2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
49 #include "ordered-data.h"
52 #include "ref-cache.h"
53 #include "compression.h"
55 struct btrfs_iget_args {
57 struct btrfs_root *root;
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
95 * a very lame attempt at stopping writes when the FS is 85% full. There
96 * are countless ways this is incorrect, but it is better than nothing.
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
107 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
117 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
119 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
131 struct page **compressed_pages)
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
139 struct btrfs_file_extent_item *ei;
142 size_t cur_size = size;
144 unsigned long offset;
145 int use_compress = 0;
147 if (compressed_size && compressed_pages) {
149 cur_size = compressed_size;
152 path = btrfs_alloc_path(); if (!path)
155 btrfs_set_trans_block_group(trans, inode);
157 key.objectid = inode->i_ino;
159 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160 inode_add_bytes(inode, size);
161 datasize = btrfs_file_extent_calc_inline_size(cur_size);
163 inode_add_bytes(inode, size);
164 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 printk("got bad ret %d\n", ret);
172 leaf = path->nodes[0];
173 ei = btrfs_item_ptr(leaf, path->slots[0],
174 struct btrfs_file_extent_item);
175 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177 btrfs_set_file_extent_encryption(leaf, ei, 0);
178 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180 ptr = btrfs_file_extent_inline_start(ei);
185 while(compressed_size > 0) {
186 cpage = compressed_pages[i];
187 cur_size = min_t(unsigned long, compressed_size,
191 write_extent_buffer(leaf, kaddr, ptr, cur_size);
196 compressed_size -= cur_size;
198 btrfs_set_file_extent_compression(leaf, ei,
199 BTRFS_COMPRESS_ZLIB);
201 page = find_get_page(inode->i_mapping,
202 start >> PAGE_CACHE_SHIFT);
203 btrfs_set_file_extent_compression(leaf, ei, 0);
204 kaddr = kmap_atomic(page, KM_USER0);
205 offset = start & (PAGE_CACHE_SIZE - 1);
206 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207 kunmap_atomic(kaddr, KM_USER0);
208 page_cache_release(page);
210 btrfs_mark_buffer_dirty(leaf);
211 btrfs_free_path(path);
213 BTRFS_I(inode)->disk_i_size = inode->i_size;
214 btrfs_update_inode(trans, root, inode);
217 btrfs_free_path(path);
223 * conditionally insert an inline extent into the file. This
224 * does the checks required to make sure the data is small enough
225 * to fit as an inline extent.
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228 struct btrfs_root *root,
229 struct inode *inode, u64 start, u64 end,
230 size_t compressed_size,
231 struct page **compressed_pages)
233 u64 isize = i_size_read(inode);
234 u64 actual_end = min(end + 1, isize);
235 u64 inline_len = actual_end - start;
236 u64 aligned_end = (end + root->sectorsize - 1) &
237 ~((u64)root->sectorsize - 1);
239 u64 data_len = inline_len;
243 data_len = compressed_size;
246 actual_end >= PAGE_CACHE_SIZE ||
247 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
249 (actual_end & (root->sectorsize - 1)) == 0) ||
251 data_len > root->fs_info->max_inline) {
255 ret = btrfs_drop_extents(trans, root, inode, start,
256 aligned_end, start, &hint_byte);
259 if (isize > actual_end)
260 inline_len = min_t(u64, isize, actual_end);
261 ret = insert_inline_extent(trans, root, inode, start,
262 inline_len, compressed_size,
265 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
269 struct async_extent {
274 unsigned long nr_pages;
275 struct list_head list;
280 struct btrfs_root *root;
281 struct page *locked_page;
284 struct list_head extents;
285 struct btrfs_work work;
288 static noinline int add_async_extent(struct async_cow *cow,
289 u64 start, u64 ram_size,
292 unsigned long nr_pages)
294 struct async_extent *async_extent;
296 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
302 list_add_tail(&async_extent->list, &cow->extents);
307 * we create compressed extents in two phases. The first
308 * phase compresses a range of pages that have already been
309 * locked (both pages and state bits are locked).
311 * This is done inside an ordered work queue, and the compression
312 * is spread across many cpus. The actual IO submission is step
313 * two, and the ordered work queue takes care of making sure that
314 * happens in the same order things were put onto the queue by
315 * writepages and friends.
317 * If this code finds it can't get good compression, it puts an
318 * entry onto the work queue to write the uncompressed bytes. This
319 * makes sure that both compressed inodes and uncompressed inodes
320 * are written in the same order that pdflush sent them down.
322 static noinline int compress_file_range(struct inode *inode,
323 struct page *locked_page,
325 struct async_cow *async_cow,
328 struct btrfs_root *root = BTRFS_I(inode)->root;
329 struct btrfs_trans_handle *trans;
333 u64 blocksize = root->sectorsize;
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
350 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 actual_end = min_t(u64, i_size_read(inode), end + 1);
354 total_compressed = actual_end - start;
356 /* we want to make sure that amount of ram required to uncompress
357 * an extent is reasonable, so we limit the total size in ram
358 * of a compressed extent to 128k. This is a crucial number
359 * because it also controls how easily we can spread reads across
360 * cpus for decompression.
362 * We also want to make sure the amount of IO required to do
363 * a random read is reasonably small, so we limit the size of
364 * a compressed extent to 128k.
366 total_compressed = min(total_compressed, max_uncompressed);
367 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368 num_bytes = max(blocksize, num_bytes);
369 disk_num_bytes = num_bytes;
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
378 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379 btrfs_test_opt(root, COMPRESS)) {
381 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
383 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384 total_compressed, pages,
385 nr_pages, &nr_pages_ret,
391 unsigned long offset = total_compressed &
392 (PAGE_CACHE_SIZE - 1);
393 struct page *page = pages[nr_pages_ret - 1];
396 /* zero the tail end of the last page, we might be
397 * sending it down to disk
400 kaddr = kmap_atomic(page, KM_USER0);
401 memset(kaddr + offset, 0,
402 PAGE_CACHE_SIZE - offset);
403 kunmap_atomic(kaddr, KM_USER0);
409 trans = btrfs_join_transaction(root, 1);
411 btrfs_set_trans_block_group(trans, inode);
413 /* lets try to make an inline extent */
414 if (ret || total_in < (actual_end - start)) {
415 /* we didn't compress the entire range, try
416 * to make an uncompressed inline extent.
418 ret = cow_file_range_inline(trans, root, inode,
419 start, end, 0, NULL);
421 /* try making a compressed inline extent */
422 ret = cow_file_range_inline(trans, root, inode,
424 total_compressed, pages);
426 btrfs_end_transaction(trans, root);
429 * inline extent creation worked, we don't need
430 * to create any more async work items. Unlock
431 * and free up our temp pages.
433 extent_clear_unlock_delalloc(inode,
434 &BTRFS_I(inode)->io_tree,
435 start, end, NULL, 1, 0,
444 * we aren't doing an inline extent round the compressed size
445 * up to a block size boundary so the allocator does sane
448 total_compressed = (total_compressed + blocksize - 1) &
452 * one last check to make sure the compression is really a
453 * win, compare the page count read with the blocks on disk
455 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456 ~(PAGE_CACHE_SIZE - 1);
457 if (total_compressed >= total_in) {
460 disk_num_bytes = total_compressed;
461 num_bytes = total_in;
464 if (!will_compress && pages) {
466 * the compression code ran but failed to make things smaller,
467 * free any pages it allocated and our page pointer array
469 for (i = 0; i < nr_pages_ret; i++) {
470 WARN_ON(pages[i]->mapping);
471 page_cache_release(pages[i]);
475 total_compressed = 0;
478 /* flag the file so we don't compress in the future */
479 btrfs_set_flag(inode, NOCOMPRESS);
484 /* the async work queues will take care of doing actual
485 * allocation on disk for these compressed pages,
486 * and will submit them to the elevator.
488 add_async_extent(async_cow, start, num_bytes,
489 total_compressed, pages, nr_pages_ret);
491 if (start + num_bytes < end) {
499 * No compression, but we still need to write the pages in
500 * the file we've been given so far. redirty the locked
501 * page if it corresponds to our extent and set things up
502 * for the async work queue to run cow_file_range to do
503 * the normal delalloc dance
505 if (page_offset(locked_page) >= start &&
506 page_offset(locked_page) <= end) {
507 __set_page_dirty_nobuffers(locked_page);
508 /* unlocked later on in the async handlers */
510 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
518 for (i = 0; i < nr_pages_ret; i++) {
519 WARN_ON(pages[i]->mapping);
520 page_cache_release(pages[i]);
529 * phase two of compressed writeback. This is the ordered portion
530 * of the code, which only gets called in the order the work was
531 * queued. We walk all the async extents created by compress_file_range
532 * and send them down to the disk.
534 static noinline int submit_compressed_extents(struct inode *inode,
535 struct async_cow *async_cow)
537 struct async_extent *async_extent;
539 struct btrfs_trans_handle *trans;
540 struct btrfs_key ins;
541 struct extent_map *em;
542 struct btrfs_root *root = BTRFS_I(inode)->root;
543 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
544 struct extent_io_tree *io_tree;
547 if (list_empty(&async_cow->extents))
550 trans = btrfs_join_transaction(root, 1);
552 while(!list_empty(&async_cow->extents)) {
553 async_extent = list_entry(async_cow->extents.next,
554 struct async_extent, list);
555 list_del(&async_extent->list);
557 io_tree = &BTRFS_I(inode)->io_tree;
559 /* did the compression code fall back to uncompressed IO? */
560 if (!async_extent->pages) {
561 int page_started = 0;
562 unsigned long nr_written = 0;
564 lock_extent(io_tree, async_extent->start,
565 async_extent->start + async_extent->ram_size - 1,
568 /* allocate blocks */
569 cow_file_range(inode, async_cow->locked_page,
571 async_extent->start +
572 async_extent->ram_size - 1,
573 &page_started, &nr_written, 0);
576 * if page_started, cow_file_range inserted an
577 * inline extent and took care of all the unlocking
578 * and IO for us. Otherwise, we need to submit
579 * all those pages down to the drive.
582 extent_write_locked_range(io_tree,
583 inode, async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
593 lock_extent(io_tree, async_extent->start,
594 async_extent->start + async_extent->ram_size - 1,
597 * here we're doing allocation and writeback of the
600 btrfs_drop_extent_cache(inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1, 0);
604 ret = btrfs_reserve_extent(trans, root,
605 async_extent->compressed_size,
606 async_extent->compressed_size,
610 em = alloc_extent_map(GFP_NOFS);
611 em->start = async_extent->start;
612 em->len = async_extent->ram_size;
613 em->orig_start = em->start;
615 em->block_start = ins.objectid;
616 em->block_len = ins.offset;
617 em->bdev = root->fs_info->fs_devices->latest_bdev;
618 set_bit(EXTENT_FLAG_PINNED, &em->flags);
619 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
622 spin_lock(&em_tree->lock);
623 ret = add_extent_mapping(em_tree, em);
624 spin_unlock(&em_tree->lock);
625 if (ret != -EEXIST) {
629 btrfs_drop_extent_cache(inode, async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1, 0);
634 ret = btrfs_add_ordered_extent(inode, async_extent->start,
636 async_extent->ram_size,
638 BTRFS_ORDERED_COMPRESSED);
641 btrfs_end_transaction(trans, root);
644 * clear dirty, set writeback and unlock the pages.
646 extent_clear_unlock_delalloc(inode,
647 &BTRFS_I(inode)->io_tree,
649 async_extent->start +
650 async_extent->ram_size - 1,
651 NULL, 1, 1, 0, 1, 1, 0);
653 ret = btrfs_submit_compressed_write(inode,
655 async_extent->ram_size,
657 ins.offset, async_extent->pages,
658 async_extent->nr_pages);
661 trans = btrfs_join_transaction(root, 1);
662 alloc_hint = ins.objectid + ins.offset;
667 btrfs_end_transaction(trans, root);
672 * when extent_io.c finds a delayed allocation range in the file,
673 * the call backs end up in this code. The basic idea is to
674 * allocate extents on disk for the range, and create ordered data structs
675 * in ram to track those extents.
677 * locked_page is the page that writepage had locked already. We use
678 * it to make sure we don't do extra locks or unlocks.
