2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
130 icsk->icsk_ack.last_seg_size = 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
160 icsk->icsk_ack.rcv_mss = len;
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 static void tcp_incr_quickack(struct sock *sk)
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 void tcp_enter_quickack_mode(struct sock *sk)
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock *sk)
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 struct tcp_sock *tp = tcp_sk(sk);
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305 static void tcp_grow_window(struct sock *sk,
308 struct tcp_sock *tp = tcp_sk(sk);
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
322 incr = __tcp_grow_window(sk, skb);
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock *sk)
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
351 static void tcp_init_buffer_space(struct sock *sk)
353 struct tcp_sock *tp = tcp_sk(sk);
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
361 tp->rcvq_space.space = tp->rcv_wnd;
363 maxwin = tcp_full_space(sk);
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
390 icsk->icsk_ack.quick = 0;
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock *sk)
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
436 u32 new_sample = tp->rcv_rtt_est.rtt;
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
454 m -= (new_sample >> 3);
456 } else if (m < new_sample)
459 /* No previous measure. */
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
469 if (tp->rcv_rtt_est.time == 0)
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
495 void tcp_rcv_space_adjust(struct sock *sk)
497 struct tcp_sock *tp = tcp_sk(sk);
501 if (tp->rcvq_space.time == 0)
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
511 space = max(tp->rcvq_space.space, space);
513 if (tp->rcvq_space.space != space) {
516 tp->rcvq_space.space = space;
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
565 inet_csk_schedule_ack(sk);
567 tcp_measure_rcv_mss(sk, skb);
569 tcp_rcv_rtt_measure(tp);
571 now = tcp_time_stamp;
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
580 int m = now - icsk->icsk_ack.lrcvtime;
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
597 icsk->icsk_ack.lrcvtime = now;
599 TCP_ECN_check_ce(tp, skb);
602 tcp_grow_window(sk, skb);
605 static u32 tcp_rto_min(struct sock *sk)
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
664 m -= (tp->mdev >> 2); /* similar update on mdev */
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
690 static inline void tcp_set_rto(struct sock *sk)
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
715 static inline void tcp_bound_rto(struct sock *sk)
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 void tcp_update_metrics(struct sock *sk)
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
730 if (sysctl_tcp_nometrics_save)
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
766 /* Scale deviation to rttvar fixed point */
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
815 /* Numbers are taken from RFC3390.
817 * John Heffner states:
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 if (tp->mss_cache > 1460)
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
843 tp->prior_ssthresh = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
856 tcp_set_ca_state(sk, TCP_CA_CWR);
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
864 static void tcp_disable_fack(struct tcp_sock *tp)
866 /* RFC3517 uses different metric in lost marker => reset on change */
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
875 tp->rx_opt.sack_ok |= 4;
878 /* Initialize metrics on socket. */
880 static void tcp_init_metrics(struct sock *sk)
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
903 if (dst_metric(dst, RTAX_RTT) == 0)
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
951 static void tcp_update_reordering(struct sock *sk, const int metric,
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
958 /* This exciting event is worth to be remembered. 8) */
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 tp->undo_marker ? tp->undo_retrans : 0);
975 tcp_disable_fack(tp);
979 /* This procedure tags the retransmission queue when SACKs arrive.
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1027 * SACK block validation.
1028 * ----------------------
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1089 if (after(start_seq, tp->snd_una))
1092 if (!is_dsack || !tp->undo_marker)
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1099 if (!before(start_seq, tp->undo_marker))
1103 if (!after(end_seq, tp->undo_marker))
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1109 return !before(start_seq, end_seq - tp->max_window);
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1119 * retransmitted skbs to avoid some costly processing per ACKs.
1121 static void tcp_mark_lost_retrans(struct sock *sk)
1123 const struct inet_connection_sock *icsk = inet_csk(sk);
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct sk_buff *skb;
1127 u32 new_low_seq = tp->snd_nxt;
1128 u32 received_upto = tcp_highest_sack_seq(tp);
1130 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1131 !after(received_upto, tp->lost_retrans_low) ||
1132 icsk->icsk_ca_state != TCP_CA_Recovery)
1135 tcp_for_write_queue(skb, sk) {
1136 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1138 if (skb == tcp_send_head(sk))
1140 if (cnt == tp->retrans_out)
1142 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1145 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1148 if (after(received_upto, ack_seq) &&
1150 !before(received_upto,
1151 ack_seq + tp->reordering * tp->mss_cache))) {
1152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1153 tp->retrans_out -= tcp_skb_pcount(skb);
1155 /* clear lost hint */
1156 tp->retransmit_skb_hint = NULL;
1158 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1159 tp->lost_out += tcp_skb_pcount(skb);
1160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1162 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1164 if (before(ack_seq, new_low_seq))
1165 new_low_seq = ack_seq;
1166 cnt += tcp_skb_pcount(skb);
1170 if (tp->retrans_out)
1171 tp->lost_retrans_low = new_low_seq;
1174 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1175 struct tcp_sack_block_wire *sp, int num_sacks,
1178 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1179 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1182 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1185 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1186 } else if (num_sacks > 1) {
1187 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1188 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1190 if (!after(end_seq_0, end_seq_1) &&
1191 !before(start_seq_0, start_seq_1)) {
1194 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1198 /* D-SACK for already forgotten data... Do dumb counting. */
1200 !after(end_seq_0, prior_snd_una) &&
1201 after(end_seq_0, tp->undo_marker))
1207 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1208 * the incoming SACK may not exactly match but we can find smaller MSS
1209 * aligned portion of it that matches. Therefore we might need to fragment
1210 * which may fail and creates some hassle (caller must handle error case
1213 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1214 u32 start_seq, u32 end_seq)
1217 unsigned int pkt_len;
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1220 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1222 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1223 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1225 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1228 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1230 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1231 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1239 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1240 int *reord, int dup_sack, int fack_count)
1242 struct tcp_sock *tp = tcp_sk(sk);
1243 u8 sacked = TCP_SKB_CB(skb)->sacked;
1246 /* Account D-SACK for retransmitted packet. */
1247 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1248 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1250 if (sacked & TCPCB_SACKED_ACKED)
1251 *reord = min(fack_count, *reord);
1254 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1255 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1258 if (!(sacked & TCPCB_SACKED_ACKED)) {
1259 if (sacked & TCPCB_SACKED_RETRANS) {
1260 /* If the segment is not tagged as lost,
1261 * we do not clear RETRANS, believing
1262 * that retransmission is still in flight.
1264 if (sacked & TCPCB_LOST) {
1265 TCP_SKB_CB(skb)->sacked &=
1266 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1267 tp->lost_out -= tcp_skb_pcount(skb);
1268 tp->retrans_out -= tcp_skb_pcount(skb);
1270 /* clear lost hint */
1271 tp->retransmit_skb_hint = NULL;
1274 if (!(sacked & TCPCB_RETRANS)) {
1275 /* New sack for not retransmitted frame,
1276 * which was in hole. It is reordering.
1278 if (before(TCP_SKB_CB(skb)->seq,
1279 tcp_highest_sack_seq(tp)))
1280 *reord = min(fack_count, *reord);
1282 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1283 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1284 flag |= FLAG_ONLY_ORIG_SACKED;
1287 if (sacked & TCPCB_LOST) {
1288 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289 tp->lost_out -= tcp_skb_pcount(skb);
1291 /* clear lost hint */
1292 tp->retransmit_skb_hint = NULL;
1296 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1297 flag |= FLAG_DATA_SACKED;
1298 tp->sacked_out += tcp_skb_pcount(skb);
1300 fack_count += tcp_skb_pcount(skb);
1302 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1303 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1304 before(TCP_SKB_CB(skb)->seq,
1305 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1306 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1308 if (fack_count > tp->fackets_out)
1309 tp->fackets_out = fack_count;
1311 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1312 tcp_advance_highest_sack(sk, skb);
1315 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1316 * frames and clear it. undo_retrans is decreased above, L|R frames
1317 * are accounted above as well.
