1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
50 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
51 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
52 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
54 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
57 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
58 * @hw: pointer to hardware structure
60 * Starts the hardware by filling the bus info structure and media type, clears
61 * all on chip counters, initializes receive address registers, multicast
62 * table, VLAN filter table, calls routine to set up link and flow control
63 * settings, and leaves transmit and receive units disabled and uninitialized
65 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
69 /* Set the media type */
70 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
72 /* Identify the PHY */
73 hw->phy.ops.identify(hw);
76 * Store MAC address from RAR0, clear receive address registers, and
77 * clear the multicast table
79 hw->mac.ops.init_rx_addrs(hw);
81 /* Clear the VLAN filter table */
82 hw->mac.ops.clear_vfta(hw);
84 /* Clear statistics registers */
85 hw->mac.ops.clear_hw_cntrs(hw);
87 /* Set No Snoop Disable */
88 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
89 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
90 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
91 IXGBE_WRITE_FLUSH(hw);
93 /* Clear adapter stopped flag */
94 hw->adapter_stopped = false;
100 * ixgbe_init_hw_generic - Generic hardware initialization
101 * @hw: pointer to hardware structure
103 * Initialize the hardware by resetting the hardware, filling the bus info
104 * structure and media type, clears all on chip counters, initializes receive
105 * address registers, multicast table, VLAN filter table, calls routine to set
106 * up link and flow control settings, and leaves transmit and receive units
107 * disabled and uninitialized
109 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
111 /* Reset the hardware */
112 hw->mac.ops.reset_hw(hw);
115 hw->mac.ops.start_hw(hw);
121 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
122 * @hw: pointer to hardware structure
124 * Clears all hardware statistics counters by reading them from the hardware
125 * Statistics counters are clear on read.
127 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
131 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
132 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
133 IXGBE_READ_REG(hw, IXGBE_ERRBC);
134 IXGBE_READ_REG(hw, IXGBE_MSPDC);
135 for (i = 0; i < 8; i++)
136 IXGBE_READ_REG(hw, IXGBE_MPC(i));
138 IXGBE_READ_REG(hw, IXGBE_MLFC);
139 IXGBE_READ_REG(hw, IXGBE_MRFC);
140 IXGBE_READ_REG(hw, IXGBE_RLEC);
141 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
142 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
143 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
146 for (i = 0; i < 8; i++) {
147 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
148 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
149 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
153 IXGBE_READ_REG(hw, IXGBE_PRC64);
154 IXGBE_READ_REG(hw, IXGBE_PRC127);
155 IXGBE_READ_REG(hw, IXGBE_PRC255);
156 IXGBE_READ_REG(hw, IXGBE_PRC511);
157 IXGBE_READ_REG(hw, IXGBE_PRC1023);
158 IXGBE_READ_REG(hw, IXGBE_PRC1522);
159 IXGBE_READ_REG(hw, IXGBE_GPRC);
160 IXGBE_READ_REG(hw, IXGBE_BPRC);
161 IXGBE_READ_REG(hw, IXGBE_MPRC);
162 IXGBE_READ_REG(hw, IXGBE_GPTC);
163 IXGBE_READ_REG(hw, IXGBE_GORCL);
164 IXGBE_READ_REG(hw, IXGBE_GORCH);
165 IXGBE_READ_REG(hw, IXGBE_GOTCL);
166 IXGBE_READ_REG(hw, IXGBE_GOTCH);
167 for (i = 0; i < 8; i++)
168 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
169 IXGBE_READ_REG(hw, IXGBE_RUC);
170 IXGBE_READ_REG(hw, IXGBE_RFC);
171 IXGBE_READ_REG(hw, IXGBE_ROC);
172 IXGBE_READ_REG(hw, IXGBE_RJC);
173 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
174 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
176 IXGBE_READ_REG(hw, IXGBE_TORL);
177 IXGBE_READ_REG(hw, IXGBE_TORH);
178 IXGBE_READ_REG(hw, IXGBE_TPR);
179 IXGBE_READ_REG(hw, IXGBE_TPT);
180 IXGBE_READ_REG(hw, IXGBE_PTC64);
181 IXGBE_READ_REG(hw, IXGBE_PTC127);
182 IXGBE_READ_REG(hw, IXGBE_PTC255);
183 IXGBE_READ_REG(hw, IXGBE_PTC511);
184 IXGBE_READ_REG(hw, IXGBE_PTC1023);
185 IXGBE_READ_REG(hw, IXGBE_PTC1522);
186 IXGBE_READ_REG(hw, IXGBE_MPTC);
187 IXGBE_READ_REG(hw, IXGBE_BPTC);
188 for (i = 0; i < 16; i++) {
189 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
190 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
191 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
199 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
200 * @hw: pointer to hardware structure
201 * @pba_num: stores the part number from the EEPROM
203 * Reads the part number from the EEPROM.
