3 Sensoray s626 Comedi driver
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
35 Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
41 INSN_CONFIG instructions:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
56 Every channel must be configured before reading.
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
68 comedi_do_insn(cf,&insn); //executing configuration
71 #include <linux/kernel.h>
72 #include <linux/types.h>
74 #include "../comedidev.h"
76 #include "comedi_pci.h"
78 #include "comedi_fc.h"
81 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83 MODULE_LICENSE("GPL");
96 static const struct s626_board s626_boards[] = {
99 ai_chans : S626_ADC_CHANNELS,
101 ao_chans : S626_DAC_CHANNELS,
103 dio_chans : S626_DIO_CHANNELS,
104 dio_banks : S626_DIO_BANKS,
105 enc_chans : S626_ENCODER_CHANNELS,
109 #define thisboard ((const struct s626_board *)dev->board_ptr)
110 #define PCI_VENDOR_ID_S626 0x1131
111 #define PCI_DEVICE_ID_S626 0x7146
113 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114 {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
119 MODULE_DEVICE_TABLE(pci, s626_pci_table);
121 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
122 static int s626_detach(struct comedi_device *dev);
124 static struct comedi_driver driver_s626 = {
126 module : THIS_MODULE,
127 attach : s626_attach,
128 detach : s626_detach,
131 struct s626_private {
132 struct pci_dev *pdev;
136 uint8_t ai_cmd_running; /* ai_cmd is running */
137 uint8_t ai_continous; /* continous aquisition */
138 int ai_sample_count; /* number of samples to aquire */
139 unsigned int ai_sample_timer;
140 /* time between samples in units of the timer */
141 int ai_convert_count; /* conversion counter */
142 unsigned int ai_convert_timer;
143 /* time between conversion in units of the timer */
144 uint16_t CounterIntEnabs;
145 /* Counter interrupt enable mask for MISC2 register. */
146 uint8_t AdcItems; /* Number of items in ADC poll list. */
147 struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
148 struct bufferDMA ANABuf;
149 /* DMA buffer used to receive ADC data and hold DAC data. */
151 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
152 uint16_t Dacpol; /* Image of DAC polarity register. */
153 uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
154 uint16_t ChargeEnabled; /* Image of MISC2 Battery */
155 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156 uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */
158 /* I2C device address for onboard EEPROM (board rev dependent). */
160 unsigned int ao_readback[S626_DAC_CHANNELS];
175 static struct dio_private dio_private_A = {
178 RDEdgSel : LP_RDEDGSELA,
179 WREdgSel : LP_WREDGSELA,
180 RDCapSel : LP_RDCAPSELA,
181 WRCapSel : LP_WRCAPSELA,
182 RDCapFlg : LP_RDCAPFLGA,
183 RDIntSel : LP_RDINTSELA,
184 WRIntSel : LP_WRINTSELA,
187 static struct dio_private dio_private_B = {
190 RDEdgSel : LP_RDEDGSELB,
191 WREdgSel : LP_WREDGSELB,
192 RDCapSel : LP_RDCAPSELB,
193 WRCapSel : LP_WRCAPSELB,
194 RDCapFlg : LP_RDCAPFLGB,
195 RDIntSel : LP_RDINTSELB,
196 WRIntSel : LP_WRINTSELB,
199 static struct dio_private dio_private_C = {
202 RDEdgSel : LP_RDEDGSELC,
203 WREdgSel : LP_WREDGSELC,
204 RDCapSel : LP_RDCAPSELC,
205 WRCapSel : LP_WRCAPSELC,
206 RDCapFlg : LP_RDCAPFLGC,
207 RDIntSel : LP_RDINTSELC,
208 WRIntSel : LP_WRINTSELC,
211 /* to group dio devices (48 bits mask and data are not allowed ???)
212 static struct dio_private *dio_private_word[]={
219 #define devpriv ((struct s626_private *)dev->private)
220 #define diopriv ((struct dio_private *)s->private)
222 COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
225 static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
226 struct comedi_insn *insn, unsigned int *data);
227 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
228 static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
229 struct comedi_insn *insn, unsigned int *data);
230 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
231 static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
232 struct comedi_cmd *cmd);
233 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
234 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
235 struct comedi_insn *insn, unsigned int *data);
236 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
237 struct comedi_insn *insn, unsigned int *data);
238 static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
239 struct comedi_insn *insn, unsigned int *data);
240 static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
241 struct comedi_insn *insn, unsigned int *data);
242 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
243 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
245 static int s626_dio_clear_irq(struct comedi_device *dev);
246 static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
247 struct comedi_insn *insn, unsigned int *data);
248 static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
249 struct comedi_insn *insn, unsigned int *data);
250 static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
251 struct comedi_insn *insn, unsigned int *data);
252 static int s626_ns_to_timer(int *nanosec, int round_mode);
253 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
254 static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
255 unsigned int trignum);
256 static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
257 static unsigned int s626_ai_reg_to_uint(int data);
258 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
260 /* end ioctl routines */
262 /* internal routines */
263 static void s626_dio_init(struct comedi_device *dev);
264 static void ResetADC(struct comedi_device *dev, uint8_t *ppl);
265 static void LoadTrimDACs(struct comedi_device *dev);
266 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
268 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
269 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
270 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
271 static void SendDAC(struct comedi_device *dev, uint32_t val);
272 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
273 static void DEBItransfer(struct comedi_device *dev);
274 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
275 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
276 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
278 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize);
280 /* COUNTER OBJECT ------------------------------------------------ */
282 /* Pointers to functions that differ for A and B counters: */
283 uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
284 uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
285 uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
286 uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
287 void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
288 void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
289 void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
290 void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
291 void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
292 void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
294 uint16_t MyCRA; /* Address of CRA register. */
295 uint16_t MyCRB; /* Address of CRB register. */
296 uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
298 uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
301 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
303 /* counters routines */
304 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick);
305 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
306 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
307 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
308 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
309 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
310 static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
311 uint16_t DisableIntSrc);
312 static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
313 uint16_t DisableIntSrc);
314 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
315 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
316 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
317 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
318 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
320 /* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
321 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
322 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
323 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
324 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
325 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
327 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
329 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
330 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
331 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
332 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
333 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
334 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
335 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
336 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */
337 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
338 /* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */
339 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
340 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
341 static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value);
342 static void CountersInit(struct comedi_device *dev);
343 /* end internal routines */
345 /* Counter objects constructor. */
347 /* Counter overflow/index event flag masks for RDMISC2. */
348 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
349 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
350 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
352 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
353 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
355 /* struct enc_private; */
356 static struct enc_private enc_private_data[] = {
358 GetEnable:GetEnable_A,
359 GetIntSrc : GetIntSrc_A,
360 GetLoadTrig : GetLoadTrig_A,
362 PulseIndex : PulseIndex_A,
363 SetEnable : SetEnable_A,
364 SetIntSrc : SetIntSrc_A,
365 SetLoadTrig : SetLoadTrig_A,
367 ResetCapFlags : ResetCapFlags_A,
370 MyLatchLsw : LP_CNTR0ALSW,
371 MyEventBits : EVBITS(0),
374 GetEnable:GetEnable_A,
375 GetIntSrc : GetIntSrc_A,
376 GetLoadTrig : GetLoadTrig_A,
378 PulseIndex : PulseIndex_A,
379 SetEnable : SetEnable_A,
380 SetIntSrc : SetIntSrc_A,
