4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
38 #include "delegation.h"
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 struct inode_operations nfs_dir_inode_operations = {
73 .symlink = nfs_symlink,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
84 struct inode_operations nfs3_dir_inode_operations = {
89 .symlink = nfs_symlink,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode *inode, struct file *filp)
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
145 typedef u32 * (*decode_dirent_t)(u32 *, struct nfs_entry *, int);
149 unsigned long page_index;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
157 } nfs_readdir_descriptor_t;
159 /* Now we cache directories properly, by stuffing the dirent
160 * data directly in the page cache.
162 * Inode invalidation due to refresh etc. takes care of
163 * _everything_, no sloppy entry flushing logic, no extraneous
164 * copying, network direct to page cache, the way it was meant
167 * NOTE: Dirent information verification is done always by the
168 * page-in of the RPC reply, nowhere else, this simplies
169 * things substantially.
172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
174 struct file *file = desc->file;
175 struct inode *inode = file->f_dentry->d_inode;
176 struct rpc_cred *cred = nfs_file_cred(file);
177 unsigned long timestamp;
180 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
181 __FUNCTION__, (long long)desc->entry->cookie,
186 error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, desc->entry->cookie, page,
187 NFS_SERVER(inode)->dtsize, desc->plus);
189 /* We requested READDIRPLUS, but the server doesn't grok it */
190 if (error == -ENOTSUPP && desc->plus) {
191 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
192 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
198 SetPageUptodate(page);
199 spin_lock(&inode->i_lock);
200 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
201 spin_unlock(&inode->i_lock);
202 /* Ensure consistent page alignment of the data.
203 * Note: assumes we have exclusive access to this mapping either
204 * through inode->i_mutex or some other mechanism.
206 if (page->index == 0)
207 invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1);
213 nfs_zap_caches(inode);
219 int dir_decode(nfs_readdir_descriptor_t *desc)
222 p = desc->decode(p, desc->entry, desc->plus);
230 void dir_page_release(nfs_readdir_descriptor_t *desc)
233 page_cache_release(desc->page);
239 * Given a pointer to a buffer that has already been filled by a call
240 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
242 * If the end of the buffer has been reached, return -EAGAIN, if not,
243 * return the offset within the buffer of the next entry to be
247 int find_dirent(nfs_readdir_descriptor_t *desc)
249 struct nfs_entry *entry = desc->entry;
253 while((status = dir_decode(desc)) == 0) {
254 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
255 __FUNCTION__, (unsigned long long)entry->cookie);
256 if (entry->prev_cookie == *desc->dir_cookie)
258 if (loop_count++ > 200) {
267 * Given a pointer to a buffer that has already been filled by a call
268 * to readdir, find the entry at offset 'desc->file->f_pos'.
270 * If the end of the buffer has been reached, return -EAGAIN, if not,
271 * return the offset within the buffer of the next entry to be
275 int find_dirent_index(nfs_readdir_descriptor_t *desc)
277 struct nfs_entry *entry = desc->entry;
282 status = dir_decode(desc);
286 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
287 (unsigned long long)entry->cookie, desc->current_index);
289 if (desc->file->f_pos == desc->current_index) {
290 *desc->dir_cookie = entry->cookie;
293 desc->current_index++;
294 if (loop_count++ > 200) {
303 * Find the given page, and call find_dirent() or find_dirent_index in
304 * order to try to return the next entry.
307 int find_dirent_page(nfs_readdir_descriptor_t *desc)
309 struct inode *inode = desc->file->f_dentry->d_inode;
313 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
314 __FUNCTION__, desc->page_index,
315 (long long) *desc->dir_cookie);
317 page = read_cache_page(inode->i_mapping, desc->page_index,
318 (filler_t *)nfs_readdir_filler, desc);
320 status = PTR_ERR(page);
323 if (!PageUptodate(page))
326 /* NOTE: Someone else may have changed the READDIRPLUS flag */
328 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
329 if (*desc->dir_cookie != 0)
330 status = find_dirent(desc);
332 status = find_dirent_index(desc);
334 dir_page_release(desc);
336 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
339 page_cache_release(page);
344 * Recurse through the page cache pages, and return a
345 * filled nfs_entry structure of the next directory entry if possible.
347 * The target for the search is '*desc->dir_cookie' if non-0,
348 * 'desc->file->f_pos' otherwise
351 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 /* Always search-by-index from the beginning of the cache */
357 if (*desc->dir_cookie == 0) {
358 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
359 (long long)desc->file->f_pos);
360 desc->page_index = 0;
361 desc->entry->cookie = desc->entry->prev_cookie = 0;
362 desc->entry->eof = 0;
363 desc->current_index = 0;
365 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
366 (unsigned long long)*desc->dir_cookie);
369 res = find_dirent_page(desc);
372 /* Align to beginning of next page */
374 if (loop_count++ > 200) {
380 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
384 static inline unsigned int dt_type(struct inode *inode)
386 return (inode->i_mode >> 12) & 15;
389 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
392 * Once we've found the start of the dirent within a page: fill 'er up...
