2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/smp_lock.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mpage.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
43 /* simple helper to fault in pages and copy. This should go away
44 * and be replaced with calls into generic code.
46 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 struct page **prepared_pages,
49 const char __user *buf)
53 int offset = pos & (PAGE_CACHE_SIZE - 1);
55 for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
56 size_t count = min_t(size_t,
57 PAGE_CACHE_SIZE - offset, write_bytes);
58 struct page *page = prepared_pages[i];
59 fault_in_pages_readable(buf, count);
61 /* Copy data from userspace to the current page */
63 page_fault = __copy_from_user(page_address(page) + offset,
65 /* Flush processor's dcache for this page */
66 flush_dcache_page(page);
74 return page_fault ? -EFAULT : 0;
78 * unlocks pages after btrfs_file_write is done with them
80 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
83 for (i = 0; i < num_pages; i++) {
86 /* page checked is some magic around finding pages that
87 * have been modified without going through btrfs_set_page_dirty
90 ClearPageChecked(pages[i]);
91 unlock_page(pages[i]);
92 mark_page_accessed(pages[i]);
93 page_cache_release(pages[i]);
98 * after copy_from_user, pages need to be dirtied and we need to make
99 * sure holes are created between the current EOF and the start of
100 * any next extents (if required).
102 * this also makes the decision about creating an inline extent vs
103 * doing real data extents, marking pages dirty and delalloc as required.
105 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
115 struct inode *inode = fdentry(file)->d_inode;
116 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
120 u64 end_of_last_block;
121 u64 end_pos = pos + write_bytes;
122 loff_t isize = i_size_read(inode);
124 start_pos = pos & ~((u64)root->sectorsize - 1);
125 num_bytes = (write_bytes + pos - start_pos +
126 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
128 end_of_last_block = start_pos + num_bytes - 1;
130 lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
131 trans = btrfs_join_transaction(root, 1);
136 btrfs_set_trans_block_group(trans, inode);
139 set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS);
141 /* check for reserved extents on each page, we don't want
142 * to reset the delalloc bit on things that already have
145 btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
146 for (i = 0; i < num_pages; i++) {
147 struct page *p = pages[i];
152 if (end_pos > isize) {
153 i_size_write(inode, end_pos);
154 btrfs_update_inode(trans, root, inode);
156 err = btrfs_end_transaction(trans, root);
158 unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
163 * this drops all the extents in the cache that intersect the range
164 * [start, end]. Existing extents are split as required.
166 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
169 struct extent_map *em;
170 struct extent_map *split = NULL;
171 struct extent_map *split2 = NULL;
172 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
173 u64 len = end - start + 1;
179 WARN_ON(end < start);
180 if (end == (u64)-1) {
186 split = alloc_extent_map(GFP_NOFS);
188 split2 = alloc_extent_map(GFP_NOFS);
190 spin_lock(&em_tree->lock);
191 em = lookup_extent_mapping(em_tree, start, len);
193 spin_unlock(&em_tree->lock);
197 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
198 spin_unlock(&em_tree->lock);
199 if (em->start <= start &&
200 (!testend || em->start + em->len >= start + len)) {
204 if (start < em->start) {
205 len = em->start - start;
207 len = start + len - (em->start + em->len);
208 start = em->start + em->len;
213 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
214 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
215 remove_extent_mapping(em_tree, em);
217 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
219 split->start = em->start;
220 split->len = start - em->start;
221 split->orig_start = em->orig_start;
222 split->block_start = em->block_start;
225 split->block_len = em->block_len;
227 split->block_len = split->len;
229 split->bdev = em->bdev;
230 split->flags = flags;
231 ret = add_extent_mapping(em_tree, split);
233 free_extent_map(split);
237 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
238 testend && em->start + em->len > start + len) {
239 u64 diff = start + len - em->start;
241 split->start = start + len;
242 split->len = em->start + em->len - (start + len);
243 split->bdev = em->bdev;
244 split->flags = flags;
247 split->block_len = em->block_len;
248 split->block_start = em->block_start;
249 split->orig_start = em->orig_start;
251 split->block_len = split->len;
252 split->block_start = em->block_start + diff;
253 split->orig_start = split->start;
256 ret = add_extent_mapping(em_tree, split);
258 free_extent_map(split);
261 spin_unlock(&em_tree->lock);
265 /* once for the tree*/
269 free_extent_map(split);
271 free_extent_map(split2);
276 * this is very complex, but the basic idea is to drop all extents
277 * in the range start - end. hint_block is filled in with a block number
278 * that would be a good hint to the block allocator for this file.
