3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
89 #include <asm/delay.h>
90 #include <asm/machvec.h>
91 #include <asm/meminit.h>
93 #include <asm/ptrace.h>
94 #include <asm/system.h>
97 #include <asm/kexec.h>
100 #include <asm/hw_irq.h>
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
109 # define IA64_MCA_DEBUG(fmt...)
112 #define NOTIFY_INIT(event, regs, arg, spin) \
114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115 == NOTIFY_STOP) && ((spin) == 1)) \
116 ia64_mca_spin(__func__); \
119 #define NOTIFY_MCA(event, regs, arg, spin) \
121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122 == NOTIFY_STOP) && ((spin) == 1)) \
123 ia64_mca_spin(__func__); \
126 /* Used by mca_asm.S */
127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
133 unsigned long __per_cpu_mca[NR_CPUS];
136 extern void ia64_os_init_dispatch_monarch (void);
137 extern void ia64_os_init_dispatch_slave (void);
139 static int monarch_cpu = -1;
141 static ia64_mc_info_t ia64_mc_info;
143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146 #define CPE_HISTORY_LENGTH 5
147 #define CMC_HISTORY_LENGTH 5
150 static struct timer_list cpe_poll_timer;
152 static struct timer_list cmc_poll_timer;
154 * This variable tells whether we are currently in polling mode.
155 * Start with this in the wrong state so we won't play w/ timers
156 * before the system is ready.
158 static int cmc_polling_enabled = 1;
161 * Clearing this variable prevents CPE polling from getting activated
162 * in mca_late_init. Use it if your system doesn't provide a CPEI,
163 * but encounters problems retrieving CPE logs. This should only be
164 * necessary for debugging.
166 static int cpe_poll_enabled = 1;
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170 static int mca_init __initdata;
173 * limited & delayed printing support for MCA/INIT handler
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel) \
190 oops_in_progress = 1; \
191 if (loglevel_save < 0) \
192 loglevel_save = __console_loglevel; \
193 __console_loglevel = 15;
195 #define RESTORE_LOGLEVEL(__console_loglevel) \
196 if (loglevel_save >= 0) { \
197 __console_loglevel = loglevel_save; \
198 loglevel_save = -1; \
200 mlogbuf_finished = 0; \
201 oops_in_progress = 0;
204 * Push messages into buffer, print them later if not urgent.
206 void ia64_mca_printk(const char *fmt, ...)
210 char temp_buf[MLOGBUF_MSGMAX];
214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
217 /* Copy the output into mlogbuf */
218 if (oops_in_progress) {
219 /* mlogbuf was abandoned, use printk directly instead. */
222 spin_lock(&mlogbuf_wlock);
223 for (p = temp_buf; *p; p++) {
224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 if (next != mlogbuf_start) {
226 mlogbuf[mlogbuf_end] = *p;
233 mlogbuf[mlogbuf_end] = '\0';
234 spin_unlock(&mlogbuf_wlock);
237 EXPORT_SYMBOL(ia64_mca_printk);
240 * Print buffered messages.
241 * NOTE: call this after returning normal context. (ex. from salinfod)
243 void ia64_mlogbuf_dump(void)
245 char temp_buf[MLOGBUF_MSGMAX];
249 unsigned int printed_len;
251 /* Get output from mlogbuf */
252 while (mlogbuf_start != mlogbuf_end) {
257 spin_lock_irqsave(&mlogbuf_rlock, flags);
259 index = mlogbuf_start;
260 while (index != mlogbuf_end) {
262 index = (index + 1) % MLOGBUF_SIZE;
266 if (++printed_len >= MLOGBUF_MSGMAX - 1)
272 mlogbuf_start = index;
274 mlogbuf_timestamp = 0;
275 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
281 * Call this if system is going to down or if immediate flushing messages to
282 * console is required. (ex. recovery was failed, crash dump is going to be
283 * invoked, long-wait rendezvous etc.)
284 * NOTE: this should be called from monarch.
286 static void ia64_mlogbuf_finish(int wait)
288 BREAK_LOGLEVEL(console_loglevel);
290 spin_lock_init(&mlogbuf_rlock);
292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 "MCA/INIT might be dodgy or fail.\n");
298 /* wait for console */
299 printk("Delaying for 5 seconds...\n");
302 mlogbuf_finished = 1;
306 * Print buffered messages from INIT context.
308 static void ia64_mlogbuf_dump_from_init(void)
310 if (mlogbuf_finished)
313 if (mlogbuf_timestamp &&
314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 " and the system seems to be messed up.\n");
317 ia64_mlogbuf_finish(0);
321 if (!spin_trylock(&mlogbuf_rlock)) {
322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 "Generated messages other than stack dump will be "
324 "buffered to mlogbuf and will be printed later.\n");
325 printk(KERN_ERR "INIT: If messages would not printed after "
326 "this INIT, wait 30sec and assert INIT again.\n");
327 if (!mlogbuf_timestamp)
328 mlogbuf_timestamp = jiffies;
331 spin_unlock(&mlogbuf_rlock);
336 ia64_mca_spin(const char *func)
338 if (monarch_cpu == smp_processor_id())
339 ia64_mlogbuf_finish(0);
340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
345 * IA64_MCA log support
347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350 typedef struct ia64_state_log_s
354 unsigned long isl_count;
355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360 #define IA64_LOG_ALLOCATE(it, size) \
361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 (ia64_err_rec_t *)alloc_bootmem(size); \
363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size);}
365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_INDEX_INC(it) \
371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372 ia64_state_log[it].isl_count++;}
373 #define IA64_LOG_INDEX_DEC(it) \
374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
381 * Reset the OS ia64 log buffer
382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
386 ia64_log_init(int sal_info_type)
390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 IA64_LOG_LOCK_INIT(sal_info_type);
393 // SAL will tell us the maximum size of any error record of this type
394 max_size = ia64_sal_get_state_info_size(sal_info_type);
396 /* alloc_bootmem() doesn't like zero-sized allocations! */
399 // set up OS data structures to hold error info
400 IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
408 * Get the current MCA log from SAL and copy it into the OS log buffer.