205 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
210 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
212 hw_dbg(hw, "NVM Read Error\n");
215 *pba_num = (u32)(data << 16);
217 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
219 hw_dbg(hw, "NVM Read Error\n");
228 * ixgbe_get_mac_addr_generic - Generic get MAC address
229 * @hw: pointer to hardware structure
230 * @mac_addr: Adapter MAC address
232 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
233 * A reset of the adapter must be performed prior to calling this function
234 * in order for the MAC address to have been loaded from the EEPROM into RAR0
236 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
242 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
243 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
245 for (i = 0; i < 4; i++)
246 mac_addr[i] = (u8)(rar_low >> (i*8));
248 for (i = 0; i < 2; i++)
249 mac_addr[i+4] = (u8)(rar_high >> (i*8));
255 * ixgbe_get_bus_info_generic - Generic set PCI bus info
256 * @hw: pointer to hardware structure
258 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
260 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
262 struct ixgbe_adapter *adapter = hw->back;
263 struct ixgbe_mac_info *mac = &hw->mac;
266 hw->bus.type = ixgbe_bus_type_pci_express;
268 /* Get the negotiated link width and speed from PCI config space */
269 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
272 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
273 case IXGBE_PCI_LINK_WIDTH_1:
274 hw->bus.width = ixgbe_bus_width_pcie_x1;
276 case IXGBE_PCI_LINK_WIDTH_2:
277 hw->bus.width = ixgbe_bus_width_pcie_x2;
279 case IXGBE_PCI_LINK_WIDTH_4:
280 hw->bus.width = ixgbe_bus_width_pcie_x4;
282 case IXGBE_PCI_LINK_WIDTH_8:
283 hw->bus.width = ixgbe_bus_width_pcie_x8;
286 hw->bus.width = ixgbe_bus_width_unknown;
290 switch (link_status & IXGBE_PCI_LINK_SPEED) {
291 case IXGBE_PCI_LINK_SPEED_2500:
292 hw->bus.speed = ixgbe_bus_speed_2500;
294 case IXGBE_PCI_LINK_SPEED_5000:
295 hw->bus.speed = ixgbe_bus_speed_5000;
298 hw->bus.speed = ixgbe_bus_speed_unknown;
302 mac->ops.set_lan_id(hw);
308 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
309 * @hw: pointer to the HW structure
311 * Determines the LAN function id by reading memory-mapped registers
312 * and swaps the port value if requested.
314 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
316 struct ixgbe_bus_info *bus = &hw->bus;
319 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
320 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
321 bus->lan_id = bus->func;
323 /* check for a port swap */
324 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
325 if (reg & IXGBE_FACTPS_LFS)
330 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
331 * @hw: pointer to hardware structure
333 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
334 * disables transmit and receive units. The adapter_stopped flag is used by
335 * the shared code and drivers to determine if the adapter is in a stopped
336 * state and should not touch the hardware.
338 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
340 u32 number_of_queues;
345 * Set the adapter_stopped flag so other driver functions stop touching
348 hw->adapter_stopped = true;
350 /* Disable the receive unit */
351 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
352 reg_val &= ~(IXGBE_RXCTRL_RXEN);
353 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
354 IXGBE_WRITE_FLUSH(hw);
357 /* Clear interrupt mask to stop from interrupts being generated */
358 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
360 /* Clear any pending interrupts */
361 IXGBE_READ_REG(hw, IXGBE_EICR);
363 /* Disable the transmit unit. Each queue must be disabled. */
364 number_of_queues = hw->mac.max_tx_queues;
365 for (i = 0; i < number_of_queues; i++) {
366 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
367 if (reg_val & IXGBE_TXDCTL_ENABLE) {
368 reg_val &= ~IXGBE_TXDCTL_ENABLE;
369 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
374 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
375 * access and verify no pending requests
377 if (ixgbe_disable_pcie_master(hw) != 0)
378 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
384 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
385 * @hw: pointer to hardware structure
386 * @index: led number to turn on
388 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
390 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
392 /* To turn on the LED, set mode to ON. */
393 led_reg &= ~IXGBE_LED_MODE_MASK(index);
394 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
395 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
396 IXGBE_WRITE_FLUSH(hw);
402 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
403 * @hw: pointer to hardware structure
404 * @index: led number to turn off
406 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
408 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
410 /* To turn off the LED, set mode to OFF. */
411 led_reg &= ~IXGBE_LED_MODE_MASK(index);
412 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
413 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
414 IXGBE_WRITE_FLUSH(hw);
420 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
421 * @hw: pointer to hardware structure
423 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
424 * ixgbe_hw struct in order to set up EEPROM access.
426 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
428 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
432 if (eeprom->type == ixgbe_eeprom_uninitialized) {
433 eeprom->type = ixgbe_eeprom_none;
434 /* Set default semaphore delay to 10ms which is a well
436 eeprom->semaphore_delay = 10;
439 * Check for EEPROM present first.
440 * If not present leave as none
442 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
443 if (eec & IXGBE_EEC_PRES) {
444 eeprom->type = ixgbe_eeprom_spi;
447 * SPI EEPROM is assumed here. This code would need to
448 * change if a future EEPROM is not SPI.
450 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
451 IXGBE_EEC_SIZE_SHIFT);
452 eeprom->word_size = 1 << (eeprom_size +
453 IXGBE_EEPROM_WORD_SIZE_SHIFT);
456 if (eec & IXGBE_EEC_ADDR_SIZE)
457 eeprom->address_bits = 16;
459 eeprom->address_bits = 8;
460 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
461 "%d\n", eeprom->type, eeprom->word_size,
462 eeprom->address_bits);
469 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
470 * @hw: pointer to hardware structure
471 * @offset: offset within the EEPROM to be written to
472 * @data: 16 bit word to be written to the EEPROM
474 * If ixgbe_eeprom_update_checksum is not called after this function, the
475 * EEPROM will most likely contain an invalid checksum.
