Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6.25
[linux-2.6] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
37
38 extern void jprobe_inst_return(void);
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47   { M, I, I },                          /* 00 */
48   { M, I, I },                          /* 01 */
49   { M, I, I },                          /* 02 */
50   { M, I, I },                          /* 03 */
51   { M, L, X },                          /* 04 */
52   { M, L, X },                          /* 05 */
53   { u, u, u },                          /* 06 */
54   { u, u, u },                          /* 07 */
55   { M, M, I },                          /* 08 */
56   { M, M, I },                          /* 09 */
57   { M, M, I },                          /* 0A */
58   { M, M, I },                          /* 0B */
59   { M, F, I },                          /* 0C */
60   { M, F, I },                          /* 0D */
61   { M, M, F },                          /* 0E */
62   { M, M, F },                          /* 0F */
63   { M, I, B },                          /* 10 */
64   { M, I, B },                          /* 11 */
65   { M, B, B },                          /* 12 */
66   { M, B, B },                          /* 13 */
67   { u, u, u },                          /* 14 */
68   { u, u, u },                          /* 15 */
69   { B, B, B },                          /* 16 */
70   { B, B, B },                          /* 17 */
71   { M, M, B },                          /* 18 */
72   { M, M, B },                          /* 19 */
73   { u, u, u },                          /* 1A */
74   { u, u, u },                          /* 1B */
75   { M, F, B },                          /* 1C */
76   { M, F, B },                          /* 1D */
77   { u, u, u },                          /* 1E */
78   { u, u, u },                          /* 1F */
79 };
80
81 /*
82  * In this function we check to see if the instruction
83  * is IP relative instruction and update the kprobe
84  * inst flag accordingly
85  */
86 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
87                                               uint major_opcode,
88                                               unsigned long kprobe_inst,
89                                               struct kprobe *p)
90 {
91         p->ainsn.inst_flag = 0;
92         p->ainsn.target_br_reg = 0;
93         p->ainsn.slot = slot;
94
95         /* Check for Break instruction
96          * Bits 37:40 Major opcode to be zero
97          * Bits 27:32 X6 to be zero
98          * Bits 32:35 X3 to be zero
99          */
100         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
101                 /* is a break instruction */
102                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103                 return;
104         }
105
106         if (bundle_encoding[template][slot] == B) {
107                 switch (major_opcode) {
108                   case INDIRECT_CALL_OPCODE:
109                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
110                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
111                         break;
112                   case IP_RELATIVE_PREDICT_OPCODE:
113                   case IP_RELATIVE_BRANCH_OPCODE:
114                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115                         break;
116                   case IP_RELATIVE_CALL_OPCODE:
117                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
119                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
120                         break;
121                 }
122         } else if (bundle_encoding[template][slot] == X) {
123                 switch (major_opcode) {
124                   case LONG_CALL_OPCODE:
125                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
126                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
127                   break;
128                 }
129         }
130         return;
131 }
132
133 /*
134  * In this function we check to see if the instruction
135  * (qp) cmpx.crel.ctype p1,p2=r2,r3
136  * on which we are inserting kprobe is cmp instruction
137  * with ctype as unc.
138  */
139 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
140                                             uint major_opcode,
141                                             unsigned long kprobe_inst)
142 {
143         cmp_inst_t cmp_inst;
144         uint ctype_unc = 0;
145
146         if (!((bundle_encoding[template][slot] == I) ||
147                 (bundle_encoding[template][slot] == M)))
148                 goto out;
149
150         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
151                 (major_opcode == 0xE)))
152                 goto out;
153
154         cmp_inst.l = kprobe_inst;
155         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
156                 /* Integer compare - Register Register (A6 type)*/
157                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
158                                 &&(cmp_inst.f.c == 1))
159                         ctype_unc = 1;
160         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
161                 /* Integer compare - Immediate Register (A8 type)*/
162                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
163                         ctype_unc = 1;
164         }
165 out:
166         return ctype_unc;
167 }
168
169 /*
170  * In this function we check to see if the instruction
171  * on which we are inserting kprobe is supported.