280 * If an extent intersects the range but is not entirely inside the range
281 * it is either truncated or split. Anything entirely inside the range
282 * is deleted from the tree.
284 * inline_limit is used to tell this code which offsets in the file to keep
285 * if they contain inline extents.
287 noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans,
288 struct btrfs_root *root, struct inode *inode,
289 u64 start, u64 end, u64 locked_end,
290 u64 inline_limit, u64 *hint_byte)
293 u64 search_start = start;
298 u64 orig_locked_end = locked_end;
301 u16 other_encoding = 0;
304 struct extent_buffer *leaf;
305 struct btrfs_file_extent_item *extent;
306 struct btrfs_path *path;
307 struct btrfs_key key;
308 struct btrfs_file_extent_item old;
319 btrfs_drop_extent_cache(inode, start, end - 1, 0);
321 path = btrfs_alloc_path();
326 btrfs_release_path(root, path);
327 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
332 if (path->slots[0] == 0) {
349 leaf = path->nodes[0];
350 slot = path->slots[0];
352 btrfs_item_key_to_cpu(leaf, &key, slot);
353 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY &&
357 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
358 key.objectid != inode->i_ino) {
362 search_start = max(key.offset, start);
365 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
366 extent = btrfs_item_ptr(leaf, slot,
367 struct btrfs_file_extent_item);
368 found_type = btrfs_file_extent_type(leaf, extent);
369 compression = btrfs_file_extent_compression(leaf,
371 encryption = btrfs_file_extent_encryption(leaf,
373 other_encoding = btrfs_file_extent_other_encoding(leaf,
375 if (found_type == BTRFS_FILE_EXTENT_REG ||
376 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
378 btrfs_file_extent_disk_bytenr(leaf,
381 *hint_byte = extent_end;
383 extent_end = key.offset +
384 btrfs_file_extent_num_bytes(leaf, extent);
385 ram_bytes = btrfs_file_extent_ram_bytes(leaf,
388 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
390 extent_end = key.offset +
391 btrfs_file_extent_inline_len(leaf, extent);
394 extent_end = search_start;
397 /* we found nothing we can drop */
398 if ((!found_extent && !found_inline) ||
399 search_start >= extent_end) {
402 nritems = btrfs_header_nritems(leaf);
403 if (slot >= nritems - 1) {
404 nextret = btrfs_next_leaf(root, path);
414 if (end <= extent_end && start >= key.offset && found_inline)
415 *hint_byte = EXTENT_MAP_INLINE;
418 read_extent_buffer(leaf, &old, (unsigned long)extent,
420 root_gen = btrfs_header_generation(leaf);
421 root_owner = btrfs_header_owner(leaf);
422 leaf_start = leaf->start;
425 if (end < extent_end && end >= key.offset) {
427 if (found_inline && start <= key.offset)
431 if (bookend && found_extent) {
432 if (locked_end < extent_end) {
433 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
434 locked_end, extent_end - 1,
437 btrfs_release_path(root, path);
438 lock_extent(&BTRFS_I(inode)->io_tree,
439 locked_end, extent_end - 1,
441 locked_end = extent_end;
444 locked_end = extent_end;
446 orig_parent = path->nodes[0]->start;
447 disk_bytenr = le64_to_cpu(old.disk_bytenr);
448 if (disk_bytenr != 0) {
449 ret = btrfs_inc_extent_ref(trans, root,
451 le64_to_cpu(old.disk_num_bytes),
452 orig_parent, root->root_key.objectid,
453 trans->transid, inode->i_ino);
459 u64 mask = root->sectorsize - 1;
460 search_start = (extent_end + mask) & ~mask;
462 search_start = extent_end;
464 /* truncate existing extent */
465 if (start > key.offset) {
469 WARN_ON(start & (root->sectorsize - 1));
471 new_num = start - key.offset;
472 old_num = btrfs_file_extent_num_bytes(leaf,
475 btrfs_file_extent_disk_bytenr(leaf,
477 if (btrfs_file_extent_disk_bytenr(leaf,
479 inode_sub_bytes(inode, old_num -
482 btrfs_set_file_extent_num_bytes(leaf,
484 btrfs_mark_buffer_dirty(leaf);
485 } else if (key.offset < inline_limit &&