395 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
398 struct file *file = desc->file;
399 struct nfs_entry *entry = desc->entry;
400 struct dentry *dentry = NULL;
401 unsigned long fileid;
405 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
406 (unsigned long long)entry->cookie);
409 unsigned d_type = DT_UNKNOWN;
410 /* Note: entry->prev_cookie contains the cookie for
411 * retrieving the current dirent on the server */
412 fileid = nfs_fileid_to_ino_t(entry->ino);
414 /* Get a dentry if we have one */
417 dentry = nfs_readdir_lookup(desc);
419 /* Use readdirplus info */
420 if (dentry != NULL && dentry->d_inode != NULL) {
421 d_type = dt_type(dentry->d_inode);
422 fileid = dentry->d_inode->i_ino;
425 res = filldir(dirent, entry->name, entry->len,
426 file->f_pos, fileid, d_type);
430 *desc->dir_cookie = entry->cookie;
431 if (dir_decode(desc) != 0) {
435 if (loop_count++ > 200) {
440 dir_page_release(desc);
443 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
444 (unsigned long long)*desc->dir_cookie, res);
449 * If we cannot find a cookie in our cache, we suspect that this is
450 * because it points to a deleted file, so we ask the server to return
451 * whatever it thinks is the next entry. We then feed this to filldir.
452 * If all goes well, we should then be able to find our way round the
453 * cache on the next call to readdir_search_pagecache();
455 * NOTE: we cannot add the anonymous page to the pagecache because
456 * the data it contains might not be page aligned. Besides,
457 * we should already have a complete representation of the
458 * directory in the page cache by the time we get here.
461 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
464 struct file *file = desc->file;
465 struct inode *inode = file->f_dentry->d_inode;
466 struct rpc_cred *cred = nfs_file_cred(file);
467 struct page *page = NULL;
470 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
471 (unsigned long long)*desc->dir_cookie);
473 page = alloc_page(GFP_HIGHUSER);
478 desc->error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, *desc->dir_cookie,
480 NFS_SERVER(inode)->dtsize,
482 spin_lock(&inode->i_lock);
483 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
484 spin_unlock(&inode->i_lock);
486 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
487 if (desc->error >= 0) {
488 if ((status = dir_decode(desc)) == 0)
489 desc->entry->prev_cookie = *desc->dir_cookie;
495 status = nfs_do_filldir(desc, dirent, filldir);
497 /* Reset read descriptor so it searches the page cache from
498 * the start upon the next call to readdir_search_pagecache() */
499 desc->page_index = 0;
500 desc->entry->cookie = desc->entry->prev_cookie = 0;
501 desc->entry->eof = 0;
503 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
504 __FUNCTION__, status);
507 dir_page_release(desc);
511 /* The file offset position represents the dirent entry number. A
512 last cookie cache takes care of the common case of reading the
515 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
517 struct dentry *dentry = filp->f_dentry;
518 struct inode *inode = dentry->d_inode;
519 nfs_readdir_descriptor_t my_desc,
521 struct nfs_entry my_entry;
523 struct nfs_fattr fattr;
526 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
527 dentry->d_parent->d_name.name, dentry->d_name.name,
528 (long long)filp->f_pos);
529 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
533 res = nfs_revalidate_mapping(inode, filp->f_mapping);
540 * filp->f_pos points to the dirent entry number.
541 * *desc->dir_cookie has the cookie for the next entry. We have
542 * to either find the entry with the appropriate number or
543 * revalidate the cookie.
545 memset(desc, 0, sizeof(*desc));
548 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
549 desc->decode = NFS_PROTO(inode)->decode_dirent;
550 desc->plus = NFS_USE_READDIRPLUS(inode);
552 my_entry.cookie = my_entry.prev_cookie = 0;
555 my_entry.fattr = &fattr;
556 nfs_fattr_init(&fattr);
557 desc->entry = &my_entry;
559 while(!desc->entry->eof) {
560 res = readdir_search_pagecache(desc);
562 if (res == -EBADCOOKIE) {
563 /* This means either end of directory */
564 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
565 /* Or that the server has 'lost' a cookie */
566 res = uncached_readdir(desc, dirent, filldir);
573 if (res == -ETOOSMALL && desc->plus) {
574 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
575 nfs_zap_caches(inode);
577 desc->entry->eof = 0;
583 res = nfs_do_filldir(desc, dirent, filldir);
592 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
593 dentry->d_parent->d_name.name, dentry->d_name.name,
598 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
600 mutex_lock(&filp->f_dentry->d_inode->i_mutex);
603 offset += filp->f_pos;
611 if (offset != filp->f_pos) {
612 filp->f_pos = offset;
613 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
616 mutex_unlock(&filp->f_dentry->d_inode->i_mutex);
621 * All directory operations under NFS are synchronous, so fsync()
622 * is a dummy operation.