680 * *page_started is set to one if we unlock locked_page and do everything
681 * required to start IO on it. It may be clean and already done with
684 static noinline int cow_file_range(struct inode *inode,
685 struct page *locked_page,
686 u64 start, u64 end, int *page_started,
687 unsigned long *nr_written,
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct btrfs_trans_handle *trans;
694 unsigned long ram_size;
697 u64 blocksize = root->sectorsize;
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
704 trans = btrfs_join_transaction(root, 1);
706 btrfs_set_trans_block_group(trans, inode);
708 actual_end = min_t(u64, i_size_read(inode), end + 1);
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
720 extent_clear_unlock_delalloc(inode,
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL, 1, 1,
724 *nr_written = *nr_written +
725 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732 BUG_ON(disk_num_bytes >
733 btrfs_super_total_bytes(&root->fs_info->super_copy));
735 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
737 while(disk_num_bytes > 0) {
738 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740 root->sectorsize, 0, alloc_hint,
745 em = alloc_extent_map(GFP_NOFS);
747 em->orig_start = em->start;
749 ram_size = ins.offset;
750 em->len = ins.offset;
752 em->block_start = ins.objectid;
753 em->block_len = ins.offset;
754 em->bdev = root->fs_info->fs_devices->latest_bdev;
755 set_bit(EXTENT_FLAG_PINNED, &em->flags);
758 spin_lock(&em_tree->lock);
759 ret = add_extent_mapping(em_tree, em);
760 spin_unlock(&em_tree->lock);
761 if (ret != -EEXIST) {
765 btrfs_drop_extent_cache(inode, start,
766 start + ram_size - 1, 0);
769 cur_alloc_size = ins.offset;
770 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771 ram_size, cur_alloc_size, 0);
774 if (disk_num_bytes < cur_alloc_size) {
775 printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
779 /* we're not doing compressed IO, don't unlock the first
780 * page (which the caller expects to stay locked), don't
781 * clear any dirty bits and don't set any writeback bits
783 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784 start, start + ram_size - 1,
785 locked_page, unlock, 1,
787 disk_num_bytes -= cur_alloc_size;
788 num_bytes -= cur_alloc_size;
789 alloc_hint = ins.objectid + ins.offset;
790 start += cur_alloc_size;
794 btrfs_end_transaction(trans, root);
800 * work queue call back to started compression on a file and pages
802 static noinline void async_cow_start(struct btrfs_work *work)
804 struct async_cow *async_cow;
806 async_cow = container_of(work, struct async_cow, work);
808 compress_file_range(async_cow->inode, async_cow->locked_page,
809 async_cow->start, async_cow->end, async_cow,
812 async_cow->inode = NULL;
816 * work queue call back to submit previously compressed pages
818 static noinline void async_cow_submit(struct btrfs_work *work)
820 struct async_cow *async_cow;
821 struct btrfs_root *root;
822 unsigned long nr_pages;
824 async_cow = container_of(work, struct async_cow, work);
826 root = async_cow->root;
827 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
832 if (atomic_read(&root->fs_info->async_delalloc_pages) <
834 waitqueue_active(&root->fs_info->async_submit_wait))
835 wake_up(&root->fs_info->async_submit_wait);
837 if (async_cow->inode) {
838 submit_compressed_extents(async_cow->inode, async_cow);
842 static noinline void async_cow_free(struct btrfs_work *work)
844 struct async_cow *async_cow;
845 async_cow = container_of(work, struct async_cow, work);
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850 u64 start, u64 end, int *page_started,
851 unsigned long *nr_written)
853 struct async_cow *async_cow;
854 struct btrfs_root *root = BTRFS_I(inode)->root;
855 unsigned long nr_pages;
857 int limit = 10 * 1024 * 1042;
859 if (!btrfs_test_opt(root, COMPRESS)) {
860 return cow_file_range(inode, locked_page, start, end,
861 page_started, nr_written, 1);
864 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
865 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
867 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
868 async_cow->inode = inode;
869 async_cow->root = root;
870 async_cow->locked_page = locked_page;
871 async_cow->start = start;
873 if (btrfs_test_flag(inode, NOCOMPRESS))
876 cur_end = min(end, start + 512 * 1024 - 1);
878 async_cow->end = cur_end;
879 INIT_LIST_HEAD(&async_cow->extents);
881 async_cow->work.func = async_cow_start;
882 async_cow->work.ordered_func = async_cow_submit;
883 async_cow->work.ordered_free = async_cow_free;
884 async_cow->work.flags = 0;
886 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
888 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
890 btrfs_queue_worker(&root->fs_info->delalloc_workers,
893 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
894 wait_event(root->fs_info->async_submit_wait,
895 (atomic_read(&root->fs_info->async_delalloc_pages) <
899 while(atomic_read(&root->fs_info->async_submit_draining) &&
900 atomic_read(&root->fs_info->async_delalloc_pages)) {
901 wait_event(root->fs_info->async_submit_wait,
902 (atomic_read(&root->fs_info->async_delalloc_pages) ==
906 *nr_written += nr_pages;
914 * when nowcow writeback call back. This checks for snapshots or COW copies
915 * of the extents that exist in the file, and COWs the file as required.
917 * If no cow copies or snapshots exist, we write directly to the existing
920 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
921 u64 start, u64 end, int *page_started, int force,
922 unsigned long *nr_written)
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 struct btrfs_trans_handle *trans;
926 struct extent_buffer *leaf;
927 struct btrfs_path *path;
928 struct btrfs_file_extent_item *fi;
929 struct btrfs_key found_key;
941 path = btrfs_alloc_path();
943 trans = btrfs_join_transaction(root, 1);
949 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
952 if (ret > 0 && path->slots[0] > 0 && check_prev) {
953 leaf = path->nodes[0];
954 btrfs_item_key_to_cpu(leaf, &found_key,
956 if (found_key.objectid == inode->i_ino &&
957 found_key.type == BTRFS_EXTENT_DATA_KEY)
962 leaf = path->nodes[0];
963 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
964 ret = btrfs_next_leaf(root, path);
969 leaf = path->nodes[0];
974 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
976 if (found_key.objectid > inode->i_ino ||
977 found_key.type > BTRFS_EXTENT_DATA_KEY ||
978 found_key.offset > end)
981 if (found_key.offset > cur_offset) {
982 extent_end = found_key.offset;
986 fi = btrfs_item_ptr(leaf, path->slots[0],
987 struct btrfs_file_extent_item);
988 extent_type = btrfs_file_extent_type(leaf, fi);
990 if (extent_type == BTRFS_FILE_EXTENT_REG ||
991 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
992 struct btrfs_block_group_cache *block_group;
993 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
994 extent_end = found_key.offset +
995 btrfs_file_extent_num_bytes(leaf, fi);
996 if (extent_end <= start) {
1000 if (btrfs_file_extent_compression(leaf, fi) ||
1001 btrfs_file_extent_encryption(leaf, fi) ||
1002 btrfs_file_extent_other_encoding(leaf, fi))
1004 if (disk_bytenr == 0)
1006 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1008 if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
1010 block_group = btrfs_lookup_block_group(root->fs_info,
1012 if (!block_group || block_group->ro)
1014 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1016 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1017 extent_end = found_key.offset +
1018 btrfs_file_extent_inline_len(leaf, fi);
1019 extent_end = ALIGN(extent_end, root->sectorsize);
1024 if (extent_end <= start) {
1029 if (cow_start == (u64)-1)
1030 cow_start = cur_offset;
1031 cur_offset = extent_end;
1032 if (cur_offset > end)
1038 btrfs_release_path(root, path);
1039 if (cow_start != (u64)-1) {
1040 ret = cow_file_range(inode, locked_page, cow_start,
1041 found_key.offset - 1, page_started,
1044 cow_start = (u64)-1;
1047 disk_bytenr += cur_offset - found_key.offset;
1048 num_bytes = min(end + 1, extent_end) - cur_offset;
1049 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1050 struct extent_map *em;
1051 struct extent_map_tree *em_tree;
1052 em_tree = &BTRFS_I(inode)->extent_tree;
1053 em = alloc_extent_map(GFP_NOFS);
1054 em->start = cur_offset;
1055 em->orig_start = em->start;
1056 em->len = num_bytes;
1057 em->block_len = num_bytes;
1058 em->block_start = disk_bytenr;
1059 em->bdev = root->fs_info->fs_devices->latest_bdev;
1060 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1062 spin_lock(&em_tree->lock);
1063 ret = add_extent_mapping(em_tree, em);
1064 spin_unlock(&em_tree->lock);
1065 if (ret != -EEXIST) {
1066 free_extent_map(em);
1069 btrfs_drop_extent_cache(inode, em->start,
1070 em->start + em->len - 1, 0);
1072 type = BTRFS_ORDERED_PREALLOC;
1074 type = BTRFS_ORDERED_NOCOW;
1077 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1078 num_bytes, num_bytes, type);
1081 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1082 cur_offset, cur_offset + num_bytes - 1,
1083 locked_page, 1, 1, 1, 0, 0, 0);
1084 cur_offset = extent_end;
1085 if (cur_offset > end)
1088 btrfs_release_path(root, path);
1090 if (cur_offset <= end && cow_start == (u64)-1)
1091 cow_start = cur_offset;
1092 if (cow_start != (u64)-1) {
1093 ret = cow_file_range(inode, locked_page, cow_start, end,
1094 page_started, nr_written, 1);
1098 ret = btrfs_end_transaction(trans, root);
1100 btrfs_free_path(path);
1105 * extent_io.c call back to do delayed allocation processing
1107 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1108 u64 start, u64 end, int *page_started,
1109 unsigned long *nr_written)
1111 struct btrfs_root *root = BTRFS_I(inode)->root;
1114 if (btrfs_test_opt(root, NODATACOW) ||
1115 btrfs_test_flag(inode, NODATACOW))
1116 ret = run_delalloc_nocow(inode, locked_page, start, end,
1117 page_started, 1, nr_written);
1118 else if (btrfs_test_flag(inode, PREALLOC))
1119 ret = run_delalloc_nocow(inode, locked_page, start, end,
1120 page_started, 0, nr_written);
1122 ret = cow_file_range_async(inode, locked_page, start, end,
1123 page_started, nr_written);
1129 * extent_io.c set_bit_hook, used to track delayed allocation
1130 * bytes in this file, and to maintain the list of inodes that
1131 * have pending delalloc work to be done.
1133 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1134 unsigned long old, unsigned long bits)
1136 unsigned long flags;
1137 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1140 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1141 root->fs_info->delalloc_bytes += end - start + 1;
1142 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1143 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1144 &root->fs_info->delalloc_inodes);
1146 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1152 * extent_io.c clear_bit_hook, see set_bit_hook for why
1154 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1155 unsigned long old, unsigned long bits)
1157 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
1159 unsigned long flags;
1161 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1162 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1163 printk("warning: delalloc account %Lu %Lu\n",
1164 end - start + 1, root->fs_info->delalloc_bytes);
1165 root->fs_info->delalloc_bytes = 0;
1166 BTRFS_I(inode)->delalloc_bytes = 0;
1168 root->fs_info->delalloc_bytes -= end - start + 1;
1169 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1171 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1172 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1173 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1175 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1181 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1182 * we don't create bios that span stripes or chunks
1184 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1185 size_t size, struct bio *bio,
1186 unsigned long bio_flags)
1188 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1189 struct btrfs_mapping_tree *map_tree;
1190 u64 logical = (u64)bio->bi_sector << 9;
1195 if (bio_flags & EXTENT_BIO_COMPRESSED)
1198 length = bio->bi_size;
1199 map_tree = &root->fs_info->mapping_tree;
1200 map_length = length;
1201 ret = btrfs_map_block(map_tree, READ, logical,
1202 &map_length, NULL, 0);
1204 if (map_length < length + size) {
1211 * in order to insert checksums into the metadata in large chunks,
1212 * we wait until bio submission time. All the pages in the bio are
1213 * checksummed and sums are attached onto the ordered extent record.
1215 * At IO completion time the cums attached on the ordered extent record
1216 * are inserted into the btree
1218 int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1219 int mirror_num, unsigned long bio_flags)
1221 struct btrfs_root *root = BTRFS_I(inode)->root;
1224 ret = btrfs_csum_one_bio(root, inode, bio);
1230 * in order to insert checksums into the metadata in large chunks,
1231 * we wait until bio submission time. All the pages in the bio are
1232 * checksummed and sums are attached onto the ordered extent record.
1234 * At IO completion time the cums attached on the ordered extent record
1235 * are inserted into the btree
1237 int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1238 int mirror_num, unsigned long bio_flags)
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1245 * extent_io.c submission hook. This does the right thing for csum calculation on write,
1246 * or reading the csums from the tree before a read
1248 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1249 int mirror_num, unsigned long bio_flags)
1251 struct btrfs_root *root = BTRFS_I(inode)->root;
1255 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1258 skip_sum = btrfs_test_opt(root, NODATASUM) ||
1259 btrfs_test_flag(inode, NODATASUM);
1261 if (!(rw & (1 << BIO_RW))) {
1263 if (bio_flags & EXTENT_BIO_COMPRESSED)
1264 return btrfs_submit_compressed_read(inode, bio,
1265 mirror_num, bio_flags);
1267 btrfs_lookup_bio_sums(root, inode, bio);
1269 } else if (!skip_sum) {
1270 /* we're doing a write, do the async checksumming */
1271 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1272 inode, rw, bio, mirror_num,
1273 bio_flags, __btrfs_submit_bio_start,
1274 __btrfs_submit_bio_done);
1278 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1282 * given a list of ordered sums record them in the inode. This happens
1283 * at IO completion time based on sums calculated at bio submission time.
1285 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1286 struct inode *inode, u64 file_offset,
1287 struct list_head *list)
1289 struct list_head *cur;
1290 struct btrfs_ordered_sum *sum;
1292 btrfs_set_trans_block_group(trans, inode);
1293 list_for_each(cur, list) {
1294 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1295 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
1301 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1303 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1306 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1310 /* see btrfs_writepage_start_hook for details on why this is required */
1311 struct btrfs_writepage_fixup {
1313 struct btrfs_work work;
1316 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1318 struct btrfs_writepage_fixup *fixup;
1319 struct btrfs_ordered_extent *ordered;
1321 struct inode *inode;
1325 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1329 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1330 ClearPageChecked(page);
1334 inode = page->mapping->host;
1335 page_start = page_offset(page);
1336 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1338 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1340 /* already ordered? We're done */
1341 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1342 EXTENT_ORDERED, 0)) {
1346 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1348 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1349 page_end, GFP_NOFS);
1351 btrfs_start_ordered_extent(inode, ordered, 1);
1355 btrfs_set_extent_delalloc(inode, page_start, page_end);
1356 ClearPageChecked(page);
1358 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1361 page_cache_release(page);
1365 * There are a few paths in the higher layers of the kernel that directly
1366 * set the page dirty bit without asking the filesystem if it is a
1367 * good idea. This causes problems because we want to make sure COW
1368 * properly happens and the data=ordered rules are followed.