486 (end > extent_end) &&
487 (inline_limit < extent_end)) {
489 new_size = btrfs_file_extent_calc_inline_size(
490 inline_limit - key.offset);
491 inode_sub_bytes(inode, extent_end -
493 btrfs_set_file_extent_ram_bytes(leaf, extent,
495 if (!compression && !encryption) {
496 btrfs_truncate_item(trans, root, path,
501 /* delete the entire extent */
504 inode_sub_bytes(inode, extent_end -
506 ret = btrfs_del_item(trans, root, path);
507 /* TODO update progress marker and return */
510 btrfs_release_path(root, path);
511 /* the extent will be freed later */
513 if (bookend && found_inline && start <= key.offset) {
515 new_size = btrfs_file_extent_calc_inline_size(
517 inode_sub_bytes(inode, end - key.offset);
518 btrfs_set_file_extent_ram_bytes(leaf, extent,
520 if (!compression && !encryption)
521 ret = btrfs_truncate_item(trans, root, path,
525 /* create bookend, splitting the extent in two */
526 if (bookend && found_extent) {
527 struct btrfs_key ins;
528 ins.objectid = inode->i_ino;
530 btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY);
532 btrfs_release_path(root, path);
533 path->leave_spinning = 1;
534 ret = btrfs_insert_empty_item(trans, root, path, &ins,
538 leaf = path->nodes[0];
539 extent = btrfs_item_ptr(leaf, path->slots[0],
540 struct btrfs_file_extent_item);
541 write_extent_buffer(leaf, &old,
542 (unsigned long)extent, sizeof(old));
544 btrfs_set_file_extent_compression(leaf, extent,
546 btrfs_set_file_extent_encryption(leaf, extent,
548 btrfs_set_file_extent_other_encoding(leaf, extent,
550 btrfs_set_file_extent_offset(leaf, extent,
551 le64_to_cpu(old.offset) + end - key.offset);
552 WARN_ON(le64_to_cpu(old.num_bytes) <
554 btrfs_set_file_extent_num_bytes(leaf, extent,
558 * set the ram bytes to the size of the full extent
559 * before splitting. This is a worst case flag,
560 * but its the best we can do because we don't know
561 * how splitting affects compression
563 btrfs_set_file_extent_ram_bytes(leaf, extent,
565 btrfs_set_file_extent_type(leaf, extent, found_type);
567 btrfs_unlock_up_safe(path, 1);
568 btrfs_mark_buffer_dirty(path->nodes[0]);
569 btrfs_set_lock_blocking(path->nodes[0]);
571 if (disk_bytenr != 0) {
572 ret = btrfs_update_extent_ref(trans, root,
574 le64_to_cpu(old.disk_num_bytes),
577 root->root_key.objectid,
578 trans->transid, ins.objectid);
582 path->leave_spinning = 0;
583 btrfs_release_path(root, path);
584 if (disk_bytenr != 0)
585 inode_add_bytes(inode, extent_end - end);
588 if (found_extent && !keep) {
589 u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr);
591 if (old_disk_bytenr != 0) {
592 inode_sub_bytes(inode,
593 le64_to_cpu(old.num_bytes));
594 ret = btrfs_free_extent(trans, root,
596 le64_to_cpu(old.disk_num_bytes),
597 leaf_start, root_owner,
598 root_gen, key.objectid, 0);
600 *hint_byte = old_disk_bytenr;
604 if (search_start >= end) {
610 btrfs_free_path(path);
611 if (locked_end > orig_locked_end) {
612 unlock_extent(&BTRFS_I(inode)->io_tree, orig_locked_end,
613 locked_end - 1, GFP_NOFS);
618 static int extent_mergeable(struct extent_buffer *leaf, int slot,
619 u64 objectid, u64 bytenr, u64 *start, u64 *end)
621 struct btrfs_file_extent_item *fi;
622 struct btrfs_key key;
625 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
628 btrfs_item_key_to_cpu(leaf, &key, slot);
629 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
632 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
633 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
634 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
635 btrfs_file_extent_compression(leaf, fi) ||
636 btrfs_file_extent_encryption(leaf, fi) ||
637 btrfs_file_extent_other_encoding(leaf, fi))
640 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
641 if ((*start && *start != key.offset) || (*end && *end != extent_end))
650 * Mark extent in the range start - end as written.