624 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
626 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
627 dentry->d_parent->d_name.name, dentry->d_name.name,
634 * A check for whether or not the parent directory has changed.
635 * In the case it has, we assume that the dentries are untrustworthy
636 * and may need to be looked up again.
638 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
642 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
643 || nfs_attribute_timeout(dir))
645 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
648 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
650 dentry->d_fsdata = (void *)verf;
654 * Whenever an NFS operation succeeds, we know that the dentry
655 * is valid, so we update the revalidation timestamp.
657 static inline void nfs_renew_times(struct dentry * dentry)
659 dentry->d_time = jiffies;
663 * Return the intent data that applies to this particular path component
665 * Note that the current set of intents only apply to the very last
666 * component of the path.
667 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
669 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
671 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
673 return nd->flags & mask;
677 * Inode and filehandle revalidation for lookups.
679 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
680 * or if the intent information indicates that we're about to open this
681 * particular file and the "nocto" mount flag is not set.
685 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
687 struct nfs_server *server = NFS_SERVER(inode);
690 /* VFS wants an on-the-wire revalidation */
691 if (nd->flags & LOOKUP_REVAL)
693 /* This is an open(2) */
694 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
695 !(server->flags & NFS_MOUNT_NOCTO) &&
696 (S_ISREG(inode->i_mode) ||
697 S_ISDIR(inode->i_mode)))
700 return nfs_revalidate_inode(server, inode);
702 return __nfs_revalidate_inode(server, inode);
706 * We judge how long we want to trust negative
707 * dentries by looking at the parent inode mtime.
709 * If parent mtime has changed, we revalidate, else we wait for a
710 * period corresponding to the parent's attribute cache timeout value.
713 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
714 struct nameidata *nd)
716 /* Don't revalidate a negative dentry if we're creating a new file */
717 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
719 return !nfs_check_verifier(dir, dentry);
723 * This is called every time the dcache has a lookup hit,
724 * and we should check whether we can really trust that
727 * NOTE! The hit can be a negative hit too, don't assume
730 * If the parent directory is seen to have changed, we throw out the
731 * cached dentry and do a new lookup.
733 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
737 struct dentry *parent;
739 struct nfs_fh fhandle;
740 struct nfs_fattr fattr;
741 unsigned long verifier;
743 parent = dget_parent(dentry);
745 dir = parent->d_inode;
746 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
747 inode = dentry->d_inode;
750 if (nfs_neg_need_reval(dir, dentry, nd))
755 if (is_bad_inode(inode)) {
756 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
757 __FUNCTION__, dentry->d_parent->d_name.name,
758 dentry->d_name.name);
762 /* Revalidate parent directory attribute cache */
763 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
766 /* Force a full look up iff the parent directory has changed */
767 if (nfs_check_verifier(dir, dentry)) {
768 if (nfs_lookup_verify_inode(inode, nd))
773 if (NFS_STALE(inode))
776 verifier = nfs_save_change_attribute(dir);
777 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
780 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
782 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
785 nfs_renew_times(dentry);
786 nfs_set_verifier(dentry, verifier);
790 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
791 __FUNCTION__, dentry->d_parent->d_name.name,
792 dentry->d_name.name);
798 if (inode && S_ISDIR(inode->i_mode)) {
799 /* Purge readdir caches. */
800 nfs_zap_caches(inode);
801 /* If we have submounts, don't unhash ! */
802 if (have_submounts(dentry))
804 shrink_dcache_parent(dentry);
809 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
810 __FUNCTION__, dentry->d_parent->d_name.name,
811 dentry->d_name.name);
816 * This is called from dput() when d_count is going to 0.
818 static int nfs_dentry_delete(struct dentry *dentry)
820 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
821 dentry->d_parent->d_name.name, dentry->d_name.name,
824 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
825 /* Unhash it, so that ->d_iput() would be called */
828 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
829 /* Unhash it, so that ancestors of killed async unlink
830 * files will be cleaned up during umount */
838 * Called when the dentry loses inode.
839 * We use it to clean up silly-renamed files.