172  * Returns qp value if supported
173  * Returns -EINVAL if unsupported
174  */
175 static int __kprobes unsupported_inst(uint template, uint  slot,
176                                       uint major_opcode,
177                                       unsigned long kprobe_inst,
178                                       unsigned long addr)
179 {
180         int qp;
181
182         qp = kprobe_inst & 0x3f;
183         if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
184                 if (slot == 1 && qp)  {
185                         printk(KERN_WARNING "Kprobes on cmp unc "
186                                         "instruction on slot 1 at <0x%lx> "
187                                         "is not supported\n", addr);
188                         return -EINVAL;
189
190                 }
191                 qp = 0;
192         }
193         else if (bundle_encoding[template][slot] == I) {
194                 if (major_opcode == 0) {
195                         /*
196                          * Check for Integer speculation instruction
197                          * - Bit 33-35 to be equal to 0x1
198                          */
199                         if (((kprobe_inst >> 33) & 0x7) == 1) {
200                                 printk(KERN_WARNING
201                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
202                                                 addr);
203                                 return -EINVAL;
204                         }
205                         /*
206                          * IP relative mov instruction
207                          *  - Bit 27-35 to be equal to 0x30
208                          */
209                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
210                                 printk(KERN_WARNING
211                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
212                                                 addr);
213                                 return -EINVAL;
214
215                         }
216                 }
217                 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
218                                 (kprobe_inst & (0x1UL << 12))) {
219                         /* test bit instructions, tbit,tnat,tf
220                          * bit 33-36 to be equal to 0
221                          * bit 12 to be equal to 1
222                          */
223                         if (slot == 1 && qp) {
224                                 printk(KERN_WARNING "Kprobes on test bit "
225                                                 "instruction on slot at <0x%lx> "
226                                                 "is not supported\n", addr);
227                                 return -EINVAL;
228                         }
229                         qp = 0;
230                 }
231         }
232         else if (bundle_encoding[template][slot] == B) {
233                 if (major_opcode == 7) {
234                         /* IP-Relative Predict major code is 7 */
235                         printk(KERN_WARNING "Kprobes on IP-Relative"
236                                         "Predict is not supported\n");
237                         return -EINVAL;
238                 }
239                 else if (major_opcode == 2) {
240                         /* Indirect Predict, major code is 2
241                          * bit 27-32 to be equal to 10 or 11
242                          */
243                         int x6=(kprobe_inst >> 27) & 0x3F;
244                         if ((x6 == 0x10) || (x6 == 0x11)) {
245                                 printk(KERN_WARNING "Kprobes on "
246                                         "Indirect Predict is not supported\n");
247                                 return -EINVAL;
248                         }
249                 }
250         }
251         /* kernel does not use float instruction, here for safety kprobe
252          * will judge whether it is fcmp/flass/float approximation instruction
253          */
254         else if (unlikely(bundle_encoding[template][slot] == F)) {
255                 if ((major_opcode == 4 || major_opcode == 5) &&
256                                 (kprobe_inst  & (0x1 << 12))) {
257                         /* fcmp/fclass unc instruction */
258                         if (slot == 1 && qp) {
259                                 printk(KERN_WARNING "Kprobes on fcmp/fclass "
260                                         "instruction on slot at <0x%lx> "
261                                         "is not supported\n", addr);
262                                 return -EINVAL;
263
264                         }
265                         qp = 0;
266                 }
267                 if ((major_opcode == 0 || major_opcode == 1) &&
268                         (kprobe_inst & (0x1UL << 33))) {
269                         /* float Approximation instruction */
270                         if (slot == 1 && qp) {
271                                 printk(KERN_WARNING "Kprobes on float Approx "
272                                         "instr at <0x%lx> is not supported\n",
273                                                 addr);
274                                 return -EINVAL;
275                         }
276                         qp = 0;
277                 }
278         }
279         return qp;
280 }
281
282 /*
283  * In this function we override the bundle with
284  * the break instruction at the given slot.