1319 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1320 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1321 tp->retrans_out -= tcp_skb_pcount(skb);
1322 tp->retransmit_skb_hint = NULL;
1328 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1329 struct tcp_sack_block *next_dup,
1330 u32 start_seq, u32 end_seq,
1331 int dup_sack_in, int *fack_count,
1332 int *reord, int *flag)
1334 tcp_for_write_queue_from(skb, sk) {
1336 int dup_sack = dup_sack_in;
1338 if (skb == tcp_send_head(sk))
1341 /* queue is in-order => we can short-circuit the walk early */
1342 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1345 if ((next_dup != NULL) &&
1346 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1347 in_sack = tcp_match_skb_to_sack(sk, skb,
1348 next_dup->start_seq,
1355 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1356 if (unlikely(in_sack < 0))
1360 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, *fack_count);
1362 *fack_count += tcp_skb_pcount(skb);
1367 /* Avoid all extra work that is being done by sacktag while walking in
1370 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1373 tcp_for_write_queue_from(skb, sk) {
1374 if (skb == tcp_send_head(sk))
1377 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1383 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 struct tcp_sack_block *next_dup,
1387 int *fack_count, int *reord,
1390 if (next_dup == NULL)
1393 if (before(next_dup->start_seq, skip_to_seq)) {
1394 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1395 tcp_sacktag_walk(skb, sk, NULL,
1396 next_dup->start_seq, next_dup->end_seq,
1397 1, fack_count, reord, flag);
1403 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1409 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1411 const struct inet_connection_sock *icsk = inet_csk(sk);
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 unsigned char *ptr = (skb_transport_header(ack_skb) +
1414 TCP_SKB_CB(ack_skb)->sacked);
1415 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1416 struct tcp_sack_block sp[4];
1417 struct tcp_sack_block *cache;
1418 struct sk_buff *skb;
1419 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1421 int reord = tp->packets_out;
1423 int found_dup_sack = 0;
1426 int first_sack_index;
1428 if (!tp->sacked_out) {
1429 if (WARN_ON(tp->fackets_out))
1430 tp->fackets_out = 0;
1431 tcp_highest_sack_reset(sk);
1434 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1435 num_sacks, prior_snd_una);
1437 flag |= FLAG_DSACKING_ACK;
1439 /* Eliminate too old ACKs, but take into
1440 * account more or less fresh ones, they can
1441 * contain valid SACK info.
1443 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446 if (!tp->packets_out)
1450 first_sack_index = 0;
1451 for (i = 0; i < num_sacks; i++) {
1452 int dup_sack = !i && found_dup_sack;
1454 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1455 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1457 if (!tcp_is_sackblock_valid(tp, dup_sack,
1458 sp[used_sacks].start_seq,
1459 sp[used_sacks].end_seq)) {
1461 if (!tp->undo_marker)
1462 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1464 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1466 /* Don't count olds caused by ACK reordering */
1467 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1468 !after(sp[used_sacks].end_seq, tp->snd_una))
1470 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473 first_sack_index = -1;
1477 /* Ignore very old stuff early */
1478 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1484 /* order SACK blocks to allow in order walk of the retrans queue */
1485 for (i = used_sacks - 1; i > 0; i--) {
1486 for (j = 0; j < i; j++){
1487 if (after(sp[j].start_seq, sp[j+1].start_seq)) {
1488 struct tcp_sack_block tmp;
1494 /* Track where the first SACK block goes to */
1495 if (j == first_sack_index)
1496 first_sack_index = j+1;
1501 skb = tcp_write_queue_head(sk);
1505 if (!tp->sacked_out) {
1506 /* It's already past, so skip checking against it */
1507 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1509 cache = tp->recv_sack_cache;
1510 /* Skip empty blocks in at head of the cache */
1511 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1516 while (i < used_sacks) {
1517 u32 start_seq = sp[i].start_seq;
1518 u32 end_seq = sp[i].end_seq;
1519 int dup_sack = (found_dup_sack && (i == first_sack_index));
1520 struct tcp_sack_block *next_dup = NULL;
1522 if (found_dup_sack && ((i + 1) == first_sack_index))
1523 next_dup = &sp[i + 1];
1525 /* Event "B" in the comment above. */
1526 if (after(end_seq, tp->high_seq))
1527 flag |= FLAG_DATA_LOST;
1529 /* Skip too early cached blocks */
1530 while (tcp_sack_cache_ok(tp, cache) &&
1531 !before(start_seq, cache->end_seq))
1534 /* Can skip some work by looking recv_sack_cache? */
1535 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1536 after(end_seq, cache->start_seq)) {
1539 if (before(start_seq, cache->start_seq)) {
1540 skb = tcp_sacktag_skip(skb, sk, start_seq);
1541 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq,
1542 cache->start_seq, dup_sack,
1543 &fack_count, &reord, &flag);
1546 /* Rest of the block already fully processed? */
1547 if (!after(end_seq, cache->end_seq))
1550 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, cache->end_seq,
1551 &fack_count, &reord, &flag);
1553 /* ...tail remains todo... */
1554 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1555 /* ...but better entrypoint exists! */
1556 skb = tcp_highest_sack(sk);
1559 fack_count = tp->fackets_out;
1564 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1565 /* Check overlap against next cached too (past this one already) */
1570 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1571 skb = tcp_highest_sack(sk);
1574 fack_count = tp->fackets_out;
1576 skb = tcp_sacktag_skip(skb, sk, start_seq);
1579 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1580 dup_sack, &fack_count, &reord, &flag);
1583 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1584 * due to in-order walk
1586 if (after(end_seq, tp->frto_highmark))
1587 flag &= ~FLAG_ONLY_ORIG_SACKED;
1592 /* Clear the head of the cache sack blocks so we can skip it next time */
1593 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1594 tp->recv_sack_cache[i].start_seq = 0;
1595 tp->recv_sack_cache[i].end_seq = 0;
1597 for (j = 0; j < used_sacks; j++)
1598 tp->recv_sack_cache[i++] = sp[j];
1600 tcp_mark_lost_retrans(sk);
1602 tcp_verify_left_out(tp);
1604 if ((reord < tp->fackets_out) &&
1605 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1606 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1607 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1611 #if FASTRETRANS_DEBUG > 0
1612 BUG_TRAP((int)tp->sacked_out >= 0);
1613 BUG_TRAP((int)tp->lost_out >= 0);
1614 BUG_TRAP((int)tp->retrans_out >= 0);
1615 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1620 /* If we receive more dupacks than we expected counting segments
1621 * in assumption of absent reordering, interpret this as reordering.
1622 * The only another reason could be bug in receiver TCP.
1624 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1626 struct tcp_sock *tp = tcp_sk(sk);
1629 holes = max(tp->lost_out, 1U);
1630 holes = min(holes, tp->packets_out);
1632 if ((tp->sacked_out + holes) > tp->packets_out) {
1633 tp->sacked_out = tp->packets_out - holes;
1634 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1638 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1640 static void tcp_add_reno_sack(struct sock *sk)
1642 struct tcp_sock *tp = tcp_sk(sk);
1644 tcp_check_reno_reordering(sk, 0);
1645 tcp_verify_left_out(tp);
1648 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1650 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1652 struct tcp_sock *tp = tcp_sk(sk);
1655 /* One ACK acked hole. The rest eat duplicate ACKs. */
1656 if (acked-1 >= tp->sacked_out)
1659 tp->sacked_out -= acked-1;
1661 tcp_check_reno_reordering(sk, acked);
1662 tcp_verify_left_out(tp);
1665 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1670 /* F-RTO can only be used if TCP has never retransmitted anything other than
1671 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1673 int tcp_use_frto(struct sock *sk)
1675 const struct tcp_sock *tp = tcp_sk(sk);
1676 struct sk_buff *skb;
1678 if (!sysctl_tcp_frto)
1684 /* Avoid expensive walking of rexmit queue if possible */
1685 if (tp->retrans_out > 1)
1688 skb = tcp_write_queue_head(sk);
1689 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1690 tcp_for_write_queue_from(skb, sk) {
1691 if (skb == tcp_send_head(sk))
1693 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1695 /* Short-circuit when first non-SACKed skb has been checked */
1696 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1702 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1703 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1704 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1705 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1706 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1707 * bits are handled if the Loss state is really to be entered (in
1708 * tcp_enter_frto_loss).
1710 * Do like tcp_enter_loss() would; when RTO expires the second time it
1712 * "Reduce ssthresh if it has not yet been made inside this window."
1714 void tcp_enter_frto(struct sock *sk)
1716 const struct inet_connection_sock *icsk = inet_csk(sk);
1717 struct tcp_sock *tp = tcp_sk(sk);
1718 struct sk_buff *skb;
1720 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1721 tp->snd_una == tp->high_seq ||
1722 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1723 !icsk->icsk_retransmits)) {
1724 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1725 /* Our state is too optimistic in ssthresh() call because cwnd
1726 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1727 * recovery has not yet completed. Pattern would be this: RTO,
1728 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1730 * RFC4138 should be more specific on what to do, even though
1731 * RTO is quite unlikely to occur after the first Cumulative ACK
1732 * due to back-off and complexity of triggering events ...