1370 * In our case any range that doesn't have the ORDERED bit set
1371 * hasn't been properly setup for IO. We kick off an async process
1372 * to fix it up. The async helper will wait for ordered extents, set
1373 * the delalloc bit and make it safe to write the page.
1375 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1377 struct inode *inode = page->mapping->host;
1378 struct btrfs_writepage_fixup *fixup;
1379 struct btrfs_root *root = BTRFS_I(inode)->root;
1382 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1387 if (PageChecked(page))
1390 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1394 SetPageChecked(page);
1395 page_cache_get(page);
1396 fixup->work.func = btrfs_writepage_fixup_worker;
1398 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1402 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1403 struct inode *inode, u64 file_pos,
1404 u64 disk_bytenr, u64 disk_num_bytes,
1405 u64 num_bytes, u64 ram_bytes,
1406 u8 compression, u8 encryption,
1407 u16 other_encoding, int extent_type)
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410 struct btrfs_file_extent_item *fi;
1411 struct btrfs_path *path;
1412 struct extent_buffer *leaf;
1413 struct btrfs_key ins;
1417 path = btrfs_alloc_path();
1420 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1421 file_pos + num_bytes, file_pos, &hint);
1424 ins.objectid = inode->i_ino;
1425 ins.offset = file_pos;
1426 ins.type = BTRFS_EXTENT_DATA_KEY;
1427 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1429 leaf = path->nodes[0];
1430 fi = btrfs_item_ptr(leaf, path->slots[0],
1431 struct btrfs_file_extent_item);
1432 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1433 btrfs_set_file_extent_type(leaf, fi, extent_type);
1434 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1435 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1436 btrfs_set_file_extent_offset(leaf, fi, 0);
1437 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1438 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1439 btrfs_set_file_extent_compression(leaf, fi, compression);
1440 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1441 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1442 btrfs_mark_buffer_dirty(leaf);
1444 inode_add_bytes(inode, num_bytes);
1445 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1447 ins.objectid = disk_bytenr;
1448 ins.offset = disk_num_bytes;
1449 ins.type = BTRFS_EXTENT_ITEM_KEY;
1450 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1451 root->root_key.objectid,
1452 trans->transid, inode->i_ino, &ins);
1455 btrfs_free_path(path);
1459 /* as ordered data IO finishes, this gets called so we can finish
1460 * an ordered extent if the range of bytes in the file it covers are
1463 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 struct btrfs_trans_handle *trans;
1467 struct btrfs_ordered_extent *ordered_extent;
1468 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1472 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1476 trans = btrfs_join_transaction(root, 1);
1478 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1479 BUG_ON(!ordered_extent);
1480 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1483 lock_extent(io_tree, ordered_extent->file_offset,
1484 ordered_extent->file_offset + ordered_extent->len - 1,
1487 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1489 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1491 ret = btrfs_mark_extent_written(trans, root, inode,
1492 ordered_extent->file_offset,
1493 ordered_extent->file_offset +
1494 ordered_extent->len);
1497 ret = insert_reserved_file_extent(trans, inode,
1498 ordered_extent->file_offset,
1499 ordered_extent->start,
1500 ordered_extent->disk_len,
1501 ordered_extent->len,
1502 ordered_extent->len,
1504 BTRFS_FILE_EXTENT_REG);
1507 unlock_extent(io_tree, ordered_extent->file_offset,
1508 ordered_extent->file_offset + ordered_extent->len - 1,
1511 add_pending_csums(trans, inode, ordered_extent->file_offset,
1512 &ordered_extent->list);
1514 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1515 btrfs_ordered_update_i_size(inode, ordered_extent);
1516 btrfs_update_inode(trans, root, inode);
1517 btrfs_remove_ordered_extent(inode, ordered_extent);
1518 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1521 btrfs_put_ordered_extent(ordered_extent);
1522 /* once for the tree */
1523 btrfs_put_ordered_extent(ordered_extent);
1525 btrfs_end_transaction(trans, root);
1529 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1530 struct extent_state *state, int uptodate)
1532 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1536 * When IO fails, either with EIO or csum verification fails, we
1537 * try other mirrors that might have a good copy of the data. This
1538 * io_failure_record is used to record state as we go through all the
1539 * mirrors. If another mirror has good data, the page is set up to date
1540 * and things continue. If a good mirror can't be found, the original
1541 * bio end_io callback is called to indicate things have failed.
1543 struct io_failure_record {
1551 int btrfs_io_failed_hook(struct bio *failed_bio,
1552 struct page *page, u64 start, u64 end,
1553 struct extent_state *state)
1555 struct io_failure_record *failrec = NULL;
1557 struct extent_map *em;
1558 struct inode *inode = page->mapping->host;
1559 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1566 unsigned long bio_flags = 0;
1568 ret = get_state_private(failure_tree, start, &private);
1570 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1573 failrec->start = start;
1574 failrec->len = end - start + 1;
1575 failrec->last_mirror = 0;
1577 spin_lock(&em_tree->lock);
1578 em = lookup_extent_mapping(em_tree, start, failrec->len);
1579 if (em->start > start || em->start + em->len < start) {
1580 free_extent_map(em);
1583 spin_unlock(&em_tree->lock);
1585 if (!em || IS_ERR(em)) {
1589 logical = start - em->start;
1590 logical = em->block_start + logical;
1591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1592 bio_flags = EXTENT_BIO_COMPRESSED;
1593 failrec->logical = logical;
1594 free_extent_map(em);
1595 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1596 EXTENT_DIRTY, GFP_NOFS);
1597 set_state_private(failure_tree, start,
1598 (u64)(unsigned long)failrec);
1600 failrec = (struct io_failure_record *)(unsigned long)private;
1602 num_copies = btrfs_num_copies(
1603 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1604 failrec->logical, failrec->len);
1605 failrec->last_mirror++;
1607 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1608 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1611 if (state && state->start != failrec->start)
1613 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1615 if (!state || failrec->last_mirror > num_copies) {
1616 set_state_private(failure_tree, failrec->start, 0);
1617 clear_extent_bits(failure_tree, failrec->start,
1618 failrec->start + failrec->len - 1,
1619 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1623 bio = bio_alloc(GFP_NOFS, 1);
1624 bio->bi_private = state;
1625 bio->bi_end_io = failed_bio->bi_end_io;
1626 bio->bi_sector = failrec->logical >> 9;
1627 bio->bi_bdev = failed_bio->bi_bdev;
1629 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1630 if (failed_bio->bi_rw & (1 << BIO_RW))
1635 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1636 failrec->last_mirror,
1642 * each time an IO finishes, we do a fast check in the IO failure tree
1643 * to see if we need to process or clean up an io_failure_record
1645 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1648 u64 private_failure;
1649 struct io_failure_record *failure;
1653 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1654 (u64)-1, 1, EXTENT_DIRTY)) {
1655 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1656 start, &private_failure);
1658 failure = (struct io_failure_record *)(unsigned long)
1660 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1662 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1664 failure->start + failure->len - 1,
1665 EXTENT_DIRTY | EXTENT_LOCKED,
1674 * when reads are done, we need to check csums to verify the data is correct
1675 * if there's a match, we allow the bio to finish. If not, we go through
1676 * the io_failure_record routines to find good copies
1678 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1679 struct extent_state *state)
1681 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1682 struct inode *inode = page->mapping->host;
1683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1685 u64 private = ~(u32)0;
1687 struct btrfs_root *root = BTRFS_I(inode)->root;
1689 unsigned long flags;
1691 if (btrfs_test_opt(root, NODATASUM) ||
1692 btrfs_test_flag(inode, NODATASUM))
1694 if (state && state->start == start) {
1695 private = state->private;
1698 ret = get_state_private(io_tree, start, &private);
1700 local_irq_save(flags);
1701 kaddr = kmap_atomic(page, KM_IRQ0);
1705 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1706 btrfs_csum_final(csum, (char *)&csum);
1707 if (csum != private) {
1710 kunmap_atomic(kaddr, KM_IRQ0);
1711 local_irq_restore(flags);
1713 /* if the io failure tree for this inode is non-empty,
1714 * check to see if we've recovered from a failed IO
1716 btrfs_clean_io_failures(inode, start);
1720 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1721 page->mapping->host->i_ino, (unsigned long long)start, csum,
1723 memset(kaddr + offset, 1, end - start + 1);
1724 flush_dcache_page(page);
1725 kunmap_atomic(kaddr, KM_IRQ0);
1726 local_irq_restore(flags);
1733 * This creates an orphan entry for the given inode in case something goes
1734 * wrong in the middle of an unlink/truncate.
1736 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1738 struct btrfs_root *root = BTRFS_I(inode)->root;
1741 spin_lock(&root->list_lock);
1743 /* already on the orphan list, we're good */
1744 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1745 spin_unlock(&root->list_lock);
1749 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1751 spin_unlock(&root->list_lock);
1754 * insert an orphan item to track this unlinked/truncated file
1756 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1762 * We have done the truncate/delete so we can go ahead and remove the orphan
1763 * item for this particular inode.
1765 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1767 struct btrfs_root *root = BTRFS_I(inode)->root;
1770 spin_lock(&root->list_lock);
1772 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1773 spin_unlock(&root->list_lock);
1777 list_del_init(&BTRFS_I(inode)->i_orphan);
1779 spin_unlock(&root->list_lock);
1783 spin_unlock(&root->list_lock);
1785 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1791 * this cleans up any orphans that may be left on the list from the last use
1794 void btrfs_orphan_cleanup(struct btrfs_root *root)
1796 struct btrfs_path *path;
1797 struct extent_buffer *leaf;
1798 struct btrfs_item *item;
1799 struct btrfs_key key, found_key;
1800 struct btrfs_trans_handle *trans;
1801 struct inode *inode;
1802 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1804 path = btrfs_alloc_path();
1809 key.objectid = BTRFS_ORPHAN_OBJECTID;
1810 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1811 key.offset = (u64)-1;
1815 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1817 printk(KERN_ERR "Error searching slot for orphan: %d"
1823 * if ret == 0 means we found what we were searching for, which
1824 * is weird, but possible, so only screw with path if we didnt
1825 * find the key and see if we have stuff that matches
1828 if (path->slots[0] == 0)
1833 /* pull out the item */
1834 leaf = path->nodes[0];
1835 item = btrfs_item_nr(leaf, path->slots[0]);
1836 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1838 /* make sure the item matches what we want */
1839 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1841 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1844 /* release the path since we're done with it */
1845 btrfs_release_path(root, path);
1848 * this is where we are basically btrfs_lookup, without the
1849 * crossing root thing. we store the inode number in the
1850 * offset of the orphan item.
1852 inode = btrfs_iget_locked(root->fs_info->sb,
1853 found_key.offset, root);
1857 if (inode->i_state & I_NEW) {
1858 BTRFS_I(inode)->root = root;
1860 /* have to set the location manually */
1861 BTRFS_I(inode)->location.objectid = inode->i_ino;
1862 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1863 BTRFS_I(inode)->location.offset = 0;
1865 btrfs_read_locked_inode(inode);
1866 unlock_new_inode(inode);
1870 * add this inode to the orphan list so btrfs_orphan_del does
1871 * the proper thing when we hit it
1873 spin_lock(&root->list_lock);
1874 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1875 spin_unlock(&root->list_lock);
1878 * if this is a bad inode, means we actually succeeded in
1879 * removing the inode, but not the orphan record, which means
1880 * we need to manually delete the orphan since iput will just
1881 * do a destroy_inode
1883 if (is_bad_inode(inode)) {
1884 trans = btrfs_start_transaction(root, 1);
1885 btrfs_orphan_del(trans, inode);
1886 btrfs_end_transaction(trans, root);
1891 /* if we have links, this was a truncate, lets do that */
1892 if (inode->i_nlink) {
1894 btrfs_truncate(inode);
1899 /* this will do delete_inode and everything for us */
1904 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1906 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1908 btrfs_free_path(path);
1912 * read an inode from the btree into the in-memory inode
1914 void btrfs_read_locked_inode(struct inode *inode)
1916 struct btrfs_path *path;
1917 struct extent_buffer *leaf;
1918 struct btrfs_inode_item *inode_item;
1919 struct btrfs_timespec *tspec;
1920 struct btrfs_root *root = BTRFS_I(inode)->root;
1921 struct btrfs_key location;
1922 u64 alloc_group_block;
1926 path = btrfs_alloc_path();
1928 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1930 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1934 leaf = path->nodes[0];
1935 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1936 struct btrfs_inode_item);
1938 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1939 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1940 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1941 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1942 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1944 tspec = btrfs_inode_atime(inode_item);
1945 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1946 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1948 tspec = btrfs_inode_mtime(inode_item);
1949 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1950 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1952 tspec = btrfs_inode_ctime(inode_item);
1953 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1954 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1956 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1957 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1958 inode->i_generation = BTRFS_I(inode)->generation;
1960 rdev = btrfs_inode_rdev(leaf, inode_item);
1962 BTRFS_I(inode)->index_cnt = (u64)-1;
1964 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1965 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1967 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1968 if (!BTRFS_I(inode)->block_group) {
1969 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1971 BTRFS_BLOCK_GROUP_METADATA, 0);
1973 btrfs_free_path(path);
1976 switch (inode->i_mode & S_IFMT) {
1978 inode->i_mapping->a_ops = &btrfs_aops;
1979 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1980 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1981 inode->i_fop = &btrfs_file_operations;
1982 inode->i_op = &btrfs_file_inode_operations;
1985 inode->i_fop = &btrfs_dir_file_operations;
1986 if (root == root->fs_info->tree_root)
1987 inode->i_op = &btrfs_dir_ro_inode_operations;
1989 inode->i_op = &btrfs_dir_inode_operations;
1992 inode->i_op = &btrfs_symlink_inode_operations;
1993 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1994 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1997 init_special_inode(inode, inode->i_mode, rdev);
2003 btrfs_free_path(path);
2004 make_bad_inode(inode);
2008 * given a leaf and an inode, copy the inode fields into the leaf
2010 static void fill_inode_item(struct btrfs_trans_handle *trans,
2011 struct extent_buffer *leaf,
2012 struct btrfs_inode_item *item,
2013 struct inode *inode)
2015 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2016 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2017 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2018 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2019 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2021 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2022 inode->i_atime.tv_sec);
2023 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2024 inode->i_atime.tv_nsec);
2026 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2027 inode->i_mtime.tv_sec);
2028 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2029 inode->i_mtime.tv_nsec);
2031 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2032 inode->i_ctime.tv_sec);
2033 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2034 inode->i_ctime.tv_nsec);
2036 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2037 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2038 btrfs_set_inode_transid(leaf, item, trans->transid);
2039 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2040 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2041 btrfs_set_inode_block_group(leaf, item,
2042 BTRFS_I(inode)->block_group->key.objectid);
2046 * copy everything in the in-memory inode into the btree.