477 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
480 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
482 hw->eeprom.ops.init_params(hw);
484 if (offset >= hw->eeprom.word_size) {
485 status = IXGBE_ERR_EEPROM;
489 /* Prepare the EEPROM for writing */
490 status = ixgbe_acquire_eeprom(hw);
493 if (ixgbe_ready_eeprom(hw) != 0) {
494 ixgbe_release_eeprom(hw);
495 status = IXGBE_ERR_EEPROM;
500 ixgbe_standby_eeprom(hw);
502 /* Send the WRITE ENABLE command (8 bit opcode ) */
503 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
504 IXGBE_EEPROM_OPCODE_BITS);
506 ixgbe_standby_eeprom(hw);
509 * Some SPI eeproms use the 8th address bit embedded in the
512 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
513 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
515 /* Send the Write command (8-bit opcode + addr) */
516 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
517 IXGBE_EEPROM_OPCODE_BITS);
518 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
519 hw->eeprom.address_bits);
522 data = (data >> 8) | (data << 8);
523 ixgbe_shift_out_eeprom_bits(hw, data, 16);
524 ixgbe_standby_eeprom(hw);
526 msleep(hw->eeprom.semaphore_delay);
527 /* Done with writing - release the EEPROM */
528 ixgbe_release_eeprom(hw);
536 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
537 * @hw: pointer to hardware structure
538 * @offset: offset within the EEPROM to be read
539 * @data: read 16 bit value from EEPROM
541 * Reads 16 bit value from EEPROM through bit-bang method
543 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
548 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
550 hw->eeprom.ops.init_params(hw);
552 if (offset >= hw->eeprom.word_size) {
553 status = IXGBE_ERR_EEPROM;
557 /* Prepare the EEPROM for reading */
558 status = ixgbe_acquire_eeprom(hw);
561 if (ixgbe_ready_eeprom(hw) != 0) {
562 ixgbe_release_eeprom(hw);
563 status = IXGBE_ERR_EEPROM;
568 ixgbe_standby_eeprom(hw);
571 * Some SPI eeproms use the 8th address bit embedded in the
574 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
575 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
577 /* Send the READ command (opcode + addr) */
578 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
579 IXGBE_EEPROM_OPCODE_BITS);
580 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
581 hw->eeprom.address_bits);
584 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
585 *data = (word_in >> 8) | (word_in << 8);
587 /* End this read operation */
588 ixgbe_release_eeprom(hw);
596 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
597 * @hw: pointer to hardware structure
598 * @offset: offset of word in the EEPROM to read
599 * @data: word read from the EEPROM
601 * Reads a 16 bit word from the EEPROM using the EERD register.
603 s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
608 hw->eeprom.ops.init_params(hw);
610 if (offset >= hw->eeprom.word_size) {
611 status = IXGBE_ERR_EEPROM;
615 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
616 IXGBE_EEPROM_READ_REG_START;
618 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
619 status = ixgbe_poll_eeprom_eerd_done(hw);
622 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
623 IXGBE_EEPROM_READ_REG_DATA);
625 hw_dbg(hw, "Eeprom read timed out\n");
632 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
633 * @hw: pointer to hardware structure
635 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
637 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
641 s32 status = IXGBE_ERR_EEPROM;
643 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
644 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
645 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
655 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
656 * @hw: pointer to hardware structure
658 * Prepares EEPROM for access using bit-bang method. This function should
659 * be called before issuing a command to the EEPROM.
661 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
667 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
668 status = IXGBE_ERR_SWFW_SYNC;
671 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
673 /* Request EEPROM Access */
674 eec |= IXGBE_EEC_REQ;
675 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
677 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
678 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
679 if (eec & IXGBE_EEC_GNT)
684 /* Release if grant not acquired */
685 if (!(eec & IXGBE_EEC_GNT)) {
686 eec &= ~IXGBE_EEC_REQ;
687 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
688 hw_dbg(hw, "Could not acquire EEPROM grant\n");
690 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
691 status = IXGBE_ERR_EEPROM;
695 /* Setup EEPROM for Read/Write */
697 /* Clear CS and SK */
698 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
699 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
700 IXGBE_WRITE_FLUSH(hw);
707 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
708 * @hw: pointer to hardware structure
710 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
712 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
714 s32 status = IXGBE_ERR_EEPROM;
719 /* Set timeout value based on size of EEPROM */
720 timeout = hw->eeprom.word_size + 1;
722 /* Get SMBI software semaphore between device drivers first */
723 for (i = 0; i < timeout; i++) {
725 * If the SMBI bit is 0 when we read it, then the bit will be
726 * set and we have the semaphore
728 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
729 if (!(swsm & IXGBE_SWSM_SMBI)) {
736 /* Now get the semaphore between SW/FW through the SWESMBI bit */
738 for (i = 0; i < timeout; i++) {
739 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
741 /* Set the SW EEPROM semaphore bit to request access */
742 swsm |= IXGBE_SWSM_SWESMBI;
743 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
746 * If we set the bit successfully then we got the
749 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
750 if (swsm & IXGBE_SWSM_SWESMBI)
757 * Release semaphores and return error if SW EEPROM semaphore
758 * was not granted because we don't have access to the EEPROM
761 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
763 ixgbe_release_eeprom_semaphore(hw);
764 status = IXGBE_ERR_EEPROM;
772 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
773 * @hw: pointer to hardware structure
775 * This function clears hardware semaphore bits.
777 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
781 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
783 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
784 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
785 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
786 IXGBE_WRITE_FLUSH(hw);
790 * ixgbe_ready_eeprom - Polls for EEPROM ready
791 * @hw: pointer to hardware structure
793 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
800 * Read "Status Register" repeatedly until the LSB is cleared. The
801 * EEPROM will signal that the command has been completed by clearing
802 * bit 0 of the internal status register. If it's not cleared within
803 * 5 milliseconds, then error out.