381 SetLoadTrig : SetLoadTrig_A,
383 ResetCapFlags : ResetCapFlags_A,
386 MyLatchLsw : LP_CNTR1ALSW,
387 MyEventBits : EVBITS(1),
390 GetEnable:GetEnable_A,
391 GetIntSrc : GetIntSrc_A,
392 GetLoadTrig : GetLoadTrig_A,
394 PulseIndex : PulseIndex_A,
395 SetEnable : SetEnable_A,
396 SetIntSrc : SetIntSrc_A,
397 SetLoadTrig : SetLoadTrig_A,
399 ResetCapFlags : ResetCapFlags_A,
402 MyLatchLsw : LP_CNTR2ALSW,
403 MyEventBits : EVBITS(2),
406 GetEnable:GetEnable_B,
407 GetIntSrc : GetIntSrc_B,
408 GetLoadTrig : GetLoadTrig_B,
410 PulseIndex : PulseIndex_B,
411 SetEnable : SetEnable_B,
412 SetIntSrc : SetIntSrc_B,
413 SetLoadTrig : SetLoadTrig_B,
415 ResetCapFlags : ResetCapFlags_B,
418 MyLatchLsw : LP_CNTR0BLSW,
419 MyEventBits : EVBITS(3),
422 GetEnable:GetEnable_B,
423 GetIntSrc : GetIntSrc_B,
424 GetLoadTrig : GetLoadTrig_B,
426 PulseIndex : PulseIndex_B,
427 SetEnable : SetEnable_B,
428 SetIntSrc : SetIntSrc_B,
429 SetLoadTrig : SetLoadTrig_B,
431 ResetCapFlags : ResetCapFlags_B,
434 MyLatchLsw : LP_CNTR1BLSW,
435 MyEventBits : EVBITS(4),
438 GetEnable:GetEnable_B,
439 GetIntSrc : GetIntSrc_B,
440 GetLoadTrig : GetLoadTrig_B,
442 PulseIndex : PulseIndex_B,
443 SetEnable : SetEnable_B,
444 SetIntSrc : SetIntSrc_B,
445 SetLoadTrig : SetLoadTrig_B,
447 ResetCapFlags : ResetCapFlags_B,
450 MyLatchLsw : LP_CNTR2BLSW,
451 MyEventBits : EVBITS(5),
455 /* enab/disable a function or test status bit(s) that are accessed */
456 /* through Main Control Registers 1 or 2. */
457 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
459 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
461 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
463 /* #define WR7146(REGARDS,CTRLWORD)
464 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
465 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
467 /* #define RR7146(REGARDS)
468 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
471 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
473 /* Write a time slot control record to TSL2. */
474 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
475 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
477 /* Code macros used for constructing I2C command bytes. */
478 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
479 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
480 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
482 static const struct comedi_lrange s626_range_table = { 2, {
488 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
490 /* uint8_t PollList; */
491 /* uint16_t AdcData; */
492 /* uint16_t StartVal; */
493 /* uint16_t index; */
494 /* unsigned int data[16]; */
498 resource_size_t resourceStart;
500 struct comedi_subdevice *s;
501 struct pci_dev *pdev;
503 if (alloc_private(dev, sizeof(struct s626_private)) < 0)
506 for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
508 pdev = pci_get_device(PCI_VENDOR_ID_S626,
509 PCI_DEVICE_ID_S626, pdev)) {
510 if (it->options[0] || it->options[1]) {
511 if (pdev->bus->number == it->options[0] &&
512 PCI_SLOT(pdev->devfn) == it->options[1]) {
513 /* matches requested bus/slot */
517 /* no bus/slot specified */
521 devpriv->pdev = pdev;
524 printk("s626_attach: Board not present!!!\n");
528 result = comedi_pci_enable(pdev, "s626");
530 printk("s626_attach: comedi_pci_enable fails\n");
533 devpriv->got_regions = 1;
535 resourceStart = pci_resource_start(devpriv->pdev, 0);
537 devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
538 if (devpriv->base_addr == NULL) {
539 printk("s626_attach: IOREMAP failed\n");
543 if (devpriv->base_addr) {
544 /* disable master interrupt */
545 writel(0, devpriv->base_addr + P_IER);
548 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
550 /* DMA FIXME DMA// */
551 DEBUG("s626_attach: DMA ALLOCATION\n");
553 /* adc buffer allocation */
554 devpriv->allocatedBuf = 0;
556 devpriv->ANABuf.LogicalBase =
557 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
559 if (devpriv->ANABuf.LogicalBase == NULL) {
560 printk("s626_attach: DMA Memory mapping error\n");
564 devpriv->ANABuf.PhysicalBase = appdma;
566 DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
568 devpriv->allocatedBuf++;
570 devpriv->RPSBuf.LogicalBase =
571 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
573 if (devpriv->RPSBuf.LogicalBase == NULL) {
574 printk("s626_attach: DMA Memory mapping error\n");
578 devpriv->RPSBuf.PhysicalBase = appdma;
580 DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
582 devpriv->allocatedBuf++;
586 dev->board_ptr = s626_boards;
587 dev->board_name = thisboard->name;
589 if (alloc_subdevices(dev, 6) < 0)
592 dev->iobase = (unsigned long)devpriv->base_addr;
593 dev->irq = devpriv->pdev->irq;
595 /* set up interrupt handler */
597 printk(" unknown irq (bad)\n");
599 ret = comedi_request_irq(dev->irq, s626_irq_handler,
600 IRQF_SHARED, "s626", dev);
603 printk(" irq not available\n");
608 DEBUG("s626_attach: -- it opts %d,%d -- \n",
609 it->options[0], it->options[1]);
611 s = dev->subdevices + 0;
612 /* analog input subdevice */
613 dev->read_subdev = s;
614 /* we support single-ended (ground) and differential */
615 s->type = COMEDI_SUBD_AI;
616 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
617 s->n_chan = thisboard->ai_chans;
618 s->maxdata = (0xffff >> 2);
619 s->range_table = &s626_range_table;
620 s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
621 length that the board can
623 s->insn_config = s626_ai_insn_config;
624 s->insn_read = s626_ai_insn_read;
625 s->do_cmd = s626_ai_cmd;
626 s->do_cmdtest = s626_ai_cmdtest;
627 s->cancel = s626_ai_cancel;
629 s = dev->subdevices + 1;
630 /* analog output subdevice */
631 s->type = COMEDI_SUBD_AO;
632 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
633 s->n_chan = thisboard->ao_chans;
634 s->maxdata = (0x3fff);
635 s->range_table = &range_bipolar10;
636 s->insn_write = s626_ao_winsn;
637 s->insn_read = s626_ao_rinsn;
639 s = dev->subdevices + 2;
640 /* digital I/O subdevice */
641 s->type = COMEDI_SUBD_DIO;
642 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
643 s->n_chan = S626_DIO_CHANNELS;
646 s->private = &dio_private_A;
647 s->range_table = &range_digital;
648 s->insn_config = s626_dio_insn_config;
649 s->insn_bits = s626_dio_insn_bits;
651 s = dev->subdevices + 3;
652 /* digital I/O subdevice */
653 s->type = COMEDI_SUBD_DIO;
654 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
658 s->private = &dio_private_B;
659 s->range_table = &range_digital;
660 s->insn_config = s626_dio_insn_config;
661 s->insn_bits = s626_dio_insn_bits;
663 s = dev->subdevices + 4;
664 /* digital I/O subdevice */
665 s->type = COMEDI_SUBD_DIO;
666 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
670 s->private = &dio_private_C;
671 s->range_table = &range_digital;
672 s->insn_config = s626_dio_insn_config;
673 s->insn_bits = s626_dio_insn_bits;
675 s = dev->subdevices + 5;
676 /* encoder (counter) subdevice */
677 s->type = COMEDI_SUBD_COUNTER;
678 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
679 s->n_chan = thisboard->enc_chans;
680 s->private = enc_private_data;
681 s->insn_config = s626_enc_insn_config;
682 s->insn_read = s626_enc_insn_read;
683 s->insn_write = s626_enc_insn_write;
684 s->maxdata = 0xffffff;
685 s->range_table = &range_unknown;
687 /* stop ai_command */
688 devpriv->ai_cmd_running = 0;
690 if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
694 /* enab DEBI and audio pins, enable I2C interface. */
695 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
696 /* Configure DEBI operating mode. */
697 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
699 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) /* Declare DEBI */
700 /* transfer timeout */
702 | DEBI_SWAP /* Set up byte lane */
704 | DEBI_CFG_INTEL); /* Intel-compatible */
705 /* local bus (DEBI */
706 /* never times out). */
707 DEBUG("s626_attach: %d debi init -- %d\n",
708 DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
709 DEBI_SWAP | DEBI_CFG_INTEL,
710 DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
713 /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
714 /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
716 /* Paging is disabled. */
717 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
719 /* Init GPIO so that ADC Start* is negated. */
720 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
722 /* IsBoardRevA is a boolean that indicates whether the board is RevA.
724 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
725 * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
726 * is used to access the onboard serial EEPROM. The EEPROM's I2C
727 * DeviceAddress is hardwired to a value that is dependent on the
728 * 626 board revision. On all board revisions, the EEPROM stores
729 * TrimDAC calibration constants for analog I/O. On RevB and
730 * higher boards, the DeviceAddress is hardwired to 0 to enable
731 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
732 * this is the address at which the SAA7146 expects a
733 * configuration EEPROM to reside. On RevA boards, the EEPROM
734 * device address, which is hardwired to 4, prevents the SAA7146
735 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
736 * default values, instead.
739 /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
740 /* DeviceType (0xA0) */
741 /* and DeviceAddress<<1. */
743 devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
746 /* Issue an I2C ABORT command to halt any I2C operation in */
747 /* progress and reset BUSY flag. */
748 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
749 /* Write I2C control: abort any I2C activity. */
750 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
751 /* Invoke command upload */
752 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
754 /* and wait for upload to complete. */
756 /* Per SAA7146 data sheet, write to STATUS reg twice to
757 * reset all I2C error flags. */
758 for (i = 0; i < 2; i++) {
759 WR7146(P_I2CSTAT, I2C_CLKSEL);
760 /* Write I2C control: reset error flags. */
761 MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
762 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
764 /* and wait for upload to complete. */
767 /* Init audio interface functional attributes: set DAC/ADC
768 * serial clock rates, invert DAC serial clock so that
769 * DAC data setup times are satisfied, enable DAC serial
773 WR7146(P_ACON2, ACON2_INIT);
775 /* Set up TSL1 slot list, which is used to control the
776 * accumulation of ADC data: RSD1 = shift data in on SD1.