285  */
286 static void __kprobes prepare_break_inst(uint template, uint  slot,
287                                          uint major_opcode,
288                                          unsigned long kprobe_inst,
289                                          struct kprobe *p,
290                                          int qp)
291 {
292         unsigned long break_inst = BREAK_INST;
293         bundle_t *bundle = &p->opcode.bundle;
294
295         /*
296          * Copy the original kprobe_inst qualifying predicate(qp)
297          * to the break instruction
298          */
299         break_inst |= qp;
300
301         switch (slot) {
302           case 0:
303                 bundle->quad0.slot0 = break_inst;
304                 break;
305           case 1:
306                 bundle->quad0.slot1_p0 = break_inst;
307                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
308                 break;
309           case 2:
310                 bundle->quad1.slot2 = break_inst;
311                 break;
312         }
313
314         /*
315          * Update the instruction flag, so that we can
316          * emulate the instruction properly after we
317          * single step on original instruction
318          */
319         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
320 }
321
322 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
323                 unsigned long *kprobe_inst, uint *major_opcode)
324 {
325         unsigned long kprobe_inst_p0, kprobe_inst_p1;
326         unsigned int template;
327
328         template = bundle->quad0.template;
329
330         switch (slot) {
331           case 0:
332                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
333                 *kprobe_inst = bundle->quad0.slot0;
334                   break;
335           case 1:
336                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
337                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
338                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
339                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
340                 break;
341           case 2:
342                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
343                 *kprobe_inst = bundle->quad1.slot2;
344                 break;
345         }
346 }
347
348 /* Returns non-zero if the addr is in the Interrupt Vector Table */
349 static int __kprobes in_ivt_functions(unsigned long addr)
350 {
351         return (addr >= (unsigned long)__start_ivt_text
352                 && addr < (unsigned long)__end_ivt_text);
353 }
354
355 static int __kprobes valid_kprobe_addr(int template, int slot,
356                                        unsigned long addr)
357 {
358         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
359                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
360                                 "at 0x%lx\n", addr);
361                 return -EINVAL;
362         }
363
364         if (in_ivt_functions(addr)) {
365                 printk(KERN_WARNING "Kprobes can't be inserted inside "
366                                 "IVT functions at 0x%lx\n", addr);
367                 return -EINVAL;
368         }
369
370         return 0;
371 }
372
373 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
374 {
375         unsigned int i;
376         i = atomic_add_return(1, &kcb->prev_kprobe_index);
377         kcb->prev_kprobe[i-1].kp = kprobe_running();
378         kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
379 }
380
381 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
382 {
383         unsigned int i;
384         i = atomic_read(&kcb->prev_kprobe_index);
385         __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp;
386         kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
387         atomic_sub(1, &kcb->prev_kprobe_index);
388 }
389
390 static void __kprobes set_current_kprobe(struct kprobe *p,
391                         struct kprobe_ctlblk *kcb)
392 {
393         __get_cpu_var(current_kprobe) = p;
394 }
395
396 static void kretprobe_trampoline(void)
397 {
398 }
399
400 /*
401  * At this point the target function has been tricked into
402  * returning into our trampoline.  Lookup the associated instance
403  * and then:
404  *    - call the handler function
405  *    - cleanup by marking the instance as unused
406  *    - long jump back to the original return address
407  */
408 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
409 {
410         struct kretprobe_instance *ri = NULL;
411         struct hlist_head *head, empty_rp;
412         struct hlist_node *node, *tmp;
413         unsigned long flags, orig_ret_address = 0;
414         unsigned long trampoline_address =
415                 ((struct fnptr *)kretprobe_trampoline)->ip;
416
417         INIT_HLIST_HEAD(&empty_rp);
418         spin_lock_irqsave(&kretprobe_lock, flags);
419         head = kretprobe_inst_table_head(current);
420
421         /*
422          * It is possible to have multiple instances associated with a given
423          * task either because an multiple functions in the call path
424          * have a return probe installed on them, and/or more then one return
425          * return probe was registered for a target function.