805 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
806 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
807 IXGBE_EEPROM_OPCODE_BITS);
808 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
809 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
813 ixgbe_standby_eeprom(hw);
817 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
818 * devices (and only 0-5mSec on 5V devices)
820 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
821 hw_dbg(hw, "SPI EEPROM Status error\n");
822 status = IXGBE_ERR_EEPROM;
829 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
830 * @hw: pointer to hardware structure
832 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
836 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
838 /* Toggle CS to flush commands */
840 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
841 IXGBE_WRITE_FLUSH(hw);
843 eec &= ~IXGBE_EEC_CS;
844 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
845 IXGBE_WRITE_FLUSH(hw);
850 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
851 * @hw: pointer to hardware structure
852 * @data: data to send to the EEPROM
853 * @count: number of bits to shift out
855 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
862 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
865 * Mask is used to shift "count" bits of "data" out to the EEPROM
866 * one bit at a time. Determine the starting bit based on count
868 mask = 0x01 << (count - 1);
870 for (i = 0; i < count; i++) {
872 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
873 * "1", and then raising and then lowering the clock (the SK
874 * bit controls the clock input to the EEPROM). A "0" is
875 * shifted out to the EEPROM by setting "DI" to "0" and then
876 * raising and then lowering the clock.
881 eec &= ~IXGBE_EEC_DI;
883 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
884 IXGBE_WRITE_FLUSH(hw);
888 ixgbe_raise_eeprom_clk(hw, &eec);
889 ixgbe_lower_eeprom_clk(hw, &eec);
892 * Shift mask to signify next bit of data to shift in to the
898 /* We leave the "DI" bit set to "0" when we leave this routine. */
899 eec &= ~IXGBE_EEC_DI;
900 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
901 IXGBE_WRITE_FLUSH(hw);
905 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
906 * @hw: pointer to hardware structure
908 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
915 * In order to read a register from the EEPROM, we need to shift
916 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
917 * the clock input to the EEPROM (setting the SK bit), and then reading
918 * the value of the "DO" bit. During this "shifting in" process the
919 * "DI" bit should always be clear.
921 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
923 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
925 for (i = 0; i < count; i++) {
927 ixgbe_raise_eeprom_clk(hw, &eec);
929 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
931 eec &= ~(IXGBE_EEC_DI);
932 if (eec & IXGBE_EEC_DO)
935 ixgbe_lower_eeprom_clk(hw, &eec);
942 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
943 * @hw: pointer to hardware structure
944 * @eec: EEC register's current value
946 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
949 * Raise the clock input to the EEPROM
950 * (setting the SK bit), then delay
952 *eec = *eec | IXGBE_EEC_SK;
953 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
954 IXGBE_WRITE_FLUSH(hw);
959 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
960 * @hw: pointer to hardware structure
961 * @eecd: EECD's current value
963 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
966 * Lower the clock input to the EEPROM (clearing the SK bit), then
969 *eec = *eec & ~IXGBE_EEC_SK;
970 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
971 IXGBE_WRITE_FLUSH(hw);
976 * ixgbe_release_eeprom - Release EEPROM, release semaphores
977 * @hw: pointer to hardware structure
979 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
983 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
985 eec |= IXGBE_EEC_CS; /* Pull CS high */
986 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
988 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
989 IXGBE_WRITE_FLUSH(hw);
993 /* Stop requesting EEPROM access */
994 eec &= ~IXGBE_EEC_REQ;
995 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
997 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1001 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1002 * @hw: pointer to hardware structure
1004 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1013 /* Include 0x0-0x3F in the checksum */
1014 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1015 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1016 hw_dbg(hw, "EEPROM read failed\n");
1022 /* Include all data from pointers except for the fw pointer */
1023 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1024 hw->eeprom.ops.read(hw, i, &pointer);
1026 /* Make sure the pointer seems valid */
1027 if (pointer != 0xFFFF && pointer != 0) {
1028 hw->eeprom.ops.read(hw, pointer, &length);
1030 if (length != 0xFFFF && length != 0) {
1031 for (j = pointer+1; j <= pointer+length; j++) {
1032 hw->eeprom.ops.read(hw, j, &word);
1039 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1045 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1046 * @hw: pointer to hardware structure
1047 * @checksum_val: calculated checksum
1049 * Performs checksum calculation and validates the EEPROM checksum. If the
1050 * caller does not need checksum_val, the value can be NULL.
1052 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1057 u16 read_checksum = 0;
1060 * Read the first word from the EEPROM. If this times out or fails, do
1061 * not continue or we could be in for a very long wait while every
1064 status = hw->eeprom.ops.read(hw, 0, &checksum);
1067 checksum = ixgbe_calc_eeprom_checksum(hw);
1069 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1072 * Verify read checksum from EEPROM is the same as
1073 * calculated checksum
1075 if (read_checksum != checksum)
1076 status = IXGBE_ERR_EEPROM_CHECKSUM;
1078 /* If the user cares, return the calculated checksum */
1080 *checksum_val = checksum;
1082 hw_dbg(hw, "EEPROM read failed\n");
1089 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1090 * @hw: pointer to hardware structure
1092 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1098 * Read the first word from the EEPROM. If this times out or fails, do
1099 * not continue or we could be in for a very long wait while every
1102 status = hw->eeprom.ops.read(hw, 0, &checksum);
1105 checksum = ixgbe_calc_eeprom_checksum(hw);
1106 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1109 hw_dbg(hw, "EEPROM read failed\n");
1116 * ixgbe_validate_mac_addr - Validate MAC address
1117 * @mac_addr: pointer to MAC address.