1734 if (tp->frto_counter) {
1736 stored_cwnd = tp->snd_cwnd;
1738 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1739 tp->snd_cwnd = stored_cwnd;
1741 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1743 /* ... in theory, cong.control module could do "any tricks" in
1744 * ssthresh(), which means that ca_state, lost bits and lost_out
1745 * counter would have to be faked before the call occurs. We
1746 * consider that too expensive, unlikely and hacky, so modules
1747 * using these in ssthresh() must deal these incompatibility
1748 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1750 tcp_ca_event(sk, CA_EVENT_FRTO);
1753 tp->undo_marker = tp->snd_una;
1754 tp->undo_retrans = 0;
1756 skb = tcp_write_queue_head(sk);
1757 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1758 tp->undo_marker = 0;
1759 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1760 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1761 tp->retrans_out -= tcp_skb_pcount(skb);
1763 tcp_verify_left_out(tp);
1765 /* Too bad if TCP was application limited */
1766 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1768 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1769 * The last condition is necessary at least in tp->frto_counter case.
1771 if (IsSackFrto() && (tp->frto_counter ||
1772 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1773 after(tp->high_seq, tp->snd_una)) {
1774 tp->frto_highmark = tp->high_seq;
1776 tp->frto_highmark = tp->snd_nxt;
1778 tcp_set_ca_state(sk, TCP_CA_Disorder);
1779 tp->high_seq = tp->snd_nxt;
1780 tp->frto_counter = 1;
1783 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1784 * which indicates that we should follow the traditional RTO recovery,
1785 * i.e. mark everything lost and do go-back-N retransmission.
1787 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1789 struct tcp_sock *tp = tcp_sk(sk);
1790 struct sk_buff *skb;
1793 tp->retrans_out = 0;
1794 if (tcp_is_reno(tp))
1795 tcp_reset_reno_sack(tp);
1797 tcp_for_write_queue(skb, sk) {
1798 if (skb == tcp_send_head(sk))
1801 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1803 * Count the retransmission made on RTO correctly (only when
1804 * waiting for the first ACK and did not get it)...
1806 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1807 /* For some reason this R-bit might get cleared? */
1808 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1809 tp->retrans_out += tcp_skb_pcount(skb);
1810 /* ...enter this if branch just for the first segment */
1811 flag |= FLAG_DATA_ACKED;
1813 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1814 tp->undo_marker = 0;
1815 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1818 /* Don't lost mark skbs that were fwd transmitted after RTO */
1819 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1820 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1821 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1822 tp->lost_out += tcp_skb_pcount(skb);
1825 tcp_verify_left_out(tp);
1827 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1828 tp->snd_cwnd_cnt = 0;
1829 tp->snd_cwnd_stamp = tcp_time_stamp;
1830 tp->frto_counter = 0;
1831 tp->bytes_acked = 0;
1833 tp->reordering = min_t(unsigned int, tp->reordering,
1834 sysctl_tcp_reordering);
1835 tcp_set_ca_state(sk, TCP_CA_Loss);
1836 tp->high_seq = tp->frto_highmark;
1837 TCP_ECN_queue_cwr(tp);
1839 tcp_clear_retrans_hints_partial(tp);
1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1844 tp->retrans_out = 0;
1847 tp->undo_marker = 0;
1848 tp->undo_retrans = 0;
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1853 tcp_clear_retrans_partial(tp);
1855 tp->fackets_out = 0;
1859 /* Enter Loss state. If "how" is not zero, forget all SACK information
1860 * and reset tags completely, otherwise preserve SACKs. If receiver
1861 * dropped its ofo queue, we will know this due to reneging detection.
1863 void tcp_enter_loss(struct sock *sk, int how)
1865 const struct inet_connection_sock *icsk = inet_csk(sk);
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 struct sk_buff *skb;
1869 /* Reduce ssthresh if it has not yet been made inside this window. */
1870 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1871 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1872 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1873 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1874 tcp_ca_event(sk, CA_EVENT_LOSS);
1877 tp->snd_cwnd_cnt = 0;
1878 tp->snd_cwnd_stamp = tcp_time_stamp;
1880 tp->bytes_acked = 0;
1881 tcp_clear_retrans_partial(tp);
1883 if (tcp_is_reno(tp))
1884 tcp_reset_reno_sack(tp);
1887 /* Push undo marker, if it was plain RTO and nothing
1888 * was retransmitted. */
1889 tp->undo_marker = tp->snd_una;
1890 tcp_clear_retrans_hints_partial(tp);
1893 tp->fackets_out = 0;
1894 tcp_clear_all_retrans_hints(tp);
1897 tcp_for_write_queue(skb, sk) {
1898 if (skb == tcp_send_head(sk))
1901 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1902 tp->undo_marker = 0;
1903 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1904 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1905 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1906 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1907 tp->lost_out += tcp_skb_pcount(skb);
1910 tcp_verify_left_out(tp);
1912 tp->reordering = min_t(unsigned int, tp->reordering,
1913 sysctl_tcp_reordering);
1914 tcp_set_ca_state(sk, TCP_CA_Loss);
1915 tp->high_seq = tp->snd_nxt;
1916 TCP_ECN_queue_cwr(tp);
1917 /* Abort F-RTO algorithm if one is in progress */
1918 tp->frto_counter = 0;
1921 static int tcp_check_sack_reneging(struct sock *sk)
1923 struct sk_buff *skb;
1925 /* If ACK arrived pointing to a remembered SACK,
1926 * it means that our remembered SACKs do not reflect
1927 * real state of receiver i.e.
1928 * receiver _host_ is heavily congested (or buggy).
1929 * Do processing similar to RTO timeout.
1931 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1932 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1933 struct inet_connection_sock *icsk = inet_csk(sk);
1934 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1936 tcp_enter_loss(sk, 1);
1937 icsk->icsk_retransmits++;
1938 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1939 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1940 icsk->icsk_rto, TCP_RTO_MAX);
1946 static inline int tcp_fackets_out(struct tcp_sock *tp)
1948 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1951 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1952 * counter when SACK is enabled (without SACK, sacked_out is used for
1955 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1956 * segments up to the highest received SACK block so far and holes in
1959 * With reordering, holes may still be in flight, so RFC3517 recovery
1960 * uses pure sacked_out (total number of SACKed segments) even though
1961 * it violates the RFC that uses duplicate ACKs, often these are equal
1962 * but when e.g. out-of-window ACKs or packet duplication occurs,
1963 * they differ. Since neither occurs due to loss, TCP should really
1966 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1968 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1971 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1973 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1976 static inline int tcp_head_timedout(struct sock *sk)
1978 struct tcp_sock *tp = tcp_sk(sk);
1980 return tp->packets_out &&
1981 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1984 /* Linux NewReno/SACK/FACK/ECN state machine.
1985 * --------------------------------------
1987 * "Open" Normal state, no dubious events, fast path.
1988 * "Disorder" In all the respects it is "Open",
1989 * but requires a bit more attention. It is entered when
1990 * we see some SACKs or dupacks. It is split of "Open"
1991 * mainly to move some processing from fast path to slow one.
1992 * "CWR" CWND was reduced due to some Congestion Notification event.
1993 * It can be ECN, ICMP source quench, local device congestion.
1994 * "Recovery" CWND was reduced, we are fast-retransmitting.
1995 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1997 * tcp_fastretrans_alert() is entered:
1998 * - each incoming ACK, if state is not "Open"
1999 * - when arrived ACK is unusual, namely:
2004 * Counting packets in flight is pretty simple.
2006 * in_flight = packets_out - left_out + retrans_out
2008 * packets_out is SND.NXT-SND.UNA counted in packets.
2010 * retrans_out is number of retransmitted segments.
2012 * left_out is number of segments left network, but not ACKed yet.
2014 * left_out = sacked_out + lost_out
2016 * sacked_out: Packets, which arrived to receiver out of order
2017 * and hence not ACKed. With SACKs this number is simply
2018 * amount of SACKed data. Even without SACKs
2019 * it is easy to give pretty reliable estimate of this number,
2020 * counting duplicate ACKs.
2022 * lost_out: Packets lost by network. TCP has no explicit
2023 * "loss notification" feedback from network (for now).
2024 * It means that this number can be only _guessed_.
2025 * Actually, it is the heuristics to predict lossage that
2026 * distinguishes different algorithms.
2028 * F.e. after RTO, when all the queue is considered as lost,
2029 * lost_out = packets_out and in_flight = retrans_out.