841 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
843 nfs_inode_return_delegation(inode);
844 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
847 nfs_complete_unlink(dentry);
850 /* When creating a negative dentry, we want to renew d_time */
851 nfs_renew_times(dentry);
855 struct dentry_operations nfs_dentry_operations = {
856 .d_revalidate = nfs_lookup_revalidate,
857 .d_delete = nfs_dentry_delete,
858 .d_iput = nfs_dentry_iput,
862 * Use intent information to check whether or not we're going to do
863 * an O_EXCL create using this path component.
866 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
868 if (NFS_PROTO(dir)->version == 2)
870 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
872 return (nd->intent.open.flags & O_EXCL) != 0;
875 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
876 struct nfs_fh *fh, struct nfs_fattr *fattr)
878 struct nfs_server *server = NFS_SERVER(dir);
880 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
881 /* Revalidate fsid on root dir */
882 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
886 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
889 struct inode *inode = NULL;
891 struct nfs_fh fhandle;
892 struct nfs_fattr fattr;
894 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
895 dentry->d_parent->d_name.name, dentry->d_name.name);
896 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
898 res = ERR_PTR(-ENAMETOOLONG);
899 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
902 res = ERR_PTR(-ENOMEM);
903 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
908 * If we're doing an exclusive create, optimize away the lookup
909 * but don't hash the dentry.
911 if (nfs_is_exclusive_create(dir, nd)) {
912 d_instantiate(dentry, NULL);
917 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
918 if (error == -ENOENT)
921 res = ERR_PTR(error);
924 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
926 res = ERR_PTR(error);
929 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
930 res = (struct dentry *)inode;
935 res = d_materialise_unique(dentry, inode);
938 nfs_renew_times(dentry);
939 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
947 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
949 struct dentry_operations nfs4_dentry_operations = {
950 .d_revalidate = nfs_open_revalidate,
951 .d_delete = nfs_dentry_delete,
952 .d_iput = nfs_dentry_iput,
956 * Use intent information to determine whether we need to substitute
957 * the NFSv4-style stateful OPEN for the LOOKUP call
959 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
961 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
963 /* NFS does not (yet) have a stateful open for directories */
964 if (nd->flags & LOOKUP_DIRECTORY)
966 /* Are we trying to write to a read only partition? */
967 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
972 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
974 struct dentry *res = NULL;
977 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
978 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
980 /* Check that we are indeed trying to open this file */
981 if (!is_atomic_open(dir, nd))
984 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
985 res = ERR_PTR(-ENAMETOOLONG);
988 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
990 /* Let vfs_create() deal with O_EXCL */
991 if (nd->intent.open.flags & O_EXCL) {
996 /* Open the file on the server */
998 /* Revalidate parent directory attribute cache */
999 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1001 res = ERR_PTR(error);
1006 if (nd->intent.open.flags & O_CREAT) {
1007 nfs_begin_data_update(dir);
1008 res = nfs4_atomic_open(dir, dentry, nd);
1009 nfs_end_data_update(dir);
1011 res = nfs4_atomic_open(dir, dentry, nd);
1014 error = PTR_ERR(res);
1016 /* Make a negative dentry */
1020 /* This turned out not to be a regular file */
1025 if (!(nd->intent.open.flags & O_NOFOLLOW))
1031 } else if (res != NULL)
1033 nfs_renew_times(dentry);
1034 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1038 return nfs_lookup(dir, dentry, nd);
1041 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1043 struct dentry *parent = NULL;
1044 struct inode *inode = dentry->d_inode;
1046 unsigned long verifier;
1047 int openflags, ret = 0;
1049 parent = dget_parent(dentry);
1050 dir = parent->d_inode;
1051 if (!is_atomic_open(dir, nd))
1053 /* We can't create new files in nfs_open_revalidate(), so we
1054 * optimize away revalidation of negative dentries.
1058 /* NFS only supports OPEN on regular files */
1059 if (!S_ISREG(inode->i_mode))
1061 openflags = nd->intent.open.flags;
1062 /* We cannot do exclusive creation on a positive dentry */
1063 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1065 /* We can't create new files, or truncate existing ones here */
1066 openflags &= ~(O_CREAT|O_TRUNC);
1069 * Note: we're not holding inode->i_mutex and so may be racing with
1070 * operations that change the directory. We therefore save the
1071 * change attribute *before* we do the RPC call.
1074 verifier = nfs_save_change_attribute(dir);
1075 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1077 nfs_set_verifier(dentry, verifier);
1086 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1088 return nfs_lookup_revalidate(dentry, nd);
1090 #endif /* CONFIG_NFSV4 */
1092 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1094 struct dentry *parent = desc->file->f_dentry;
1095 struct inode *dir = parent->d_inode;
1096 struct nfs_entry *entry = desc->entry;
1097 struct dentry *dentry, *alias;
1098 struct qstr name = {
1099 .name = entry->name,
1102 struct inode *inode;
1106 if (name.name[0] == '.' && name.name[1] == '.')