1119 * Tests a MAC address to ensure it is a valid Individual Address
1121 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1125 /* Make sure it is not a multicast address */
1126 if (IXGBE_IS_MULTICAST(mac_addr))
1127 status = IXGBE_ERR_INVALID_MAC_ADDR;
1128 /* Not a broadcast address */
1129 else if (IXGBE_IS_BROADCAST(mac_addr))
1130 status = IXGBE_ERR_INVALID_MAC_ADDR;
1131 /* Reject the zero address */
1132 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1133 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1134 status = IXGBE_ERR_INVALID_MAC_ADDR;
1140 * ixgbe_set_rar_generic - Set Rx address register
1141 * @hw: pointer to hardware structure
1142 * @index: Receive address register to write
1143 * @addr: Address to put into receive address register
1144 * @vmdq: VMDq "set" or "pool" index
1145 * @enable_addr: set flag that address is active
1147 * Puts an ethernet address into a receive address register.
1149 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1152 u32 rar_low, rar_high;
1153 u32 rar_entries = hw->mac.num_rar_entries;
1155 /* setup VMDq pool selection before this RAR gets enabled */
1156 hw->mac.ops.set_vmdq(hw, index, vmdq);
1158 /* Make sure we are using a valid rar index range */
1159 if (index < rar_entries) {
1161 * HW expects these in little endian so we reverse the byte
1162 * order from network order (big endian) to little endian
1164 rar_low = ((u32)addr[0] |
1165 ((u32)addr[1] << 8) |
1166 ((u32)addr[2] << 16) |
1167 ((u32)addr[3] << 24));
1169 * Some parts put the VMDq setting in the extra RAH bits,
1170 * so save everything except the lower 16 bits that hold part
1171 * of the address and the address valid bit.
1173 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1174 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1175 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1177 if (enable_addr != 0)
1178 rar_high |= IXGBE_RAH_AV;
1180 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1181 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1183 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1190 * ixgbe_clear_rar_generic - Remove Rx address register
1191 * @hw: pointer to hardware structure
1192 * @index: Receive address register to write
1194 * Clears an ethernet address from a receive address register.
1196 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1199 u32 rar_entries = hw->mac.num_rar_entries;
1201 /* Make sure we are using a valid rar index range */
1202 if (index < rar_entries) {
1204 * Some parts put the VMDq setting in the extra RAH bits,
1205 * so save everything except the lower 16 bits that hold part
1206 * of the address and the address valid bit.
1208 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1209 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1211 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1212 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1214 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1217 /* clear VMDq pool/queue selection for this RAR */
1218 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1224 * ixgbe_enable_rar - Enable Rx address register
1225 * @hw: pointer to hardware structure
1226 * @index: index into the RAR table
1228 * Enables the select receive address register.
1230 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1234 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1235 rar_high |= IXGBE_RAH_AV;
1236 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1240 * ixgbe_disable_rar - Disable Rx address register
1241 * @hw: pointer to hardware structure
1242 * @index: index into the RAR table
1244 * Disables the select receive address register.
1246 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1250 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1251 rar_high &= (~IXGBE_RAH_AV);
1252 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1256 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1257 * @hw: pointer to hardware structure
1259 * Places the MAC address in receive address register 0 and clears the rest
1260 * of the receive address registers. Clears the multicast table. Assumes
1261 * the receiver is in reset when the routine is called.
1263 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1266 u32 rar_entries = hw->mac.num_rar_entries;
1269 * If the current mac address is valid, assume it is a software override
1270 * to the permanent address.
1271 * Otherwise, use the permanent address from the eeprom.
1273 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1274 IXGBE_ERR_INVALID_MAC_ADDR) {
1275 /* Get the MAC address from the RAR0 for later reference */
1276 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1278 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1279 hw->mac.addr[0], hw->mac.addr[1],
1281 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1282 hw->mac.addr[4], hw->mac.addr[5]);
1284 /* Setup the receive address. */
1285 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1286 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1287 hw->mac.addr[0], hw->mac.addr[1],
1289 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1290 hw->mac.addr[4], hw->mac.addr[5]);
1292 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1294 hw->addr_ctrl.overflow_promisc = 0;
1296 hw->addr_ctrl.rar_used_count = 1;
1298 /* Zero out the other receive addresses. */
1299 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1300 for (i = 1; i < rar_entries; i++) {
1301 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1302 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1306 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1307 hw->addr_ctrl.mta_in_use = 0;
1308 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1310 hw_dbg(hw, " Clearing MTA\n");
1311 for (i = 0; i < hw->mac.mcft_size; i++)
1312 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1314 if (hw->mac.ops.init_uta_tables)
1315 hw->mac.ops.init_uta_tables(hw);
1321 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1322 * @hw: pointer to hardware structure
1323 * @addr: new address
1325 * Adds it to unused receive address register or goes into promiscuous mode.
1327 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1329 u32 rar_entries = hw->mac.num_rar_entries;
1332 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1333 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1336 * Place this address in the RAR if there is room,
1337 * else put the controller into promiscuous mode
1339 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1340 rar = hw->addr_ctrl.rar_used_count -
1341 hw->addr_ctrl.mc_addr_in_rar_count;
1342 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1343 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1344 hw->addr_ctrl.rar_used_count++;
1346 hw->addr_ctrl.overflow_promisc++;
1349 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1353 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1354 * @hw: pointer to hardware structure
1355 * @addr_list: the list of new addresses
1356 * @addr_count: number of addresses
1357 * @next: iterator function to walk the address list
1359 * The given list replaces any existing list. Clears the secondary addrs from
1360 * receive address registers. Uses unused receive address registers for the
1361 * first secondary addresses, and falls back to promiscuous mode as needed.