652 * This changes extent type from 'pre-allocated' to 'regular'. If only
653 * part of extent is marked as written, the extent will be split into
656 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct inode *inode, u64 start, u64 end)
660 struct extent_buffer *leaf;
661 struct btrfs_path *path;
662 struct btrfs_file_extent_item *fi;
663 struct btrfs_key key;
671 u64 locked_end = end;
677 btrfs_drop_extent_cache(inode, start, end - 1, 0);
679 path = btrfs_alloc_path();
682 key.objectid = inode->i_ino;
683 key.type = BTRFS_EXTENT_DATA_KEY;
687 key.offset = split - 1;
689 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
690 if (ret > 0 && path->slots[0] > 0)
693 leaf = path->nodes[0];
694 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
695 BUG_ON(key.objectid != inode->i_ino ||
696 key.type != BTRFS_EXTENT_DATA_KEY);
697 fi = btrfs_item_ptr(leaf, path->slots[0],
698 struct btrfs_file_extent_item);
699 extent_type = btrfs_file_extent_type(leaf, fi);
700 BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC);
701 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
702 BUG_ON(key.offset > start || extent_end < end);
704 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
705 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
706 extent_offset = btrfs_file_extent_offset(leaf, fi);
708 if (key.offset == start)
711 if (key.offset == start && extent_end == end) {
714 u64 leaf_owner = btrfs_header_owner(leaf);
715 u64 leaf_gen = btrfs_header_generation(leaf);
718 if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
719 bytenr, &other_start, &other_end)) {
720 extent_end = other_end;
721 del_slot = path->slots[0] + 1;
723 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
724 leaf->start, leaf_owner,
725 leaf_gen, inode->i_ino, 0);
730 if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
731 bytenr, &other_start, &other_end)) {
732 key.offset = other_start;
733 del_slot = path->slots[0];
735 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
736 leaf->start, leaf_owner,
737 leaf_gen, inode->i_ino, 0);
742 btrfs_set_file_extent_type(leaf, fi,
743 BTRFS_FILE_EXTENT_REG);
747 fi = btrfs_item_ptr(leaf, del_slot - 1,
748 struct btrfs_file_extent_item);
749 btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
750 btrfs_set_file_extent_num_bytes(leaf, fi,
751 extent_end - key.offset);
752 btrfs_mark_buffer_dirty(leaf);
754 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
757 } else if (split == start) {
758 if (locked_end < extent_end) {
759 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
760 locked_end, extent_end - 1, GFP_NOFS);
762 btrfs_release_path(root, path);
763 lock_extent(&BTRFS_I(inode)->io_tree,
764 locked_end, extent_end - 1, GFP_NOFS);
765 locked_end = extent_end;
768 locked_end = extent_end;
770 btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset);
771 extent_offset += split - key.offset;
773 BUG_ON(key.offset != start);
774 btrfs_set_file_extent_offset(leaf, fi, extent_offset +
776 btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split);
778 btrfs_set_item_key_safe(trans, root, path, &key);
782 if (extent_end == end) {
784 extent_type = BTRFS_FILE_EXTENT_REG;
786 if (extent_end == end && split == start) {
789 if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
790 bytenr, &other_start, &other_end)) {
792 fi = btrfs_item_ptr(leaf, path->slots[0],
793 struct btrfs_file_extent_item);
795 btrfs_set_item_key_safe(trans, root, path, &key);
796 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