410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411 * irq_safe whether you can use printk at this point
412 * Outputs : size (total record length)
413 * *buffer (ptr to error record)
417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419 sal_log_record_header_t *log_buffer;
423 IA64_LOG_LOCK(sal_info_type);
425 /* Get the process state information */
426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
431 IA64_LOG_INDEX_INC(sal_info_type);
432 IA64_LOG_UNLOCK(sal_info_type);
434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 __func__, sal_info_type, total_len);
437 *buffer = (u8 *) log_buffer;
440 IA64_LOG_UNLOCK(sal_info_type);
446 * ia64_mca_log_sal_error_record
448 * This function retrieves a specified error record type from SAL
449 * and wakes up any processes waiting for error records.
451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452 * FIXME: remove MCA and irq_safe.
455 ia64_mca_log_sal_error_record(int sal_info_type)
458 sal_log_record_header_t *rh;
460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461 #ifdef IA64_MCA_DEBUG_INFO
462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
465 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
476 /* Clear logs from corrected errors in case there's no user-level logger */
477 rh = (sal_log_record_header_t *)buffer;
478 if (rh->severity == sal_log_severity_corrected)
479 ia64_sal_clear_state_info(sal_info_type);
484 * See if the MCA surfaced in an instruction range
485 * that has been tagged as recoverable.
488 * first First address range to check
489 * last Last address range to check
490 * ip Instruction pointer, address we are looking for
493 * 1 on Success (in the table)/ 0 on Failure (not in the table)
496 search_mca_table (const struct mca_table_entry *first,
497 const struct mca_table_entry *last,
500 const struct mca_table_entry *curr;
501 u64 curr_start, curr_end;
504 while (curr <= last) {
505 curr_start = (u64) &curr->start_addr + curr->start_addr;
506 curr_end = (u64) &curr->end_addr + curr->end_addr;
508 if ((ip >= curr_start) && (ip <= curr_end)) {
516 /* Given an address, look for it in the mca tables. */
517 int mca_recover_range(unsigned long addr)
519 extern struct mca_table_entry __start___mca_table[];
520 extern struct mca_table_entry __stop___mca_table[];
522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
524 EXPORT_SYMBOL_GPL(mca_recover_range);
529 int ia64_cpe_irq = -1;
532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
534 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
536 static DEFINE_SPINLOCK(cpe_history_lock);
538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539 __func__, cpe_irq, smp_processor_id());
541 /* SAL spec states this should run w/ interrupts enabled */
544 spin_lock(&cpe_history_lock);
545 if (!cpe_poll_enabled && cpe_vector >= 0) {
547 int i, count = 1; /* we know 1 happened now */
548 unsigned long now = jiffies;
550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 if (now - cpe_history[i] <= HZ)
555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 if (count >= CPE_HISTORY_LENGTH) {
558 cpe_poll_enabled = 1;
559 spin_unlock(&cpe_history_lock);
560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
563 * Corrected errors will still be corrected, but
564 * make sure there's a log somewhere that indicates
565 * something is generating more than we can handle.
567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
571 /* lock already released, get out now */
574 cpe_history[index++] = now;
575 if (index == CPE_HISTORY_LENGTH)
579 spin_unlock(&cpe_history_lock);
581 /* Get the CPE error record and log it */
582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
587 #endif /* CONFIG_ACPI */
591 * ia64_mca_register_cpev
593 * Register the corrected platform error vector with SAL.
596 * cpev Corrected Platform Error Vector number
602 ia64_mca_register_cpev (int cpev)
604 /* Register the CPE interrupt vector with SAL */
605 struct ia64_sal_retval isrv;
607 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
609 printk(KERN_ERR "Failed to register Corrected Platform "
610 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
614 IA64_MCA_DEBUG("%s: corrected platform error "
615 "vector %#x registered\n", __func__, cpev);
617 #endif /* CONFIG_ACPI */
620 * ia64_mca_cmc_vector_setup
622 * Setup the corrected machine check vector register in the processor.
623 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
624 * This function is invoked on a per-processor basis.
633 ia64_mca_cmc_vector_setup (void)
637 cmcv.cmcv_regval = 0;
638 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
639 cmcv.cmcv_vector = IA64_CMC_VECTOR;
640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
643 __func__, smp_processor_id(), IA64_CMC_VECTOR);
645 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
646 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650 * ia64_mca_cmc_vector_disable
652 * Mask the corrected machine check vector register in the processor.
653 * This function is invoked on a per-processor basis.
662 ia64_mca_cmc_vector_disable (void *dummy)
666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
672 __func__, smp_processor_id(), cmcv.cmcv_vector);
676 * ia64_mca_cmc_vector_enable
678 * Unmask the corrected machine check vector register in the processor.