1363 * Drivers using secondary unicast addresses must set user_set_promisc when
1364 * manually putting the device into promiscuous mode.
1366 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1367 u32 addr_count, ixgbe_mc_addr_itr next)
1371 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1377 * Clear accounting of old secondary address list,
1378 * don't count RAR[0]
1380 uc_addr_in_use = hw->addr_ctrl.rar_used_count -
1381 hw->addr_ctrl.mc_addr_in_rar_count - 1;
1382 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1383 hw->addr_ctrl.overflow_promisc = 0;
1385 /* Zero out the other receive addresses */
1386 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
1387 for (i = 1; i <= uc_addr_in_use; i++) {
1388 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1389 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1392 /* Add the new addresses */
1393 for (i = 0; i < addr_count; i++) {
1394 hw_dbg(hw, " Adding the secondary addresses:\n");
1395 addr = next(hw, &addr_list, &vmdq);
1396 ixgbe_add_uc_addr(hw, addr, vmdq);
1399 if (hw->addr_ctrl.overflow_promisc) {
1400 /* enable promisc if not already in overflow or set by user */
1401 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1402 hw_dbg(hw, " Entering address overflow promisc mode\n");
1403 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1404 fctrl |= IXGBE_FCTRL_UPE;
1405 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1408 /* only disable if set by overflow, not by user */
1409 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1410 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1411 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1412 fctrl &= ~IXGBE_FCTRL_UPE;
1413 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1417 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1422 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1423 * @hw: pointer to hardware structure
1424 * @mc_addr: the multicast address
1426 * Extracts the 12 bits, from a multicast address, to determine which
1427 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1428 * incoming rx multicast addresses, to determine the bit-vector to check in
1429 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1430 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1431 * to mc_filter_type.
1433 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1437 switch (hw->mac.mc_filter_type) {
1438 case 0: /* use bits [47:36] of the address */
1439 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1441 case 1: /* use bits [46:35] of the address */
1442 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1444 case 2: /* use bits [45:34] of the address */
1445 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1447 case 3: /* use bits [43:32] of the address */
1448 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1450 default: /* Invalid mc_filter_type */
1451 hw_dbg(hw, "MC filter type param set incorrectly\n");
1455 /* vector can only be 12-bits or boundary will be exceeded */
1461 * ixgbe_set_mta - Set bit-vector in multicast table
1462 * @hw: pointer to hardware structure
1463 * @hash_value: Multicast address hash value
1465 * Sets the bit-vector in the multicast table.
1467 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1474 hw->addr_ctrl.mta_in_use++;
1476 vector = ixgbe_mta_vector(hw, mc_addr);
1477 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1480 * The MTA is a register array of 128 32-bit registers. It is treated
1481 * like an array of 4096 bits. We want to set bit
1482 * BitArray[vector_value]. So we figure out what register the bit is
1483 * in, read it, OR in the new bit, then write back the new value. The
1484 * register is determined by the upper 7 bits of the vector value and
1485 * the bit within that register are determined by the lower 5 bits of
1488 vector_reg = (vector >> 5) & 0x7F;
1489 vector_bit = vector & 0x1F;
1490 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1491 mta_reg |= (1 << vector_bit);
1492 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1496 * ixgbe_add_mc_addr - Adds a multicast address.
1497 * @hw: pointer to hardware structure
1498 * @mc_addr: new multicast address
1500 * Adds it to unused receive address register or to the multicast table.
1502 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
1504 u32 rar_entries = hw->mac.num_rar_entries;
1507 hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
1508 mc_addr[0], mc_addr[1], mc_addr[2],
1509 mc_addr[3], mc_addr[4], mc_addr[5]);
1512 * Place this multicast address in the RAR if there is room,
1513 * else put it in the MTA
1515 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1516 /* use RAR from the end up for multicast */
1517 rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1;
1518 hw->mac.ops.set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV);
1519 hw_dbg(hw, "Added a multicast address to RAR[%d]\n", rar);
1520 hw->addr_ctrl.rar_used_count++;
1521 hw->addr_ctrl.mc_addr_in_rar_count++;
1523 ixgbe_set_mta(hw, mc_addr);
1526 hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
1530 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1531 * @hw: pointer to hardware structure
1532 * @mc_addr_list: the list of new multicast addresses
1533 * @mc_addr_count: number of addresses
1534 * @next: iterator function to walk the multicast address list
1536 * The given list replaces any existing list. Clears the MC addrs from receive
1537 * address registers and the multicast table. Uses unused receive address
1538 * registers for the first multicast addresses, and hashes the rest into the
1541 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1542 u32 mc_addr_count, ixgbe_mc_addr_itr next)
1545 u32 rar_entries = hw->mac.num_rar_entries;
1549 * Set the new number of MC addresses that we are being requested to
1552 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1553 hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
1554 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1555 hw->addr_ctrl.mta_in_use = 0;
1557 /* Zero out the other receive addresses. */
1558 hw_dbg(hw, "Clearing RAR[%d-%d]\n", hw->addr_ctrl.rar_used_count,
1560 for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
1561 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1562 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1566 hw_dbg(hw, " Clearing MTA\n");
1567 for (i = 0; i < hw->mac.mcft_size; i++)
1568 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1570 /* Add the new addresses */
1571 for (i = 0; i < mc_addr_count; i++) {
1572 hw_dbg(hw, " Adding the multicast addresses:\n");
1573 ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
1577 if (hw->addr_ctrl.mta_in_use > 0)
1578 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1579 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1581 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1586 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1587 * @hw: pointer to hardware structure
1589 * Enables multicast address in RAR and the use of the multicast hash table.