2048 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2049 struct btrfs_root *root,
2050 struct inode *inode)
2052 struct btrfs_inode_item *inode_item;
2053 struct btrfs_path *path;
2054 struct extent_buffer *leaf;
2057 path = btrfs_alloc_path();
2059 ret = btrfs_lookup_inode(trans, root, path,
2060 &BTRFS_I(inode)->location, 1);
2067 leaf = path->nodes[0];
2068 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2069 struct btrfs_inode_item);
2071 fill_inode_item(trans, leaf, inode_item, inode);
2072 btrfs_mark_buffer_dirty(leaf);
2073 btrfs_set_inode_last_trans(trans, inode);
2076 btrfs_free_path(path);
2082 * unlink helper that gets used here in inode.c and in the tree logging
2083 * recovery code. It remove a link in a directory with a given name, and
2084 * also drops the back refs in the inode to the directory
2086 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct inode *dir, struct inode *inode,
2089 const char *name, int name_len)
2091 struct btrfs_path *path;
2093 struct extent_buffer *leaf;
2094 struct btrfs_dir_item *di;
2095 struct btrfs_key key;
2098 path = btrfs_alloc_path();
2104 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2105 name, name_len, -1);
2114 leaf = path->nodes[0];
2115 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2116 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2119 btrfs_release_path(root, path);
2121 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2123 dir->i_ino, &index);
2125 printk("failed to delete reference to %.*s, "
2126 "inode %lu parent %lu\n", name_len, name,
2127 inode->i_ino, dir->i_ino);
2131 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2132 index, name, name_len, -1);
2141 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2142 btrfs_release_path(root, path);
2144 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2146 BUG_ON(ret != 0 && ret != -ENOENT);
2148 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2150 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2154 btrfs_free_path(path);
2158 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2159 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2160 btrfs_update_inode(trans, root, dir);
2161 btrfs_drop_nlink(inode);
2162 ret = btrfs_update_inode(trans, root, inode);
2163 dir->i_sb->s_dirt = 1;
2168 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2170 struct btrfs_root *root;
2171 struct btrfs_trans_handle *trans;
2172 struct inode *inode = dentry->d_inode;
2174 unsigned long nr = 0;
2176 root = BTRFS_I(dir)->root;
2178 ret = btrfs_check_free_space(root, 1, 1);
2182 trans = btrfs_start_transaction(root, 1);
2184 btrfs_set_trans_block_group(trans, dir);
2185 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2186 dentry->d_name.name, dentry->d_name.len);
2188 if (inode->i_nlink == 0)
2189 ret = btrfs_orphan_add(trans, inode);
2191 nr = trans->blocks_used;
2193 btrfs_end_transaction_throttle(trans, root);
2195 btrfs_btree_balance_dirty(root, nr);
2199 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2201 struct inode *inode = dentry->d_inode;
2204 struct btrfs_root *root = BTRFS_I(dir)->root;
2205 struct btrfs_trans_handle *trans;
2206 unsigned long nr = 0;
2209 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2210 * the root of a subvolume or snapshot
2212 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2213 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2217 ret = btrfs_check_free_space(root, 1, 1);
2221 trans = btrfs_start_transaction(root, 1);
2222 btrfs_set_trans_block_group(trans, dir);
2224 err = btrfs_orphan_add(trans, inode);
2228 /* now the directory is empty */
2229 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2230 dentry->d_name.name, dentry->d_name.len);
2232 btrfs_i_size_write(inode, 0);
2236 nr = trans->blocks_used;
2237 ret = btrfs_end_transaction_throttle(trans, root);
2239 btrfs_btree_balance_dirty(root, nr);
2247 * when truncating bytes in a file, it is possible to avoid reading
2248 * the leaves that contain only checksum items. This can be the
2249 * majority of the IO required to delete a large file, but it must
2250 * be done carefully.
2252 * The keys in the level just above the leaves are checked to make sure
2253 * the lowest key in a given leaf is a csum key, and starts at an offset
2254 * after the new size.
2256 * Then the key for the next leaf is checked to make sure it also has
2257 * a checksum item for the same file. If it does, we know our target leaf
2258 * contains only checksum items, and it can be safely freed without reading
2261 * This is just an optimization targeted at large files. It may do
2262 * nothing. It will return 0 unless things went badly.
2264 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2265 struct btrfs_root *root,
2266 struct btrfs_path *path,
2267 struct inode *inode, u64 new_size)
2269 struct btrfs_key key;
2272 struct btrfs_key found_key;
2273 struct btrfs_key other_key;
2274 struct btrfs_leaf_ref *ref;
2278 path->lowest_level = 1;
2279 key.objectid = inode->i_ino;
2280 key.type = BTRFS_CSUM_ITEM_KEY;
2281 key.offset = new_size;
2283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2287 if (path->nodes[1] == NULL) {
2292 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2293 nritems = btrfs_header_nritems(path->nodes[1]);
2298 if (path->slots[1] >= nritems)
2301 /* did we find a key greater than anything we want to delete? */
2302 if (found_key.objectid > inode->i_ino ||
2303 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2306 /* we check the next key in the node to make sure the leave contains
2307 * only checksum items. This comparison doesn't work if our
2308 * leaf is the last one in the node
2310 if (path->slots[1] + 1 >= nritems) {
2312 /* search forward from the last key in the node, this
2313 * will bring us into the next node in the tree
2315 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2317 /* unlikely, but we inc below, so check to be safe */
2318 if (found_key.offset == (u64)-1)
2321 /* search_forward needs a path with locks held, do the
2322 * search again for the original key. It is possible
2323 * this will race with a balance and return a path that
2324 * we could modify, but this drop is just an optimization
2325 * and is allowed to miss some leaves.
2327 btrfs_release_path(root, path);
2330 /* setup a max key for search_forward */
2331 other_key.offset = (u64)-1;
2332 other_key.type = key.type;
2333 other_key.objectid = key.objectid;
2335 path->keep_locks = 1;
2336 ret = btrfs_search_forward(root, &found_key, &other_key,
2338 path->keep_locks = 0;
2339 if (ret || found_key.objectid != key.objectid ||
2340 found_key.type != key.type) {
2345 key.offset = found_key.offset;
2346 btrfs_release_path(root, path);
2351 /* we know there's one more slot after us in the tree,
2352 * read that key so we can verify it is also a checksum item
2354 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2356 if (found_key.objectid < inode->i_ino)
2359 if (found_key.type != key.type || found_key.offset < new_size)
2363 * if the key for the next leaf isn't a csum key from this objectid,
2364 * we can't be sure there aren't good items inside this leaf.
2367 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2370 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2371 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2373 * it is safe to delete this leaf, it contains only
2374 * csum items from this inode at an offset >= new_size
2376 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2379 if (root->ref_cows && leaf_gen < trans->transid) {
2380 ref = btrfs_alloc_leaf_ref(root, 0);
2382 ref->root_gen = root->root_key.offset;
2383 ref->bytenr = leaf_start;
2385 ref->generation = leaf_gen;
2388 ret = btrfs_add_leaf_ref(root, ref, 0);
2390 btrfs_free_leaf_ref(root, ref);
2396 btrfs_release_path(root, path);
2398 if (other_key.objectid == inode->i_ino &&
2399 other_key.type == key.type && other_key.offset > key.offset) {
2400 key.offset = other_key.offset;
2406 /* fixup any changes we've made to the path */
2407 path->lowest_level = 0;
2408 path->keep_locks = 0;
2409 btrfs_release_path(root, path);
2414 * this can truncate away extent items, csum items and directory items.
2415 * It starts at a high offset and removes keys until it can't find
2416 * any higher than new_size
2418 * csum items that cross the new i_size are truncated to the new size
2421 * min_type is the minimum key type to truncate down to. If set to 0, this
2422 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2424 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2425 struct btrfs_root *root,
2426 struct inode *inode,
2427 u64 new_size, u32 min_type)
2430 struct btrfs_path *path;
2431 struct btrfs_key key;
2432 struct btrfs_key found_key;
2434 struct extent_buffer *leaf;
2435 struct btrfs_file_extent_item *fi;
2436 u64 extent_start = 0;
2437 u64 extent_num_bytes = 0;
2443 int pending_del_nr = 0;
2444 int pending_del_slot = 0;
2445 int extent_type = -1;
2447 u64 mask = root->sectorsize - 1;
2450 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2451 path = btrfs_alloc_path();
2455 /* FIXME, add redo link to tree so we don't leak on crash */
2456 key.objectid = inode->i_ino;
2457 key.offset = (u64)-1;
2460 btrfs_init_path(path);
2462 ret = drop_csum_leaves(trans, root, path, inode, new_size);
2466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2471 /* there are no items in the tree for us to truncate, we're
2474 if (path->slots[0] == 0) {
2483 leaf = path->nodes[0];
2484 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2485 found_type = btrfs_key_type(&found_key);
2488 if (found_key.objectid != inode->i_ino)
2491 if (found_type < min_type)
2494 item_end = found_key.offset;
2495 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2496 fi = btrfs_item_ptr(leaf, path->slots[0],
2497 struct btrfs_file_extent_item);
2498 extent_type = btrfs_file_extent_type(leaf, fi);
2499 encoding = btrfs_file_extent_compression(leaf, fi);
2500 encoding |= btrfs_file_extent_encryption(leaf, fi);
2501 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2503 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2505 btrfs_file_extent_num_bytes(leaf, fi);
2506 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2507 item_end += btrfs_file_extent_inline_len(leaf,
2512 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2513 ret = btrfs_csum_truncate(trans, root, path,
2517 if (item_end < new_size) {
2518 if (found_type == BTRFS_DIR_ITEM_KEY) {
2519 found_type = BTRFS_INODE_ITEM_KEY;
2520 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2521 found_type = BTRFS_CSUM_ITEM_KEY;
2522 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2523 found_type = BTRFS_XATTR_ITEM_KEY;
2524 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2525 found_type = BTRFS_INODE_REF_KEY;
2526 } else if (found_type) {
2531 btrfs_set_key_type(&key, found_type);
2534 if (found_key.offset >= new_size)
2540 /* FIXME, shrink the extent if the ref count is only 1 */
2541 if (found_type != BTRFS_EXTENT_DATA_KEY)
2544 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2546 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2547 if (!del_item && !encoding) {
2548 u64 orig_num_bytes =
2549 btrfs_file_extent_num_bytes(leaf, fi);
2550 extent_num_bytes = new_size -
2551 found_key.offset + root->sectorsize - 1;
2552 extent_num_bytes = extent_num_bytes &
2553 ~((u64)root->sectorsize - 1);
2554 btrfs_set_file_extent_num_bytes(leaf, fi,
2556 num_dec = (orig_num_bytes -
2558 if (root->ref_cows && extent_start != 0)
2559 inode_sub_bytes(inode, num_dec);
2560 btrfs_mark_buffer_dirty(leaf);
2563 btrfs_file_extent_disk_num_bytes(leaf,
2565 /* FIXME blocksize != 4096 */
2566 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2567 if (extent_start != 0) {
2570 inode_sub_bytes(inode, num_dec);
2572 root_gen = btrfs_header_generation(leaf);
2573 root_owner = btrfs_header_owner(leaf);
2575 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2577 * we can't truncate inline items that have had
2581 btrfs_file_extent_compression(leaf, fi) == 0 &&
2582 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2583 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2584 u32 size = new_size - found_key.offset;
2586 if (root->ref_cows) {
2587 inode_sub_bytes(inode, item_end + 1 -
2591 btrfs_file_extent_calc_inline_size(size);
2592 ret = btrfs_truncate_item(trans, root, path,
2595 } else if (root->ref_cows) {
2596 inode_sub_bytes(inode, item_end + 1 -
2602 if (!pending_del_nr) {
2603 /* no pending yet, add ourselves */
2604 pending_del_slot = path->slots[0];
2606 } else if (pending_del_nr &&
2607 path->slots[0] + 1 == pending_del_slot) {
2608 /* hop on the pending chunk */
2610 pending_del_slot = path->slots[0];
2612 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2618 ret = btrfs_free_extent(trans, root, extent_start,
2620 leaf->start, root_owner,
2621 root_gen, inode->i_ino, 0);
2625 if (path->slots[0] == 0) {
2628 btrfs_release_path(root, path);
2633 if (pending_del_nr &&
2634 path->slots[0] + 1 != pending_del_slot) {
2635 struct btrfs_key debug;
2637 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2639 ret = btrfs_del_items(trans, root, path,
2644 btrfs_release_path(root, path);
2650 if (pending_del_nr) {
2651 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2654 btrfs_free_path(path);
2655 inode->i_sb->s_dirt = 1;
2660 * taken from block_truncate_page, but does cow as it zeros out
2661 * any bytes left in the last page in the file.
