vid);
973 invalidate_entry(data, i);
977 /* verify only 1 entry from the lo frequency table */
978 if (fid < HI_FID_TABLE_BOTTOM) {
980 /* if both entries are the same,
981 * ignore this one ... */
982 if ((freq != powernow_table[cntlofreq].frequency) ||
983 (index != powernow_table[cntlofreq].index)) {
985 "Too many lo freq table "
990 dprintk("double low frequency table entry, "
992 invalidate_entry(data, i);
998 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
999 printk(KERN_INFO PFX "invalid freq entries "
1000 "%u kHz vs. %u kHz\n", freq,
1002 (data->acpi_data.states[i].core_frequency
1004 invalidate_entry(data, i);
1011 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1013 if (data->acpi_data.state_count)
1014 acpi_processor_unregister_performance(&data->acpi_data,
1016 free_cpumask_var(data->acpi_data.shared_cpu_map);
1019 static int get_transition_latency(struct powernow_k8_data *data)
1021 int max_latency = 0;
1023 for (i = 0; i < data->acpi_data.state_count; i++) {
1024 int cur_latency = data->acpi_data.states[i].transition_latency
1025 + data->acpi_data.states[i].bus_master_latency;
1026 if (cur_latency > max_latency)
1027 max_latency = cur_latency;
1029 /* value in usecs, needs to be in nanoseconds */
1030 return 1000 * max_latency;
1033 /* Take a frequency, and issue the fid/vid transition command */
1034 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1040 struct cpufreq_freqs freqs;
1042 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1044 /* fid/vid correctness check for k8 */
1045 /* fid are the lower 8 bits of the index we stored into
1046 * the cpufreq frequency table in find_psb_table, vid
1047 * are the upper 8 bits.
1049 fid = data->powernow_table[index].index & 0xFF;
1050 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1052 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1054 if (query_current_values_with_pending_wait(data))
1057 if ((data->currvid == vid) && (data->currfid == fid)) {
1058 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1063 if ((fid < HI_FID_TABLE_BOTTOM) &&
1064 (data->currfid < HI_FID_TABLE_BOTTOM)) {
1066 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1067 data->currfid, fid);
1071 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072 smp_processor_id(), fid, vid);
1073 freqs.old = find_khz_freq_from_fid(data->currfid);
1074 freqs.new = find_khz_freq_from_fid(fid);
1076 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1078 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1081 res = transition_fid_vid(data, fid, vid);
1082 freqs.new = find_khz_freq_from_fid(data->currfid);
1084 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1086 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1091 /* Take a frequency, and issue the hardware pstate transition command */
1092 static int transition_frequency_pstate(struct powernow_k8_data *data,
1097 struct cpufreq_freqs freqs;
1099 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1101 /* get MSR index for hardware pstate transition */
1102 pstate = index & HW_PSTATE_MASK;
1103 if (pstate > data->max_hw_pstate)
1105 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1107 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1109 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1111 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1114 res = transition_pstate(data, pstate);
1115 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1117 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1119 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1124 /* Driver entry point to switch to the target frequency */
1125 static int powernowk8_target(struct cpufreq_policy *pol,
1126 unsigned targfreq, unsigned relation)
1129 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1132 unsigned int newstate;
1138 checkfid = data->currfid;
1139 checkvid = data->currvid;
1141 /* only run on specific CPU from here on */
1142 oldmask = current->cpus_allowed;
1143 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1145 if (smp_processor_id() != pol->cpu) {
1146 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1150 if (pending_bit_stuck()) {
1151 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1155 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1156 pol->cpu, targfreq, pol->min, pol->max, relation);
1158 if (query_current_values_with_pending_wait(data))
1161 if (cpu_family != CPU_HW_PSTATE) {
1162 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1163 data->currfid, data->currvid);
1165 if ((checkvid != data->currvid) ||
1166 (checkfid != data->currfid)) {
1167 printk(KERN_INFO PFX
1168 "error - out of sync, fix 0x%x 0x%x, "
1170 checkfid, data->currfid,
1171 checkvid, data->currvid);
1175 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1176 targfreq, relation, &newstate))
1179 mutex_lock(&fidvid_mutex);
1181 powernow_k8_acpi_pst_values(data, newstate);
1183 if (cpu_family == CPU_HW_PSTATE)
1184 ret = transition_frequency_pstate(data, newstate);
1186 ret = transition_frequency_fidvid(data, newstate);
1188 printk(KERN_ERR PFX "transition frequency failed\n");
1190 mutex_unlock(&fidvid_mutex);
1193 mutex_unlock(&fidvid_mutex);
1195 if (cpu_family == CPU_HW_PSTATE)
1196 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1199 pol->cur = find_khz_freq_from_fid(data->currfid);
1203 set_cpus_allowed_ptr(current, &oldmask);
1207 /* Driver entry point to verify the policy and range of frequencies */
1208 static int powernowk8_verify(struct cpufreq_policy *pol)
1210 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1215 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1218 /* per CPU init entry point to the driver */
1219 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1221 struct powernow_k8_data *data;
1224 static int print_once;
1226 if (!cpu_online(pol->cpu))
1229 if (!check_supported_cpu(pol->cpu))
1232 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1234 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1238 data->cpu = pol->cpu;
1239 data->currpstate = HW_PSTATE_INVALID;
1241 if (powernow_k8_cpu_init_acpi(data)) {
1243 * Use the PSB BIOS structure. This is only availabe on
1244 * an UP version, and is deprecated by AMD.