1591 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1594 u32 rar_entries = hw->mac.num_rar_entries;
1595 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1597 if (a->mc_addr_in_rar_count > 0)
1598 for (i = (rar_entries - a->mc_addr_in_rar_count);
1599 i < rar_entries; i++)
1600 ixgbe_enable_rar(hw, i);
1602 if (a->mta_in_use > 0)
1603 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1604 hw->mac.mc_filter_type);
1610 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1611 * @hw: pointer to hardware structure
1613 * Disables multicast address in RAR and the use of the multicast hash table.
1615 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1618 u32 rar_entries = hw->mac.num_rar_entries;
1619 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1621 if (a->mc_addr_in_rar_count > 0)
1622 for (i = (rar_entries - a->mc_addr_in_rar_count);
1623 i < rar_entries; i++)
1624 ixgbe_disable_rar(hw, i);
1626 if (a->mta_in_use > 0)
1627 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1633 * ixgbe_fc_enable - Enable flow control
1634 * @hw: pointer to hardware structure
1635 * @packetbuf_num: packet buffer number (0-7)
1637 * Enable flow control according to the current settings.
1639 s32 ixgbe_fc_enable(struct ixgbe_hw *hw, s32 packetbuf_num)
1646 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1647 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1649 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1650 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1653 * The possible values of fc.current_mode are:
1654 * 0: Flow control is completely disabled
1655 * 1: Rx flow control is enabled (we can receive pause frames,
1656 * but not send pause frames).
1657 * 2: Tx flow control is enabled (we can send pause frames but
1658 * we do not support receiving pause frames).
1659 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1660 * 4: Priority Flow Control is enabled.
1663 switch (hw->fc.current_mode) {
1665 /* Flow control completely disabled by software override. */
1667 case ixgbe_fc_rx_pause:
1669 * Rx Flow control is enabled and Tx Flow control is
1670 * disabled by software override. Since there really
1671 * isn't a way to advertise that we are capable of RX
1672 * Pause ONLY, we will advertise that we support both
1673 * symmetric and asymmetric Rx PAUSE. Later, we will
1674 * disable the adapter's ability to send PAUSE frames.
1676 mflcn_reg |= IXGBE_MFLCN_RFCE;
1678 case ixgbe_fc_tx_pause:
1680 * Tx Flow control is enabled, and Rx Flow control is
1681 * disabled by software override.
1683 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1686 /* Flow control (both Rx and Tx) is enabled by SW override. */
1687 mflcn_reg |= IXGBE_MFLCN_RFCE;
1688 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1696 hw_dbg(hw, "Flow control param set incorrectly\n");
1697 ret_val = -IXGBE_ERR_CONFIG;
1702 /* Enable 802.3x based flow control settings. */
1703 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1704 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1706 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
1707 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1708 if (hw->fc.send_xon)
1709 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1710 (hw->fc.low_water | IXGBE_FCRTL_XONE));
1712 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1715 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1716 (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1719 /* Configure pause time (2 TCs per register) */
1720 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num));
1721 if ((packetbuf_num & 1) == 0)
1722 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1724 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1725 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1727 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1734 * ixgbe_fc_autoneg - Configure flow control
1735 * @hw: pointer to hardware structure
1737 * Negotiates flow control capabilities with link partner using autoneg and
1738 * applies the results.
1740 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1743 u32 i, reg, pcs_anadv_reg, pcs_lpab_reg;
1745 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1748 * The possible values of fc.current_mode are:
1749 * 0: Flow control is completely disabled
1750 * 1: Rx flow control is enabled (we can receive pause frames,
1751 * but not send pause frames).
1752 * 2: Tx flow control is enabled (we can send pause frames but
1753 * we do not support receiving pause frames).
1754 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1755 * 4: Priority Flow Control is enabled.
1758 switch (hw->fc.current_mode) {
1760 /* Flow control completely disabled by software override. */
1761 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1763 case ixgbe_fc_rx_pause:
1765 * Rx Flow control is enabled and Tx Flow control is
1766 * disabled by software override. Since there really
1767 * isn't a way to advertise that we are capable of RX
1768 * Pause ONLY, we will advertise that we support both
1769 * symmetric and asymmetric Rx PAUSE. Later, we will
1770 * disable the adapter's ability to send PAUSE frames.
1772 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1774 case ixgbe_fc_tx_pause:
1776 * Tx Flow control is enabled, and Rx Flow control is
1777 * disabled by software override.