679 * This function is invoked on a per-processor basis.
688 ia64_mca_cmc_vector_enable (void *dummy)
692 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
694 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
695 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
697 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
698 __func__, smp_processor_id(), cmcv.cmcv_vector);
702 * ia64_mca_cmc_vector_disable_keventd
704 * Called via keventd (smp_call_function() is not safe in interrupt context) to
705 * disable the cmc interrupt vector.
708 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
710 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714 * ia64_mca_cmc_vector_enable_keventd
716 * Called via keventd (smp_call_function() is not safe in interrupt context) to
717 * enable the cmc interrupt vector.
720 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
722 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
728 * Send an inter-cpu interrupt to wake-up a particular cpu.
734 ia64_mca_wakeup(int cpu)
736 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740 * ia64_mca_wakeup_all
742 * Wakeup all the slave cpus which have rendez'ed previously.
748 ia64_mca_wakeup_all(void)
752 /* Clear the Rendez checkin flag for all cpus */
753 for_each_online_cpu(cpu) {
754 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
755 ia64_mca_wakeup(cpu);
761 * ia64_mca_rendez_interrupt_handler
763 * This is handler used to put slave processors into spinloop
764 * while the monarch processor does the mca handling and later
765 * wake each slave up once the monarch is done. The state
766 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
767 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
768 * the cpu has come out of OS rendezvous.
774 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
777 int cpu = smp_processor_id();
778 struct ia64_mca_notify_die nd =
779 { .sos = NULL, .monarch_cpu = &monarch_cpu };
781 /* Mask all interrupts */
782 local_irq_save(flags);
784 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
786 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
787 /* Register with the SAL monarch that the slave has
790 ia64_sal_mc_rendez();
792 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
794 /* Wait for the monarch cpu to exit. */
795 while (monarch_cpu != -1)
796 cpu_relax(); /* spin until monarch leaves */
798 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
800 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
801 /* Enable all interrupts */
802 local_irq_restore(flags);
807 * ia64_mca_wakeup_int_handler
809 * The interrupt handler for processing the inter-cpu interrupt to the
810 * slave cpu which was spinning in the rendez loop.
811 * Since this spinning is done by turning off the interrupts and
812 * polling on the wakeup-interrupt bit in the IRR, there is
813 * nothing useful to be done in the handler.
815 * Inputs : wakeup_irq (Wakeup-interrupt bit)
816 * arg (Interrupt handler specific argument)
821 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
826 /* Function pointer for extra MCA recovery */
827 int (*ia64_mca_ucmc_extension)
828 (void*,struct ia64_sal_os_state*)
832 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
834 if (ia64_mca_ucmc_extension)
837 ia64_mca_ucmc_extension = fn;
842 ia64_unreg_MCA_extension(void)
844 if (ia64_mca_ucmc_extension)
845 ia64_mca_ucmc_extension = NULL;
848 EXPORT_SYMBOL(ia64_reg_MCA_extension);
849 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
855 u64 fslot, tslot, nat;
857 fslot = ((unsigned long)fr >> 3) & 63;
858 tslot = ((unsigned long)tr >> 3) & 63;
859 *tnat &= ~(1UL << tslot);
860 nat = (fnat >> fslot) & 1;
861 *tnat |= (nat << tslot);
864 /* Change the comm field on the MCA/INT task to include the pid that
865 * was interrupted, it makes for easier debugging. If that pid was 0
866 * (swapper or nested MCA/INIT) then use the start of the previous comm
867 * field suffixed with its cpu.
871 ia64_mca_modify_comm(const struct task_struct *previous_current)
873 char *p, comm[sizeof(current->comm)];
874 if (previous_current->pid)
875 snprintf(comm, sizeof(comm), "%s %d",
876 current->comm, previous_current->pid);
879 if ((p = strchr(previous_current->comm, ' ')))
880 l = p - previous_current->comm;
882 l = strlen(previous_current->comm);
883 snprintf(comm, sizeof(comm), "%s %*s %d",
884 current->comm, l, previous_current->comm,
885 task_thread_info(previous_current)->cpu);
887 memcpy(current->comm, comm, sizeof(current->comm));
890 /* On entry to this routine, we are running on the per cpu stack, see
891 * mca_asm.h. The original stack has not been touched by this event. Some of
892 * the original stack's registers will be in the RBS on this stack. This stack
893 * also contains a partial pt_regs and switch_stack, the rest of the data is in
896 * The first thing to do is modify the original stack to look like a blocked
897 * task so we can run backtrace on the original task. Also mark the per cpu
898 * stack as current to ensure that we use the correct task state, it also means
899 * that we can do backtrace on the MCA/INIT handler code itself.