1107 return dget_parent(parent);
1110 if (name.name[0] == '.')
1111 return dget(parent);
1113 name.hash = full_name_hash(name.name, name.len);
1114 dentry = d_lookup(parent, &name);
1117 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1119 /* Note: caller is already holding the dir->i_mutex! */
1120 dentry = d_alloc(parent, &name);
1123 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1124 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1125 if (IS_ERR(inode)) {
1130 alias = d_materialise_unique(dentry, inode);
1131 if (alias != NULL) {
1136 nfs_renew_times(dentry);
1137 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1142 * Code common to create, mkdir, and mknod.
1144 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1145 struct nfs_fattr *fattr)
1147 struct inode *inode;
1148 int error = -EACCES;
1150 /* We may have been initialized further down */
1151 if (dentry->d_inode)
1153 if (fhandle->size == 0) {
1154 struct inode *dir = dentry->d_parent->d_inode;
1155 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1159 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1160 struct nfs_server *server = NFS_SB(dentry->d_sb);
1161 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1165 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1166 error = PTR_ERR(inode);
1169 d_instantiate(dentry, inode);
1170 if (d_unhashed(dentry))
1176 * Following a failed create operation, we drop the dentry rather
1177 * than retain a negative dentry. This avoids a problem in the event
1178 * that the operation succeeded on the server, but an error in the
1179 * reply path made it appear to have failed.
1181 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1182 struct nameidata *nd)
1188 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1189 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1191 attr.ia_mode = mode;
1192 attr.ia_valid = ATTR_MODE;
1194 if (nd && (nd->flags & LOOKUP_CREATE))
1195 open_flags = nd->intent.open.flags;
1198 nfs_begin_data_update(dir);
1199 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1200 nfs_end_data_update(dir);
1203 nfs_renew_times(dentry);
1204 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1214 * See comments for nfs_proc_create regarding failed operations.
1217 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1222 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1223 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1225 if (!new_valid_dev(rdev))
1228 attr.ia_mode = mode;
1229 attr.ia_valid = ATTR_MODE;
1232 nfs_begin_data_update(dir);
1233 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1234 nfs_end_data_update(dir);
1237 nfs_renew_times(dentry);
1238 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1248 * See comments for nfs_proc_create regarding failed operations.
1250 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1255 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1256 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1258 attr.ia_valid = ATTR_MODE;
1259 attr.ia_mode = mode | S_IFDIR;
1262 nfs_begin_data_update(dir);
1263 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1264 nfs_end_data_update(dir);
1267 nfs_renew_times(dentry);
1268 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1277 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1281 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1282 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1285 nfs_begin_data_update(dir);
1286 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1287 /* Ensure the VFS deletes this inode */
1288 if (error == 0 && dentry->d_inode != NULL)
1289 dentry->d_inode->i_nlink = 0;
1290 nfs_end_data_update(dir);
1296 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1298 static unsigned int sillycounter;
1299 const int i_inosize = sizeof(dir->i_ino)*2;
1300 const int countersize = sizeof(sillycounter)*2;
1301 const int slen = sizeof(".nfs") + i_inosize + countersize - 1;
1304 struct dentry *sdentry;
1307 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1308 dentry->d_parent->d_name.name, dentry->d_name.name,
1309 atomic_read(&dentry->d_count));
1310 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1313 if (!dentry->d_inode)
1314 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1315 dentry->d_parent->d_name.name, dentry->d_name.name);
1318 * We don't allow a dentry to be silly-renamed twice.
1321 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1324 sprintf(silly, ".nfs%*.*lx",
1325 i_inosize, i_inosize, dentry->d_inode->i_ino);
1327 /* Return delegation in anticipation of the rename */
1328 nfs_inode_return_delegation(dentry->d_inode);
1332 char *suffix = silly + slen - countersize;
1336 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1338 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1339 dentry->d_name.name, silly);
1341 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1343 * N.B. Better to return EBUSY here ... it could be
1344 * dangerous to delete the file while it's in use.
1346 if (IS_ERR(sdentry))
1348 } while(sdentry->d_inode != NULL); /* need negative lookup */
1350 qsilly.name = silly;
1351 qsilly.len = strlen(silly);
1352 nfs_begin_data_update(dir);
1353 if (dentry->d_inode) {
1354 nfs_begin_data_update(dentry->d_inode);
1355 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1357 nfs_mark_for_revalidate(dentry->d_inode);
1358 nfs_end_data_update(dentry->d_inode);
1360 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1362 nfs_end_data_update(dir);
1364 nfs_renew_times(dentry);
1365 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1366 d_move(dentry, sdentry);
1367 error = nfs_async_unlink(dentry);
1368 /* If we return 0 we don't unlink */
1376 * Remove a file after making sure there are no pending writes,
1377 * and after checking that the file has only one user.