1779 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1780 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1783 /* Flow control (both Rx and Tx) is enabled by SW override. */
1784 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1792 hw_dbg(hw, "Flow control param set incorrectly\n");
1793 ret_val = -IXGBE_ERR_CONFIG;
1798 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
1799 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
1801 /* Set PCS register for autoneg */
1802 /* Enable and restart autoneg */
1803 reg |= IXGBE_PCS1GLCTL_AN_ENABLE | IXGBE_PCS1GLCTL_AN_RESTART;
1805 /* Disable AN timeout */
1806 if (hw->fc.strict_ieee)
1807 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
1809 hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1810 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
1812 /* See if autonegotiation has succeeded */
1813 hw->mac.autoneg_succeeded = 0;
1814 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1816 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1817 if ((reg & (IXGBE_PCS1GLSTA_LINK_OK |
1818 IXGBE_PCS1GLSTA_AN_COMPLETE)) ==
1819 (IXGBE_PCS1GLSTA_LINK_OK |
1820 IXGBE_PCS1GLSTA_AN_COMPLETE)) {
1821 if (!(reg & IXGBE_PCS1GLSTA_AN_TIMED_OUT))
1822 hw->mac.autoneg_succeeded = 1;
1827 if (!hw->mac.autoneg_succeeded) {
1828 /* Autoneg failed to achieve a link, so we turn fc off */
1829 hw->fc.current_mode = ixgbe_fc_none;
1830 hw_dbg(hw, "Flow Control = NONE.\n");
1835 * Read the AN advertisement and LP ability registers and resolve
1836 * local flow control settings accordingly
1838 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1839 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1840 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1841 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1843 * Now we need to check if the user selected Rx ONLY
1844 * of pause frames. In this case, we had to advertise
1845 * FULL flow control because we could not advertise RX
1846 * ONLY. Hence, we must now check to see if we need to
1847 * turn OFF the TRANSMISSION of PAUSE frames.
1849 if (hw->fc.requested_mode == ixgbe_fc_full) {
1850 hw->fc.current_mode = ixgbe_fc_full;
1851 hw_dbg(hw, "Flow Control = FULL.\n");
1853 hw->fc.current_mode = ixgbe_fc_rx_pause;
1854 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1856 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1857 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1858 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1859 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1860 hw->fc.current_mode = ixgbe_fc_tx_pause;
1861 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1862 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1863 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1864 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1865 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1866 hw->fc.current_mode = ixgbe_fc_rx_pause;
1867 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1869 hw->fc.current_mode = ixgbe_fc_none;
1870 hw_dbg(hw, "Flow Control = NONE.\n");
1878 * ixgbe_setup_fc_generic - Set up flow control
1879 * @hw: pointer to hardware structure
1881 * Sets up flow control.
1883 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1886 ixgbe_link_speed speed;
1890 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1891 hw->fc.current_mode = hw->fc.requested_mode;
1896 /* Validate the packetbuf configuration */
1897 if (packetbuf_num < 0 || packetbuf_num > 7) {
1898 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1899 "is 0-7\n", packetbuf_num);
1900 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1905 * Validate the water mark configuration. Zero water marks are invalid
1906 * because it causes the controller to just blast out fc packets.
1908 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1909 hw_dbg(hw, "Invalid water mark configuration\n");
1910 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1915 * Validate the requested mode. Strict IEEE mode does not allow
1916 * ixgbe_fc_rx_pause because it will cause testing anomalies.
1918 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1919 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1921 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1926 * 10gig parts do not have a word in the EEPROM to determine the
1927 * default flow control setting, so we explicitly set it to full.
1929 if (hw->fc.requested_mode == ixgbe_fc_default)
1930 hw->fc.requested_mode = ixgbe_fc_full;
1933 * Save off the requested flow control mode for use later. Depending
1934 * on the link partner's capabilities, we may or may not use this mode.
1936 hw->fc.current_mode = hw->fc.requested_mode;
1938 /* Decide whether to use autoneg or not. */
1939 hw->mac.ops.check_link(hw, &speed, &link_up, false);
1940 if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL))
1941 ret_val = ixgbe_fc_autoneg(hw);
1946 ret_val = ixgbe_fc_enable(hw, packetbuf_num);
1953 * ixgbe_disable_pcie_master - Disable PCI-express master access
1954 * @hw: pointer to hardware structure
1956 * Disables PCI-Express master access and verifies there are no pending
1957 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1958 * bit hasn't caused the master requests to be disabled, else 0
1959 * is returned signifying master requests disabled.
1961 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1965 u32 number_of_queues;
1966 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1968 /* Disable the receive unit by stopping each queue */
1969 number_of_queues = hw->mac.max_rx_queues;
1970 for (i = 0; i < number_of_queues; i++) {
1971 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1972 if (reg_val & IXGBE_RXDCTL_ENABLE) {
1973 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1974 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1978 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
1979 reg_val |= IXGBE_CTRL_GIO_DIS;
1980 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
1982 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1983 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1995 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1996 * @hw: pointer to hardware structure
1997 * @mask: Mask to specify which semaphore to acquire
1999 * Acquires the SWFW semaphore thought the GSSR register for the specified
2000 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2002 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2006 u32 fwmask = mask << 5;
2010 if (ixgbe_get_eeprom_semaphore(hw))
2011 return -IXGBE_ERR_SWFW_SYNC;
2013 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2014 if (!(gssr & (fwmask | swmask)))
2018 * Firmware currently using resource (fwmask) or other software
2019 * thread currently using resource (swmask)
2021 ixgbe_release_eeprom_semaphore(hw);
2027 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
2028 return -IXGBE_ERR_SWFW_SYNC;
2032 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2034 ixgbe_release_eeprom_semaphore(hw);
2039 * ixgbe_release_swfw_sync - Release SWFW semaphore
2040 * @hw: pointer to hardware structure
2041 * @mask: Mask to specify which semaphore to release
2043 * Releases the SWFW semaphore thought the GSSR register for the specified
2044 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2046 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2051 ixgbe_get_eeprom_semaphore(hw);
2053 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2055 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2057 ixgbe_release_eeprom_semaphore(hw);
2061 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2062 * @hw: pointer to hardware structure
2063 * @regval: register value to write to RXCTRL
2065 * Enables the Rx DMA unit
2067 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2069 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);