1246 if (num_online_cpus() != 1) {
1248 * Replace this one with print_once as soon as such a
1249 * thing gets introduced
1252 WARN_ONCE(1, KERN_ERR FW_BUG PFX "Your BIOS "
1253 "does not provide ACPI _PSS objects "
1254 "in a way that Linux understands. "
1255 "Please report this to the Linux ACPI"
1256 " maintainers and complain to your "
1262 if (pol->cpu != 0) {
1263 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1264 "CPU other than CPU0. Complain to your BIOS "
1268 rc = find_psb_table(data);
1272 /* Take a crude guess here.
1273 * That guess was in microseconds, so multiply with 1000 */
1274 pol->cpuinfo.transition_latency = (
1275 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1276 ((1 << data->irt) * 30)) * 1000;
1277 } else /* ACPI _PSS objects available */
1278 pol->cpuinfo.transition_latency = get_transition_latency(data);
1280 /* only run on specific CPU from here on */
1281 oldmask = current->cpus_allowed;
1282 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1284 if (smp_processor_id() != pol->cpu) {
1285 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1286 goto err_out_unmask;
1289 if (pending_bit_stuck()) {
1290 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1291 goto err_out_unmask;
1294 if (query_current_values_with_pending_wait(data))
1295 goto err_out_unmask;
1297 if (cpu_family == CPU_OPTERON)
1300 /* run on any CPU again */
1301 set_cpus_allowed_ptr(current, &oldmask);
1303 if (cpu_family == CPU_HW_PSTATE)
1304 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1306 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1307 data->available_cores = pol->cpus;
1309 if (cpu_family == CPU_HW_PSTATE)
1310 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1313 pol->cur = find_khz_freq_from_fid(data->currfid);
1314 dprintk("policy current frequency %d kHz\n", pol->cur);
1316 /* min/max the cpu is capable of */
1317 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1318 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1319 powernow_k8_cpu_exit_acpi(data);
1320 kfree(data->powernow_table);
1325 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1327 if (cpu_family == CPU_HW_PSTATE)
1328 dprintk("cpu_init done, current pstate 0x%x\n",
1331 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1332 data->currfid, data->currvid);
1334 per_cpu(powernow_data, pol->cpu) = data;
1339 set_cpus_allowed_ptr(current, &oldmask);
1340 powernow_k8_cpu_exit_acpi(data);
1347 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1349 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1354 powernow_k8_cpu_exit_acpi(data);
1356 cpufreq_frequency_table_put_attr(pol->cpu);
1358 kfree(data->powernow_table);
1364 static unsigned int powernowk8_get(unsigned int cpu)
1366 struct powernow_k8_data *data;
1367 cpumask_t oldmask = current->cpus_allowed;
1368 unsigned int khz = 0;
1371 first = cpumask_first(cpu_core_mask(cpu));
1372 data = per_cpu(powernow_data, first);
1377 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1378 if (smp_processor_id() != cpu) {
1380 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1381 set_cpus_allowed_ptr(current, &oldmask);
1385 if (query_current_values_with_pending_wait(data))
1388 if (cpu_family == CPU_HW_PSTATE)
1389 khz = find_khz_freq_from_pstate(data->powernow_table,
1392 khz = find_khz_freq_from_fid(data->currfid);
1396 set_cpus_allowed_ptr(current, &oldmask);
1400 static struct freq_attr *powernow_k8_attr[] = {
1401 &cpufreq_freq_attr_scaling_available_freqs,
1405 static struct cpufreq_driver cpufreq_amd64_driver = {
1406 .verify = powernowk8_verify,
1407 .target = powernowk8_target,
1408 .init = powernowk8_cpu_init,
1409 .exit = __devexit_p(powernowk8_cpu_exit),
1410 .get = powernowk8_get,
1411 .name = "powernow-k8",
1412 .owner = THIS_MODULE,
1413 .attr = powernow_k8_attr,
1416 /* driver entry point for init */
1417 static int __cpuinit powernowk8_init(void)
1419 unsigned int i, supported_cpus = 0;
1421 for_each_online_cpu(i) {
1422 if (check_supported_cpu(i))
1426 if (supported_cpus == num_online_cpus()) {
1427 printk(KERN_INFO PFX "Found %d %s "
1428 "processors (%d cpu cores) (" VERSION ")\n",
1430 boot_cpu_data.x86_model_id, supported_cpus);
1431 return cpufreq_register_driver(&cpufreq_amd64_driver);
1437 /* driver entry point for term */
1438 static void __exit powernowk8_exit(void)
1442 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1445 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1446 "Mark Langsdorf <mark.langsdorf@amd.com>");
1447 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1448 MODULE_LICENSE("GPL");
1450 late_initcall(powernowk8_init);
1451 module_exit(powernowk8_exit);