1379 * We invalidate the attribute cache and free the inode prior to the operation
1380 * to avoid possible races if the server reuses the inode.
1382 static int nfs_safe_remove(struct dentry *dentry)
1384 struct inode *dir = dentry->d_parent->d_inode;
1385 struct inode *inode = dentry->d_inode;
1388 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1389 dentry->d_parent->d_name.name, dentry->d_name.name);
1391 /* If the dentry was sillyrenamed, we simply call d_delete() */
1392 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1397 nfs_begin_data_update(dir);
1398 if (inode != NULL) {
1399 nfs_inode_return_delegation(inode);
1400 nfs_begin_data_update(inode);
1401 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1402 /* The VFS may want to delete this inode */
1405 nfs_mark_for_revalidate(inode);
1406 nfs_end_data_update(inode);
1408 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1409 nfs_end_data_update(dir);
1414 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1415 * belongs to an active ".nfs..." file and we return -EBUSY.
1417 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1419 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1422 int need_rehash = 0;
1424 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1425 dir->i_ino, dentry->d_name.name);
1428 spin_lock(&dcache_lock);
1429 spin_lock(&dentry->d_lock);
1430 if (atomic_read(&dentry->d_count) > 1) {
1431 spin_unlock(&dentry->d_lock);
1432 spin_unlock(&dcache_lock);
1433 error = nfs_sillyrename(dir, dentry);
1437 if (!d_unhashed(dentry)) {
1441 spin_unlock(&dentry->d_lock);
1442 spin_unlock(&dcache_lock);
1443 error = nfs_safe_remove(dentry);
1445 nfs_renew_times(dentry);
1446 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1447 } else if (need_rehash)
1454 * To create a symbolic link, most file systems instantiate a new inode,
1455 * add a page to it containing the path, then write it out to the disk
1456 * using prepare_write/commit_write.
1458 * Unfortunately the NFS client can't create the in-core inode first
1459 * because it needs a file handle to create an in-core inode (see
1460 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1461 * symlink request has completed on the server.
1463 * So instead we allocate a raw page, copy the symname into it, then do
1464 * the SYMLINK request with the page as the buffer. If it succeeds, we
1465 * now have a new file handle and can instantiate an in-core NFS inode
1466 * and move the raw page into its mapping.
1468 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1470 struct pagevec lru_pvec;
1474 unsigned int pathlen = strlen(symname);
1477 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1478 dir->i_ino, dentry->d_name.name, symname);
1480 if (pathlen > PAGE_SIZE)
1481 return -ENAMETOOLONG;
1483 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1484 attr.ia_valid = ATTR_MODE;
1488 page = alloc_page(GFP_KERNEL);
1494 kaddr = kmap_atomic(page, KM_USER0);
1495 memcpy(kaddr, symname, pathlen);
1496 if (pathlen < PAGE_SIZE)
1497 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1498 kunmap_atomic(kaddr, KM_USER0);
1500 nfs_begin_data_update(dir);
1501 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1502 nfs_end_data_update(dir);
1504 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1505 dir->i_sb->s_id, dir->i_ino,
1506 dentry->d_name.name, symname, error);
1514 * No big deal if we can't add this page to the page cache here.
1515 * READLINK will get the missing page from the server if needed.
1517 pagevec_init(&lru_pvec, 0);
1518 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1520 if (!pagevec_add(&lru_pvec, page))
1521 __pagevec_lru_add(&lru_pvec);
1522 SetPageUptodate(page);
1532 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1534 struct inode *inode = old_dentry->d_inode;
1537 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1538 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1539 dentry->d_parent->d_name.name, dentry->d_name.name);
1542 nfs_begin_data_update(dir);
1543 nfs_begin_data_update(inode);
1544 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1546 atomic_inc(&inode->i_count);
1547 d_instantiate(dentry, inode);
1549 nfs_end_data_update(inode);
1550 nfs_end_data_update(dir);
1557 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1558 * different file handle for the same inode after a rename (e.g. when
1559 * moving to a different directory). A fail-safe method to do so would
1560 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1561 * rename the old file using the sillyrename stuff. This way, the original
1562 * file in old_dir will go away when the last process iput()s the inode.
1566 * It actually works quite well. One needs to have the possibility for
1567 * at least one ".nfs..." file in each directory the file ever gets
1568 * moved or linked to which happens automagically with the new
1569 * implementation that only depends on the dcache stuff instead of
1570 * using the inode layer
1572 * Unfortunately, things are a little more complicated than indicated
1573 * above. For a cross-directory move, we want to make sure we can get
1574 * rid of the old inode after the operation. This means there must be
1575 * no pending writes (if it's a file), and the use count must be 1.