777 * SIB_A1 = store data uint8_t at next available location in
778 * FB BUFFER1 register. */
779 WR7146(P_TSL1, RSD1 | SIB_A1);
780 /* Fetch ADC high data uint8_t. */
781 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
782 /* Fetch ADC low data uint8_t; end of TSL1. */
784 /* enab TSL1 slot list so that it executes all the time. */
785 WR7146(P_ACON1, ACON1_ADCSTART);
787 /* Initialize RPS registers used for ADC. */
789 /* Physical start of RPS program. */
790 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
792 WR7146(P_RPSPAGE1, 0);
793 /* RPS program performs no explicit mem writes. */
794 WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
796 /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
797 * to a known state by invoking ADCs until FB BUFFER 1
798 * register shows that it is correctly receiving ADC data.
799 * This is necessary because the SAA7146 ADC interface does
800 * not start up in a defined state after a PCI reset.
803 /* PollList = EOPL; // Create a simple polling */
804 /* // list for analog input */
806 /* ResetADC( dev, &PollList ); */
808 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
809 /* //Get initial ADC */
812 /* StartVal = data[0]; */
814 /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
815 /* // Invoke ADCs until the new ADC value differs from the initial */
816 /* // value or a timeout occurs. The timeout protects against the */
817 /* // possibility that the driver is restarting and the ADC data is a */
818 /* // fixed value resulting from the applied ADC analog input being */
819 /* // unusually quiet or at the rail. */
821 /* for ( index = 0; index < 500; index++ ) */
823 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
824 /* AdcData = data[0]; //ReadADC( &AdcData ); */
825 /* if ( AdcData != StartVal ) */
831 /* init the DAC interface */
833 /* Init Audio2's output DMAC attributes: burst length = 1
834 * DWORD, threshold = 1 DWORD.
836 WR7146(P_PCI_BT_A, 0);
838 /* Init Audio2's output DMA physical addresses. The protection
839 * address is set to 1 DWORD past the base address so that a
840 * single DWORD will be transferred each time a DMA transfer is
844 devpriv->ANABuf.PhysicalBase +
845 (DAC_WDMABUF_OS * sizeof(uint32_t));
847 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
848 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
850 /* Cache Audio2's output DMA buffer logical address. This is
851 * where DAC data is buffered for A2 output DMA transfers. */
853 (uint32_t *) devpriv->ANABuf.LogicalBase +
856 /* Audio2's output channels does not use paging. The protection
857 * violation handling bit is set so that the DMAC will
858 * automatically halt and its PCI address pointer will be reset
859 * when the protection address is reached. */
861 WR7146(P_PAGEA2_OUT, 8);
863 /* Initialize time slot list 2 (TSL2), which is used to control
864 * the clock generation for and serialization of data to be sent
865 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
866 * execution; this permits other slots to be safely modified
867 * without first turning off the TSL sequencer (which is
868 * apparently impossible to do). Also, SD3 (which is driven by a
869 * pull-up resistor) is shifted in and stored to the MSB of
870 * FB_BUFFER2 to be used as evidence that the slot sequence has
871 * not yet finished executing.
874 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
875 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
877 /* Initialize slot 1, which is constant. Slot 1 causes a
878 * DWORD to be transferred from audio channel 2's output FIFO
879 * to the FIFO's output buffer so that it can be serialized
880 * and sent to the DAC during subsequent slots. All remaining
881 * slots are dynamically populated as required by the target
885 /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
887 /* Start DAC's audio interface (TSL2) running. */
888 WR7146(P_ACON1, ACON1_DACSTART);
890 /* end init DAC interface */
892 /* Init Trim DACs to calibrated values. Do it twice because the
893 * SAA7146 audio channel does not always reset properly and
894 * sometimes causes the first few TrimDAC writes to malfunction.
898 LoadTrimDACs(dev); /* Insurance. */
900 /* Manually init all gate array hardware in case this is a soft
901 * reset (we have no way of determining whether this is a warm
902 * or cold start). This is necessary because the gate array will
903 * reset only in response to a PCI hard reset; there is no soft
906 /* Init all DAC outputs to 0V and init all DAC setpoint and
909 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
910 SetDAC(dev, chan, 0);
912 /* Init image of WRMISC2 Battery Charger Enabled control bit.
913 * This image is used when the state of the charger control bit,
914 * which has no direct hardware readback mechanism, is queried.
916 devpriv->ChargeEnabled = 0;
918 /* Init image of watchdog timer interval in WRMISC2. This image
919 * maintains the value of the control bits of MISC2 are
920 * continuously reset to zero as long as the WD timer is disabled.
922 devpriv->WDInterval = 0;
924 /* Init Counter Interrupt enab mask for RDMISC2. This mask is
925 * applied against MISC2 when testing to determine which timer
926 * events are requesting interrupt service.
928 devpriv->CounterIntEnabs = 0;
933 /* Without modifying the state of the Battery Backup enab, disable
934 * the watchdog timer, set DIO channels 0-5 to operate in the
935 * standard DIO (vs. counter overflow) mode, disable the battery
936 * charger, and reset the watchdog interval selector to zero.
938 WriteMISC2(dev, (uint16_t) (DEBIread(dev,
939 LP_RDMISC2) & MISC2_BATT_ENABLE));
941 /* Initialize the digital I/O subsystem. */
944 /* enable interrupt test */
945 /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
948 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
949 (uint32_t) devpriv->base_addr);
954 static unsigned int s626_ai_reg_to_uint(int data)
956 unsigned int tempdata;
958 tempdata = (data >> 18);
959 if (tempdata & 0x2000)
962 tempdata += (1 << 13);
967 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
971 static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
973 struct comedi_device *dev = d;
974 struct comedi_subdevice *s;
975 struct comedi_cmd *cmd;
976 struct enc_private *k;
979 uint32_t irqtype, irqstatus;
985 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
987 if (dev->attached == 0)
989 /* lock to avoid race with comedi_poll */
990 comedi_spin_lock_irqsave(&dev->spinlock, flags);
992 /* save interrupt enable register state */
993 irqstatus = readl(devpriv->base_addr + P_IER);
995 /* read interrupt type */
996 irqtype = readl(devpriv->base_addr + P_ISR);
998 /* disable master interrupt */
999 writel(0, devpriv->base_addr + P_IER);
1001 /* clear interrupt */
1002 writel(irqtype, devpriv->base_addr + P_ISR);
1005 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1008 case IRQ_RPS1: /* end_of_scan occurs */
1010 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1012 /* manage ai subdevice */
1013 s = dev->subdevices;
1014 cmd = &(s->async->cmd);
1016 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1017 * first uint16_t in the buffer because it contains junk data from
1018 * the final ADC of the previous poll list scan.
1020 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1022 /* get the data and hand it over to comedi */
1023 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1024 /* Convert ADC data to 16-bit integer values and copy to application */
1026 tempdata = s626_ai_reg_to_uint((int)*readaddr);
1029 /* put data into read buffer */
1030 /* comedi_buf_put(s->async, tempdata); */
1031 if (cfc_write_to_buffer(s, tempdata) == 0)
1032 printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1034 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1038 /* end of scan occurs */
1039 s->async->events |= COMEDI_CB_EOS;
1041 if (!(devpriv->ai_continous))
1042 devpriv->ai_sample_count--;
1043 if (devpriv->ai_sample_count <= 0) {
1044 devpriv->ai_cmd_running = 0;
1046 /* Stop RPS program. */
1047 MC_DISABLE(P_MC1, MC1_ERPS1);
1049 /* send end of acquisition */
1050 s->async->events |= COMEDI_CB_EOA;
1052 /* disable master interrupt */
1056 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1057 DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1059 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1061 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1063 /* tell comedi that data is there */
1064 DEBUG("s626_irq_handler: events %d\n", s->async->events);
1065 comedi_event(dev, s);
1067 case IRQ_GPIO3: /* check dio and conter interrupt */
1069 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1071 /* manage ai subdevice */
1072 s = dev->subdevices;
1073 cmd = &(s->async->cmd);
1075 /* s626_dio_clear_irq(dev); */
1077 for (group = 0; group < S626_DIO_BANKS; group++) {
1079 /* read interrupt type */
1080 irqbit = DEBIread(dev,
1081 ((struct dio_private *) (dev->subdevices + 2 +
1082 group)->private)->RDCapFlg);
1084 /* check if interrupt is generated from dio channels */
1086 s626_dio_reset_irq(dev, group, irqbit);
1087 DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1088 if (devpriv->ai_cmd_running) {
1089 /* check if interrupt is an ai acquisition start trigger */
1090 if ((irqbit >> (cmd->start_arg -
1093 && cmd->start_src == TRIG_EXT) {
1094 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1096 /* Start executing the RPS program. */
1097 MC_ENABLE(P_MC1, MC1_ERPS1);
1099 DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1101 if (cmd->scan_begin_src ==
1103 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1105 s626_dio_set_irq(dev,
1109 DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1112 if ((irqbit >> (cmd->scan_begin_arg -
1115 && cmd->scan_begin_src ==
1117 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1119 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1120 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1122 DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1123 if (cmd->convert_src ==
1126 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1134 s626_dio_set_irq(dev,
1138 DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1141 if (cmd->convert_src ==
1149 k->SetEnable(dev, k,
1153 if ((irqbit >> (cmd->convert_arg -
1156 && cmd->convert_src ==
1158 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1160 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1161 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1163 DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1165 devpriv->ai_convert_count--;
1167 if (devpriv->ai_convert_count >
1170 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1172 s626_dio_set_irq(dev,
1176 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1184 /* read interrupt type */
1185 irqbit = DEBIread(dev, LP_RDMISC2);
1187 /* check interrupt on counters */
1188 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1191 if (irqbit & IRQ_COINT1A) {
1192 DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1195 /* clear interrupt capture flag */
1196 k->ResetCapFlags(dev, k);
1198 if (irqbit & IRQ_COINT2A) {
1199 DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1202 /* clear interrupt capture flag */