902 static struct task_struct *
903 ia64_mca_modify_original_stack(struct pt_regs *regs,
904 const struct switch_stack *sw,
905 struct ia64_sal_os_state *sos,
910 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
911 const pal_min_state_area_t *ms = sos->pal_min_state;
912 struct task_struct *previous_current;
913 struct pt_regs *old_regs;
914 struct switch_stack *old_sw;
915 unsigned size = sizeof(struct pt_regs) +
916 sizeof(struct switch_stack) + 16;
917 u64 *old_bspstore, *old_bsp;
918 u64 *new_bspstore, *new_bsp;
919 u64 old_unat, old_rnat, new_rnat, nat;
920 u64 slots, loadrs = regs->loadrs;
921 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
922 u64 ar_bspstore = regs->ar_bspstore;
923 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
926 int cpu = smp_processor_id();
928 previous_current = curr_task(cpu);
929 set_curr_task(cpu, current);
930 if ((p = strchr(current->comm, ' ')))
933 /* Best effort attempt to cope with MCA/INIT delivered while in
936 regs->cr_ipsr = ms->pmsa_ipsr;
937 if (ia64_psr(regs)->dt == 0) {
949 if (ia64_psr(regs)->rt == 0) {
962 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
963 * have been copied to the old stack, the old stack may fail the
964 * validation tests below. So ia64_old_stack() must restore the dirty
965 * registers from the new stack. The old and new bspstore probably
966 * have different alignments, so loadrs calculated on the old bsp
967 * cannot be used to restore from the new bsp. Calculate a suitable
968 * loadrs for the new stack and save it in the new pt_regs, where
969 * ia64_old_stack() can get it.
971 old_bspstore = (u64 *)ar_bspstore;
972 old_bsp = (u64 *)ar_bsp;
973 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
974 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
975 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
976 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
978 /* Verify the previous stack state before we change it */
979 if (user_mode(regs)) {
980 msg = "occurred in user space";
981 /* previous_current is guaranteed to be valid when the task was
982 * in user space, so ...
984 ia64_mca_modify_comm(previous_current);
988 if (r13 != sos->prev_IA64_KR_CURRENT) {
989 msg = "inconsistent previous current and r13";
993 if (!mca_recover_range(ms->pmsa_iip)) {
994 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
995 msg = "inconsistent r12 and r13";
998 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
999 msg = "inconsistent ar.bspstore and r13";
1002 va.p = old_bspstore;
1004 msg = "old_bspstore is in the wrong region";
1007 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1008 msg = "inconsistent ar.bsp and r13";
1011 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1012 if (ar_bspstore + size > r12) {
1013 msg = "no room for blocked state";
1018 ia64_mca_modify_comm(previous_current);
1020 /* Make the original task look blocked. First stack a struct pt_regs,
1021 * describing the state at the time of interrupt. mca_asm.S built a
1022 * partial pt_regs, copy it and fill in the blanks using minstate.
1024 p = (char *)r12 - sizeof(*regs);
1025 old_regs = (struct pt_regs *)p;
1026 memcpy(old_regs, regs, sizeof(*regs));
1027 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1028 * pmsa_{xip,xpsr,xfs}
1030 if (ia64_psr(regs)->ic) {
1031 old_regs->cr_iip = ms->pmsa_iip;
1032 old_regs->cr_ipsr = ms->pmsa_ipsr;
1033 old_regs->cr_ifs = ms->pmsa_ifs;
1035 old_regs->cr_iip = ms->pmsa_xip;
1036 old_regs->cr_ipsr = ms->pmsa_xpsr;
1037 old_regs->cr_ifs = ms->pmsa_xfs;
1039 old_regs->pr = ms->pmsa_pr;
1040 old_regs->b0 = ms->pmsa_br0;
1041 old_regs->loadrs = loadrs;
1042 old_regs->ar_rsc = ms->pmsa_rsc;
1043 old_unat = old_regs->ar_unat;
1044 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1045 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1046 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1047 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1048 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1049 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1050 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1051 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1052 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1053 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1054 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1055 if (ia64_psr(old_regs)->bn)
1056 bank = ms->pmsa_bank1_gr;
1058 bank = ms->pmsa_bank0_gr;
1059 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1060 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1061 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1062 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1063 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1064 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1065 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1066 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1067 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1068 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1069 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1070 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1071 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1072 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1073 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1074 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1076 /* Next stack a struct switch_stack. mca_asm.S built a partial
1077 * switch_stack, copy it and fill in the blanks using pt_regs and
1080 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1081 * ar.pfs is set to 0.
1083 * unwind.c::unw_unwind() does special processing for interrupt frames.
1084 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1085 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1086 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1087 * switch_stack on the original stack so it will unwind correctly when
1088 * unwind.c reads pt_regs.
1090 * thread.ksp is updated to point to the synthesized switch_stack.
1092 p -= sizeof(struct switch_stack);
1093 old_sw = (struct switch_stack *)p;
1094 memcpy(old_sw, sw, sizeof(*sw));
1095 old_sw->caller_unat = old_unat;
1096 old_sw->ar_fpsr = old_regs->ar_fpsr;
1097 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1098 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1099 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1100 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1101 old_sw->b0 = (u64)ia64_leave_kernel;
1102 old_sw->b1 = ms->pmsa_br1;
1104 old_sw->ar_unat = old_unat;
1105 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1106 previous_current->thread.ksp = (u64)p - 16;
1108 /* Finally copy the original stack's registers back to its RBS.
1109 * Registers from ar.bspstore through ar.bsp at the time of the event
1110 * are in the current RBS, copy them back to the original stack. The
1111 * copy must be done register by register because the original bspstore
1112 * and the current one have different alignments, so the saved RNAT
1113 * data occurs at different places.