1576 * If these conditions are met, we can drop the dentries before doing
1579 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1580 struct inode *new_dir, struct dentry *new_dentry)
1582 struct inode *old_inode = old_dentry->d_inode;
1583 struct inode *new_inode = new_dentry->d_inode;
1584 struct dentry *dentry = NULL, *rehash = NULL;
1588 * To prevent any new references to the target during the rename,
1589 * we unhash the dentry and free the inode in advance.
1592 if (!d_unhashed(new_dentry)) {
1594 rehash = new_dentry;
1597 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1598 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1599 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1600 atomic_read(&new_dentry->d_count));
1603 * First check whether the target is busy ... we can't
1604 * safely do _any_ rename if the target is in use.
1606 * For files, make a copy of the dentry and then do a
1607 * silly-rename. If the silly-rename succeeds, the
1608 * copied dentry is hashed and becomes the new target.
1612 if (S_ISDIR(new_inode->i_mode)) {
1614 if (!S_ISDIR(old_inode->i_mode))
1616 } else if (atomic_read(&new_dentry->d_count) > 2) {
1618 /* copy the target dentry's name */
1619 dentry = d_alloc(new_dentry->d_parent,
1620 &new_dentry->d_name);
1624 /* silly-rename the existing target ... */
1625 err = nfs_sillyrename(new_dir, new_dentry);
1627 new_dentry = rehash = dentry;
1629 /* instantiate the replacement target */
1630 d_instantiate(new_dentry, NULL);
1631 } else if (atomic_read(&new_dentry->d_count) > 1) {
1632 /* dentry still busy? */
1634 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1635 new_dentry->d_parent->d_name.name,
1636 new_dentry->d_name.name,
1637 atomic_read(&new_dentry->d_count));
1642 new_inode->i_nlink--;
1646 * ... prune child dentries and writebacks if needed.
1648 if (atomic_read(&old_dentry->d_count) > 1) {
1649 nfs_wb_all(old_inode);
1650 shrink_dcache_parent(old_dentry);
1652 nfs_inode_return_delegation(old_inode);
1654 if (new_inode != NULL) {
1655 nfs_inode_return_delegation(new_inode);
1656 d_delete(new_dentry);
1659 nfs_begin_data_update(old_dir);
1660 nfs_begin_data_update(new_dir);
1661 nfs_begin_data_update(old_inode);
1662 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1663 new_dir, &new_dentry->d_name);
1664 nfs_mark_for_revalidate(old_inode);
1665 nfs_end_data_update(old_inode);
1666 nfs_end_data_update(new_dir);
1667 nfs_end_data_update(old_dir);
1672 d_move(old_dentry, new_dentry);
1673 nfs_renew_times(new_dentry);
1674 nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1677 /* new dentry created? */
1684 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1685 static LIST_HEAD(nfs_access_lru_list);
1686 static atomic_long_t nfs_access_nr_entries;
1688 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1690 put_rpccred(entry->cred);
1692 smp_mb__before_atomic_dec();
1693 atomic_long_dec(&nfs_access_nr_entries);
1694 smp_mb__after_atomic_dec();
1697 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1700 struct nfs_inode *nfsi;
1701 struct nfs_access_entry *cache;
1703 spin_lock(&nfs_access_lru_lock);
1705 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1706 struct inode *inode;
1708 if (nr_to_scan-- == 0)
1710 inode = igrab(&nfsi->vfs_inode);
1713 spin_lock(&inode->i_lock);
1714 if (list_empty(&nfsi->access_cache_entry_lru))
1715 goto remove_lru_entry;
1716 cache = list_entry(nfsi->access_cache_entry_lru.next,
1717 struct nfs_access_entry, lru);
1718 list_move(&cache->lru, &head);
1719 rb_erase(&cache->rb_node, &nfsi->access_cache);
1720 if (!list_empty(&nfsi->access_cache_entry_lru))
1721 list_move_tail(&nfsi->access_cache_inode_lru,
1722 &nfs_access_lru_list);
1725 list_del_init(&nfsi->access_cache_inode_lru);
1726 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1728 spin_unlock(&inode->i_lock);
1732 spin_unlock(&nfs_access_lru_lock);
1733 while (!list_empty(&head)) {
1734 cache = list_entry(head.next, struct nfs_access_entry, lru);
1735 list_del(&cache->lru);
1736 nfs_access_free_entry(cache);
1738 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1741 static void __nfs_access_zap_cache(struct inode *inode)
1743 struct nfs_inode *nfsi = NFS_I(inode);
1744 struct rb_root *root_node = &nfsi->access_cache;
1745 struct rb_node *n, *dispose = NULL;
1746 struct nfs_access_entry *entry;
1748 /* Unhook entries from the cache */
1749 while ((n = rb_first(root_node)) != NULL) {
1750 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1751 rb_erase(n, root_node);
1752 list_del(&entry->lru);
1753 n->rb_left = dispose;
1756 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1757 spin_unlock(&inode->i_lock);