797 btrfs_set_file_extent_num_bytes(leaf, fi,
802 if (extent_end == end && split == end) {
805 if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino,
806 bytenr, &other_start, &other_end)) {
808 fi = btrfs_item_ptr(leaf, path->slots[0],
809 struct btrfs_file_extent_item);
810 btrfs_set_file_extent_num_bytes(leaf, fi, extent_end -
816 btrfs_mark_buffer_dirty(leaf);
818 orig_parent = leaf->start;
819 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
820 orig_parent, root->root_key.objectid,
821 trans->transid, inode->i_ino);
823 btrfs_release_path(root, path);
826 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi));
829 leaf = path->nodes[0];
830 fi = btrfs_item_ptr(leaf, path->slots[0],
831 struct btrfs_file_extent_item);
832 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
833 btrfs_set_file_extent_type(leaf, fi, extent_type);
834 btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr);
835 btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
836 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
837 btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset);
838 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
839 btrfs_set_file_extent_compression(leaf, fi, 0);
840 btrfs_set_file_extent_encryption(leaf, fi, 0);
841 btrfs_set_file_extent_other_encoding(leaf, fi, 0);
843 if (orig_parent != leaf->start) {
844 ret = btrfs_update_extent_ref(trans, root, bytenr, num_bytes,
845 orig_parent, leaf->start,
846 root->root_key.objectid,
847 trans->transid, inode->i_ino);
851 btrfs_mark_buffer_dirty(leaf);
854 btrfs_release_path(root, path);
855 if (split_end && split == start) {
859 if (locked_end > end) {
860 unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
863 btrfs_free_path(path);
868 * this gets pages into the page cache and locks them down, it also properly
869 * waits for data=ordered extents to finish before allowing the pages to be
872 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
873 struct page **pages, size_t num_pages,
874 loff_t pos, unsigned long first_index,
875 unsigned long last_index, size_t write_bytes)
878 unsigned long index = pos >> PAGE_CACHE_SHIFT;
879 struct inode *inode = fdentry(file)->d_inode;
884 start_pos = pos & ~((u64)root->sectorsize - 1);
885 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
887 if (start_pos > inode->i_size) {
888 err = btrfs_cont_expand(inode, start_pos);
893 memset(pages, 0, num_pages * sizeof(struct page *));
895 for (i = 0; i < num_pages; i++) {
896 pages[i] = grab_cache_page(inode->i_mapping, index + i);
901 wait_on_page_writeback(pages[i]);
903 if (start_pos < inode->i_size) {
904 struct btrfs_ordered_extent *ordered;
905 lock_extent(&BTRFS_I(inode)->io_tree,
906 start_pos, last_pos - 1, GFP_NOFS);
907 ordered = btrfs_lookup_first_ordered_extent(inode,
910 ordered->file_offset + ordered->len > start_pos &&
911 ordered->file_offset < last_pos) {
912 btrfs_put_ordered_extent(ordered);
913 unlock_extent(&BTRFS_I(inode)->io_tree,
914 start_pos, last_pos - 1, GFP_NOFS);
915 for (i = 0; i < num_pages; i++) {
916 unlock_page(pages[i]);
917 page_cache_release(pages[i]);
919 btrfs_wait_ordered_range(inode, start_pos,
920 last_pos - start_pos);
924 btrfs_put_ordered_extent(ordered);
926 clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
927 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC,
929 unlock_extent(&BTRFS_I(inode)->io_tree,
930 start_pos, last_pos - 1, GFP_NOFS);
932 for (i = 0; i < num_pages; i++) {