1115 * mca_asm does cover, so the old_bsp already includes all registers at
1116 * the time of MCA/INIT. It also does flushrs, so all registers before
1117 * this function have been written to backing store on the MCA/INIT
1120 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1121 old_rnat = regs->ar_rnat;
1123 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1124 new_rnat = ia64_get_rnat(new_bspstore++);
1126 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1127 *old_bspstore++ = old_rnat;
1130 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1131 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1132 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1133 *old_bspstore++ = *new_bspstore++;
1135 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1136 old_sw->ar_rnat = old_rnat;
1138 sos->prev_task = previous_current;
1139 return previous_current;
1142 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1143 smp_processor_id(), type, msg);
1144 return previous_current;
1147 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1148 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1149 * not entered rendezvous yet then wait a bit. The assumption is that any
1150 * slave that has not rendezvoused after a reasonable time is never going to do
1151 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1152 * interrupt, as well as cpus that receive the INIT slave event.
1156 ia64_wait_for_slaves(int monarch, const char *type)
1161 * wait 5 seconds total for slaves (arbitrary)
1163 for (i = 0; i < 5000; i++) {
1165 for_each_online_cpu(c) {
1168 if (ia64_mc_info.imi_rendez_checkin[c]
1169 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1170 udelay(1000); /* short wait */
1180 * Maybe slave(s) dead. Print buffered messages immediately.
1182 ia64_mlogbuf_finish(0);
1183 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1184 for_each_online_cpu(c) {
1187 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1194 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1200 * Switch rid when TR reload and needed!
1201 * iord: 1: itr, 2: itr;
1204 static void mca_insert_tr(u64 iord)
1209 struct ia64_tr_entry *p;
1211 int cpu = smp_processor_id();
1213 psr = ia64_clear_ic();
1214 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1215 p = &__per_cpu_idtrs[cpu][iord-1][i];
1217 old_rr = ia64_get_rr(p->ifa);
1218 if (old_rr != p->rr) {
1219 ia64_set_rr(p->ifa, p->rr);
1222 ia64_ptr(iord, p->ifa, p->itir >> 2);
1225 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1229 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1232 if (old_rr != p->rr) {
1233 ia64_set_rr(p->ifa, old_rr);
1244 * This is uncorrectable machine check handler called from OS_MCA
1245 * dispatch code which is in turn called from SAL_CHECK().
1246 * This is the place where the core of OS MCA handling is done.
1247 * Right now the logs are extracted and displayed in a well-defined
1248 * format. This handler code is supposed to be run only on the
1249 * monarch processor. Once the monarch is done with MCA handling
1250 * further MCA logging is enabled by clearing logs.
1251 * Monarch also has the duty of sending wakeup-IPIs to pull the
1252 * slave processors out of rendezvous spinloop.
1254 * If multiple processors call into OS_MCA, the first will become
1255 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1256 * bitmask. After the first monarch has processed its MCA, it
1257 * will wake up the next cpu in the mca_cpu bitmask and then go
1258 * into the rendezvous loop. When all processors have serviced
1259 * their MCA, the last monarch frees up the rest of the processors.
1262 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1263 struct ia64_sal_os_state *sos)
1265 int recover, cpu = smp_processor_id();
1266 struct task_struct *previous_current;
1267 struct ia64_mca_notify_die nd =
1268 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1269 static atomic_t mca_count;
1270 static cpumask_t mca_cpu;
1272 if (atomic_add_return(1, &mca_count) == 1) {
1276 cpu_set(cpu, mca_cpu);
1279 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1280 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1282 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1284 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1286 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1288 ia64_wait_for_slaves(cpu, "MCA");
1290 /* Wakeup all the processors which are spinning in the
1291 * rendezvous loop. They will leave SAL, then spin in the OS
1292 * with interrupts disabled until this monarch cpu leaves the
1293 * MCA handler. That gets control back to the OS so we can
1294 * backtrace the other cpus, backtrace when spinning in SAL
1297 ia64_mca_wakeup_all();
1299 while (cpu_isset(cpu, mca_cpu))
1300 cpu_relax(); /* spin until monarch wakes us */
1303 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1305 /* Get the MCA error record and log it */
1306 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1308 /* MCA error recovery */
1309 recover = (ia64_mca_ucmc_extension
1310 && ia64_mca_ucmc_extension(
1311 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1315 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1316 rh->severity = sal_log_severity_corrected;
1317 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1318 sos->os_status = IA64_MCA_CORRECTED;
1320 /* Dump buffered message to console */
1321 ia64_mlogbuf_finish(1);
1324 if (__get_cpu_var(ia64_mca_tr_reload)) {
1325 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1326 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1329 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1331 if (atomic_dec_return(&mca_count) > 0) {
1334 /* wake up the next monarch cpu,
1335 * and put this cpu in the rendez loop.
1337 for_each_online_cpu(i) {
1338 if (cpu_isset(i, mca_cpu)) {
1340 cpu_clear(i, mca_cpu); /* wake next cpu */
1341 while (monarch_cpu != -1)
1342 cpu_relax(); /* spin until last cpu leaves */
1343 set_curr_task(cpu, previous_current);
1344 ia64_mc_info.imi_rendez_checkin[cpu]
1345 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1350 set_curr_task(cpu, previous_current);
1351 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1352 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1355 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1356 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1359 * ia64_mca_cmc_int_handler
1361 * This is corrected machine check interrupt handler.