2031 * Essentially, we have now two algorithms counting
2034 * FACK: It is the simplest heuristics. As soon as we decided
2035 * that something is lost, we decide that _all_ not SACKed
2036 * packets until the most forward SACK are lost. I.e.
2037 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2038 * It is absolutely correct estimate, if network does not reorder
2039 * packets. And it loses any connection to reality when reordering
2040 * takes place. We use FACK by default until reordering
2041 * is suspected on the path to this destination.
2043 * NewReno: when Recovery is entered, we assume that one segment
2044 * is lost (classic Reno). While we are in Recovery and
2045 * a partial ACK arrives, we assume that one more packet
2046 * is lost (NewReno). This heuristics are the same in NewReno
2049 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2050 * deflation etc. CWND is real congestion window, never inflated, changes
2051 * only according to classic VJ rules.
2053 * Really tricky (and requiring careful tuning) part of algorithm
2054 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2055 * The first determines the moment _when_ we should reduce CWND and,
2056 * hence, slow down forward transmission. In fact, it determines the moment
2057 * when we decide that hole is caused by loss, rather than by a reorder.
2059 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2060 * holes, caused by lost packets.
2062 * And the most logically complicated part of algorithm is undo
2063 * heuristics. We detect false retransmits due to both too early
2064 * fast retransmit (reordering) and underestimated RTO, analyzing
2065 * timestamps and D-SACKs. When we detect that some segments were
2066 * retransmitted by mistake and CWND reduction was wrong, we undo
2067 * window reduction and abort recovery phase. This logic is hidden
2068 * inside several functions named tcp_try_undo_<something>.
2071 /* This function decides, when we should leave Disordered state
2072 * and enter Recovery phase, reducing congestion window.
2074 * Main question: may we further continue forward transmission
2075 * with the same cwnd?
2077 static int tcp_time_to_recover(struct sock *sk)
2079 struct tcp_sock *tp = tcp_sk(sk);
2082 /* Do not perform any recovery during F-RTO algorithm */
2083 if (tp->frto_counter)
2086 /* Trick#1: The loss is proven. */
2090 /* Not-A-Trick#2 : Classic rule... */
2091 if (tcp_dupack_heurestics(tp) > tp->reordering)
2094 /* Trick#3 : when we use RFC2988 timer restart, fast
2095 * retransmit can be triggered by timeout of queue head.
2097 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2100 /* Trick#4: It is still not OK... But will it be useful to delay
2103 packets_out = tp->packets_out;
2104 if (packets_out <= tp->reordering &&
2105 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2106 !tcp_may_send_now(sk)) {
2107 /* We have nothing to send. This connection is limited
2108 * either by receiver window or by application.
2116 /* RFC: This is from the original, I doubt that this is necessary at all:
2117 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2118 * retransmitted past LOST markings in the first place? I'm not fully sure
2119 * about undo and end of connection cases, which can cause R without L?
2121 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2122 struct sk_buff *skb)
2124 if ((tp->retransmit_skb_hint != NULL) &&
2125 before(TCP_SKB_CB(skb)->seq,
2126 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2127 tp->retransmit_skb_hint = NULL;
2130 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2131 * is against sacked "cnt", otherwise it's against facked "cnt"
2133 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2135 struct tcp_sock *tp = tcp_sk(sk);
2136 struct sk_buff *skb;
2139 BUG_TRAP(packets <= tp->packets_out);
2140 if (tp->lost_skb_hint) {
2141 skb = tp->lost_skb_hint;
2142 cnt = tp->lost_cnt_hint;
2144 skb = tcp_write_queue_head(sk);
2148 tcp_for_write_queue_from(skb, sk) {
2149 if (skb == tcp_send_head(sk))
2151 /* TODO: do this better */
2152 /* this is not the most efficient way to do this... */
2153 tp->lost_skb_hint = skb;
2154 tp->lost_cnt_hint = cnt;
2156 if (tcp_is_fack(tp) ||
2157 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2158 cnt += tcp_skb_pcount(skb);
2160 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2161 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2163 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2164 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2165 tp->lost_out += tcp_skb_pcount(skb);
2166 tcp_verify_retransmit_hint(tp, skb);
2169 tcp_verify_left_out(tp);
2172 /* Account newly detected lost packet(s) */
2174 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2176 struct tcp_sock *tp = tcp_sk(sk);
2178 if (tcp_is_reno(tp)) {
2179 tcp_mark_head_lost(sk, 1, fast_rexmit);
2180 } else if (tcp_is_fack(tp)) {
2181 int lost = tp->fackets_out - tp->reordering;
2184 tcp_mark_head_lost(sk, lost, fast_rexmit);
2186 int sacked_upto = tp->sacked_out - tp->reordering;
2187 if (sacked_upto < 0)
2189 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2192 /* New heuristics: it is possible only after we switched
2193 * to restart timer each time when something is ACKed.
2194 * Hence, we can detect timed out packets during fast
2195 * retransmit without falling to slow start.
2197 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2198 struct sk_buff *skb;
2200 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2201 : tcp_write_queue_head(sk);
2203 tcp_for_write_queue_from(skb, sk) {
2204 if (skb == tcp_send_head(sk))
2206 if (!tcp_skb_timedout(sk, skb))
2209 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2210 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2211 tp->lost_out += tcp_skb_pcount(skb);
2212 tcp_verify_retransmit_hint(tp, skb);
2216 tp->scoreboard_skb_hint = skb;
2218 tcp_verify_left_out(tp);
2222 /* CWND moderation, preventing bursts due to too big ACKs
2223 * in dubious situations.
2225 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2227 tp->snd_cwnd = min(tp->snd_cwnd,
2228 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2232 /* Lower bound on congestion window is slow start threshold
2233 * unless congestion avoidance choice decides to overide it.
2235 static inline u32 tcp_cwnd_min(const struct sock *sk)
2237 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2239 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2242 /* Decrease cwnd each second ack. */
2243 static void tcp_cwnd_down(struct sock *sk, int flag)
2245 struct tcp_sock *tp = tcp_sk(sk);
2246 int decr = tp->snd_cwnd_cnt + 1;
2248 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2249 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2250 tp->snd_cwnd_cnt = decr&1;
2253 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2254 tp->snd_cwnd -= decr;
2256 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2257 tp->snd_cwnd_stamp = tcp_time_stamp;
2261 /* Nothing was retransmitted or returned timestamp is less
2262 * than timestamp of the first retransmission.
2264 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2266 return !tp->retrans_stamp ||
2267 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2271 /* Undo procedures. */
2273 #if FASTRETRANS_DEBUG > 1
2274 static void DBGUNDO(struct sock *sk, const char *msg)
2276 struct tcp_sock *tp = tcp_sk(sk);
2277 struct inet_sock *inet = inet_sk(sk);
2279 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2281 NIPQUAD(inet->daddr), ntohs(inet->dport),
2282 tp->snd_cwnd, tcp_left_out(tp),
2283 tp->snd_ssthresh, tp->prior_ssthresh,
2287 #define DBGUNDO(x...) do { } while (0)
2290 static void tcp_undo_cwr(struct sock *sk, const int undo)
2292 struct tcp_sock *tp = tcp_sk(sk);
2294 if (tp->prior_ssthresh) {
2295 const struct inet_connection_sock *icsk = inet_csk(sk);
2297 if (icsk->icsk_ca_ops->undo_cwnd)
2298 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2300 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2302 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2303 tp->snd_ssthresh = tp->prior_ssthresh;
2304 TCP_ECN_withdraw_cwr(tp);
2307 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2309 tcp_moderate_cwnd(tp);
2310 tp->snd_cwnd_stamp = tcp_time_stamp;
2312 /* There is something screwy going on with the retrans hints after
2314 tcp_clear_all_retrans_hints(tp);
2317 static inline int tcp_may_undo(struct tcp_sock *tp)
2319 return tp->undo_marker &&
2320 (!tp->undo_retrans || tcp_packet_delayed(tp));
2323 /* People celebrate: "We love our President!" */
2324 static int tcp_try_undo_recovery(struct sock *sk)
2326 struct tcp_sock *tp = tcp_sk(sk);
2328 if (tcp_may_undo(tp)) {
2329 /* Happy end! We did not retransmit anything
2330 * or our original transmission succeeded.