1203 k->ResetCapFlags(dev, k);
1205 if (irqbit & IRQ_COINT3A) {
1206 DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1209 /* clear interrupt capture flag */
1210 k->ResetCapFlags(dev, k);
1212 if (irqbit & IRQ_COINT1B) {
1213 DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1216 /* clear interrupt capture flag */
1217 k->ResetCapFlags(dev, k);
1219 if (irqbit & IRQ_COINT2B) {
1220 DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1223 /* clear interrupt capture flag */
1224 k->ResetCapFlags(dev, k);
1226 if (devpriv->ai_convert_count > 0) {
1227 devpriv->ai_convert_count--;
1228 if (devpriv->ai_convert_count == 0)
1229 k->SetEnable(dev, k, CLKENAB_INDEX);
1231 if (cmd->convert_src == TRIG_TIMER) {
1232 DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1234 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1235 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1239 if (irqbit & IRQ_COINT3B) {
1240 DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1243 /* clear interrupt capture flag */
1244 k->ResetCapFlags(dev, k);
1246 if (cmd->scan_begin_src == TRIG_TIMER) {
1247 DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1249 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1250 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1253 if (cmd->convert_src == TRIG_TIMER) {
1254 DEBUG("s626_irq_handler: convert timer trigger is set\n");
1256 devpriv->ai_convert_count = cmd->chanlist_len;
1257 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1262 /* enable interrupt */
1263 writel(irqstatus, devpriv->base_addr + P_IER);
1265 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1267 comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1271 static int s626_detach(struct comedi_device *dev)
1274 /* stop ai_command */
1275 devpriv->ai_cmd_running = 0;
1277 if (devpriv->base_addr) {
1278 /* interrupt mask */
1279 WR7146(P_IER, 0); /* Disable master interrupt. */
1280 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
1282 /* Disable the watchdog timer and battery charger. */
1285 /* Close all interfaces on 7146 device. */
1286 WR7146(P_MC1, MC1_SHUTDOWN);
1287 WR7146(P_ACON1, ACON1_BASE);
1289 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1290 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1294 comedi_free_irq(dev->irq, dev);
1296 if (devpriv->base_addr)
1297 iounmap(devpriv->base_addr);
1299 if (devpriv->pdev) {
1300 if (devpriv->got_regions)
1301 comedi_pci_disable(devpriv->pdev);
1302 pci_dev_put(devpriv->pdev);
1306 DEBUG("s626_detach: S626 detached!\n");
1312 * this functions build the RPS program for hardware driven acquistion
1314 void ResetADC(struct comedi_device *dev, uint8_t *ppl)
1316 register uint32_t *pRPS;
1321 struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1323 /* Stop RPS program in case it is currently running. */
1324 MC_DISABLE(P_MC1, MC1_ERPS1);
1326 /* Set starting logical address to write RPS commands. */
1327 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1329 /* Initialize RPS instruction pointer. */
1330 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1332 /* Construct RPS program in RPSBuf DMA buffer */
1334 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1335 DEBUG("ResetADC: scan_begin pause inserted\n");
1336 /* Wait for Start trigger. */
1337 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1338 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1341 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1342 * because the first RPS DEBI Write following a non-RPS DEBI write
1343 * seems to always fail. If we don't do this dummy write, the ADC
1344 * gain might not be set to the value required for the first slot in
1345 * the poll list; the ADC gain would instead remain unchanged from
1346 * the previously programmed value.
1348 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1349 /* Write DEBI Write command and address to shadow RAM. */
1351 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1352 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1353 /* Write DEBI immediate data to shadow RAM: */
1355 *pRPS++ = GSEL_BIPOLAR5V;
1356 /* arbitrary immediate data value. */
1358 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1359 /* Reset "shadow RAM uploaded" flag. */
1360 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1361 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1363 /* Digitize all slots in the poll list. This is implemented as a
1364 * for loop to limit the slot count to 16 in case the application
1365 * forgot to set the EOPL flag in the final slot.
1367 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1368 /* Convert application's poll list item to private board class
1369 * format. Each app poll list item is an uint8_t with form
1370 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1371 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1374 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1377 /* Switch ADC analog gain. */
1378 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1379 /* and address to */
1381 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1382 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1383 /* immediate data to */
1386 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1388 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1389 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1392 /* Select ADC analog input channel. */
1393 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1394 /* Write DEBI command and address to shadow RAM. */
1395 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1396 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1397 /* Write DEBI immediate data to shadow RAM. */
1399 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1400 /* Reset "shadow RAM uploaded" flag. */
1402 *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1403 /* Invoke shadow RAM upload. */
1405 *pRPS++ = RPS_PAUSE | RPS_DEBI;
1406 /* Wait for shadow upload to finish. */
1408 /* Delay at least 10 microseconds for analog input settling.
1409 * Instead of padding with NOPs, we use RPS_JUMP instructions
1410 * here; this allows us to produce a longer delay than is
1411 * possible with NOPs because each RPS_JUMP flushes the RPS'
1412 * instruction prefetch pipeline.
1415 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1416 (uint32_t) ((unsigned long)pRPS -
1417 (unsigned long)devpriv->RPSBuf.LogicalBase);
1418 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1419 JmpAdrs += 8; /* Repeat to implement time delay: */
1420 *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
1424 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1425 DEBUG("ResetADC: convert pause inserted\n");
1426 /* Wait for Start trigger. */
1427 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1428 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1430 /* Start ADC by pulsing GPIO1. */
1431 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1432 *pRPS++ = GPIO_BASE | GPIO1_LO;
1434 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1435 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1436 *pRPS++ = GPIO_BASE | GPIO1_HI;
1438 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1439 * busy) and for data from previous conversion to shift into FB
1440 * BUFFER 1 register.
1442 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1444 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1445 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1447 (uint32_t) devpriv->ANABuf.PhysicalBase +
1448 (devpriv->AdcItems << 2);
1450 /* If this slot's EndOfPollList flag is set, all channels have */
1451 /* now been processed. */
1452 if (*ppl++ & EOPL) {
1453 devpriv->AdcItems++; /* Adjust poll list item count. */
1454 break; /* Exit poll list processing loop. */
1457 DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1459 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1460 * ADC to stabilize for 2 microseconds before starting the final
1461 * (dummy) conversion. This delay is necessary to allow sufficient
1462 * time between last conversion finished and the start of the dummy
1463 * conversion. Without this delay, the last conversion's data value
1464 * is sometimes set to the previous conversion's data value.
1466 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1469 /* Start a dummy conversion to cause the data from the last
1470 * conversion of interest to be shifted in.
1472 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1473 *pRPS++ = GPIO_BASE | GPIO1_LO;
1475 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1476 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1477 *pRPS++ = GPIO_BASE | GPIO1_HI;
1479 /* Wait for the data from the last conversion of interest to arrive
1480 * in FB BUFFER 1 register.
1482 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1484 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1485 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
1487 (uint32_t) devpriv->ANABuf.PhysicalBase +
1488 (devpriv->AdcItems << 2);
1490 /* Indicate ADC scan loop is finished. */
1491 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1493 /* invoke interrupt */
1494 if (devpriv->ai_cmd_running == 1) {
1495 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1498 /* Restart RPS program at its beginning. */
1499 *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
1500 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1502 /* End of RPS program build */
1505 /* TO COMPLETE, IF NECESSARY */
1506 static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
1507 struct comedi_insn *insn, unsigned int *data)
1513 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1515 /* register uint8_t i; */
1516 /* register int32_t *readaddr; */
1518 /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1520 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1521 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1523 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1524 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1526 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1527 * first uint16_t in the buffer because it contains junk data from
1528 * the final ADC of the previous poll list scan.
1530 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1532 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1533 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1534 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1535 /* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1539 /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1543 static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
1544 struct comedi_insn *insn, unsigned int *data)
1546 uint16_t chan = CR_CHAN(insn->chanspec);
1547 uint16_t range = CR_RANGE(insn->chanspec);
1548 uint16_t AdcSpec = 0;
1552 /* interrupt call test */
1553 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1554 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1555 * corresponding interrupt to be generated if enabled
1558 DEBUG("s626_ai_insn_read: entering\n");
1560 /* Convert application's ADC specification into form
1561 * appropriate for register programming.