1362 * Right now the logs are extracted and displayed in a well-defined
1367 * client data arg ptr
1373 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1375 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1377 static DEFINE_SPINLOCK(cmc_history_lock);
1379 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1380 __func__, cmc_irq, smp_processor_id());
1382 /* SAL spec states this should run w/ interrupts enabled */
1385 spin_lock(&cmc_history_lock);
1386 if (!cmc_polling_enabled) {
1387 int i, count = 1; /* we know 1 happened now */
1388 unsigned long now = jiffies;
1390 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1391 if (now - cmc_history[i] <= HZ)
1395 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1396 if (count >= CMC_HISTORY_LENGTH) {
1398 cmc_polling_enabled = 1;
1399 spin_unlock(&cmc_history_lock);
1400 /* If we're being hit with CMC interrupts, we won't
1401 * ever execute the schedule_work() below. Need to
1402 * disable CMC interrupts on this processor now.
1404 ia64_mca_cmc_vector_disable(NULL);
1405 schedule_work(&cmc_disable_work);
1408 * Corrected errors will still be corrected, but
1409 * make sure there's a log somewhere that indicates
1410 * something is generating more than we can handle.
1412 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1414 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1416 /* lock already released, get out now */
1419 cmc_history[index++] = now;
1420 if (index == CMC_HISTORY_LENGTH)
1424 spin_unlock(&cmc_history_lock);
1426 /* Get the CMC error record and log it */
1427 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1433 * ia64_mca_cmc_int_caller
1435 * Triggered by sw interrupt from CMC polling routine. Calls
1436 * real interrupt handler and either triggers a sw interrupt
1437 * on the next cpu or does cleanup at the end.
1441 * client data arg ptr
1446 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1448 static int start_count = -1;
1451 cpuid = smp_processor_id();
1453 /* If first cpu, update count */
1454 if (start_count == -1)
1455 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1457 ia64_mca_cmc_int_handler(cmc_irq, arg);
1459 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1461 if (cpuid < NR_CPUS) {
1462 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1464 /* If no log record, switch out of polling mode */
1465 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1467 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1468 schedule_work(&cmc_enable_work);
1469 cmc_polling_enabled = 0;
1473 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1485 * Poll for Corrected Machine Checks (CMCs)
1487 * Inputs : dummy(unused)
1492 ia64_mca_cmc_poll (unsigned long dummy)
1494 /* Trigger a CMC interrupt cascade */
1495 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1499 * ia64_mca_cpe_int_caller
1501 * Triggered by sw interrupt from CPE polling routine. Calls
1502 * real interrupt handler and either triggers a sw interrupt
1503 * on the next cpu or does cleanup at the end.
1507 * client data arg ptr
1514 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1516 static int start_count = -1;
1517 static int poll_time = MIN_CPE_POLL_INTERVAL;
1520 cpuid = smp_processor_id();
1522 /* If first cpu, update count */
1523 if (start_count == -1)
1524 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1526 ia64_mca_cpe_int_handler(cpe_irq, arg);
1528 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1530 if (cpuid < NR_CPUS) {
1531 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1534 * If a log was recorded, increase our polling frequency,
1535 * otherwise, backoff or return to interrupt mode.
1537 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1538 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1539 } else if (cpe_vector < 0) {
1540 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1542 poll_time = MIN_CPE_POLL_INTERVAL;
1544 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1545 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1546 cpe_poll_enabled = 0;
1549 if (cpe_poll_enabled)
1550 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1560 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1561 * on first cpu, from there it will trickle through all the cpus.
1563 * Inputs : dummy(unused)
1568 ia64_mca_cpe_poll (unsigned long dummy)
1570 /* Trigger a CPE interrupt cascade */
1571 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1574 #endif /* CONFIG_ACPI */
1577 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1580 struct task_struct *g, *t;
1581 if (val != DIE_INIT_MONARCH_PROCESS)
1584 if (atomic_read(&kdump_in_progress))
1589 * FIXME: mlogbuf will brim over with INIT stack dumps.
1590 * To enable show_stack from INIT, we use oops_in_progress which should
1591 * be used in real oops. This would cause something wrong after INIT.
1593 BREAK_LOGLEVEL(console_loglevel);
1594 ia64_mlogbuf_dump_from_init();
1596 printk(KERN_ERR "Processes interrupted by INIT -");
1597 for_each_online_cpu(c) {
1598 struct ia64_sal_os_state *s;
1599 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1600 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1604 printk(" %d", g->pid);
1606 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1610 if (read_trylock(&tasklist_lock)) {
1611 do_each_thread (g, t) {
1612 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1613 show_stack(t, NULL);
1614 } while_each_thread (g, t);
1615 read_unlock(&tasklist_lock);
1617 /* FIXME: This will not restore zapped printk locks. */
1618 RESTORE_LOGLEVEL(console_loglevel);
1623 * C portion of the OS INIT handler
1625 * Called from ia64_os_init_dispatch
1627 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1628 * this event. This code is used for both monarch and slave INIT events, see
1631 * All INIT events switch to the INIT stack and change the previous process to
1632 * blocked status. If one of the INIT events is the monarch then we are
1633 * probably processing the nmi button/command. Use the monarch cpu to dump all
1634 * the processes. The slave INIT events all spin until the monarch cpu
1635 * returns. We can also get INIT slave events for MCA, in which case the MCA
1636 * process is the monarch.