426          *
427          * We can handle this because:
428          *     - instances are always inserted at the head of the list
429          *     - when multiple return probes are registered for the same
430          *       function, the first instance's ret_addr will point to the
431          *       real return address, and all the rest will point to
432          *       kretprobe_trampoline
433          */
434         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
435                 if (ri->task != current)
436                         /* another task is sharing our hash bucket */
437                         continue;
438
439                 orig_ret_address = (unsigned long)ri->ret_addr;
440                 if (orig_ret_address != trampoline_address)
441                         /*
442                          * This is the real return address. Any other
443                          * instances associated with this task are for
444                          * other calls deeper on the call stack
445                          */
446                         break;
447         }
448
449         regs->cr_iip = orig_ret_address;
450
451         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
452                 if (ri->task != current)
453                         /* another task is sharing our hash bucket */
454                         continue;
455
456                 if (ri->rp && ri->rp->handler)
457                         ri->rp->handler(ri, regs);
458
459                 orig_ret_address = (unsigned long)ri->ret_addr;
460                 recycle_rp_inst(ri, &empty_rp);
461
462                 if (orig_ret_address != trampoline_address)
463                         /*
464                          * This is the real return address. Any other
465                          * instances associated with this task are for
466                          * other calls deeper on the call stack
467                          */
468                         break;
469         }
470
471         kretprobe_assert(ri, orig_ret_address, trampoline_address);
472
473         reset_current_kprobe();
474         spin_unlock_irqrestore(&kretprobe_lock, flags);
475         preempt_enable_no_resched();
476
477         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
478                 hlist_del(&ri->hlist);
479                 kfree(ri);
480         }
481         /*
482          * By returning a non-zero value, we are telling
483          * kprobe_handler() that we don't want the post_handler
484          * to run (and have re-enabled preemption)
485          */
486         return 1;
487 }
488
489 /* Called with kretprobe_lock held */
490 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
491                                       struct pt_regs *regs)
492 {
493         ri->ret_addr = (kprobe_opcode_t *)regs->b0;
494
495         /* Replace the return addr with trampoline addr */
496         regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
497 }
498
499 int __kprobes arch_prepare_kprobe(struct kprobe *p)
500 {
501         unsigned long addr = (unsigned long) p->addr;
502         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
503         unsigned long kprobe_inst=0;
504         unsigned int slot = addr & 0xf, template, major_opcode = 0;
505         bundle_t *bundle;
506         int qp;
507
508         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
509         template = bundle->quad0.template;
510
511         if(valid_kprobe_addr(template, slot, addr))
512                 return -EINVAL;
513
514         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
515         if (slot == 1 && bundle_encoding[template][1] == L)
516                 slot++;
517
518         /* Get kprobe_inst and major_opcode from the bundle */
519         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
520
521         qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
522         if (qp < 0)
523                 return -EINVAL;
524
525         p->ainsn.insn = get_insn_slot();
526         if (!p->ainsn.insn)
527                 return -ENOMEM;
528         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
529         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
530
531         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
532
533         return 0;
534 }
535
536 void __kprobes arch_arm_kprobe(struct kprobe *p)
537 {
538         unsigned long arm_addr;
539         bundle_t *src, *dest;
540
541         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
542         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
543         src = &p->opcode.bundle;
544
545         flush_icache_range((unsigned long)p->ainsn.insn,
546                         (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
547         switch (p->ainsn.slot) {
548                 case 0:
549                         dest->quad0.slot0 = src->quad0.slot0;
550                         break;
551                 case 1:
552                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
553                         break;
554                 case 2:
555                         dest->quad1.slot2 = src->quad1.slot2;
556                         break;
557         }
558         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
559 }
560
561 void __kprobes arch_disarm_kprobe(struct kprobe *p)
562 {
563         unsigned long arm_addr;
564         bundle_t *src, *dest;
565
566         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
567         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
568         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
569         src = &p->ainsn.insn->bundle;
570         switch (p->ainsn.slot) {
571                 case 0:
572                         dest->quad0.slot0 = src->quad0.slot0;
573                         break;
574                 case 1:
575                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
576                         break;
577                 case 2:
578                         dest->quad1.slot2 = src->quad1.slot2;
579                         break;
580         }
581         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
582 }
583
584 void __kprobes arch_remove_kprobe(struct kprobe *p)
585 {
586         mutex_lock(&kprobe_mutex);
587         free_insn_slot(p->ainsn.insn, 0);
588         mutex_unlock(&kprobe_mutex);
589 }
590 /*
591  * We are resuming execution after a single step fault, so the pt_regs
592  * structure reflects the register state after we executed the instruction
593  * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
594  * the ip to point back to the original stack address. To set the IP address
595  * to original stack address, handle the case where we need to fixup the
596  * relative IP address and/or fixup branch register.