2663 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2665 struct inode *inode = mapping->host;
2666 struct btrfs_root *root = BTRFS_I(inode)->root;
2667 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2668 struct btrfs_ordered_extent *ordered;
2670 u32 blocksize = root->sectorsize;
2671 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2672 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2678 if ((offset & (blocksize - 1)) == 0)
2683 page = grab_cache_page(mapping, index);
2687 page_start = page_offset(page);
2688 page_end = page_start + PAGE_CACHE_SIZE - 1;
2690 if (!PageUptodate(page)) {
2691 ret = btrfs_readpage(NULL, page);
2693 if (page->mapping != mapping) {
2695 page_cache_release(page);
2698 if (!PageUptodate(page)) {
2703 wait_on_page_writeback(page);
2705 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2706 set_page_extent_mapped(page);
2708 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2710 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2712 page_cache_release(page);
2713 btrfs_start_ordered_extent(inode, ordered, 1);
2714 btrfs_put_ordered_extent(ordered);
2718 btrfs_set_extent_delalloc(inode, page_start, page_end);
2720 if (offset != PAGE_CACHE_SIZE) {
2722 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2723 flush_dcache_page(page);
2726 ClearPageChecked(page);
2727 set_page_dirty(page);
2728 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2732 page_cache_release(page);
2737 int btrfs_cont_expand(struct inode *inode, loff_t size)
2739 struct btrfs_trans_handle *trans;
2740 struct btrfs_root *root = BTRFS_I(inode)->root;
2741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2742 struct extent_map *em;
2743 u64 mask = root->sectorsize - 1;
2744 u64 hole_start = (inode->i_size + mask) & ~mask;
2745 u64 block_end = (size + mask) & ~mask;
2751 if (size <= hole_start)
2754 err = btrfs_check_free_space(root, 1, 0);
2758 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2761 struct btrfs_ordered_extent *ordered;
2762 btrfs_wait_ordered_range(inode, hole_start,
2763 block_end - hole_start);
2764 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2765 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2768 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2769 btrfs_put_ordered_extent(ordered);
2772 trans = btrfs_start_transaction(root, 1);
2773 btrfs_set_trans_block_group(trans, inode);
2775 cur_offset = hole_start;
2777 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2778 block_end - cur_offset, 0);
2779 BUG_ON(IS_ERR(em) || !em);
2780 last_byte = min(extent_map_end(em), block_end);
2781 last_byte = (last_byte + mask) & ~mask;
2782 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2784 hole_size = last_byte - cur_offset;
2785 err = btrfs_drop_extents(trans, root, inode,
2787 cur_offset + hole_size,
2788 cur_offset, &hint_byte);
2791 err = btrfs_insert_file_extent(trans, root,
2792 inode->i_ino, cur_offset, 0,
2793 0, hole_size, 0, hole_size,
2795 btrfs_drop_extent_cache(inode, hole_start,
2798 free_extent_map(em);
2799 cur_offset = last_byte;
2800 if (err || cur_offset >= block_end)
2804 btrfs_end_transaction(trans, root);
2805 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2809 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2811 struct inode *inode = dentry->d_inode;
2814 err = inode_change_ok(inode, attr);
2818 if (S_ISREG(inode->i_mode) &&
2819 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2820 err = btrfs_cont_expand(inode, attr->ia_size);
2825 err = inode_setattr(inode, attr);
2827 if (!err && ((attr->ia_valid & ATTR_MODE)))
2828 err = btrfs_acl_chmod(inode);
2832 void btrfs_delete_inode(struct inode *inode)
2834 struct btrfs_trans_handle *trans;
2835 struct btrfs_root *root = BTRFS_I(inode)->root;
2839 truncate_inode_pages(&inode->i_data, 0);
2840 if (is_bad_inode(inode)) {
2841 btrfs_orphan_del(NULL, inode);
2844 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2846 btrfs_i_size_write(inode, 0);
2847 trans = btrfs_start_transaction(root, 1);
2849 btrfs_set_trans_block_group(trans, inode);
2850 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2852 btrfs_orphan_del(NULL, inode);
2853 goto no_delete_lock;
2856 btrfs_orphan_del(trans, inode);
2858 nr = trans->blocks_used;
2861 btrfs_end_transaction(trans, root);
2862 btrfs_btree_balance_dirty(root, nr);
2866 nr = trans->blocks_used;
2867 btrfs_end_transaction(trans, root);
2868 btrfs_btree_balance_dirty(root, nr);
2874 * this returns the key found in the dir entry in the location pointer.
2875 * If no dir entries were found, location->objectid is 0.
2877 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2878 struct btrfs_key *location)
2880 const char *name = dentry->d_name.name;
2881 int namelen = dentry->d_name.len;
2882 struct btrfs_dir_item *di;
2883 struct btrfs_path *path;
2884 struct btrfs_root *root = BTRFS_I(dir)->root;
2887 path = btrfs_alloc_path();
2890 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2894 if (!di || IS_ERR(di)) {
2897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2899 btrfs_free_path(path);
2902 location->objectid = 0;
2907 * when we hit a tree root in a directory, the btrfs part of the inode
2908 * needs to be changed to reflect the root directory of the tree root. This
2909 * is kind of like crossing a mount point.
2911 static int fixup_tree_root_location(struct btrfs_root *root,
2912 struct btrfs_key *location,
2913 struct btrfs_root **sub_root,
2914 struct dentry *dentry)
2916 struct btrfs_root_item *ri;
2918 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2920 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2923 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2924 dentry->d_name.name,
2925 dentry->d_name.len);
2926 if (IS_ERR(*sub_root))
2927 return PTR_ERR(*sub_root);
2929 ri = &(*sub_root)->root_item;
2930 location->objectid = btrfs_root_dirid(ri);
2931 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2932 location->offset = 0;
2937 static noinline void init_btrfs_i(struct inode *inode)
2939 struct btrfs_inode *bi = BTRFS_I(inode);
2942 bi->i_default_acl = NULL;
2946 bi->logged_trans = 0;
2947 bi->delalloc_bytes = 0;
2948 bi->disk_i_size = 0;
2950 bi->index_cnt = (u64)-1;
2951 bi->log_dirty_trans = 0;
2952 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2953 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2954 inode->i_mapping, GFP_NOFS);
2955 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2956 inode->i_mapping, GFP_NOFS);
2957 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2958 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2959 mutex_init(&BTRFS_I(inode)->csum_mutex);
2960 mutex_init(&BTRFS_I(inode)->extent_mutex);
2961 mutex_init(&BTRFS_I(inode)->log_mutex);
2964 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2966 struct btrfs_iget_args *args = p;
2967 inode->i_ino = args->ino;
2968 init_btrfs_i(inode);
2969 BTRFS_I(inode)->root = args->root;
2973 static int btrfs_find_actor(struct inode *inode, void *opaque)
2975 struct btrfs_iget_args *args = opaque;
2976 return (args->ino == inode->i_ino &&
2977 args->root == BTRFS_I(inode)->root);
2980 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2981 struct btrfs_root *root, int wait)
2983 struct inode *inode;
2984 struct btrfs_iget_args args;
2985 args.ino = objectid;
2989 inode = ilookup5(s, objectid, btrfs_find_actor,
2992 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2998 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2999 struct btrfs_root *root)
3001 struct inode *inode;
3002 struct btrfs_iget_args args;
3003 args.ino = objectid;
3006 inode = iget5_locked(s, objectid, btrfs_find_actor,
3007 btrfs_init_locked_inode,
3012 /* Get an inode object given its location and corresponding root.
3013 * Returns in *is_new if the inode was read from disk
3015 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3016 struct btrfs_root *root, int *is_new)
3018 struct inode *inode;
3020 inode = btrfs_iget_locked(s, location->objectid, root);
3022 return ERR_PTR(-EACCES);
3024 if (inode->i_state & I_NEW) {
3025 BTRFS_I(inode)->root = root;
3026 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3027 btrfs_read_locked_inode(inode);
3028 unlock_new_inode(inode);
3039 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3041 struct inode * inode;
3042 struct btrfs_inode *bi = BTRFS_I(dir);
3043 struct btrfs_root *root = bi->root;
3044 struct btrfs_root *sub_root = root;
3045 struct btrfs_key location;
3048 if (dentry->d_name.len > BTRFS_NAME_LEN)
3049 return ERR_PTR(-ENAMETOOLONG);
3051 ret = btrfs_inode_by_name(dir, dentry, &location);
3054 return ERR_PTR(ret);
3057 if (location.objectid) {
3058 ret = fixup_tree_root_location(root, &location, &sub_root,
3061 return ERR_PTR(ret);
3063 return ERR_PTR(-ENOENT);
3064 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3066 return ERR_CAST(inode);
3071 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3072 struct nameidata *nd)
3074 struct inode *inode;
3076 if (dentry->d_name.len > BTRFS_NAME_LEN)
3077 return ERR_PTR(-ENAMETOOLONG);
3079 inode = btrfs_lookup_dentry(dir, dentry);
3081 return ERR_CAST(inode);
3083 return d_splice_alias(inode, dentry);
3086 static unsigned char btrfs_filetype_table[] = {
3087 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3090 static int btrfs_real_readdir(struct file *filp, void *dirent,
3093 struct inode *inode = filp->f_dentry->d_inode;
3094 struct btrfs_root *root = BTRFS_I(inode)->root;
3095 struct btrfs_item *item;
3096 struct btrfs_dir_item *di;
3097 struct btrfs_key key;
3098 struct btrfs_key found_key;
3099 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3105 unsigned char d_type;
3110 int key_type = BTRFS_DIR_INDEX_KEY;
3115 /* FIXME, use a real flag for deciding about the key type */
3116 if (root->fs_info->tree_root == root)
3117 key_type = BTRFS_DIR_ITEM_KEY;
3119 /* special case for "." */
3120 if (filp->f_pos == 0) {
3121 over = filldir(dirent, ".", 1,
3128 /* special case for .., just use the back ref */
3129 if (filp->f_pos == 1) {
3130 u64 pino = parent_ino(filp->f_path.dentry);
3131 over = filldir(dirent, "..", 2,
3137 path = btrfs_alloc_path();
3140 btrfs_set_key_type(&key, key_type);
3141 key.offset = filp->f_pos;
3142 key.objectid = inode->i_ino;
3144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3150 leaf = path->nodes[0];
3151 nritems = btrfs_header_nritems(leaf);
3152 slot = path->slots[0];
3153 if (advance || slot >= nritems) {
3154 if (slot >= nritems - 1) {
3155 ret = btrfs_next_leaf(root, path);
3158 leaf = path->nodes[0];
3159 nritems = btrfs_header_nritems(leaf);
3160 slot = path->slots[0];
3168 item = btrfs_item_nr(leaf, slot);
3169 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3171 if (found_key.objectid != key.objectid)
3173 if (btrfs_key_type(&found_key) != key_type)
3175 if (found_key.offset < filp->f_pos)
3178 filp->f_pos = found_key.offset;
3180 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3182 di_total = btrfs_item_size(leaf, item);
3184 while (di_cur < di_total) {
3185 struct btrfs_key location;
3187 name_len = btrfs_dir_name_len(leaf, di);
3188 if (name_len <= sizeof(tmp_name)) {
3189 name_ptr = tmp_name;
3191 name_ptr = kmalloc(name_len, GFP_NOFS);
3197 read_extent_buffer(leaf, name_ptr,
3198 (unsigned long)(di + 1), name_len);
3200 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3201 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3203 /* is this a reference to our own snapshot? If so
3206 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3207 location.objectid == root->root_key.objectid) {
3211 over = filldir(dirent, name_ptr, name_len,
3212 found_key.offset, location.objectid,
3216 if (name_ptr != tmp_name)
3221 di_len = btrfs_dir_name_len(leaf, di) +
3222 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3224 di = (struct btrfs_dir_item *)((char *)di + di_len);
3228 /* Reached end of directory/root. Bump pos past the last item. */
3229 if (key_type == BTRFS_DIR_INDEX_KEY)
3230 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3236 btrfs_free_path(path);
3240 int btrfs_write_inode(struct inode *inode, int wait)
3242 struct btrfs_root *root = BTRFS_I(inode)->root;
3243 struct btrfs_trans_handle *trans;
3246 if (root->fs_info->btree_inode == inode)
3250 trans = btrfs_join_transaction(root, 1);
3251 btrfs_set_trans_block_group(trans, inode);
3252 ret = btrfs_commit_transaction(trans, root);
3258 * This is somewhat expensive, updating the tree every time the
3259 * inode changes. But, it is most likely to find the inode in cache.
3260 * FIXME, needs more benchmarking...there are no reasons other than performance
3261 * to keep or drop this code.