1564 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1566 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1568 /* Switch ADC analog gain. */
1569 DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
1571 /* Select ADC analog input channel. */
1572 DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
1574 for (n = 0; n < insn->n; n++) {
1576 /* Delay 10 microseconds for analog input settling. */
1579 /* Start ADC by pulsing GPIO1 low. */
1580 GpioImage = RR7146(P_GPIO);
1581 /* Assert ADC Start command */
1582 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1583 /* and stretch it out. */
1584 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1585 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586 /* Negate ADC Start command. */
1587 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1589 /* Wait for ADC to complete (GPIO2 is asserted high when */
1590 /* ADC not busy) and for data from previous conversion to */
1591 /* shift into FB BUFFER 1 register. */
1593 /* Wait for ADC done. */
1594 while (!(RR7146(P_PSR) & PSR_GPIO2))
1597 /* Fetch ADC data. */
1599 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1601 /* Allow the ADC to stabilize for 4 microseconds before
1602 * starting the next (final) conversion. This delay is
1603 * necessary to allow sufficient time between last
1604 * conversion finished and the start of the next
1605 * conversion. Without this delay, the last conversion's
1606 * data value is sometimes set to the previous
1607 * conversion's data value.
1612 /* Start a dummy conversion to cause the data from the
1613 * previous conversion to be shifted in. */
1614 GpioImage = RR7146(P_GPIO);
1616 /* Assert ADC Start command */
1617 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1618 /* and stretch it out. */
1619 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1620 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621 /* Negate ADC Start command. */
1622 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1624 /* Wait for the data to arrive in FB BUFFER 1 register. */
1626 /* Wait for ADC done. */
1627 while (!(RR7146(P_PSR) & PSR_GPIO2))
1630 /* Fetch ADC data from audio interface's input shift register. */
1632 /* Fetch ADC data. */
1634 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1636 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1641 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1646 for (n = 0; n < cmd->chanlist_len; n++) {
1647 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1648 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1650 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1657 static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
1658 unsigned int trignum)
1663 DEBUG("s626_ai_inttrig: trigger adc start...");
1665 /* Start executing the RPS program. */
1666 MC_ENABLE(P_MC1, MC1_ERPS1);
1668 s->async->inttrig = NULL;
1676 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1680 struct comedi_cmd *cmd = &s->async->cmd;
1681 struct enc_private *k;
1684 DEBUG("s626_ai_cmd: entering command function\n");
1686 if (devpriv->ai_cmd_running) {
1687 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1691 /* disable interrupt */
1692 writel(0, devpriv->base_addr + P_IER);
1694 /* clear interrupt request */
1695 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1697 /* clear any pending interrupt */
1698 s626_dio_clear_irq(dev);
1699 /* s626_enc_clear_irq(dev); */
1701 /* reset ai_cmd_running flag */
1702 devpriv->ai_cmd_running = 0;
1704 /* test if cmd is valid */
1706 DEBUG("s626_ai_cmd: NULL command\n");
1709 DEBUG("s626_ai_cmd: command recieved!!!\n");
1712 if (dev->irq == 0) {
1714 "s626_ai_cmd: cannot run command without an irq");
1718 s626_ai_load_polllist(ppl, cmd);
1719 devpriv->ai_cmd_running = 1;
1720 devpriv->ai_convert_count = 0;
1722 switch (cmd->scan_begin_src) {
1726 /* set a conter to generate adc trigger at scan_begin_arg interval */
1728 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1729 cmd->flags & TRIG_ROUND_MASK);
1731 /* load timer value and enable interrupt */
1732 s626_timer_load(dev, k, tick);
1733 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1735 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1740 /* set the digital line and interrupt for scan trigger */
1741 if (cmd->start_src != TRIG_EXT)
1742 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1744 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1749 switch (cmd->convert_src) {
1753 /* set a conter to generate adc trigger at convert_arg interval */
1755 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1756 cmd->flags & TRIG_ROUND_MASK);
1758 /* load timer value and enable interrupt */
1759 s626_timer_load(dev, k, tick);
1760 k->SetEnable(dev, k, CLKENAB_INDEX);
1762 DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1765 /* set the digital line and interrupt for convert trigger */
1766 if (cmd->scan_begin_src != TRIG_EXT
1767 && cmd->start_src == TRIG_EXT)
1768 s626_dio_set_irq(dev, cmd->convert_arg);
1770 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1775 switch (cmd->stop_src) {
1777 /* data arrives as one packet */
1778 devpriv->ai_sample_count = cmd->stop_arg;
1779 devpriv->ai_continous = 0;
1782 /* continous aquisition */
1783 devpriv->ai_continous = 1;
1784 devpriv->ai_sample_count = 0;
1790 switch (cmd->start_src) {
1792 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1793 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1795 /* Start executing the RPS program. */
1796 MC_ENABLE(P_MC1, MC1_ERPS1);
1798 DEBUG("s626_ai_cmd: ADC triggered\n");
1799 s->async->inttrig = NULL;
1802 /* configure DIO channel for acquisition trigger */
1803 s626_dio_set_irq(dev, cmd->start_arg);
1805 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1807 s->async->inttrig = NULL;
1810 s->async->inttrig = s626_ai_inttrig;
1814 /* enable interrupt */
1815 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1817 DEBUG("s626_ai_cmd: command function terminated\n");
1822 static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
1823 struct comedi_cmd *cmd)
1828 /* cmdtest tests a particular command to see if it is valid. Using
1829 * the cmdtest ioctl, a user can create a valid cmd and then have it
1830 * executes by the cmd ioctl.
1832 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1833 * command passes. */
1835 /* step 1: make sure trigger sources are trivially valid */
1837 tmp = cmd->start_src;
1838 cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1839 if (!cmd->start_src || tmp != cmd->start_src)
1842 tmp = cmd->scan_begin_src;
1843 cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1844 if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1847 tmp = cmd->convert_src;
1848 cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1849 if (!cmd->convert_src || tmp != cmd->convert_src)
1852 tmp = cmd->scan_end_src;
1853 cmd->scan_end_src &= TRIG_COUNT;
1854 if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1857 tmp = cmd->stop_src;
1858 cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1859 if (!cmd->stop_src || tmp != cmd->stop_src)
1865 /* step 2: make sure trigger sources are unique and mutually
1868 /* note that mutual compatiblity is not an issue here */
1869 if (cmd->scan_begin_src != TRIG_TIMER &&
1870 cmd->scan_begin_src != TRIG_EXT
1871 && cmd->scan_begin_src != TRIG_FOLLOW)
1873 if (cmd->convert_src != TRIG_TIMER &&
1874 cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1876 if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1882 /* step 3: make sure arguments are trivially compatible */
1884 if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1889 if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
1894 if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1895 cmd->start_arg = 39;
1899 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
1900 cmd->scan_begin_arg = 0;
1904 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1905 cmd->scan_begin_arg = 39;
1909 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
1910 cmd->convert_arg = 0;
1914 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1915 cmd->convert_arg = 39;
1918 #define MAX_SPEED 200000 /* in nanoseconds */
1919 #define MIN_SPEED 2000000000 /* in nanoseconds */
1921 if (cmd->scan_begin_src == TRIG_TIMER) {
1922 if (cmd->scan_begin_arg < MAX_SPEED) {
1923 cmd->scan_begin_arg = MAX_SPEED;
1926 if (cmd->scan_begin_arg > MIN_SPEED) {
1927 cmd->scan_begin_arg = MIN_SPEED;
1931 /* external trigger */
1932 /* should be level/edge, hi/lo specification here */
1933 /* should specify multiple external triggers */
1934 /* if(cmd->scan_begin_arg>9){ */
1935 /* cmd->scan_begin_arg=9; */
1939 if (cmd->convert_src == TRIG_TIMER) {
1940 if (cmd->convert_arg < MAX_SPEED) {
1941 cmd->convert_arg = MAX_SPEED;
1944 if (cmd->convert_arg > MIN_SPEED) {
1945 cmd->convert_arg = MIN_SPEED;
1949 /* external trigger */
1951 /* if(cmd->convert_arg>9){ */
1952 /* cmd->convert_arg=9; */
1957 if (cmd->scan_end_arg != cmd->chanlist_len) {
1958 cmd->scan_end_arg = cmd->chanlist_len;
1961 if (cmd->stop_src == TRIG_COUNT) {
1962 if (cmd->stop_arg > 0x00ffffff) {
1963 cmd->stop_arg = 0x00ffffff;
1968 if (cmd->stop_arg != 0) {
1977 /* step 4: fix up any arguments */
1979 if (cmd->scan_begin_src == TRIG_TIMER) {
1980 tmp = cmd->scan_begin_arg;
1981 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1982 cmd->flags & TRIG_ROUND_MASK);
1983 if (tmp != cmd->scan_begin_arg)
1986 if (cmd->convert_src == TRIG_TIMER) {
1987 tmp = cmd->convert_arg;
1988 s626_ns_to_timer((int *)&cmd->convert_arg,
1989 cmd->flags & TRIG_ROUND_MASK);
1990 if (tmp != cmd->convert_arg)
1992 if (cmd->scan_begin_src == TRIG_TIMER &&
1993 cmd->scan_begin_arg <
1994 cmd->convert_arg * cmd->scan_end_arg) {
1995 cmd->scan_begin_arg =
1996 cmd->convert_arg * cmd->scan_end_arg;
2007 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2009 /* Stop RPS program in case it is currently running. */
2010 MC_DISABLE(P_MC1, MC1_ERPS1);
2012 /* disable master interrupt */
2013 writel(0, devpriv->base_addr + P_IER);
2015 devpriv->ai_cmd_running = 0;
2020 /* This function doesn't require a particular form, this is just what
2021 * happens to be used in some of the drivers. It should convert ns
2022 * nanoseconds to a counter value suitable for programming the device.