597  */
598 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
599 {
600         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
601         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
602         unsigned long template;
603         int slot = ((unsigned long)p->addr & 0xf);
604
605         template = p->ainsn.insn->bundle.quad0.template;
606
607         if (slot == 1 && bundle_encoding[template][1] == L)
608                 slot = 2;
609
610         if (p->ainsn.inst_flag) {
611
612                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
613                         /* Fix relative IP address */
614                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
615                                         resume_addr;
616                 }
617
618                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
619                 /*
620                  * Fix target branch register, software convention is
621                  * to use either b0 or b6 or b7, so just checking
622                  * only those registers
623                  */
624                         switch (p->ainsn.target_br_reg) {
625                         case 0:
626                                 if ((regs->b0 == bundle_addr) ||
627                                         (regs->b0 == bundle_addr + 0x10)) {
628                                         regs->b0 = (regs->b0 - bundle_addr) +
629                                                 resume_addr;
630                                 }
631                                 break;
632                         case 6:
633                                 if ((regs->b6 == bundle_addr) ||
634                                         (regs->b6 == bundle_addr + 0x10)) {
635                                         regs->b6 = (regs->b6 - bundle_addr) +
636                                                 resume_addr;
637                                 }
638                                 break;
639                         case 7:
640                                 if ((regs->b7 == bundle_addr) ||
641                                         (regs->b7 == bundle_addr + 0x10)) {
642                                         regs->b7 = (regs->b7 - bundle_addr) +
643                                                 resume_addr;
644                                 }
645                                 break;
646                         } /* end switch */
647                 }
648                 goto turn_ss_off;
649         }
650
651         if (slot == 2) {
652                 if (regs->cr_iip == bundle_addr + 0x10) {
653                         regs->cr_iip = resume_addr + 0x10;
654                 }
655         } else {
656                 if (regs->cr_iip == bundle_addr) {
657                         regs->cr_iip = resume_addr;
658                 }
659         }
660
661 turn_ss_off:
662         /* Turn off Single Step bit */
663         ia64_psr(regs)->ss = 0;
664 }
665
666 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
667 {
668         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
669         unsigned long slot = (unsigned long)p->addr & 0xf;
670
671         /* single step inline if break instruction */
672         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
673                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
674         else
675                 regs->cr_iip = bundle_addr & ~0xFULL;
676
677         if (slot > 2)
678                 slot = 0;
679
680         ia64_psr(regs)->ri = slot;
681
682         /* turn on single stepping */
683         ia64_psr(regs)->ss = 1;
684 }
685
686 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
687 {
688         unsigned int slot = ia64_psr(regs)->ri;
689         unsigned int template, major_opcode;
690         unsigned long kprobe_inst;
691         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
692         bundle_t bundle;
693
694         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
695         template = bundle.quad0.template;
696
697         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
698         if (slot == 1 && bundle_encoding[template][1] == L)
699                 slot++;
700
701         /* Get Kprobe probe instruction at given slot*/
702         get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
703
704         /* For break instruction,
705          * Bits 37:40 Major opcode to be zero
706          * Bits 27:32 X6 to be zero
707          * Bits 32:35 X3 to be zero
708          */
709         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
710                 /* Not a break instruction */
711                 return 0;
712         }
713
714         /* Is a break instruction */
715         return 1;
716 }
717
718 static int __kprobes pre_kprobes_handler(struct die_args *args)
719 {
720         struct kprobe *p;
721         int ret = 0;
722         struct pt_regs *regs = args->regs;
723         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
724         struct kprobe_ctlblk *kcb;
725
726         /*
727          * We don't want to be preempted for the entire
728          * duration of kprobe processing
729          */
730         preempt_disable();
731         kcb = get_kprobe_ctlblk();
732
733         /* Handle recursion cases */
734         if (kprobe_running()) {
735                 p = get_kprobe(addr);
736                 if (p) {
737                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
738                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
739                                 ia64_psr(regs)->ss = 0;
740                                 goto no_kprobe;
741                         }
742                         /* We have reentered the pre_kprobe_handler(), since
743                          * another probe was hit while within the handler.
744                          * We here save the original kprobes variables and
745                          * just single step on the instruction of the new probe
746                          * without calling any user handlers.