3263 void btrfs_dirty_inode(struct inode *inode)
3265 struct btrfs_root *root = BTRFS_I(inode)->root;
3266 struct btrfs_trans_handle *trans;
3268 trans = btrfs_join_transaction(root, 1);
3269 btrfs_set_trans_block_group(trans, inode);
3270 btrfs_update_inode(trans, root, inode);
3271 btrfs_end_transaction(trans, root);
3275 * find the highest existing sequence number in a directory
3276 * and then set the in-memory index_cnt variable to reflect
3277 * free sequence numbers
3279 static int btrfs_set_inode_index_count(struct inode *inode)
3281 struct btrfs_root *root = BTRFS_I(inode)->root;
3282 struct btrfs_key key, found_key;
3283 struct btrfs_path *path;
3284 struct extent_buffer *leaf;
3287 key.objectid = inode->i_ino;
3288 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3289 key.offset = (u64)-1;
3291 path = btrfs_alloc_path();
3295 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3298 /* FIXME: we should be able to handle this */
3304 * MAGIC NUMBER EXPLANATION:
3305 * since we search a directory based on f_pos we have to start at 2
3306 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3307 * else has to start at 2
3309 if (path->slots[0] == 0) {
3310 BTRFS_I(inode)->index_cnt = 2;
3316 leaf = path->nodes[0];
3317 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3319 if (found_key.objectid != inode->i_ino ||
3320 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3321 BTRFS_I(inode)->index_cnt = 2;
3325 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3327 btrfs_free_path(path);
3332 * helper to find a free sequence number in a given directory. This current
3333 * code is very simple, later versions will do smarter things in the btree
3335 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3339 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3340 ret = btrfs_set_inode_index_count(dir);
3346 *index = BTRFS_I(dir)->index_cnt;
3347 BTRFS_I(dir)->index_cnt++;
3352 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3353 struct btrfs_root *root,
3355 const char *name, int name_len,
3358 struct btrfs_block_group_cache *group,
3359 int mode, u64 *index)
3361 struct inode *inode;
3362 struct btrfs_inode_item *inode_item;
3363 struct btrfs_block_group_cache *new_inode_group;
3364 struct btrfs_key *location;
3365 struct btrfs_path *path;
3366 struct btrfs_inode_ref *ref;
3367 struct btrfs_key key[2];
3373 path = btrfs_alloc_path();
3376 inode = new_inode(root->fs_info->sb);
3378 return ERR_PTR(-ENOMEM);
3381 ret = btrfs_set_inode_index(dir, index);
3383 return ERR_PTR(ret);
3386 * index_cnt is ignored for everything but a dir,
3387 * btrfs_get_inode_index_count has an explanation for the magic
3390 init_btrfs_i(inode);
3391 BTRFS_I(inode)->index_cnt = 2;
3392 BTRFS_I(inode)->root = root;
3393 BTRFS_I(inode)->generation = trans->transid;
3399 new_inode_group = btrfs_find_block_group(root, group, 0,
3400 BTRFS_BLOCK_GROUP_METADATA, owner);
3401 if (!new_inode_group) {
3402 printk("find_block group failed\n");
3403 new_inode_group = group;
3405 BTRFS_I(inode)->block_group = new_inode_group;
3407 key[0].objectid = objectid;
3408 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3411 key[1].objectid = objectid;
3412 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3413 key[1].offset = ref_objectid;
3415 sizes[0] = sizeof(struct btrfs_inode_item);
3416 sizes[1] = name_len + sizeof(*ref);
3418 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3422 if (objectid > root->highest_inode)
3423 root->highest_inode = objectid;
3425 inode->i_uid = current_fsuid();
3426 inode->i_gid = current_fsgid();
3427 inode->i_mode = mode;
3428 inode->i_ino = objectid;
3429 inode_set_bytes(inode, 0);
3430 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3431 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3432 struct btrfs_inode_item);
3433 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3435 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3436 struct btrfs_inode_ref);
3437 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3438 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3439 ptr = (unsigned long)(ref + 1);
3440 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3442 btrfs_mark_buffer_dirty(path->nodes[0]);
3443 btrfs_free_path(path);
3445 location = &BTRFS_I(inode)->location;
3446 location->objectid = objectid;
3447 location->offset = 0;
3448 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3450 insert_inode_hash(inode);
3454 BTRFS_I(dir)->index_cnt--;
3455 btrfs_free_path(path);
3456 return ERR_PTR(ret);
3459 static inline u8 btrfs_inode_type(struct inode *inode)
3461 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3465 * utility function to add 'inode' into 'parent_inode' with
3466 * a give name and a given sequence number.
3467 * if 'add_backref' is true, also insert a backref from the
3468 * inode to the parent directory.
3470 int btrfs_add_link(struct btrfs_trans_handle *trans,
3471 struct inode *parent_inode, struct inode *inode,
3472 const char *name, int name_len, int add_backref, u64 index)
3475 struct btrfs_key key;
3476 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3478 key.objectid = inode->i_ino;
3479 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3482 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3483 parent_inode->i_ino,
3484 &key, btrfs_inode_type(inode),
3488 ret = btrfs_insert_inode_ref(trans, root,
3491 parent_inode->i_ino,
3494 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3496 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3497 ret = btrfs_update_inode(trans, root, parent_inode);
3502 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3503 struct dentry *dentry, struct inode *inode,
3504 int backref, u64 index)
3506 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3507 inode, dentry->d_name.name,
3508 dentry->d_name.len, backref, index);
3510 d_instantiate(dentry, inode);
3518 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3519 int mode, dev_t rdev)
3521 struct btrfs_trans_handle *trans;
3522 struct btrfs_root *root = BTRFS_I(dir)->root;
3523 struct inode *inode = NULL;
3527 unsigned long nr = 0;
3530 if (!new_valid_dev(rdev))
3533 err = btrfs_check_free_space(root, 1, 0);
3537 trans = btrfs_start_transaction(root, 1);
3538 btrfs_set_trans_block_group(trans, dir);
3540 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3546 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3548 dentry->d_parent->d_inode->i_ino, objectid,
3549 BTRFS_I(dir)->block_group, mode, &index);
3550 err = PTR_ERR(inode);
3554 err = btrfs_init_acl(inode, dir);
3560 btrfs_set_trans_block_group(trans, inode);
3561 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3565 inode->i_op = &btrfs_special_inode_operations;
3566 init_special_inode(inode, inode->i_mode, rdev);
3567 btrfs_update_inode(trans, root, inode);
3569 dir->i_sb->s_dirt = 1;
3570 btrfs_update_inode_block_group(trans, inode);
3571 btrfs_update_inode_block_group(trans, dir);
3573 nr = trans->blocks_used;
3574 btrfs_end_transaction_throttle(trans, root);
3577 inode_dec_link_count(inode);
3580 btrfs_btree_balance_dirty(root, nr);
3584 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3585 int mode, struct nameidata *nd)
3587 struct btrfs_trans_handle *trans;
3588 struct btrfs_root *root = BTRFS_I(dir)->root;
3589 struct inode *inode = NULL;
3592 unsigned long nr = 0;
3596 err = btrfs_check_free_space(root, 1, 0);
3599 trans = btrfs_start_transaction(root, 1);
3600 btrfs_set_trans_block_group(trans, dir);
3602 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3608 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3610 dentry->d_parent->d_inode->i_ino,
3611 objectid, BTRFS_I(dir)->block_group, mode,
3613 err = PTR_ERR(inode);
3617 err = btrfs_init_acl(inode, dir);
3623 btrfs_set_trans_block_group(trans, inode);
3624 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3628 inode->i_mapping->a_ops = &btrfs_aops;
3629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3630 inode->i_fop = &btrfs_file_operations;
3631 inode->i_op = &btrfs_file_inode_operations;
3632 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3634 dir->i_sb->s_dirt = 1;
3635 btrfs_update_inode_block_group(trans, inode);
3636 btrfs_update_inode_block_group(trans, dir);
3638 nr = trans->blocks_used;
3639 btrfs_end_transaction_throttle(trans, root);
3642 inode_dec_link_count(inode);
3645 btrfs_btree_balance_dirty(root, nr);
3649 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3650 struct dentry *dentry)
3652 struct btrfs_trans_handle *trans;
3653 struct btrfs_root *root = BTRFS_I(dir)->root;
3654 struct inode *inode = old_dentry->d_inode;
3656 unsigned long nr = 0;
3660 if (inode->i_nlink == 0)
3663 btrfs_inc_nlink(inode);
3664 err = btrfs_check_free_space(root, 1, 0);
3667 err = btrfs_set_inode_index(dir, &index);
3671 trans = btrfs_start_transaction(root, 1);
3673 btrfs_set_trans_block_group(trans, dir);
3674 atomic_inc(&inode->i_count);
3676 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3681 dir->i_sb->s_dirt = 1;
3682 btrfs_update_inode_block_group(trans, dir);
3683 err = btrfs_update_inode(trans, root, inode);
3688 nr = trans->blocks_used;
3689 btrfs_end_transaction_throttle(trans, root);
3692 inode_dec_link_count(inode);
3695 btrfs_btree_balance_dirty(root, nr);
3699 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3701 struct inode *inode = NULL;
3702 struct btrfs_trans_handle *trans;
3703 struct btrfs_root *root = BTRFS_I(dir)->root;
3705 int drop_on_err = 0;
3708 unsigned long nr = 1;
3710 err = btrfs_check_free_space(root, 1, 0);
3714 trans = btrfs_start_transaction(root, 1);
3715 btrfs_set_trans_block_group(trans, dir);
3717 if (IS_ERR(trans)) {
3718 err = PTR_ERR(trans);
3722 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3728 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3730 dentry->d_parent->d_inode->i_ino, objectid,
3731 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3733 if (IS_ERR(inode)) {
3734 err = PTR_ERR(inode);
3740 err = btrfs_init_acl(inode, dir);
3744 inode->i_op = &btrfs_dir_inode_operations;
3745 inode->i_fop = &btrfs_dir_file_operations;
3746 btrfs_set_trans_block_group(trans, inode);
3748 btrfs_i_size_write(inode, 0);
3749 err = btrfs_update_inode(trans, root, inode);
3753 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3754 inode, dentry->d_name.name,
3755 dentry->d_name.len, 0, index);
3759 d_instantiate(dentry, inode);
3761 dir->i_sb->s_dirt = 1;
3762 btrfs_update_inode_block_group(trans, inode);
3763 btrfs_update_inode_block_group(trans, dir);
3766 nr = trans->blocks_used;
3767 btrfs_end_transaction_throttle(trans, root);
3772 btrfs_btree_balance_dirty(root, nr);
3776 /* helper for btfs_get_extent. Given an existing extent in the tree,
3777 * and an extent that you want to insert, deal with overlap and insert
3778 * the new extent into the tree.
3780 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3781 struct extent_map *existing,
3782 struct extent_map *em,
3783 u64 map_start, u64 map_len)
3787 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3788 start_diff = map_start - em->start;
3789 em->start = map_start;
3791 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3792 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3793 em->block_start += start_diff;
3794 em->block_len -= start_diff;
3796 return add_extent_mapping(em_tree, em);
3799 static noinline int uncompress_inline(struct btrfs_path *path,
3800 struct inode *inode, struct page *page,
3801 size_t pg_offset, u64 extent_offset,
3802 struct btrfs_file_extent_item *item)
3805 struct extent_buffer *leaf = path->nodes[0];
3808 unsigned long inline_size;
3811 WARN_ON(pg_offset != 0);
3812 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3813 inline_size = btrfs_file_extent_inline_item_len(leaf,
3814 btrfs_item_nr(leaf, path->slots[0]));
3815 tmp = kmalloc(inline_size, GFP_NOFS);
3816 ptr = btrfs_file_extent_inline_start(item);
3818 read_extent_buffer(leaf, tmp, ptr, inline_size);
3820 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3821 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3822 inline_size, max_size);
3824 char *kaddr = kmap_atomic(page, KM_USER0);
3825 unsigned long copy_size = min_t(u64,
3826 PAGE_CACHE_SIZE - pg_offset,
3827 max_size - extent_offset);
3828 memset(kaddr + pg_offset, 0, copy_size);
3829 kunmap_atomic(kaddr, KM_USER0);
3836 * a bit scary, this does extent mapping from logical file offset to the disk.
3837 * the ugly parts come from merging extents from the disk with the
3838 * in-ram representation. This gets more complex because of the data=ordered code,
3839 * where the in-ram extents might be locked pending data=ordered completion.
3841 * This also copies inline extents directly into the page.