2332 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2333 tcp_undo_cwr(sk, 1);
2334 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2335 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2337 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2338 tp->undo_marker = 0;
2340 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2341 /* Hold old state until something *above* high_seq
2342 * is ACKed. For Reno it is MUST to prevent false
2343 * fast retransmits (RFC2582). SACK TCP is safe. */
2344 tcp_moderate_cwnd(tp);
2347 tcp_set_ca_state(sk, TCP_CA_Open);
2351 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2352 static void tcp_try_undo_dsack(struct sock *sk)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (tp->undo_marker && !tp->undo_retrans) {
2357 DBGUNDO(sk, "D-SACK");
2358 tcp_undo_cwr(sk, 1);
2359 tp->undo_marker = 0;
2360 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2364 /* Undo during fast recovery after partial ACK. */
2366 static int tcp_try_undo_partial(struct sock *sk, int acked)
2368 struct tcp_sock *tp = tcp_sk(sk);
2369 /* Partial ACK arrived. Force Hoe's retransmit. */
2370 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2372 if (tcp_may_undo(tp)) {
2373 /* Plain luck! Hole if filled with delayed
2374 * packet, rather than with a retransmit.
2376 if (tp->retrans_out == 0)
2377 tp->retrans_stamp = 0;
2379 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2382 tcp_undo_cwr(sk, 0);
2383 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2385 /* So... Do not make Hoe's retransmit yet.
2386 * If the first packet was delayed, the rest
2387 * ones are most probably delayed as well.
2394 /* Undo during loss recovery after partial ACK. */
2395 static int tcp_try_undo_loss(struct sock *sk)
2397 struct tcp_sock *tp = tcp_sk(sk);
2399 if (tcp_may_undo(tp)) {
2400 struct sk_buff *skb;
2401 tcp_for_write_queue(skb, sk) {
2402 if (skb == tcp_send_head(sk))
2404 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2407 tcp_clear_all_retrans_hints(tp);
2409 DBGUNDO(sk, "partial loss");
2411 tcp_undo_cwr(sk, 1);
2412 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2413 inet_csk(sk)->icsk_retransmits = 0;
2414 tp->undo_marker = 0;
2415 if (tcp_is_sack(tp))
2416 tcp_set_ca_state(sk, TCP_CA_Open);
2422 static inline void tcp_complete_cwr(struct sock *sk)
2424 struct tcp_sock *tp = tcp_sk(sk);
2425 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2426 tp->snd_cwnd_stamp = tcp_time_stamp;
2427 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2430 static void tcp_try_to_open(struct sock *sk, int flag)
2432 struct tcp_sock *tp = tcp_sk(sk);
2434 tcp_verify_left_out(tp);
2436 if (tp->retrans_out == 0)
2437 tp->retrans_stamp = 0;
2440 tcp_enter_cwr(sk, 1);
2442 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2443 int state = TCP_CA_Open;
2445 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2446 state = TCP_CA_Disorder;
2448 if (inet_csk(sk)->icsk_ca_state != state) {
2449 tcp_set_ca_state(sk, state);
2450 tp->high_seq = tp->snd_nxt;
2452 tcp_moderate_cwnd(tp);
2454 tcp_cwnd_down(sk, flag);
2458 static void tcp_mtup_probe_failed(struct sock *sk)
2460 struct inet_connection_sock *icsk = inet_csk(sk);
2462 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2463 icsk->icsk_mtup.probe_size = 0;
2466 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2468 struct tcp_sock *tp = tcp_sk(sk);
2469 struct inet_connection_sock *icsk = inet_csk(sk);
2471 /* FIXME: breaks with very large cwnd */
2472 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2473 tp->snd_cwnd = tp->snd_cwnd *
2474 tcp_mss_to_mtu(sk, tp->mss_cache) /
2475 icsk->icsk_mtup.probe_size;
2476 tp->snd_cwnd_cnt = 0;
2477 tp->snd_cwnd_stamp = tcp_time_stamp;
2478 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2480 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2481 icsk->icsk_mtup.probe_size = 0;
2482 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2486 /* Process an event, which can update packets-in-flight not trivially.
2487 * Main goal of this function is to calculate new estimate for left_out,
2488 * taking into account both packets sitting in receiver's buffer and
2489 * packets lost by network.
2491 * Besides that it does CWND reduction, when packet loss is detected
2492 * and changes state of machine.
2494 * It does _not_ decide what to send, it is made in function
2495 * tcp_xmit_retransmit_queue().
2498 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2500 struct inet_connection_sock *icsk = inet_csk(sk);
2501 struct tcp_sock *tp = tcp_sk(sk);
2502 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2503 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2504 (tcp_fackets_out(tp) > tp->reordering));
2505 int fast_rexmit = 0;
2507 /* Some technical things:
2508 * 1. Reno does not count dupacks (sacked_out) automatically. */
2509 if (!tp->packets_out)
2512 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2513 tp->fackets_out = 0;
2515 /* Now state machine starts.
2516 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2518 tp->prior_ssthresh = 0;
2520 /* B. In all the states check for reneging SACKs. */
2521 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2524 /* C. Process data loss notification, provided it is valid. */
2525 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2526 before(tp->snd_una, tp->high_seq) &&
2527 icsk->icsk_ca_state != TCP_CA_Open &&
2528 tp->fackets_out > tp->reordering) {
2529 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2530 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2533 /* D. Check consistency of the current state. */
2534 tcp_verify_left_out(tp);
2536 /* E. Check state exit conditions. State can be terminated
2537 * when high_seq is ACKed. */
2538 if (icsk->icsk_ca_state == TCP_CA_Open) {
2539 BUG_TRAP(tp->retrans_out == 0);
2540 tp->retrans_stamp = 0;
2541 } else if (!before(tp->snd_una, tp->high_seq)) {
2542 switch (icsk->icsk_ca_state) {
2544 icsk->icsk_retransmits = 0;
2545 if (tcp_try_undo_recovery(sk))
2550 /* CWR is to be held something *above* high_seq
2551 * is ACKed for CWR bit to reach receiver. */
2552 if (tp->snd_una != tp->high_seq) {
2553 tcp_complete_cwr(sk);
2554 tcp_set_ca_state(sk, TCP_CA_Open);
2558 case TCP_CA_Disorder:
2559 tcp_try_undo_dsack(sk);
2560 if (!tp->undo_marker ||
2561 /* For SACK case do not Open to allow to undo
2562 * catching for all duplicate ACKs. */
2563 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2564 tp->undo_marker = 0;
2565 tcp_set_ca_state(sk, TCP_CA_Open);
2569 case TCP_CA_Recovery:
2570 if (tcp_is_reno(tp))
2571 tcp_reset_reno_sack(tp);
2572 if (tcp_try_undo_recovery(sk))
2574 tcp_complete_cwr(sk);
2579 /* F. Process state. */
2580 switch (icsk->icsk_ca_state) {
2581 case TCP_CA_Recovery:
2582 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2583 if (tcp_is_reno(tp) && is_dupack)
2584 tcp_add_reno_sack(sk);
2586 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2589 if (flag&FLAG_DATA_ACKED)
2590 icsk->icsk_retransmits = 0;
2591 if (!tcp_try_undo_loss(sk)) {
2592 tcp_moderate_cwnd(tp);
2593 tcp_xmit_retransmit_queue(sk);
2596 if (icsk->icsk_ca_state != TCP_CA_Open)
2598 /* Loss is undone; fall through to processing in Open state. */
2600 if (tcp_is_reno(tp)) {
2601 if (flag & FLAG_SND_UNA_ADVANCED)
2602 tcp_reset_reno_sack(tp);
2604 tcp_add_reno_sack(sk);
2607 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2608 tcp_try_undo_dsack(sk);
2610 if (!tcp_time_to_recover(sk)) {
2611 tcp_try_to_open(sk, flag);
2615 /* MTU probe failure: don't reduce cwnd */
2616 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2617 icsk->icsk_mtup.probe_size &&
2618 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2619 tcp_mtup_probe_failed(sk);
2620 /* Restores the reduction we did in tcp_mtup_probe() */
2622 tcp_simple_retransmit(sk);
2626 /* Otherwise enter Recovery state */
2628 if (tcp_is_reno(tp))
2629 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2631 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2633 tp->high_seq = tp->snd_nxt;
2634 tp->prior_ssthresh = 0;
2635 tp->undo_marker = tp->snd_una;
2636 tp->undo_retrans = tp->retrans_out;
2638 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2639 if (!(flag&FLAG_ECE))
2640 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2641 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2642 TCP_ECN_queue_cwr(tp);
2645 tp->bytes_acked = 0;
2646 tp->snd_cwnd_cnt = 0;
2647 tcp_set_ca_state(sk, TCP_CA_Recovery);
2651 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2652 tcp_update_scoreboard(sk, fast_rexmit);
2653 tcp_cwnd_down(sk, flag);
2654 tcp_xmit_retransmit_queue(sk);
2657 /* Read draft-ietf-tcplw-high-performance before mucking
2658 * with this code. (Supersedes RFC1323)
2660 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2662 /* RTTM Rule: A TSecr value received in a segment is used to
2663 * update the averaged RTT measurement only if the segment
2664 * acknowledges some new data, i.e., only if it advances the
2665 * left edge of the send window.