1640 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1641 struct ia64_sal_os_state *sos)
1643 static atomic_t slaves;
1644 static atomic_t monarchs;
1645 struct task_struct *previous_current;
1646 int cpu = smp_processor_id();
1647 struct ia64_mca_notify_die nd =
1648 { .sos = sos, .monarch_cpu = &monarch_cpu };
1650 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1652 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1653 sos->proc_state_param, cpu, sos->monarch);
1654 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1656 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1657 sos->os_status = IA64_INIT_RESUME;
1659 /* FIXME: Workaround for broken proms that drive all INIT events as
1660 * slaves. The last slave that enters is promoted to be a monarch.
1661 * Remove this code in September 2006, that gives platforms a year to
1662 * fix their proms and get their customers updated.
1664 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1665 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1667 atomic_dec(&slaves);
1671 /* FIXME: Workaround for broken proms that drive all INIT events as
1672 * monarchs. Second and subsequent monarchs are demoted to slaves.
1673 * Remove this code in September 2006, that gives platforms a year to
1674 * fix their proms and get their customers updated.
1676 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1677 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1679 atomic_dec(&monarchs);
1683 if (!sos->monarch) {
1684 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1685 while (monarch_cpu == -1)
1686 cpu_relax(); /* spin until monarch enters */
1688 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1689 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1691 while (monarch_cpu != -1)
1692 cpu_relax(); /* spin until monarch leaves */
1694 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1696 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1697 set_curr_task(cpu, previous_current);
1698 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1699 atomic_dec(&slaves);
1704 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1707 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1708 * generated via the BMC's command-line interface, but since the console is on the
1709 * same serial line, the user will need some time to switch out of the BMC before
1712 mprintk("Delaying for 5 seconds...\n");
1714 ia64_wait_for_slaves(cpu, "INIT");
1715 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1716 * to default_monarch_init_process() above and just print all the
1719 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1720 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1722 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1723 atomic_dec(&monarchs);
1724 set_curr_task(cpu, previous_current);
1730 ia64_mca_disable_cpe_polling(char *str)
1732 cpe_poll_enabled = 0;
1736 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1738 static struct irqaction cmci_irqaction = {
1739 .handler = ia64_mca_cmc_int_handler,
1740 .flags = IRQF_DISABLED,
1744 static struct irqaction cmcp_irqaction = {
1745 .handler = ia64_mca_cmc_int_caller,
1746 .flags = IRQF_DISABLED,
1750 static struct irqaction mca_rdzv_irqaction = {
1751 .handler = ia64_mca_rendez_int_handler,
1752 .flags = IRQF_DISABLED,
1756 static struct irqaction mca_wkup_irqaction = {
1757 .handler = ia64_mca_wakeup_int_handler,
1758 .flags = IRQF_DISABLED,
1763 static struct irqaction mca_cpe_irqaction = {
1764 .handler = ia64_mca_cpe_int_handler,
1765 .flags = IRQF_DISABLED,
1769 static struct irqaction mca_cpep_irqaction = {
1770 .handler = ia64_mca_cpe_int_caller,
1771 .flags = IRQF_DISABLED,
1774 #endif /* CONFIG_ACPI */
1776 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1777 * these stacks can never sleep, they cannot return from the kernel to user
1778 * space, they do not appear in a normal ps listing. So there is no need to
1779 * format most of the fields.
1782 static void __cpuinit
1783 format_mca_init_stack(void *mca_data, unsigned long offset,
1784 const char *type, int cpu)
1786 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1787 struct thread_info *ti;
1788 memset(p, 0, KERNEL_STACK_SIZE);
1789 ti = task_thread_info(p);
1790 ti->flags = _TIF_MCA_INIT;
1791 ti->preempt_count = 1;
1795 p->state = TASK_UNINTERRUPTIBLE;
1796 cpu_set(cpu, p->cpus_allowed);
1797 INIT_LIST_HEAD(&p->tasks);
1798 p->parent = p->real_parent = p->group_leader = p;
1799 INIT_LIST_HEAD(&p->children);
1800 INIT_LIST_HEAD(&p->sibling);
1801 strncpy(p->comm, type, sizeof(p->comm)-1);
1804 /* Caller prevents this from being called after init */
1805 static void * __init_refok mca_bootmem(void)
1807 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1808 KERNEL_STACK_SIZE, 0);
1811 /* Do per-CPU MCA-related initialization. */
1813 ia64_mca_cpu_init(void *cpu_data)
1817 long sz = sizeof(struct ia64_mca_cpu);
1818 int cpu = smp_processor_id();
1819 static int first_time = 1;
1822 * Structure will already be allocated if cpu has been online,
1825 if (__per_cpu_mca[cpu]) {
1826 data = __va(__per_cpu_mca[cpu]);
1829 data = mca_bootmem();
1832 data = page_address(alloc_pages_node(numa_node_id(),
1833 GFP_KERNEL, get_order(sz)));
1835 panic("Could not allocate MCA memory for cpu %d\n",
1838 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1840 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1842 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1845 * Stash away a copy of the PTE needed to map the per-CPU page.
1846 * We may need it during MCA recovery.
1848 __get_cpu_var(ia64_mca_per_cpu_pte) =
1849 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1852 * Also, stash away a copy of the PAL address and the PTE
1855 pal_vaddr = efi_get_pal_addr();
1858 __get_cpu_var(ia64_mca_pal_base) =
1859 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1860 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1864 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1866 unsigned long flags;
1868 local_irq_save(flags);
1869 if (!cmc_polling_enabled)
1870 ia64_mca_cmc_vector_enable(NULL);
1871 local_irq_restore(flags);
1874 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1875 unsigned long action,
1878 int hotcpu = (unsigned long) hcpu;
1882 case CPU_ONLINE_FROZEN:
1883 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1890 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1891 .notifier_call = mca_cpu_callback
1897 * Do all the system level mca specific initialization.