1759 /* Now kill them all! */
1760 while (dispose != NULL) {
1762 dispose = n->rb_left;
1763 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1767 void nfs_access_zap_cache(struct inode *inode)
1769 /* Remove from global LRU init */
1770 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1771 spin_lock(&nfs_access_lru_lock);
1772 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1773 spin_unlock(&nfs_access_lru_lock);
1776 spin_lock(&inode->i_lock);
1777 /* This will release the spinlock */
1778 __nfs_access_zap_cache(inode);
1781 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1783 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1784 struct nfs_access_entry *entry;
1787 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1789 if (cred < entry->cred)
1791 else if (cred > entry->cred)
1799 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1801 struct nfs_inode *nfsi = NFS_I(inode);
1802 struct nfs_access_entry *cache;
1805 spin_lock(&inode->i_lock);
1806 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1808 cache = nfs_access_search_rbtree(inode, cred);
1811 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1813 res->jiffies = cache->jiffies;
1814 res->cred = cache->cred;
1815 res->mask = cache->mask;
1816 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1819 spin_unlock(&inode->i_lock);
1822 rb_erase(&cache->rb_node, &nfsi->access_cache);
1823 list_del(&cache->lru);
1824 spin_unlock(&inode->i_lock);
1825 nfs_access_free_entry(cache);
1828 /* This will release the spinlock */
1829 __nfs_access_zap_cache(inode);
1833 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1835 struct nfs_inode *nfsi = NFS_I(inode);
1836 struct rb_root *root_node = &nfsi->access_cache;
1837 struct rb_node **p = &root_node->rb_node;
1838 struct rb_node *parent = NULL;
1839 struct nfs_access_entry *entry;
1841 spin_lock(&inode->i_lock);
1842 while (*p != NULL) {
1844 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1846 if (set->cred < entry->cred)
1847 p = &parent->rb_left;
1848 else if (set->cred > entry->cred)
1849 p = &parent->rb_right;
1853 rb_link_node(&set->rb_node, parent, p);
1854 rb_insert_color(&set->rb_node, root_node);
1855 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1856 spin_unlock(&inode->i_lock);
1859 rb_replace_node(parent, &set->rb_node, root_node);
1860 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1861 list_del(&entry->lru);
1862 spin_unlock(&inode->i_lock);
1863 nfs_access_free_entry(entry);
1866 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1868 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1871 RB_CLEAR_NODE(&cache->rb_node);
1872 cache->jiffies = set->jiffies;
1873 cache->cred = get_rpccred(set->cred);
1874 cache->mask = set->mask;
1876 nfs_access_add_rbtree(inode, cache);
1878 /* Update accounting */
1879 smp_mb__before_atomic_inc();
1880 atomic_long_inc(&nfs_access_nr_entries);
1881 smp_mb__after_atomic_inc();
1883 /* Add inode to global LRU list */
1884 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1885 spin_lock(&nfs_access_lru_lock);
1886 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1887 spin_unlock(&nfs_access_lru_lock);
1891 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1893 struct nfs_access_entry cache;
1896 status = nfs_access_get_cached(inode, cred, &cache);
1900 /* Be clever: ask server to check for all possible rights */
1901 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1903 cache.jiffies = jiffies;
1904 status = NFS_PROTO(inode)->access(inode, &cache);
1907 nfs_access_add_cache(inode, &cache);
1909 if ((cache.mask & mask) == mask)
1914 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1916 struct rpc_cred *cred;
1919 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1923 /* Is this sys_access() ? */
1924 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1927 switch (inode->i_mode & S_IFMT) {
1931 /* NFSv4 has atomic_open... */
1932 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1934 && (nd->flags & LOOKUP_OPEN))
1939 * Optimize away all write operations, since the server
1940 * will check permissions when we perform the op.
1942 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1949 if (!NFS_PROTO(inode)->access)
1952 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1953 if (!IS_ERR(cred)) {
1954 res = nfs_do_access(inode, cred, mask);
1957 res = PTR_ERR(cred);
1960 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1961 inode->i_sb->s_id, inode->i_ino, mask, res);
1964 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1966 res = generic_permission(inode, mask, NULL);
1973 * version-control: t
1974 * kept-new-versions: 5