2023 * Also, it should adjust ns so that it cooresponds to the actual time
2024 * that the device will use. */
2025 static int s626_ns_to_timer(int *nanosec, int round_mode)
2029 base = 500; /* 2MHz internal clock */
2031 switch (round_mode) {
2032 case TRIG_ROUND_NEAREST:
2034 divider = (*nanosec + base / 2) / base;
2036 case TRIG_ROUND_DOWN:
2037 divider = (*nanosec) / base;
2040 divider = (*nanosec + base - 1) / base;
2044 *nanosec = base * divider;
2048 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2049 struct comedi_insn *insn, unsigned int *data)
2053 uint16_t chan = CR_CHAN(insn->chanspec);
2056 for (i = 0; i < insn->n; i++) {
2057 dacdata = (int16_t) data[i];
2058 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2059 dacdata -= (0x1fff);
2061 SetDAC(dev, chan, dacdata);
2067 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2068 struct comedi_insn *insn, unsigned int *data)
2072 for (i = 0; i < insn->n; i++)
2073 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2078 /* *************** DIGITAL I/O FUNCTIONS ***************
2079 * All DIO functions address a group of DIO channels by means of
2080 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2081 * ports A, B and C, respectively.
2084 static void s626_dio_init(struct comedi_device *dev)
2087 struct comedi_subdevice *s;
2089 /* Prepare to treat writes to WRCapSel as capture disables. */
2090 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2092 /* For each group of sixteen channels ... */
2093 for (group = 0; group < S626_DIO_BANKS; group++) {
2094 s = dev->subdevices + 2 + group;
2095 DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
2096 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
2098 DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
2101 DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
2102 /* to inactive state. */
2104 DEBUG("s626_dio_init: DIO initialized \n");
2107 /* DIO devices are slightly special. Although it is possible to
2108 * implement the insn_read/insn_write interface, it is much more
2109 * useful to applications if you implement the insn_bits interface.
2110 * This allows packed reading/writing of the DIO channels. The comedi
2111 * core can convert between insn_bits and insn_read/write */
2113 static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
2114 struct comedi_insn *insn, unsigned int *data)
2117 /* Length of data must be 2 (mask and new data, see below) */
2122 printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2127 * The insn data consists of a mask in data[0] and the new data in
2128 * data[1]. The mask defines which bits we are concerning about.
2129 * The new data must be anded with the mask. Each channel
2130 * corresponds to a bit.
2133 /* Check if requested ports are configured for output */
2134 if ((s->io_bits & data[0]) != data[0])
2137 s->state &= ~data[0];
2138 s->state |= data[0] & data[1];
2140 /* Write out the new digital output lines */
2142 DEBIwrite(dev, diopriv->WRDOut, s->state);
2144 data[1] = DEBIread(dev, diopriv->RDDIn);
2149 static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2150 struct comedi_insn *insn, unsigned int *data)
2154 case INSN_CONFIG_DIO_QUERY:
2156 (s->io_bits & (1 << CR_CHAN(insn->
2157 chanspec))) ? COMEDI_OUTPUT :
2162 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2165 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2171 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2176 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2179 unsigned int bitmask;
2180 unsigned int status;
2182 /* select dio bank */
2184 bitmask = 1 << (chan - (16 * group));
2185 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2186 chan - (16 * group), group);
2188 /* set channel to capture positive edge */
2189 status = DEBIread(dev,
2190 ((struct dio_private *) (dev->subdevices + 2 +
2191 group)->private)->RDEdgSel);
2193 ((struct dio_private *) (dev->subdevices + 2 +
2194 group)->private)->WREdgSel, bitmask | status);
2196 /* enable interrupt on selected channel */
2197 status = DEBIread(dev,
2198 ((struct dio_private *) (dev->subdevices + 2 +
2199 group)->private)->RDIntSel);
2201 ((struct dio_private *) (dev->subdevices + 2 +
2202 group)->private)->WRIntSel, bitmask | status);
2204 /* enable edge capture write command */
2205 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2207 /* enable edge capture on selected channel */
2208 status = DEBIread(dev,
2209 ((struct dio_private *) (dev->subdevices + 2 +
2210 group)->private)->RDCapSel);
2212 ((struct dio_private *) (dev->subdevices + 2 +
2213 group)->private)->WRCapSel, bitmask | status);
2218 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2221 DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
2223 /* disable edge capture write command */
2224 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2226 /* enable edge capture on selected channel */
2228 ((struct dio_private *) (dev->subdevices + 2 +
2229 group)->private)->WRCapSel, mask);
2234 static int s626_dio_clear_irq(struct comedi_device *dev)
2238 /* disable edge capture write command */
2239 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2241 for (group = 0; group < S626_DIO_BANKS; group++) {
2242 /* clear pending events and interrupt */
2244 ((struct dio_private *) (dev->subdevices + 2 +
2245 group)->private)->WRCapSel, 0xffff);
2251 /* Now this function initializes the value of the counter (data[0])
2252 and set the subdevice. To complete with trigger and interrupt
2254 static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2255 struct comedi_insn *insn, unsigned int *data)
2257 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2259 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2260 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
2261 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2262 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
2263 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2264 (CLKENAB_INDEX << BF_CLKENAB);
2265 /* uint16_t DisableIntSrc=TRUE; */
2266 /* uint32_t Preloadvalue; //Counter initial value */
2267 uint16_t valueSrclatch = LATCHSRC_AB_READ;
2268 uint16_t enab = CLKENAB_ALWAYS;
2269 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2271 DEBUG("s626_enc_insn_config: encoder config\n");
2273 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2275 k->SetMode(dev, k, Setup, TRUE);
2276 Preload(dev, k, *(insn->data));
2277 k->PulseIndex(dev, k);
2278 SetLatchSource(dev, k, valueSrclatch);
2279 k->SetEnable(dev, k, (uint16_t) (enab != 0));
2284 static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
2285 struct comedi_insn *insn, unsigned int *data)
2289 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2291 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2292 CR_CHAN(insn->chanspec));
2294 for (n = 0; n < insn->n; n++)
2295 data[n] = ReadLatch(dev, k);
2297 DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2302 static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
2303 struct comedi_insn *insn, unsigned int *data)
2306 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2308 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2309 CR_CHAN(insn->chanspec));
2311 /* Set the preload register */
2312 Preload(dev, k, data[0]);
2314 /* Software index pulse forces the preload register to load */
2315 /* into the counter */
2316 k->SetLoadTrig(dev, k, 0);
2317 k->PulseIndex(dev, k);
2318 k->SetLoadTrig(dev, k, 2);
2320 DEBUG("s626_enc_insn_write: End encoder write\n");
2325 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick)
2327 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2329 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2330 (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
2331 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2332 (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
2333 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2334 (CLKENAB_INDEX << BF_CLKENAB);
2335 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2336 /* uint16_t enab=CLKENAB_ALWAYS; */
2338 k->SetMode(dev, k, Setup, FALSE);
2340 /* Set the preload register */
2341 Preload(dev, k, tick);
2343 /* Software index pulse forces the preload register to load */
2344 /* into the counter */
2345 k->SetLoadTrig(dev, k, 0);
2346 k->PulseIndex(dev, k);
2348 /* set reload on counter overflow */
2349 k->SetLoadTrig(dev, k, 1);
2351 /* set interrupt on overflow */
2352 k->SetIntSrc(dev, k, INTSRC_OVER);
2354 SetLatchSource(dev, k, valueSrclatch);
2355 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2358 /* *********** DAC FUNCTIONS *********** */
2360 /* Slot 0 base settings. */
2361 #define VECT0 (XSD2 | RSD3 | SIB_A2)
2362 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
2364 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
2365 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2367 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
2368 static uint8_t trimadrs[] =
2369 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2371 static void LoadTrimDACs(struct comedi_device *dev)
2375 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2376 for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
2377 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2380 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2385 /* Save the new setpoint in case the application needs to read it back later. */
2386 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2388 /* Map logical channel number to physical channel number. */
2389 chan = (uint32_t) trimchan[LogicalChan];
2391 /* Set up TSL2 records for TrimDac write operation. All slots shift
2392 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2396 SETVECT(2, XSD2 | XFIFO_1 | WS3);
2397 /* Slot 2: Send high uint8_t to target TrimDac. */
2398 SETVECT(3, XSD2 | XFIFO_0 | WS3);
2399 /* Slot 3: Send low uint8_t to target TrimDac. */
2400 SETVECT(4, XSD2 | XFIFO_3 | WS1);
2401 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2402 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2403 /* Slot 5: Send NOP low uint8_t to DAC0. */
2405 /* Construct and transmit target DAC's serial packet:
2406 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2407 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
2408 * WORD value (that writes a channel 0 NOP command to a non-existent
2409 * main DAC channel) that serves to keep the clock running after the
2410 * packet has been sent to the target DAC.