933 clear_page_dirty_for_io(pages[i]);
934 set_page_extent_mapped(pages[i]);
935 WARN_ON(!PageLocked(pages[i]));
940 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
941 size_t count, loff_t *ppos)
945 ssize_t num_written = 0;
948 struct inode *inode = fdentry(file)->d_inode;
949 struct btrfs_root *root = BTRFS_I(inode)->root;
950 struct page **pages = NULL;
952 struct page *pinned[2];
953 unsigned long first_index;
954 unsigned long last_index;
957 will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
958 (file->f_flags & O_DIRECT));
960 nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
961 PAGE_CACHE_SIZE / (sizeof(struct page *)));
968 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
969 current->backing_dev_info = inode->i_mapping->backing_dev_info;
970 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
976 err = file_remove_suid(file);
979 file_update_time(file);
981 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
983 mutex_lock(&inode->i_mutex);
984 BTRFS_I(inode)->sequence++;
985 first_index = pos >> PAGE_CACHE_SHIFT;
986 last_index = (pos + count) >> PAGE_CACHE_SHIFT;
989 * there are lots of better ways to do this, but this code
990 * makes sure the first and last page in the file range are
991 * up to date and ready for cow
993 if ((pos & (PAGE_CACHE_SIZE - 1))) {
994 pinned[0] = grab_cache_page(inode->i_mapping, first_index);
995 if (!PageUptodate(pinned[0])) {
996 ret = btrfs_readpage(NULL, pinned[0]);
998 wait_on_page_locked(pinned[0]);
1000 unlock_page(pinned[0]);
1003 if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
1004 pinned[1] = grab_cache_page(inode->i_mapping, last_index);
1005 if (!PageUptodate(pinned[1])) {
1006 ret = btrfs_readpage(NULL, pinned[1]);
1008 wait_on_page_locked(pinned[1]);
1010 unlock_page(pinned[1]);
1015 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1016 size_t write_bytes = min(count, nrptrs *
1017 (size_t)PAGE_CACHE_SIZE -
1019 size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
1022 WARN_ON(num_pages > nrptrs);
1023 memset(pages, 0, sizeof(struct page *) * nrptrs);
1025 ret = btrfs_check_data_free_space(root, inode, write_bytes);
1029 ret = prepare_pages(root, file, pages, num_pages,
1030 pos, first_index, last_index,
1033 btrfs_free_reserved_data_space(root, inode,
1038 ret = btrfs_copy_from_user(pos, num_pages,
1039 write_bytes, pages, buf);
1041 btrfs_free_reserved_data_space(root, inode,
1043 btrfs_drop_pages(pages, num_pages);
1047 ret = dirty_and_release_pages(NULL, root, file, pages,
1048 num_pages, pos, write_bytes);
1049 btrfs_drop_pages(pages, num_pages);
1051 btrfs_free_reserved_data_space(root, inode,
1057 btrfs_fdatawrite_range(inode->i_mapping, pos,
1058 pos + write_bytes - 1,
1061 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1064 (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1065 btrfs_btree_balance_dirty(root, 1);
1066 btrfs_throttle(root);
1070 count -= write_bytes;
1072 num_written += write_bytes;
1077 mutex_unlock(&inode->i_mutex);
1084 page_cache_release(pinned[0]);
1086 page_cache_release(pinned[1]);
1090 * we want to make sure fsync finds this change
1091 * but we haven't joined a transaction running right now.
1093 * Later on, someone is sure to update the inode and get the
1094 * real transid recorded.
1096 * We set last_trans now to the fs_info generation + 1,
1097 * this will either be one more than the running transaction
1098 * or the generation used for the next transaction if there isn't
1099 * one running right now.