3843 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3844 size_t pg_offset, u64 start, u64 len,
3850 u64 extent_start = 0;
3852 u64 objectid = inode->i_ino;
3854 struct btrfs_path *path = NULL;
3855 struct btrfs_root *root = BTRFS_I(inode)->root;
3856 struct btrfs_file_extent_item *item;
3857 struct extent_buffer *leaf;
3858 struct btrfs_key found_key;
3859 struct extent_map *em = NULL;
3860 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3861 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3862 struct btrfs_trans_handle *trans = NULL;
3866 spin_lock(&em_tree->lock);
3867 em = lookup_extent_mapping(em_tree, start, len);
3869 em->bdev = root->fs_info->fs_devices->latest_bdev;
3870 spin_unlock(&em_tree->lock);
3873 if (em->start > start || em->start + em->len <= start)
3874 free_extent_map(em);
3875 else if (em->block_start == EXTENT_MAP_INLINE && page)
3876 free_extent_map(em);
3880 em = alloc_extent_map(GFP_NOFS);
3885 em->bdev = root->fs_info->fs_devices->latest_bdev;
3886 em->start = EXTENT_MAP_HOLE;
3887 em->orig_start = EXTENT_MAP_HOLE;
3889 em->block_len = (u64)-1;
3892 path = btrfs_alloc_path();
3896 ret = btrfs_lookup_file_extent(trans, root, path,
3897 objectid, start, trans != NULL);
3904 if (path->slots[0] == 0)
3909 leaf = path->nodes[0];
3910 item = btrfs_item_ptr(leaf, path->slots[0],
3911 struct btrfs_file_extent_item);
3912 /* are we inside the extent that was found? */
3913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3914 found_type = btrfs_key_type(&found_key);
3915 if (found_key.objectid != objectid ||
3916 found_type != BTRFS_EXTENT_DATA_KEY) {
3920 found_type = btrfs_file_extent_type(leaf, item);
3921 extent_start = found_key.offset;
3922 compressed = btrfs_file_extent_compression(leaf, item);
3923 if (found_type == BTRFS_FILE_EXTENT_REG ||
3924 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3925 extent_end = extent_start +
3926 btrfs_file_extent_num_bytes(leaf, item);
3927 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3929 size = btrfs_file_extent_inline_len(leaf, item);
3930 extent_end = (extent_start + size + root->sectorsize - 1) &
3931 ~((u64)root->sectorsize - 1);
3934 if (start >= extent_end) {
3936 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3937 ret = btrfs_next_leaf(root, path);
3944 leaf = path->nodes[0];
3946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3947 if (found_key.objectid != objectid ||
3948 found_key.type != BTRFS_EXTENT_DATA_KEY)
3950 if (start + len <= found_key.offset)
3953 em->len = found_key.offset - start;
3957 if (found_type == BTRFS_FILE_EXTENT_REG ||
3958 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3959 em->start = extent_start;
3960 em->len = extent_end - extent_start;
3961 em->orig_start = extent_start -
3962 btrfs_file_extent_offset(leaf, item);
3963 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3965 em->block_start = EXTENT_MAP_HOLE;
3969 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3970 em->block_start = bytenr;
3971 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3974 bytenr += btrfs_file_extent_offset(leaf, item);
3975 em->block_start = bytenr;
3976 em->block_len = em->len;
3977 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3978 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3981 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3985 size_t extent_offset;
3988 em->block_start = EXTENT_MAP_INLINE;
3989 if (!page || create) {
3990 em->start = extent_start;
3991 em->len = extent_end - extent_start;
3995 size = btrfs_file_extent_inline_len(leaf, item);
3996 extent_offset = page_offset(page) + pg_offset - extent_start;
3997 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3998 size - extent_offset);
3999 em->start = extent_start + extent_offset;
4000 em->len = (copy_size + root->sectorsize - 1) &
4001 ~((u64)root->sectorsize - 1);
4002 em->orig_start = EXTENT_MAP_INLINE;
4004 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4005 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4006 if (create == 0 && !PageUptodate(page)) {
4007 if (btrfs_file_extent_compression(leaf, item) ==
4008 BTRFS_COMPRESS_ZLIB) {
4009 ret = uncompress_inline(path, inode, page,
4011 extent_offset, item);
4015 read_extent_buffer(leaf, map + pg_offset, ptr,
4019 flush_dcache_page(page);
4020 } else if (create && PageUptodate(page)) {
4023 free_extent_map(em);
4025 btrfs_release_path(root, path);
4026 trans = btrfs_join_transaction(root, 1);
4030 write_extent_buffer(leaf, map + pg_offset, ptr,
4033 btrfs_mark_buffer_dirty(leaf);
4035 set_extent_uptodate(io_tree, em->start,
4036 extent_map_end(em) - 1, GFP_NOFS);
4039 printk("unkknown found_type %d\n", found_type);
4046 em->block_start = EXTENT_MAP_HOLE;
4047 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4049 btrfs_release_path(root, path);
4050 if (em->start > start || extent_map_end(em) <= start) {
4051 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4057 spin_lock(&em_tree->lock);
4058 ret = add_extent_mapping(em_tree, em);
4059 /* it is possible that someone inserted the extent into the tree
4060 * while we had the lock dropped. It is also possible that
4061 * an overlapping map exists in the tree
4063 if (ret == -EEXIST) {
4064 struct extent_map *existing;
4068 existing = lookup_extent_mapping(em_tree, start, len);
4069 if (existing && (existing->start > start ||
4070 existing->start + existing->len <= start)) {
4071 free_extent_map(existing);
4075 existing = lookup_extent_mapping(em_tree, em->start,
4078 err = merge_extent_mapping(em_tree, existing,
4081 free_extent_map(existing);
4083 free_extent_map(em);
4088 printk("failing to insert %Lu %Lu\n",
4090 free_extent_map(em);
4094 free_extent_map(em);
4099 spin_unlock(&em_tree->lock);
4102 btrfs_free_path(path);
4104 ret = btrfs_end_transaction(trans, root);
4110 free_extent_map(em);
4112 return ERR_PTR(err);
4117 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4118 const struct iovec *iov, loff_t offset,
4119 unsigned long nr_segs)
4124 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4126 return extent_bmap(mapping, iblock, btrfs_get_extent);
4129 int btrfs_readpage(struct file *file, struct page *page)
4131 struct extent_io_tree *tree;
4132 tree = &BTRFS_I(page->mapping->host)->io_tree;
4133 return extent_read_full_page(tree, page, btrfs_get_extent);
4136 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4138 struct extent_io_tree *tree;
4141 if (current->flags & PF_MEMALLOC) {
4142 redirty_page_for_writepage(wbc, page);
4146 tree = &BTRFS_I(page->mapping->host)->io_tree;
4147 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4150 int btrfs_writepages(struct address_space *mapping,
4151 struct writeback_control *wbc)
4153 struct extent_io_tree *tree;
4155 tree = &BTRFS_I(mapping->host)->io_tree;
4156 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4160 btrfs_readpages(struct file *file, struct address_space *mapping,
4161 struct list_head *pages, unsigned nr_pages)
4163 struct extent_io_tree *tree;
4164 tree = &BTRFS_I(mapping->host)->io_tree;
4165 return extent_readpages(tree, mapping, pages, nr_pages,
4168 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4170 struct extent_io_tree *tree;
4171 struct extent_map_tree *map;
4174 tree = &BTRFS_I(page->mapping->host)->io_tree;
4175 map = &BTRFS_I(page->mapping->host)->extent_tree;
4176 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4178 ClearPagePrivate(page);
4179 set_page_private(page, 0);
4180 page_cache_release(page);
4185 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4187 if (PageWriteback(page) || PageDirty(page))
4189 return __btrfs_releasepage(page, gfp_flags);
4192 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4194 struct extent_io_tree *tree;
4195 struct btrfs_ordered_extent *ordered;
4196 u64 page_start = page_offset(page);
4197 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4199 wait_on_page_writeback(page);
4200 tree = &BTRFS_I(page->mapping->host)->io_tree;
4202 btrfs_releasepage(page, GFP_NOFS);
4206 lock_extent(tree, page_start, page_end, GFP_NOFS);
4207 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4211 * IO on this page will never be started, so we need
4212 * to account for any ordered extents now
4214 clear_extent_bit(tree, page_start, page_end,
4215 EXTENT_DIRTY | EXTENT_DELALLOC |
4216 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4217 btrfs_finish_ordered_io(page->mapping->host,
4218 page_start, page_end);
4219 btrfs_put_ordered_extent(ordered);
4220 lock_extent(tree, page_start, page_end, GFP_NOFS);
4222 clear_extent_bit(tree, page_start, page_end,
4223 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4226 __btrfs_releasepage(page, GFP_NOFS);
4228 ClearPageChecked(page);
4229 if (PagePrivate(page)) {
4230 ClearPagePrivate(page);
4231 set_page_private(page, 0);
4232 page_cache_release(page);
4237 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4238 * called from a page fault handler when a page is first dirtied. Hence we must
4239 * be careful to check for EOF conditions here. We set the page up correctly
4240 * for a written page which means we get ENOSPC checking when writing into
4241 * holes and correct delalloc and unwritten extent mapping on filesystems that
4242 * support these features.
4244 * We are not allowed to take the i_mutex here so we have to play games to
4245 * protect against truncate races as the page could now be beyond EOF. Because
4246 * vmtruncate() writes the inode size before removing pages, once we have the
4247 * page lock we can determine safely if the page is beyond EOF. If it is not
4248 * beyond EOF, then the page is guaranteed safe against truncation until we
4251 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4253 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4254 struct btrfs_root *root = BTRFS_I(inode)->root;
4255 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4256 struct btrfs_ordered_extent *ordered;
4258 unsigned long zero_start;
4264 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4271 size = i_size_read(inode);
4272 page_start = page_offset(page);
4273 page_end = page_start + PAGE_CACHE_SIZE - 1;
4275 if ((page->mapping != inode->i_mapping) ||
4276 (page_start >= size)) {
4277 /* page got truncated out from underneath us */
4280 wait_on_page_writeback(page);
4282 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4283 set_page_extent_mapped(page);
4286 * we can't set the delalloc bits if there are pending ordered
4287 * extents. Drop our locks and wait for them to finish
4289 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4291 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4293 btrfs_start_ordered_extent(inode, ordered, 1);
4294 btrfs_put_ordered_extent(ordered);
4298 btrfs_set_extent_delalloc(inode, page_start, page_end);
4301 /* page is wholly or partially inside EOF */
4302 if (page_start + PAGE_CACHE_SIZE > size)
4303 zero_start = size & ~PAGE_CACHE_MASK;
4305 zero_start = PAGE_CACHE_SIZE;
4307 if (zero_start != PAGE_CACHE_SIZE) {
4309 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4310 flush_dcache_page(page);
4313 ClearPageChecked(page);
4314 set_page_dirty(page);
4315 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4323 static void btrfs_truncate(struct inode *inode)
4325 struct btrfs_root *root = BTRFS_I(inode)->root;
4327 struct btrfs_trans_handle *trans;
4329 u64 mask = root->sectorsize - 1;
4331 if (!S_ISREG(inode->i_mode))
4333 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4336 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4337 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4339 trans = btrfs_start_transaction(root, 1);
4340 btrfs_set_trans_block_group(trans, inode);
4341 btrfs_i_size_write(inode, inode->i_size);
4343 ret = btrfs_orphan_add(trans, inode);
4346 /* FIXME, add redo link to tree so we don't leak on crash */
4347 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4348 BTRFS_EXTENT_DATA_KEY);
4349 btrfs_update_inode(trans, root, inode);
4351 ret = btrfs_orphan_del(trans, inode);
4355 nr = trans->blocks_used;
4356 ret = btrfs_end_transaction_throttle(trans, root);
4358 btrfs_btree_balance_dirty(root, nr);
4362 * Invalidate a single dcache entry at the root of the filesystem.
4363 * Needed after creation of snapshot or subvolume.
4365 void btrfs_invalidate_dcache_root(struct inode *dir, char *name,
4368 struct dentry *alias, *entry;
4371 alias = d_find_alias(dir);
4375 /* change me if btrfs ever gets a d_hash operation */
4376 qstr.hash = full_name_hash(qstr.name, qstr.len);
4377 entry = d_lookup(alias, &qstr);
4380 d_invalidate(entry);
4387 * create a new subvolume directory/inode (helper for the ioctl).
4389 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
4390 struct btrfs_trans_handle *trans, u64 new_dirid,
4391 struct btrfs_block_group_cache *block_group)
4393 struct inode *inode;
4397 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4398 new_dirid, block_group, S_IFDIR | 0700, &index);
4400 return PTR_ERR(inode);
4401 inode->i_op = &btrfs_dir_inode_operations;
4402 inode->i_fop = &btrfs_dir_file_operations;
4405 btrfs_i_size_write(inode, 0);
4407 error = btrfs_update_inode(trans, new_root, inode);
4411 d_instantiate(dentry, inode);
4415 /* helper function for file defrag and space balancing. This
4416 * forces readahead on a given range of bytes in an inode
4418 unsigned long btrfs_force_ra(struct address_space *mapping,
4419 struct file_ra_state *ra, struct file *file,
4420 pgoff_t offset, pgoff_t last_index)
4422 pgoff_t req_size = last_index - offset + 1;
4424 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4425 return offset + req_size;
4428 struct inode *btrfs_alloc_inode(struct super_block *sb)
4430 struct btrfs_inode *ei;
4432 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4436 ei->logged_trans = 0;
4437 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4438 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4439 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4440 INIT_LIST_HEAD(&ei->i_orphan);
4441 return &ei->vfs_inode;
4444 void btrfs_destroy_inode(struct inode *inode)
4446 struct btrfs_ordered_extent *ordered;
4447 WARN_ON(!list_empty(&inode->i_dentry));
4448 WARN_ON(inode->i_data.nrpages);
4450 if (BTRFS_I(inode)->i_acl &&
4451 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4452 posix_acl_release(BTRFS_I(inode)->i_acl);
4453 if (BTRFS_I(inode)->i_default_acl &&
4454 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4455 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4457 spin_lock(&BTRFS_I(inode)->root->list_lock);
4458 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4459 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4460 " list\n", inode->i_ino);
4463 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4466 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4470 printk("found ordered extent %Lu %Lu\n",
4471 ordered->file_offset, ordered->len);
4472 btrfs_remove_ordered_extent(inode, ordered);
4473 btrfs_put_ordered_extent(ordered);
4474 btrfs_put_ordered_extent(ordered);
4477 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4478 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4481 static void init_once(void *foo)
4483 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4485 inode_init_once(&ei->vfs_inode);
4488 void btrfs_destroy_cachep(void)
4490 if (btrfs_inode_cachep)
4491 kmem_cache_destroy(btrfs_inode_cachep);
4492 if (btrfs_trans_handle_cachep)
4493 kmem_cache_destroy(btrfs_trans_handle_cachep);
4494 if (btrfs_transaction_cachep)
4495 kmem_cache_destroy(btrfs_transaction_cachep);
4496 if (btrfs_bit_radix_cachep)
4497 kmem_cache_destroy(btrfs_bit_radix_cachep);
4498 if (btrfs_path_cachep)
4499 kmem_cache_destroy(btrfs_path_cachep);
4502 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4503 unsigned long extra_flags,
4504 void (*ctor)(void *))
4506 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4507 SLAB_MEM_SPREAD | extra_flags), ctor);
4510 int btrfs_init_cachep(void)
4512 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4513 sizeof(struct btrfs_inode),
4515 if (!btrfs_inode_cachep)
4517 btrfs_trans_handle_cachep =
4518 btrfs_cache_create("btrfs_trans_handle_cache",
4519 sizeof(struct btrfs_trans_handle),
4521 if (!btrfs_trans_handle_cachep)
4523 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4524 sizeof(struct btrfs_transaction),
4526 if (!btrfs_transaction_cachep)
4528 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4529 sizeof(struct btrfs_path),
4531 if (!btrfs_path_cachep)
4533 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4534 SLAB_DESTROY_BY_RCU, NULL);
4535 if (!btrfs_bit_radix_cachep)
4539 btrfs_destroy_cachep();
4543 static int btrfs_getattr(struct vfsmount *mnt,
4544 struct dentry *dentry, struct kstat *stat)
4546 struct inode *inode = dentry->d_inode;
4547 generic_fillattr(inode, stat);
4548 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4549 stat->blksize = PAGE_CACHE_SIZE;
4550 stat->blocks = (inode_get_bytes(inode) +
4551 BTRFS_I(inode)->delalloc_bytes) >> 9;
4555 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4556 struct inode * new_dir,struct dentry *new_dentry)
4558 struct btrfs_trans_handle *trans;
4559 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4560 struct inode *new_inode = new_dentry->d_inode;
4561 struct inode *old_inode = old_dentry->d_inode;
4562 struct timespec ctime = CURRENT_TIME;
4566 /* we're not allowed to rename between subvolumes */
4567 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4568 BTRFS_I(new_dir)->root->root_key.objectid)
4571 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4572 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4576 /* to rename a snapshot or subvolume, we need to juggle the
4577 * backrefs. This isn't coded yet
4579 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4582 ret = btrfs_check_free_space(root, 1, 0);
4586 trans = btrfs_start_transaction(root, 1);
4588 btrfs_set_trans_block_group(trans, new_dir);
4590 btrfs_inc_nlink(old_dentry->d_inode);
4591 old_dir->i_ctime = old_dir->i_mtime = ctime;
4592 new_dir->i_ctime = new_dir->i_mtime = ctime;
4593 old_inode->i_ctime = ctime;
4595 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4596 old_dentry->d_name.name,
4597 old_dentry->d_name.len);
4602 new_inode->i_ctime = CURRENT_TIME;
4603 ret = btrfs_unlink_inode(trans, root, new_dir,
4604 new_dentry->d_inode,
4605 new_dentry->d_name.name,
4606 new_dentry->d_name.len);
4609 if (new_inode->i_nlink == 0) {
4610 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4616 ret = btrfs_set_inode_index(new_dir, &index);
4620 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4621 old_inode, new_dentry->d_name.name,
4622 new_dentry->d_name.len, 1, index);
4627 btrfs_end_transaction_throttle(trans, root);
4633 * some fairly slow code that needs optimization. This walks the list
4634 * of all the inodes with pending delalloc and forces them to disk.