2667 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2668 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2670 * Changed: reset backoff as soon as we see the first valid sample.
2671 * If we do not, we get strongly overestimated rto. With timestamps
2672 * samples are accepted even from very old segments: f.e., when rtt=1
2673 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2674 * answer arrives rto becomes 120 seconds! If at least one of segments
2675 * in window is lost... Voila. --ANK (010210)
2677 struct tcp_sock *tp = tcp_sk(sk);
2678 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2679 tcp_rtt_estimator(sk, seq_rtt);
2681 inet_csk(sk)->icsk_backoff = 0;
2685 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2687 /* We don't have a timestamp. Can only use
2688 * packets that are not retransmitted to determine
2689 * rtt estimates. Also, we must not reset the
2690 * backoff for rto until we get a non-retransmitted
2691 * packet. This allows us to deal with a situation
2692 * where the network delay has increased suddenly.
2693 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2696 if (flag & FLAG_RETRANS_DATA_ACKED)
2699 tcp_rtt_estimator(sk, seq_rtt);
2701 inet_csk(sk)->icsk_backoff = 0;
2705 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2708 const struct tcp_sock *tp = tcp_sk(sk);
2709 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2710 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2711 tcp_ack_saw_tstamp(sk, flag);
2712 else if (seq_rtt >= 0)
2713 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2716 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2718 const struct inet_connection_sock *icsk = inet_csk(sk);
2719 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2720 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2723 /* Restart timer after forward progress on connection.
2724 * RFC2988 recommends to restart timer to now+rto.
2726 static void tcp_rearm_rto(struct sock *sk)
2728 struct tcp_sock *tp = tcp_sk(sk);
2730 if (!tp->packets_out) {
2731 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2733 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2737 /* If we get here, the whole TSO packet has not been acked. */
2738 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2740 struct tcp_sock *tp = tcp_sk(sk);
2743 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2745 packets_acked = tcp_skb_pcount(skb);
2746 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2748 packets_acked -= tcp_skb_pcount(skb);
2750 if (packets_acked) {
2751 BUG_ON(tcp_skb_pcount(skb) == 0);
2752 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2755 return packets_acked;
2758 /* Remove acknowledged frames from the retransmission queue. If our packet
2759 * is before the ack sequence we can discard it as it's confirmed to have
2760 * arrived at the other end.
2762 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2765 struct tcp_sock *tp = tcp_sk(sk);
2766 const struct inet_connection_sock *icsk = inet_csk(sk);
2767 struct sk_buff *skb;
2768 u32 now = tcp_time_stamp;
2769 int fully_acked = 1;
2772 u32 reord = tp->packets_out;
2774 s32 ca_seq_rtt = -1;
2775 ktime_t last_ackt = net_invalid_timestamp();
2777 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2778 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2781 u8 sacked = scb->sacked;
2783 /* Determine how many packets and what bytes were acked, tso and else */
2784 if (after(scb->end_seq, tp->snd_una)) {
2785 if (tcp_skb_pcount(skb) == 1 ||
2786 !after(tp->snd_una, scb->seq))
2789 acked_pcount = tcp_tso_acked(sk, skb);
2794 end_seq = tp->snd_una;
2796 acked_pcount = tcp_skb_pcount(skb);
2797 end_seq = scb->end_seq;
2800 /* MTU probing checks */
2801 if (fully_acked && icsk->icsk_mtup.probe_size &&
2802 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2803 tcp_mtup_probe_success(sk, skb);
2806 if (sacked & TCPCB_RETRANS) {
2807 if (sacked & TCPCB_SACKED_RETRANS)
2808 tp->retrans_out -= acked_pcount;
2809 flag |= FLAG_RETRANS_DATA_ACKED;
2812 if ((flag & FLAG_DATA_ACKED) ||
2814 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2816 ca_seq_rtt = now - scb->when;
2817 last_ackt = skb->tstamp;
2819 seq_rtt = ca_seq_rtt;
2821 if (!(sacked & TCPCB_SACKED_ACKED))
2822 reord = min(pkts_acked, reord);
2825 if (sacked & TCPCB_SACKED_ACKED)
2826 tp->sacked_out -= acked_pcount;
2827 if (sacked & TCPCB_LOST)
2828 tp->lost_out -= acked_pcount;
2830 if (unlikely((sacked & TCPCB_URG) && tp->urg_mode &&
2831 !before(end_seq, tp->snd_up)))
2834 tp->packets_out -= acked_pcount;
2835 pkts_acked += acked_pcount;
2837 /* Initial outgoing SYN's get put onto the write_queue
2838 * just like anything else we transmit. It is not
2839 * true data, and if we misinform our callers that
2840 * this ACK acks real data, we will erroneously exit
2841 * connection startup slow start one packet too
2842 * quickly. This is severely frowned upon behavior.
2844 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2845 flag |= FLAG_DATA_ACKED;
2847 flag |= FLAG_SYN_ACKED;
2848 tp->retrans_stamp = 0;
2854 tcp_unlink_write_queue(skb, sk);
2855 sk_stream_free_skb(sk, skb);
2856 tcp_clear_all_retrans_hints(tp);
2859 if (flag & FLAG_ACKED) {
2860 const struct tcp_congestion_ops *ca_ops
2861 = inet_csk(sk)->icsk_ca_ops;
2863 tcp_ack_update_rtt(sk, flag, seq_rtt);
2866 if (tcp_is_reno(tp)) {
2867 tcp_remove_reno_sacks(sk, pkts_acked);
2869 /* Non-retransmitted hole got filled? That's reordering */
2870 if (reord < prior_fackets)
2871 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2874 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2876 if (ca_ops->pkts_acked) {
2879 /* Is the ACK triggering packet unambiguous? */
2880 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2881 /* High resolution needed and available? */
2882 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2883 !ktime_equal(last_ackt,
2884 net_invalid_timestamp()))
2885 rtt_us = ktime_us_delta(ktime_get_real(),
2887 else if (ca_seq_rtt > 0)
2888 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2891 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2895 #if FASTRETRANS_DEBUG > 0
2896 BUG_TRAP((int)tp->sacked_out >= 0);
2897 BUG_TRAP((int)tp->lost_out >= 0);
2898 BUG_TRAP((int)tp->retrans_out >= 0);
2899 if (!tp->packets_out && tcp_is_sack(tp)) {
2900 icsk = inet_csk(sk);
2902 printk(KERN_DEBUG "Leak l=%u %d\n",
2903 tp->lost_out, icsk->icsk_ca_state);
2906 if (tp->sacked_out) {
2907 printk(KERN_DEBUG "Leak s=%u %d\n",
2908 tp->sacked_out, icsk->icsk_ca_state);
2911 if (tp->retrans_out) {
2912 printk(KERN_DEBUG "Leak r=%u %d\n",
2913 tp->retrans_out, icsk->icsk_ca_state);
2914 tp->retrans_out = 0;
2918 *seq_rtt_p = seq_rtt;
2922 static void tcp_ack_probe(struct sock *sk)
2924 const struct tcp_sock *tp = tcp_sk(sk);
2925 struct inet_connection_sock *icsk = inet_csk(sk);
2927 /* Was it a usable window open? */
2929 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2930 tp->snd_una + tp->snd_wnd)) {
2931 icsk->icsk_backoff = 0;
2932 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2933 /* Socket must be waked up by subsequent tcp_data_snd_check().
2934 * This function is not for random using!
2937 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2938 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2943 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2945 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2946 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2949 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2951 const struct tcp_sock *tp = tcp_sk(sk);
2952 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2953 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2956 /* Check that window update is acceptable.
2957 * The function assumes that snd_una<=ack<=snd_next.
2959 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2960 const u32 ack_seq, const u32 nwin)
2962 return (after(ack, tp->snd_una) ||
2963 after(ack_seq, tp->snd_wl1) ||
2964 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2967 /* Update our send window.
2969 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2970 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2972 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2975 struct tcp_sock *tp = tcp_sk(sk);
2977 u32 nwin = ntohs(tcp_hdr(skb)->window);
2979 if (likely(!tcp_hdr(skb)->syn))
2980 nwin <<= tp->rx_opt.snd_wscale;
2982 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2983 flag |= FLAG_WIN_UPDATE;
2984 tcp_update_wl(tp, ack, ack_seq);
2986 if (tp->snd_wnd != nwin) {
2989 /* Note, it is the only place, where
2990 * fast path is recovered for sending TCP.