747                          */
748                         save_previous_kprobe(kcb);
749                         set_current_kprobe(p, kcb);
750                         kprobes_inc_nmissed_count(p);
751                         prepare_ss(p, regs);
752                         kcb->kprobe_status = KPROBE_REENTER;
753                         return 1;
754                 } else if (args->err == __IA64_BREAK_JPROBE) {
755                         /*
756                          * jprobe instrumented function just completed
757                          */
758                         p = __get_cpu_var(current_kprobe);
759                         if (p->break_handler && p->break_handler(p, regs)) {
760                                 goto ss_probe;
761                         }
762                 } else if (!is_ia64_break_inst(regs)) {
763                         /* The breakpoint instruction was removed by
764                          * another cpu right after we hit, no further
765                          * handling of this interrupt is appropriate
766                          */
767                         ret = 1;
768                         goto no_kprobe;
769                 } else {
770                         /* Not our break */
771                         goto no_kprobe;
772                 }
773         }
774
775         p = get_kprobe(addr);
776         if (!p) {
777                 if (!is_ia64_break_inst(regs)) {
778                         /*
779                          * The breakpoint instruction was removed right
780                          * after we hit it.  Another cpu has removed
781                          * either a probepoint or a debugger breakpoint
782                          * at this address.  In either case, no further
783                          * handling of this interrupt is appropriate.
784                          */
785                         ret = 1;
786
787                 }
788
789                 /* Not one of our break, let kernel handle it */
790                 goto no_kprobe;
791         }
792
793         set_current_kprobe(p, kcb);
794         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
795
796         if (p->pre_handler && p->pre_handler(p, regs))
797                 /*
798                  * Our pre-handler is specifically requesting that we just
799                  * do a return.  This is used for both the jprobe pre-handler
800                  * and the kretprobe trampoline
801                  */
802                 return 1;
803
804 ss_probe:
805         prepare_ss(p, regs);
806         kcb->kprobe_status = KPROBE_HIT_SS;
807         return 1;
808
809 no_kprobe:
810         preempt_enable_no_resched();
811         return ret;
812 }
813
814 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
815 {
816         struct kprobe *cur = kprobe_running();
817         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
818
819         if (!cur)
820                 return 0;
821
822         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
823                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
824                 cur->post_handler(cur, regs, 0);
825         }
826
827         resume_execution(cur, regs);
828
829         /*Restore back the original saved kprobes variables and continue. */
830         if (kcb->kprobe_status == KPROBE_REENTER) {
831                 restore_previous_kprobe(kcb);
832                 goto out;
833         }
834         reset_current_kprobe();
835
836 out:
837         preempt_enable_no_resched();
838         return 1;
839 }
840
841 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
842 {
843         struct kprobe *cur = kprobe_running();
844         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
845
846
847         switch(kcb->kprobe_status) {
848         case KPROBE_HIT_SS:
849         case KPROBE_REENTER:
850                 /*
851                  * We are here because the instruction being single
852                  * stepped caused a page fault. We reset the current
853                  * kprobe and the instruction pointer points back to
854                  * the probe address and allow the page fault handler
855                  * to continue as a normal page fault.
856                  */
857                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
858                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
859                 if (kcb->kprobe_status == KPROBE_REENTER)
860                         restore_previous_kprobe(kcb);
861                 else
862                         reset_current_kprobe();
863                 preempt_enable_no_resched();
864                 break;
865         case KPROBE_HIT_ACTIVE:
866         case KPROBE_HIT_SSDONE:
867                 /*
868                  * We increment the nmissed count for accounting,
869                  * we can also use npre/npostfault count for accouting
870                  * these specific fault cases.
871                  */
872                 kprobes_inc_nmissed_count(cur);
873
874                 /*
875                  * We come here because instructions in the pre/post
876                  * handler caused the page_fault, this could happen
877                  * if handler tries to access user space by
878                  * copy_from_user(), get_user() etc. Let the
879                  * user-specified handler try to fix it first.
880                  */
881                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
882                         return 1;
883                 /*
884                  * In case the user-specified fault handler returned
885                  * zero, try to fix up.
886                  */
887                 if (ia64_done_with_exception(regs))
888                         return 1;
889
890                 /*
891                  * Let ia64_do_page_fault() fix it.