4636 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4638 struct list_head *head = &root->fs_info->delalloc_inodes;
4639 struct btrfs_inode *binode;
4640 struct inode *inode;
4641 unsigned long flags;
4643 if (root->fs_info->sb->s_flags & MS_RDONLY)
4646 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4647 while(!list_empty(head)) {
4648 binode = list_entry(head->next, struct btrfs_inode,
4650 inode = igrab(&binode->vfs_inode);
4652 list_del_init(&binode->delalloc_inodes);
4653 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4655 filemap_flush(inode->i_mapping);
4659 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4661 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4663 /* the filemap_flush will queue IO into the worker threads, but
4664 * we have to make sure the IO is actually started and that
4665 * ordered extents get created before we return
4667 atomic_inc(&root->fs_info->async_submit_draining);
4668 while(atomic_read(&root->fs_info->nr_async_submits) ||
4669 atomic_read(&root->fs_info->async_delalloc_pages)) {
4670 wait_event(root->fs_info->async_submit_wait,
4671 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4672 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4674 atomic_dec(&root->fs_info->async_submit_draining);
4678 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4679 const char *symname)
4681 struct btrfs_trans_handle *trans;
4682 struct btrfs_root *root = BTRFS_I(dir)->root;
4683 struct btrfs_path *path;
4684 struct btrfs_key key;
4685 struct inode *inode = NULL;
4693 struct btrfs_file_extent_item *ei;
4694 struct extent_buffer *leaf;
4695 unsigned long nr = 0;
4697 name_len = strlen(symname) + 1;
4698 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4699 return -ENAMETOOLONG;
4701 err = btrfs_check_free_space(root, 1, 0);
4705 trans = btrfs_start_transaction(root, 1);
4706 btrfs_set_trans_block_group(trans, dir);
4708 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4714 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4716 dentry->d_parent->d_inode->i_ino, objectid,
4717 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4719 err = PTR_ERR(inode);
4723 err = btrfs_init_acl(inode, dir);
4729 btrfs_set_trans_block_group(trans, inode);
4730 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4734 inode->i_mapping->a_ops = &btrfs_aops;
4735 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4736 inode->i_fop = &btrfs_file_operations;
4737 inode->i_op = &btrfs_file_inode_operations;
4738 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4740 dir->i_sb->s_dirt = 1;
4741 btrfs_update_inode_block_group(trans, inode);
4742 btrfs_update_inode_block_group(trans, dir);
4746 path = btrfs_alloc_path();
4748 key.objectid = inode->i_ino;
4750 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4751 datasize = btrfs_file_extent_calc_inline_size(name_len);
4752 err = btrfs_insert_empty_item(trans, root, path, &key,
4758 leaf = path->nodes[0];
4759 ei = btrfs_item_ptr(leaf, path->slots[0],
4760 struct btrfs_file_extent_item);
4761 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4762 btrfs_set_file_extent_type(leaf, ei,
4763 BTRFS_FILE_EXTENT_INLINE);
4764 btrfs_set_file_extent_encryption(leaf, ei, 0);
4765 btrfs_set_file_extent_compression(leaf, ei, 0);
4766 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4767 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4769 ptr = btrfs_file_extent_inline_start(ei);
4770 write_extent_buffer(leaf, symname, ptr, name_len);
4771 btrfs_mark_buffer_dirty(leaf);
4772 btrfs_free_path(path);
4774 inode->i_op = &btrfs_symlink_inode_operations;
4775 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4776 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4777 inode_set_bytes(inode, name_len);
4778 btrfs_i_size_write(inode, name_len - 1);
4779 err = btrfs_update_inode(trans, root, inode);
4784 nr = trans->blocks_used;
4785 btrfs_end_transaction_throttle(trans, root);
4788 inode_dec_link_count(inode);
4791 btrfs_btree_balance_dirty(root, nr);
4795 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4796 u64 alloc_hint, int mode)
4798 struct btrfs_trans_handle *trans;
4799 struct btrfs_root *root = BTRFS_I(inode)->root;
4800 struct btrfs_key ins;
4802 u64 cur_offset = start;
4803 u64 num_bytes = end - start;
4806 trans = btrfs_join_transaction(root, 1);
4808 btrfs_set_trans_block_group(trans, inode);
4810 while (num_bytes > 0) {
4811 alloc_size = min(num_bytes, root->fs_info->max_extent);
4812 ret = btrfs_reserve_extent(trans, root, alloc_size,
4813 root->sectorsize, 0, alloc_hint,
4819 ret = insert_reserved_file_extent(trans, inode,
4820 cur_offset, ins.objectid,
4821 ins.offset, ins.offset,
4822 ins.offset, 0, 0, 0,
4823 BTRFS_FILE_EXTENT_PREALLOC);
4825 num_bytes -= ins.offset;
4826 cur_offset += ins.offset;
4827 alloc_hint = ins.objectid + ins.offset;
4830 if (cur_offset > start) {
4831 inode->i_ctime = CURRENT_TIME;
4832 btrfs_set_flag(inode, PREALLOC);
4833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4834 cur_offset > i_size_read(inode))
4835 btrfs_i_size_write(inode, cur_offset);
4836 ret = btrfs_update_inode(trans, root, inode);
4840 btrfs_end_transaction(trans, root);
4844 static long btrfs_fallocate(struct inode *inode, int mode,
4845 loff_t offset, loff_t len)
4852 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4853 struct extent_map *em;
4856 alloc_start = offset & ~mask;
4857 alloc_end = (offset + len + mask) & ~mask;
4859 mutex_lock(&inode->i_mutex);
4860 if (alloc_start > inode->i_size) {
4861 ret = btrfs_cont_expand(inode, alloc_start);
4867 struct btrfs_ordered_extent *ordered;
4868 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4869 alloc_end - 1, GFP_NOFS);
4870 ordered = btrfs_lookup_first_ordered_extent(inode,
4873 ordered->file_offset + ordered->len > alloc_start &&
4874 ordered->file_offset < alloc_end) {
4875 btrfs_put_ordered_extent(ordered);
4876 unlock_extent(&BTRFS_I(inode)->io_tree,
4877 alloc_start, alloc_end - 1, GFP_NOFS);
4878 btrfs_wait_ordered_range(inode, alloc_start,
4879 alloc_end - alloc_start);
4882 btrfs_put_ordered_extent(ordered);
4887 cur_offset = alloc_start;
4889 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4890 alloc_end - cur_offset, 0);
4891 BUG_ON(IS_ERR(em) || !em);
4892 last_byte = min(extent_map_end(em), alloc_end);
4893 last_byte = (last_byte + mask) & ~mask;
4894 if (em->block_start == EXTENT_MAP_HOLE) {
4895 ret = prealloc_file_range(inode, cur_offset,
4896 last_byte, alloc_hint, mode);
4898 free_extent_map(em);
4902 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4903 alloc_hint = em->block_start;
4904 free_extent_map(em);
4906 cur_offset = last_byte;
4907 if (cur_offset >= alloc_end) {
4912 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4915 mutex_unlock(&inode->i_mutex);
4919 static int btrfs_set_page_dirty(struct page *page)
4921 return __set_page_dirty_nobuffers(page);
4924 static int btrfs_permission(struct inode *inode, int mask)
4926 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4928 return generic_permission(inode, mask, btrfs_check_acl);
4931 static struct inode_operations btrfs_dir_inode_operations = {
4932 .getattr = btrfs_getattr,
4933 .lookup = btrfs_lookup,
4934 .create = btrfs_create,
4935 .unlink = btrfs_unlink,
4937 .mkdir = btrfs_mkdir,
4938 .rmdir = btrfs_rmdir,
4939 .rename = btrfs_rename,
4940 .symlink = btrfs_symlink,
4941 .setattr = btrfs_setattr,
4942 .mknod = btrfs_mknod,
4943 .setxattr = btrfs_setxattr,
4944 .getxattr = btrfs_getxattr,
4945 .listxattr = btrfs_listxattr,
4946 .removexattr = btrfs_removexattr,
4947 .permission = btrfs_permission,
4949 static struct inode_operations btrfs_dir_ro_inode_operations = {
4950 .lookup = btrfs_lookup,
4951 .permission = btrfs_permission,
4953 static struct file_operations btrfs_dir_file_operations = {
4954 .llseek = generic_file_llseek,
4955 .read = generic_read_dir,
4956 .readdir = btrfs_real_readdir,
4957 .unlocked_ioctl = btrfs_ioctl,
4958 #ifdef CONFIG_COMPAT
4959 .compat_ioctl = btrfs_ioctl,
4961 .release = btrfs_release_file,
4962 .fsync = btrfs_sync_file,
4965 static struct extent_io_ops btrfs_extent_io_ops = {
4966 .fill_delalloc = run_delalloc_range,
4967 .submit_bio_hook = btrfs_submit_bio_hook,
4968 .merge_bio_hook = btrfs_merge_bio_hook,
4969 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4970 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4971 .writepage_start_hook = btrfs_writepage_start_hook,
4972 .readpage_io_failed_hook = btrfs_io_failed_hook,
4973 .set_bit_hook = btrfs_set_bit_hook,
4974 .clear_bit_hook = btrfs_clear_bit_hook,
4977 static struct address_space_operations btrfs_aops = {
4978 .readpage = btrfs_readpage,
4979 .writepage = btrfs_writepage,
4980 .writepages = btrfs_writepages,
4981 .readpages = btrfs_readpages,
4982 .sync_page = block_sync_page,
4984 .direct_IO = btrfs_direct_IO,
4985 .invalidatepage = btrfs_invalidatepage,
4986 .releasepage = btrfs_releasepage,
4987 .set_page_dirty = btrfs_set_page_dirty,
4990 static struct address_space_operations btrfs_symlink_aops = {
4991 .readpage = btrfs_readpage,
4992 .writepage = btrfs_writepage,
4993 .invalidatepage = btrfs_invalidatepage,
4994 .releasepage = btrfs_releasepage,
4997 static struct inode_operations btrfs_file_inode_operations = {
4998 .truncate = btrfs_truncate,
4999 .getattr = btrfs_getattr,
5000 .setattr = btrfs_setattr,
5001 .setxattr = btrfs_setxattr,
5002 .getxattr = btrfs_getxattr,
5003 .listxattr = btrfs_listxattr,
5004 .removexattr = btrfs_removexattr,
5005 .permission = btrfs_permission,
5006 .fallocate = btrfs_fallocate,
5008 static struct inode_operations btrfs_special_inode_operations = {
5009 .getattr = btrfs_getattr,
5010 .setattr = btrfs_setattr,
5011 .permission = btrfs_permission,
5012 .setxattr = btrfs_setxattr,
5013 .getxattr = btrfs_getxattr,
5014 .listxattr = btrfs_listxattr,
5015 .removexattr = btrfs_removexattr,
5017 static struct inode_operations btrfs_symlink_inode_operations = {
5018 .readlink = generic_readlink,
5019 .follow_link = page_follow_link_light,
5020 .put_link = page_put_link,
5021 .permission = btrfs_permission,