2993 tcp_fast_path_check(sk);
2995 if (nwin > tp->max_window) {
2996 tp->max_window = nwin;
2997 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3007 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3008 * continue in congestion avoidance.
3010 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3012 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3013 tp->snd_cwnd_cnt = 0;
3014 tp->bytes_acked = 0;
3015 TCP_ECN_queue_cwr(tp);
3016 tcp_moderate_cwnd(tp);
3019 /* A conservative spurious RTO response algorithm: reduce cwnd using
3020 * rate halving and continue in congestion avoidance.
3022 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3024 tcp_enter_cwr(sk, 0);
3027 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3030 tcp_ratehalving_spur_to_response(sk);
3032 tcp_undo_cwr(sk, 1);
3035 /* F-RTO spurious RTO detection algorithm (RFC4138)
3037 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3038 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3039 * window (but not to or beyond highest sequence sent before RTO):
3040 * On First ACK, send two new segments out.
3041 * On Second ACK, RTO was likely spurious. Do spurious response (response
3042 * algorithm is not part of the F-RTO detection algorithm
3043 * given in RFC4138 but can be selected separately).
3044 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3045 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3046 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3047 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3049 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3050 * original window even after we transmit two new data segments.
3053 * on first step, wait until first cumulative ACK arrives, then move to
3054 * the second step. In second step, the next ACK decides.
3056 * F-RTO is implemented (mainly) in four functions:
3057 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3058 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3059 * called when tcp_use_frto() showed green light
3060 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3061 * - tcp_enter_frto_loss() is called if there is not enough evidence
3062 * to prove that the RTO is indeed spurious. It transfers the control
3063 * from F-RTO to the conventional RTO recovery
3065 static int tcp_process_frto(struct sock *sk, int flag)
3067 struct tcp_sock *tp = tcp_sk(sk);
3069 tcp_verify_left_out(tp);
3071 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3072 if (flag&FLAG_DATA_ACKED)
3073 inet_csk(sk)->icsk_retransmits = 0;
3075 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3076 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3077 tp->undo_marker = 0;
3079 if (!before(tp->snd_una, tp->frto_highmark)) {
3080 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3084 if (!IsSackFrto() || tcp_is_reno(tp)) {
3085 /* RFC4138 shortcoming in step 2; should also have case c):
3086 * ACK isn't duplicate nor advances window, e.g., opposite dir
3089 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3092 if (!(flag&FLAG_DATA_ACKED)) {
3093 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3098 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3099 /* Prevent sending of new data. */
3100 tp->snd_cwnd = min(tp->snd_cwnd,
3101 tcp_packets_in_flight(tp));
3105 if ((tp->frto_counter >= 2) &&
3106 (!(flag&FLAG_FORWARD_PROGRESS) ||
3107 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3108 /* RFC4138 shortcoming (see comment above) */
3109 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3112 tcp_enter_frto_loss(sk, 3, flag);
3117 if (tp->frto_counter == 1) {
3118 /* tcp_may_send_now needs to see updated state */
3119 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3120 tp->frto_counter = 2;
3122 if (!tcp_may_send_now(sk))
3123 tcp_enter_frto_loss(sk, 2, flag);
3127 switch (sysctl_tcp_frto_response) {
3129 tcp_undo_spur_to_response(sk, flag);
3132 tcp_conservative_spur_to_response(tp);
3135 tcp_ratehalving_spur_to_response(sk);
3138 tp->frto_counter = 0;
3139 tp->undo_marker = 0;
3140 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3145 /* This routine deals with incoming acks, but not outgoing ones. */
3146 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3148 struct inet_connection_sock *icsk = inet_csk(sk);
3149 struct tcp_sock *tp = tcp_sk(sk);
3150 u32 prior_snd_una = tp->snd_una;
3151 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3152 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3153 u32 prior_in_flight;
3159 /* If the ack is newer than sent or older than previous acks
3160 * then we can probably ignore it.
3162 if (after(ack, tp->snd_nxt))
3163 goto uninteresting_ack;
3165 if (before(ack, prior_snd_una))
3168 if (after(ack, prior_snd_una))
3169 flag |= FLAG_SND_UNA_ADVANCED;
3171 if (sysctl_tcp_abc) {
3172 if (icsk->icsk_ca_state < TCP_CA_CWR)
3173 tp->bytes_acked += ack - prior_snd_una;
3174 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3175 /* we assume just one segment left network */
3176 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3179 prior_fackets = tp->fackets_out;
3180 prior_in_flight = tcp_packets_in_flight(tp);
3182 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3183 /* Window is constant, pure forward advance.
3184 * No more checks are required.
3185 * Note, we use the fact that SND.UNA>=SND.WL2.
3187 tcp_update_wl(tp, ack, ack_seq);
3189 flag |= FLAG_WIN_UPDATE;
3191 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3193 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3195 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3198 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3200 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3202 if (TCP_SKB_CB(skb)->sacked)
3203 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3205 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3208 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3211 /* We passed data and got it acked, remove any soft error
3212 * log. Something worked...
3214 sk->sk_err_soft = 0;
3215 tp->rcv_tstamp = tcp_time_stamp;
3216 prior_packets = tp->packets_out;
3220 /* See if we can take anything off of the retransmit queue. */
3221 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3223 if (tp->frto_counter)
3224 frto_cwnd = tcp_process_frto(sk, flag);
3225 /* Guarantee sacktag reordering detection against wrap-arounds */
3226 if (before(tp->frto_highmark, tp->snd_una))
3227 tp->frto_highmark = 0;
3229 if (tcp_ack_is_dubious(sk, flag)) {
3230 /* Advance CWND, if state allows this. */
3231 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3232 tcp_may_raise_cwnd(sk, flag))
3233 tcp_cong_avoid(sk, ack, prior_in_flight);
3234 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3236 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3237 tcp_cong_avoid(sk, ack, prior_in_flight);
3240 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3241 dst_confirm(sk->sk_dst_cache);
3246 icsk->icsk_probes_out = 0;
3248 /* If this ack opens up a zero window, clear backoff. It was
3249 * being used to time the probes, and is probably far higher than
3250 * it needs to be for normal retransmission.
3252 if (tcp_send_head(sk))
3257 if (TCP_SKB_CB(skb)->sacked)
3258 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3261 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3266 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3267 * But, this can also be called on packets in the established flow when
3268 * the fast version below fails.
3270 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3273 struct tcphdr *th = tcp_hdr(skb);
3274 int length=(th->doff*4)-sizeof(struct tcphdr);
3276 ptr = (unsigned char *)(th + 1);
3277 opt_rx->saw_tstamp = 0;
3279 while (length > 0) {
3286 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3291 if (opsize < 2) /* "silly options" */
3293 if (opsize > length)
3294 return; /* don't parse partial options */
3297 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3298 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3300 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3301 in_mss = opt_rx->user_mss;
3302 opt_rx->mss_clamp = in_mss;
3307 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3308 if (sysctl_tcp_window_scaling) {
3309 __u8 snd_wscale = *(__u8 *) ptr;
3310 opt_rx->wscale_ok = 1;
3311 if (snd_wscale > 14) {
3312 if (net_ratelimit())
3313 printk(KERN_INFO "tcp_parse_options: Illegal window "
3314 "scaling value %d >14 received.\n",
3318 opt_rx->snd_wscale = snd_wscale;
3321 case TCPOPT_TIMESTAMP:
3322 if (opsize==TCPOLEN_TIMESTAMP) {
3323 if ((estab && opt_rx->tstamp_ok) ||
3324 (!estab && sysctl_tcp_timestamps)) {
3325 opt_rx->saw_tstamp = 1;
3326 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3327 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3331 case TCPOPT_SACK_PERM:
3332 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3333 if (sysctl_tcp_sack) {
3334 opt_rx->sack_ok = 1;
3335 tcp_sack_reset(opt_rx);
3341 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3342 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3344 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3347 #ifdef CONFIG_TCP_MD5SIG
3350 * The MD5 Hash has already been
3351 * checked (see tcp_v{4,6}_do_rcv()).
3363 /* Fast parse options. This hopes to only see timestamps.
3364 * If it is wrong it falls back on tcp_parse_options().