1101 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1103 if (num_written > 0 && will_write) {
1104 struct btrfs_trans_handle *trans;
1106 err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1110 if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
1111 trans = btrfs_start_transaction(root, 1);
1112 ret = btrfs_log_dentry_safe(trans, root,
1115 ret = btrfs_sync_log(trans, root);
1117 btrfs_end_transaction(trans, root);
1119 btrfs_commit_transaction(trans, root);
1121 btrfs_commit_transaction(trans, root);
1124 if (file->f_flags & O_DIRECT) {
1125 invalidate_mapping_pages(inode->i_mapping,
1126 start_pos >> PAGE_CACHE_SHIFT,
1127 (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1130 current->backing_dev_info = NULL;
1131 return num_written ? num_written : err;
1134 int btrfs_release_file(struct inode *inode, struct file *filp)
1137 * ordered_data_close is set by settattr when we are about to truncate
1138 * a file from a non-zero size to a zero size. This tries to
1139 * flush down new bytes that may have been written if the
1140 * application were using truncate to replace a file in place.
1142 if (BTRFS_I(inode)->ordered_data_close) {
1143 BTRFS_I(inode)->ordered_data_close = 0;
1144 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1145 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1146 filemap_flush(inode->i_mapping);
1148 if (filp->private_data)
1149 btrfs_ioctl_trans_end(filp);
1154 * fsync call for both files and directories. This logs the inode into
1155 * the tree log instead of forcing full commits whenever possible.
1157 * It needs to call filemap_fdatawait so that all ordered extent updates are
1158 * in the metadata btree are up to date for copying to the log.
1160 * It drops the inode mutex before doing the tree log commit. This is an
1161 * important optimization for directories because holding the mutex prevents
1162 * new operations on the dir while we write to disk.
1164 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1166 struct inode *inode = dentry->d_inode;
1167 struct btrfs_root *root = BTRFS_I(inode)->root;
1169 struct btrfs_trans_handle *trans;
1172 * check the transaction that last modified this inode
1173 * and see if its already been committed
1175 if (!BTRFS_I(inode)->last_trans)
1178 mutex_lock(&root->fs_info->trans_mutex);
1179 if (BTRFS_I(inode)->last_trans <=
1180 root->fs_info->last_trans_committed) {
1181 BTRFS_I(inode)->last_trans = 0;
1182 mutex_unlock(&root->fs_info->trans_mutex);
1185 mutex_unlock(&root->fs_info->trans_mutex);
1188 filemap_fdatawrite(inode->i_mapping);
1189 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1193 * ok we haven't committed the transaction yet, lets do a commit
1195 if (file && file->private_data)
1196 btrfs_ioctl_trans_end(file);
1198 trans = btrfs_start_transaction(root, 1);
1204 ret = btrfs_log_dentry_safe(trans, root, dentry);
1208 /* we've logged all the items and now have a consistent
1209 * version of the file in the log. It is possible that
1210 * someone will come in and modify the file, but that's
1211 * fine because the log is consistent on disk, and we
1212 * have references to all of the file's extents
1214 * It is possible that someone will come in and log the
1215 * file again, but that will end up using the synchronization
1216 * inside btrfs_sync_log to keep things safe.
1218 mutex_unlock(&dentry->d_inode->i_mutex);
1221 ret = btrfs_commit_transaction(trans, root);
1223 ret = btrfs_sync_log(trans, root);
1225 ret = btrfs_end_transaction(trans, root);
1227 ret = btrfs_commit_transaction(trans, root);
1229 mutex_lock(&dentry->d_inode->i_mutex);
1231 return ret > 0 ? EIO : ret;
1234 static struct vm_operations_struct btrfs_file_vm_ops = {
1235 .fault = filemap_fault,
1236 .page_mkwrite = btrfs_page_mkwrite,
1239 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1241 vma->vm_ops = &btrfs_file_vm_ops;
1242 file_accessed(filp);
1246 struct file_operations btrfs_file_operations = {
1247 .llseek = generic_file_llseek,
1248 .read = do_sync_read,
1249 .aio_read = generic_file_aio_read,
1250 .splice_read = generic_file_splice_read,
1251 .write = btrfs_file_write,
1252 .mmap = btrfs_file_mmap,
1253 .open = generic_file_open,
1254 .release = btrfs_release_file,
1255 .fsync = btrfs_sync_file,
1256 .unlocked_ioctl = btrfs_ioctl,
1257 #ifdef CONFIG_COMPAT
1258 .compat_ioctl = btrfs_ioctl,