2413 /* Address the DAC channel within the trimdac device. */
2414 SendDAC(dev, ((uint32_t) chan << 8)
2415 | (uint32_t) DacData); /* Include DAC setpoint data. */
2418 /* ************** EEPROM ACCESS FUNCTIONS ************** */
2419 /* Read uint8_t from EEPROM. */
2421 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2425 /* Send EEPROM target address. */
2426 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2427 /* Byte2 = I2C command: write to I2C EEPROM device. */
2428 | I2C_B1(I2C_ATTRSTOP, addr)
2429 /* Byte1 = EEPROM internal target address. */
2430 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2431 /* Abort function and declare error if handshake failed. */
2432 DEBUG("I2Cread: error handshake I2Cread a\n");
2435 /* Execute EEPROM read. */
2436 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) /* Byte2 = I2C */
2438 /* from I2C EEPROM */
2440 | I2C_B1(I2C_ATTRSTOP, 0) /* Byte1 receives */
2443 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2445 /* Abort function and declare error if handshake failed. */
2446 DEBUG("I2Cread: error handshake I2Cread b\n");
2449 /* Return copy of EEPROM value. */
2450 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2454 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2456 /* Write I2C command to I2C Transfer Control shadow register. */
2457 WR7146(P_I2CCTRL, val);
2459 /* Upload I2C shadow registers into working registers and wait for */
2460 /* upload confirmation. */
2462 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2463 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2466 /* Wait until I2C bus transfer is finished or an error occurs. */
2467 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2470 /* Return non-zero if I2C error occured. */
2471 return RR7146(P_I2CCTRL) & I2C_ERR;
2475 /* Private helper function: Write setpoint to an application DAC channel. */
2477 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2479 register uint16_t signmask;
2480 register uint32_t WSImage;
2482 /* Adjust DAC data polarity and set up Polarity Control Register */
2484 signmask = 1 << chan;
2487 devpriv->Dacpol |= signmask;
2489 devpriv->Dacpol &= ~signmask;
2491 /* Limit DAC setpoint value to valid range. */
2492 if ((uint16_t) dacdata > 0x1FFF)
2495 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2496 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
2497 * data to a non-existent TrimDac channel just to keep the clock
2498 * running after sending data to the target DAC. This is necessary
2499 * to eliminate the clock glitch that would otherwise occur at the
2500 * end of the target DAC's serial data stream. When the sequence
2501 * restarts at V0 (after executing V5), the gate array automatically
2502 * disables gating for the DAC clock and all DAC chip selects.
2505 WSImage = (chan & 2) ? WS1 : WS2;
2506 /* Choose DAC chip select to be asserted. */
2507 SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2508 /* Slot 2: Transmit high data byte to target DAC. */
2509 SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2510 /* Slot 3: Transmit low data byte to target DAC. */
2511 SETVECT(4, XSD2 | XFIFO_3 | WS3);
2512 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2513 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2514 /* Slot 5: running after writing target DAC's low data byte. */
2516 /* Construct and transmit target DAC's serial packet:
2517 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2518 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
2519 * to a non-existent TrimDac channel) that serves to keep the clock
2520 * running after the packet has been sent to the target DAC.
2522 SendDAC(dev, 0x0F000000
2523 /* Continue clock after target DAC data (write to non-existent trimdac). */
2525 /* Address the two main dual-DAC devices (TSL's chip select enables
2526 * target device). */
2527 | ((uint32_t) (chan & 1) << 15)
2528 /* Address the DAC channel within the device. */
2529 | (uint32_t) dacdata); /* Include DAC setpoint data. */
2533 /* Private helper function: Transmit serial data to DAC via Audio
2534 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2535 * Dacpol contains valid target image.
2538 static void SendDAC(struct comedi_device *dev, uint32_t val)
2541 /* START THE SERIAL CLOCK RUNNING ------------- */
2543 /* Assert DAC polarity control and enable gating of DAC serial clock
2544 * and audio bit stream signals. At this point in time we must be
2545 * assured of being in time slot 0. If we are not in slot 0, the
2546 * serial clock and audio stream signals will be disabled; this is
2547 * because the following DEBIwrite statement (which enables signals
2548 * to be passed through the gate array) would execute before the
2549 * trailing edge of WS1/WS3 (which turns off the signals), thus
2550 * causing the signals to be inactive during the DAC write.
2552 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2554 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2556 /* Copy DAC setpoint value to DAC's output DMA buffer. */
2558 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2559 *devpriv->pDacWBuf = val;
2561 /* enab the output DMA transfer. This will cause the DMAC to copy
2562 * the DAC's data value to A2's output FIFO. The DMA transfer will
2563 * then immediately terminate because the protection address is
2564 * reached upon transfer of the first DWORD value.
2566 MC_ENABLE(P_MC1, MC1_A2OUT);
2568 /* While the DMA transfer is executing ... */
2570 /* Reset Audio2 output FIFO's underflow flag (along with any other
2571 * FIFO underflow/overflow flags). When set, this flag will
2572 * indicate that we have emerged from slot 0.
2574 WR7146(P_ISR, ISR_AFOU);
2576 /* Wait for the DMA transfer to finish so that there will be data
2577 * available in the FIFO when time slot 1 tries to transfer a DWORD
2578 * from the FIFO to the output buffer register. We test for DMA
2579 * Done by polling the DMAC enable flag; this flag is automatically
2580 * cleared when the transfer has finished.
2582 while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2585 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2587 /* FIFO data is now available, so we enable execution of time slots
2588 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2589 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2592 SETVECT(0, XSD2 | RSD3 | SIB_A2);
2594 /* Wait for slot 1 to execute to ensure that the Packet will be
2595 * transmitted. This is detected by polling the Audio2 output FIFO
2596 * underflow flag, which will be set when slot 1 execution has
2597 * finished transferring the DAC's data DWORD from the output FIFO
2598 * to the output buffer register.
2600 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2603 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
2604 * back to slot 0 after executing the EOS in slot 5. Also,
2605 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2606 * stored in the last byte to be shifted out of the FIFO's DWORD
2609 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2611 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2613 /* Wait for the TSL to finish executing all time slots before
2614 * exiting this function. We must do this so that the next DAC
2615 * write doesn't start, thereby enabling clock/chip select signals:
2617 * 1. Before the TSL sequence cycles back to slot 0, which disables
2618 * the clock/cs signal gating and traps slot // list execution.
2619 * we have not yet finished slot 5 then the clock/cs signals are
2620 * still gated and we have not finished transmitting the stream.
2622 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
2623 * this case, the slot sequence is currently repeating, but with
2624 * clock/cs signals disabled. We must wait for slot 0 to trap
2625 * execution before setting up the next DAC setpoint DMA transfer
2626 * and enabling the clock/cs signals. To detect the end of slot 5,
2627 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2628 * the TSL has not yet finished executing slot 5 ...
2630 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2631 /* The trap was set on time and we are still executing somewhere
2632 * in slots 2-5, so we now wait for slot 0 to execute and trap
2633 * TSL execution. This is detected when FB_BUFFER2 MSB changes
2634 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2635 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2637 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2640 /* Either (1) we were too late setting the slot 0 trap; the TSL
2641 * sequencer restarted slot 0 before we could set the EOS trap flag,
2642 * or (2) we were not late and execution is now trapped at slot 0.
2643 * In either case, we must now change slot 0 so that it will store
2644 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2645 * In order to do this, we reprogram slot 0 so that it will shift in
2646 * SD3, which is driven only by a pull-up resistor.
2648 SETVECT(0, RSD3 | SIB_A2 | EOS);
2650 /* Wait for slot 0 to execute, at which time the TSL is setup for
2651 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
2652 * from 0x00 to 0xFF.
2654 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2658 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2660 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
2661 /* MISC2 register. */
2662 DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
2663 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
2666 /* Initialize the DEBI interface for all transfers. */
2668 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2672 /* Set up DEBI control register value in shadow RAM. */
2673 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2675 /* Execute the DEBI transfer. */
2678 /* Fetch target register value. */
2679 retval = (uint16_t) RR7146(P_DEBIAD);
2681 /* Return register value. */
2685 /* Execute a DEBI transfer. This must be called from within a */
2686 /* critical section. */
2687 static void DEBItransfer(struct comedi_device *dev)
2689 /* Initiate upload of shadow RAM to DEBI control register. */
2690 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2692 /* Wait for completion of upload from shadow RAM to DEBI control */
2694 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2697 /* Wait until DEBI transfer is done. */
2698 while (RR7146(P_PSR) & PSR_DEBI_S)
2702 /* Write a value to a gate array register. */
2703 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2706 /* Set up DEBI control register value in shadow RAM. */
2707 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2708 WR7146(P_DEBIAD, wdata);
2710 /* Execute the DEBI transfer. */
2714 /* Replace the specified bits in a gate array register. Imports: mask
2715 * specifies bits that are to be preserved, wdata is new value to be
2716 * or'd with the masked original.