1899 * 1. Register spinloop and wakeup request interrupt vectors
1901 * 2. Register OS_MCA handler entry point
1903 * 3. Register OS_INIT handler entry point
1905 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1907 * Note that this initialization is done very early before some kernel
1908 * services are available.
1917 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1918 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1919 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1922 struct ia64_sal_retval isrv;
1923 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1924 static struct notifier_block default_init_monarch_nb = {
1925 .notifier_call = default_monarch_init_process,
1926 .priority = 0/* we need to notified last */
1929 IA64_MCA_DEBUG("%s: begin\n", __func__);
1931 /* Clear the Rendez checkin flag for all cpus */
1932 for(i = 0 ; i < NR_CPUS; i++)
1933 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1936 * Register the rendezvous spinloop and wakeup mechanism with SAL
1939 /* Register the rendezvous interrupt vector with SAL */
1941 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1942 SAL_MC_PARAM_MECHANISM_INT,
1943 IA64_MCA_RENDEZ_VECTOR,
1945 SAL_MC_PARAM_RZ_ALWAYS);
1950 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1951 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1953 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1956 printk(KERN_ERR "Failed to register rendezvous interrupt "
1957 "with SAL (status %ld)\n", rc);
1961 /* Register the wakeup interrupt vector with SAL */
1962 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1963 SAL_MC_PARAM_MECHANISM_INT,
1964 IA64_MCA_WAKEUP_VECTOR,
1968 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1969 "(status %ld)\n", rc);
1973 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1975 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1977 * XXX - disable SAL checksum by setting size to 0; should be
1978 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1980 ia64_mc_info.imi_mca_handler_size = 0;
1982 /* Register the os mca handler with SAL */
1983 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1984 ia64_mc_info.imi_mca_handler,
1985 ia64_tpa(mca_hldlr_ptr->gp),
1986 ia64_mc_info.imi_mca_handler_size,
1989 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1990 "(status %ld)\n", rc);
1994 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1995 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1998 * XXX - disable SAL checksum by setting size to 0, should be
1999 * size of the actual init handler in mca_asm.S.
2001 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2002 ia64_mc_info.imi_monarch_init_handler_size = 0;
2003 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2004 ia64_mc_info.imi_slave_init_handler_size = 0;
2006 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2007 ia64_mc_info.imi_monarch_init_handler);
2009 /* Register the os init handler with SAL */
2010 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2011 ia64_mc_info.imi_monarch_init_handler,
2012 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2013 ia64_mc_info.imi_monarch_init_handler_size,
2014 ia64_mc_info.imi_slave_init_handler,
2015 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016 ia64_mc_info.imi_slave_init_handler_size)))
2018 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2019 "(status %ld)\n", rc);
2022 if (register_die_notifier(&default_init_monarch_nb)) {
2023 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2027 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2030 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2031 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2033 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2034 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2035 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2037 /* Setup the MCA rendezvous interrupt vector */
2038 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2040 /* Setup the MCA wakeup interrupt vector */
2041 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2044 /* Setup the CPEI/P handler */
2045 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2048 /* Initialize the areas set aside by the OS to buffer the
2049 * platform/processor error states for MCA/INIT/CMC
2052 ia64_log_init(SAL_INFO_TYPE_MCA);
2053 ia64_log_init(SAL_INFO_TYPE_INIT);
2054 ia64_log_init(SAL_INFO_TYPE_CMC);
2055 ia64_log_init(SAL_INFO_TYPE_CPE);
2058 printk(KERN_INFO "MCA related initialization done\n");
2062 * ia64_mca_late_init
2064 * Opportunity to setup things that require initialization later
2065 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2066 * platform doesn't support an interrupt driven mechanism.
2072 ia64_mca_late_init(void)
2077 register_hotcpu_notifier(&mca_cpu_notifier);
2079 /* Setup the CMCI/P vector and handler */
2080 init_timer(&cmc_poll_timer);
2081 cmc_poll_timer.function = ia64_mca_cmc_poll;
2083 /* Unmask/enable the vector */
2084 cmc_polling_enabled = 0;
2085 schedule_work(&cmc_enable_work);
2087 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2090 /* Setup the CPEI/P vector and handler */
2091 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2092 init_timer(&cpe_poll_timer);
2093 cpe_poll_timer.function = ia64_mca_cpe_poll;
2099 if (cpe_vector >= 0) {
2100 /* If platform supports CPEI, enable the irq. */
2101 irq = local_vector_to_irq(cpe_vector);
2103 cpe_poll_enabled = 0;
2104 desc = irq_desc + irq;
2105 desc->status |= IRQ_PER_CPU;
2106 setup_irq(irq, &mca_cpe_irqaction);
2108 ia64_mca_register_cpev(cpe_vector);
2109 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2113 printk(KERN_ERR "%s: Failed to find irq for CPE "
2114 "interrupt handler, vector %d\n",
2115 __func__, cpe_vector);
2117 /* If platform doesn't support CPEI, get the timer going. */
2118 if (cpe_poll_enabled) {
2119 ia64_mca_cpe_poll(0UL);
2120 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2128 device_initcall(ia64_mca_late_init);