892                  */
893                 break;
894         default:
895                 break;
896         }
897
898         return 0;
899 }
900
901 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
902                                        unsigned long val, void *data)
903 {
904         struct die_args *args = (struct die_args *)data;
905         int ret = NOTIFY_DONE;
906
907         if (args->regs && user_mode(args->regs))
908                 return ret;
909
910         switch(val) {
911         case DIE_BREAK:
912                 /* err is break number from ia64_bad_break() */
913                 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
914                         || args->err == __IA64_BREAK_JPROBE
915                         || args->err == 0)
916                         if (pre_kprobes_handler(args))
917                                 ret = NOTIFY_STOP;
918                 break;
919         case DIE_FAULT:
920                 /* err is vector number from ia64_fault() */
921                 if (args->err == 36)
922                         if (post_kprobes_handler(args->regs))
923                                 ret = NOTIFY_STOP;
924                 break;
925         default:
926                 break;
927         }
928         return ret;
929 }
930
931 struct param_bsp_cfm {
932         unsigned long ip;
933         unsigned long *bsp;
934         unsigned long cfm;
935 };
936
937 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
938 {
939         unsigned long ip;
940         struct param_bsp_cfm *lp = arg;
941
942         do {
943                 unw_get_ip(info, &ip);
944                 if (ip == 0)
945                         break;
946                 if (ip == lp->ip) {
947                         unw_get_bsp(info, (unsigned long*)&lp->bsp);
948                         unw_get_cfm(info, (unsigned long*)&lp->cfm);
949                         return;
950                 }
951         } while (unw_unwind(info) >= 0);
952         lp->bsp = NULL;
953         lp->cfm = 0;
954         return;
955 }
956
957 unsigned long arch_deref_entry_point(void *entry)
958 {
959         return ((struct fnptr *)entry)->ip;
960 }
961
962 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
963 {
964         struct jprobe *jp = container_of(p, struct jprobe, kp);
965         unsigned long addr = arch_deref_entry_point(jp->entry);
966         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
967         struct param_bsp_cfm pa;
968         int bytes;
969
970         /*
971          * Callee owns the argument space and could overwrite it, eg
972          * tail call optimization. So to be absolutely safe
973          * we save the argument space before transferring the control
974          * to instrumented jprobe function which runs in
975          * the process context
976          */
977         pa.ip = regs->cr_iip;
978         unw_init_running(ia64_get_bsp_cfm, &pa);
979         bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
980                                 - (char *)pa.bsp;
981         memcpy( kcb->jprobes_saved_stacked_regs,
982                 pa.bsp,
983                 bytes );
984         kcb->bsp = pa.bsp;
985         kcb->cfm = pa.cfm;
986
987         /* save architectural state */
988         kcb->jprobe_saved_regs = *regs;
989
990         /* after rfi, execute the jprobe instrumented function */
991         regs->cr_iip = addr & ~0xFULL;
992         ia64_psr(regs)->ri = addr & 0xf;
993         regs->r1 = ((struct fnptr *)(jp->entry))->gp;
994
995         /*
996          * fix the return address to our jprobe_inst_return() function
997          * in the jprobes.S file
998          */
999         regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1000
1001         return 1;
1002 }
1003
1004 /* ia64 does not need this */
1005 void __kprobes jprobe_return(void)
1006 {
1007 }
1008
1009 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1010 {
1011         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1012         int bytes;
1013
1014         /* restoring architectural state */
1015         *regs = kcb->jprobe_saved_regs;
1016
1017         /* restoring the original argument space */
1018         flush_register_stack();
1019         bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1020                                 - (char *)kcb->bsp;
1021         memcpy( kcb->bsp,
1022                 kcb->jprobes_saved_stacked_regs,
1023                 bytes );
1024         invalidate_stacked_regs();
1025
1026         preempt_enable_no_resched();
1027         return 1;
1028 }
1029
1030 static struct kprobe trampoline_p = {
1031         .pre_handler = trampoline_probe_handler
1032 };
1033
1034 int __init arch_init_kprobes(void)
1035 {
1036         trampoline_p.addr =
1037                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1038         return register_kprobe(&trampoline_p);
1039 }
1040
1041 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1042 {
1043         if (p->addr ==
1044                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1045                 return 1;
1046
1047         return 0;
1048 }