2718 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2722 /* Copy target gate array register into P_DEBIAD register. */
2723 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2724 /* Set up DEBI control reg value in shadow RAM. */
2725 DEBItransfer(dev); /* Execute the DEBI Read transfer. */
2727 /* Write back the modified image. */
2728 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2729 /* Set up DEBI control reg value in shadow RAM. */
2731 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2732 /* Modify the register image. */
2733 DEBItransfer(dev); /* Execute the DEBI Write transfer. */
2736 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize)
2741 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2744 /* find the matching allocation from the board struct */
2746 vbptr = pdma->LogicalBase;
2747 vpptr = pdma->PhysicalBase;
2749 pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2750 pdma->LogicalBase = 0;
2751 pdma->PhysicalBase = 0;
2753 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2754 vbptr, bsize, (uint32_t) vpptr);
2758 /* ****** COUNTER FUNCTIONS ******* */
2759 /* All counter functions address a specific counter by means of the
2760 * "Counter" argument, which is a logical counter number. The Counter
2761 * argument may have any of the following legal values: 0=0A, 1=1A,
2762 * 2=2A, 3=0B, 4=1B, 5=2B.
2765 /* Forward declarations for functions that are common to both A and B counters: */
2767 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
2769 /* Read a counter's output latch. */
2771 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2773 register uint32_t value;
2774 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2776 /* Latch counts and fetch LSW of latched counts value. */
2777 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2779 /* Fetch MSW of latched counts and combine with LSW. */
2780 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2782 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2784 /* Return latched counts. */
2788 /* Reset a counter's index and overflow event capture flags. */
2790 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2792 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2793 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2796 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2798 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2799 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2802 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
2803 /* for both A and B counters. */
2805 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2807 register uint16_t cra;
2808 register uint16_t crb;
2809 register uint16_t setup;
2811 /* Fetch CRA and CRB register images. */
2812 cra = DEBIread(dev, k->MyCRA);
2813 crb = DEBIread(dev, k->MyCRB);
2815 /* Populate the standardized counter setup bit fields. Note: */
2816 /* IndexSrc is restricted to ENC_X or IndxPol. */
2817 setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
2818 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
2819 | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
2820 | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
2821 | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
2822 | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
2824 /* Adjust mode-dependent parameters. */
2825 if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
2826 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2827 | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
2828 | (MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
2830 else /* If Counter mode (ClkSrcA<1> == 0): */
2831 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
2832 | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
2833 | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
2834 (MULT_X1 << STDBIT_CLKMULT) :
2835 ((cra >> (CRABIT_CLKMULT_A -
2839 /* Return adjusted counter setup. */
2843 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2845 register uint16_t cra;
2846 register uint16_t crb;
2847 register uint16_t setup;
2849 /* Fetch CRA and CRB register images. */
2850 cra = DEBIread(dev, k->MyCRA);
2851 crb = DEBIread(dev, k->MyCRB);
2853 /* Populate the standardized counter setup bit fields. Note: */
2854 /* IndexSrc is restricted to ENC_X or IndxPol. */
2855 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
2856 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
2857 | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
2858 | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
2859 | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
2860 | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
2862 /* Adjust mode-dependent parameters. */
2863 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
2864 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
2865 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2866 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2868 else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
2869 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2870 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2871 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2873 else /* If Counter mode (ClkSrcB<1> == 0): */
2874 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2875 | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
2876 | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
2878 /* Return adjusted counter setup. */
2883 * Set the operating mode for the specified counter. The setup
2884 * parameter is treated as a COUNTER_SETUP data type. The following
2885 * parameters are programmable (all other parms are ignored): ClkMult,
2886 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2889 static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2890 uint16_t DisableIntSrc)
2892 register uint16_t cra;
2893 register uint16_t crb;
2894 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2896 /* Initialize CRA and CRB images. */
2897 cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
2898 | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
2900 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
2901 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
2903 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2905 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2908 /* Populate all mode-dependent attributes of CRA & CRB images. */
2909 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2910 case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
2911 /* (Extender valid only for B counters). */
2913 case CLKSRC_TIMER: /* Timer Mode: */
2914 cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
2915 | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2916 | (1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
2917 | (MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
2920 default: /* Counter Mode: */
2921 cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
2922 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
2923 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
2924 (MULT_X1 << CRABIT_CLKMULT_A) :
2925 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2929 /* Force positive index polarity if IndxSrc is software-driven only, */
2930 /* otherwise pass it through. */
2931 if (~setup & STDMSK_INDXSRC)
2932 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2935 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2936 /* enable mask to indicate the counter interrupt is disabled. */
2938 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2940 /* While retaining CounterB and LatchSrc configurations, program the */
2941 /* new counter operating mode. */
2942 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2943 DEBIreplace(dev, k->MyCRB,
2944 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2947 static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2948 uint16_t DisableIntSrc)
2950 register uint16_t cra;
2951 register uint16_t crb;
2952 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2954 /* Initialize CRA and CRB images. */
2955 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
2957 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
2958 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
2959 | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
2961 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2963 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2966 /* Populate all mode-dependent attributes of CRA & CRB images. */
2967 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2968 case CLKSRC_TIMER: /* Timer Mode: */
2969 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
2970 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
2971 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
2972 | (MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
2975 case CLKSRC_EXTENDER: /* Extender Mode: */
2976 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
2977 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
2978 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
2979 | (MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
2982 default: /* Counter Mode: */
2983 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
2984 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
2985 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
2986 (MULT_X1 << CRBBIT_CLKMULT_B) :
2987 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2991 /* Force positive index polarity if IndxSrc is software-driven only, */
2992 /* otherwise pass it through. */
2993 if (~setup & STDMSK_INDXSRC)
2994 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2997 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2998 /* enable mask to indicate the counter interrupt is disabled. */
3000 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3002 /* While retaining CounterA and LatchSrc configurations, program the */
3003 /* new counter operating mode. */
3004 DEBIreplace(dev, k->MyCRA,
3005 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3006 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3009 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
3011 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3013 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3014 DEBIreplace(dev, k->MyCRB,
3015 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3016 (uint16_t) (enab << CRBBIT_CLKENAB_A));
3019 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3021 DEBIreplace(dev, k->MyCRB,
3022 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3023 (uint16_t) (enab << CRBBIT_CLKENAB_B));
3026 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3028 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3031 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3033 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3036 /* Return/set a counter pair's latch trigger source. 0: On read
3037 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3041 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value)
3043 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3044 DEBIreplace(dev, k->MyCRB,
3045 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3046 (uint16_t) (value << CRBBIT_LATCHSRC));
3048 DEBUG("SetLatchSource: SetLatchSource exit \n");
3052 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3054 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3059 * Return/set the event that will trigger transfer of the preload
3060 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3061 * 2=OverflowA (B counters only), 3=disabled.
3064 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3066 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3067 (uint16_t) (Trig << CRABIT_LOADSRC_A));
3070 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3072 DEBIreplace(dev, k->MyCRB,
3073 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3074 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3077 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3079 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3082 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3084 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3087 /* Return/set counter interrupt source and clear any captured
3088 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3089 * 2=IndexOnly, 3=IndexAndOverflow.
3092 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3095 /* Reset any pending counter overflow or index captures. */
3096 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3097 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3099 /* Program counter interrupt source. */
3100 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3101 (uint16_t) (IntSource << CRABIT_INTSRC_A));
3103 /* Update MISC2 interrupt enable mask. */
3104 devpriv->CounterIntEnabs =
3105 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3106 MyEventBits[IntSource];
3109 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3114 /* Cache writeable CRB register image. */
3115 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3117 /* Reset any pending counter overflow or index captures. */
3118 DEBIwrite(dev, k->MyCRB,
3119 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3121 /* Program counter interrupt source. */
3122 DEBIwrite(dev, k->MyCRB,
3123 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3126 /* Update MISC2 interrupt enable mask. */
3127 devpriv->CounterIntEnabs =
3128 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3129 MyEventBits[IntSource];
3132 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3134 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3137 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3139 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3142 /* Return/set the clock multiplier. */
3144 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3146 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3149 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
3151 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3154 /* Return/set the clock polarity. */
3156 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3158 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3161 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
3163 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3166 /* Return/set the clock source. */
3168 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3170 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3173 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
3175 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3178 /* Return/set the index polarity. */
3180 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3182 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3185 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
3187 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3190 /* Return/set the index source. */
3192 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3194 /* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3195 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3198 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
3200 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3203 /* Generate an index pulse. */
3205 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3207 register uint16_t cra;
3209 DEBUG("PulseIndex_A: pulse index enter\n");
3211 cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
3212 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3213 DEBUG("PulseIndex_A: pulse index step1\n");
3214 DEBIwrite(dev, k->MyCRA, cra);
3217 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3219 register uint16_t crb;
3221 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
3222 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3223 DEBIwrite(dev, k->MyCRB, crb);
3226 /* Write value into counter preload register. */
3228 static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value)
3230 DEBUG("Preload: preload enter\n");
3231 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
3232 DEBUG("Preload: preload step 1\n");
3233 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3234 (uint16_t) (value >> 16));
3237 static void CountersInit(struct comedi_device *dev)
3240 struct enc_private *k;
3241 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
3243 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
3244 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
3245 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
3246 (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
3247 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
3248 (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
3250 /* Disable all counter interrupts and clear any captured counter events. */
3251 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3253 k->SetMode(dev, k, Setup, TRUE);
3254 k->SetIntSrc(dev, k, 0);
3255 k->ResetCapFlags(dev, k);
3256 k->SetEnable(dev, k, CLKENAB_ALWAYS);
3258 DEBUG("CountersInit: counters initialized \n");