3366 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3367 struct tcp_sock *tp)
3369 if (th->doff == sizeof(struct tcphdr)>>2) {
3370 tp->rx_opt.saw_tstamp = 0;
3372 } else if (tp->rx_opt.tstamp_ok &&
3373 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3374 __be32 *ptr = (__be32 *)(th + 1);
3375 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3376 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3377 tp->rx_opt.saw_tstamp = 1;
3379 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3381 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3385 tcp_parse_options(skb, &tp->rx_opt, 1);
3389 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3391 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3392 tp->rx_opt.ts_recent_stamp = get_seconds();
3395 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3397 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3398 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3399 * extra check below makes sure this can only happen
3400 * for pure ACK frames. -DaveM
3402 * Not only, also it occurs for expired timestamps.
3405 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3406 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3407 tcp_store_ts_recent(tp);
3411 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3413 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3414 * it can pass through stack. So, the following predicate verifies that
3415 * this segment is not used for anything but congestion avoidance or
3416 * fast retransmit. Moreover, we even are able to eliminate most of such
3417 * second order effects, if we apply some small "replay" window (~RTO)
3418 * to timestamp space.
3420 * All these measures still do not guarantee that we reject wrapped ACKs
3421 * on networks with high bandwidth, when sequence space is recycled fastly,
3422 * but it guarantees that such events will be very rare and do not affect
3423 * connection seriously. This doesn't look nice, but alas, PAWS is really
3426 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3427 * states that events when retransmit arrives after original data are rare.
3428 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3429 * the biggest problem on large power networks even with minor reordering.
3430 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3431 * up to bandwidth of 18Gigabit/sec. 8) ]
3434 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3436 struct tcp_sock *tp = tcp_sk(sk);
3437 struct tcphdr *th = tcp_hdr(skb);
3438 u32 seq = TCP_SKB_CB(skb)->seq;
3439 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3441 return (/* 1. Pure ACK with correct sequence number. */
3442 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3444 /* 2. ... and duplicate ACK. */
3445 ack == tp->snd_una &&
3447 /* 3. ... and does not update window. */
3448 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3450 /* 4. ... and sits in replay window. */
3451 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3454 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3456 const struct tcp_sock *tp = tcp_sk(sk);
3457 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3458 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3459 !tcp_disordered_ack(sk, skb));
3462 /* Check segment sequence number for validity.
3464 * Segment controls are considered valid, if the segment
3465 * fits to the window after truncation to the window. Acceptability
3466 * of data (and SYN, FIN, of course) is checked separately.
3467 * See tcp_data_queue(), for example.
3469 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3470 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3471 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3472 * (borrowed from freebsd)
3475 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3477 return !before(end_seq, tp->rcv_wup) &&
3478 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3481 /* When we get a reset we do this. */
3482 static void tcp_reset(struct sock *sk)
3484 /* We want the right error as BSD sees it (and indeed as we do). */
3485 switch (sk->sk_state) {
3487 sk->sk_err = ECONNREFUSED;
3489 case TCP_CLOSE_WAIT:
3495 sk->sk_err = ECONNRESET;
3498 if (!sock_flag(sk, SOCK_DEAD))
3499 sk->sk_error_report(sk);
3505 * Process the FIN bit. This now behaves as it is supposed to work
3506 * and the FIN takes effect when it is validly part of sequence
3507 * space. Not before when we get holes.
3509 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3510 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3513 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3514 * close and we go into CLOSING (and later onto TIME-WAIT)
3516 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3518 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3520 struct tcp_sock *tp = tcp_sk(sk);
3522 inet_csk_schedule_ack(sk);
3524 sk->sk_shutdown |= RCV_SHUTDOWN;
3525 sock_set_flag(sk, SOCK_DONE);
3527 switch (sk->sk_state) {
3529 case TCP_ESTABLISHED:
3530 /* Move to CLOSE_WAIT */
3531 tcp_set_state(sk, TCP_CLOSE_WAIT);
3532 inet_csk(sk)->icsk_ack.pingpong = 1;
3535 case TCP_CLOSE_WAIT:
3537 /* Received a retransmission of the FIN, do
3542 /* RFC793: Remain in the LAST-ACK state. */
3546 /* This case occurs when a simultaneous close
3547 * happens, we must ack the received FIN and
3548 * enter the CLOSING state.
3551 tcp_set_state(sk, TCP_CLOSING);
3554 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3556 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3559 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3560 * cases we should never reach this piece of code.
3562 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3563 __FUNCTION__, sk->sk_state);
3567 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3568 * Probably, we should reset in this case. For now drop them.
3570 __skb_queue_purge(&tp->out_of_order_queue);
3571 if (tcp_is_sack(tp))
3572 tcp_sack_reset(&tp->rx_opt);
3573 sk_stream_mem_reclaim(sk);
3575 if (!sock_flag(sk, SOCK_DEAD)) {
3576 sk->sk_state_change(sk);
3578 /* Do not send POLL_HUP for half duplex close. */
3579 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3580 sk->sk_state == TCP_CLOSE)
3581 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3583 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3587 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3589 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3590 if (before(seq, sp->start_seq))
3591 sp->start_seq = seq;
3592 if (after(end_seq, sp->end_seq))
3593 sp->end_seq = end_seq;
3599 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3601 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3602 if (before(seq, tp->rcv_nxt))
3603 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3605 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3607 tp->rx_opt.dsack = 1;
3608 tp->duplicate_sack[0].start_seq = seq;
3609 tp->duplicate_sack[0].end_seq = end_seq;
3610 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3614 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3616 if (!tp->rx_opt.dsack)
3617 tcp_dsack_set(tp, seq, end_seq);
3619 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3622 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3624 struct tcp_sock *tp = tcp_sk(sk);
3626 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3627 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3628 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3629 tcp_enter_quickack_mode(sk);
3631 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3632 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3634 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3635 end_seq = tp->rcv_nxt;
3636 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3643 /* These routines update the SACK block as out-of-order packets arrive or
3644 * in-order packets close up the sequence space.
3646 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3649 struct tcp_sack_block *sp = &tp->selective_acks[0];
3650 struct tcp_sack_block *swalk = sp+1;
3652 /* See if the recent change to the first SACK eats into
3653 * or hits the sequence space of other SACK blocks, if so coalesce.
3655 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3656 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3659 /* Zap SWALK, by moving every further SACK up by one slot.
3660 * Decrease num_sacks.
3662 tp->rx_opt.num_sacks--;
3663 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3664 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3668 this_sack++, swalk++;
3672 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3676 tmp = sack1->start_seq;
3677 sack1->start_seq = sack2->start_seq;
3678 sack2->start_seq = tmp;
3680 tmp = sack1->end_seq;
3681 sack1->end_seq = sack2->end_seq;
3682 sack2->end_seq = tmp;
3685 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3687 struct tcp_sock *tp = tcp_sk(sk);
3688 struct tcp_sack_block *sp = &tp->selective_acks[0];
3689 int cur_sacks = tp->rx_opt.num_sacks;
3695 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3696 if (tcp_sack_extend(sp, seq, end_seq)) {
3697 /* Rotate this_sack to the first one. */
3698 for (; this_sack>0; this_sack--, sp--)
3699 tcp_sack_swap(sp, sp-1);
3701 tcp_sack_maybe_coalesce(tp);
3706 /* Could not find an adjacent existing SACK, build a new one,
3707 * put it at the front, and shift everyone else down. We
3708 * always know there is at least one SACK present already here.
3710 * If the sack array is full, forget about the last one.
3712 if (this_sack >= 4) {
3714 tp->rx_opt.num_sacks--;
3717 for (; this_sack > 0; this_sack--, sp--)
3721 /* Build the new head SACK, and we're done. */
3722 sp->start_seq = seq;
3723 sp->end_seq = end_seq;
3724 tp->rx_opt.num_sacks++;
3725 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3728 /* RCV.NXT advances, some SACKs should be eaten. */
3730 static void tcp_sack_remove(struct tcp_sock *tp)
3732 struct tcp_sack_block *sp = &tp->selective_acks[0];
3733 int num_sacks = tp->rx_opt.num_sacks;
3736 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3737 if (skb_queue_empty(&tp->out_of_order_queue)) {
3738 tp->rx_opt.num_sacks = 0;
3739 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3743 for (this_sack = 0; this_sack < num_sacks; ) {
3744 /* Check if the start of the sack is covered by RCV.NXT. */
3745 if (!before(tp->rcv_nxt, sp->start_seq)) {
3748 /* RCV.NXT must cover all the block! */
3749 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3751 /* Zap this SACK, by moving forward any other SACKS. */
3752 for (i=this_sack+1; i < num_sacks; i++)
3753 tp->selective_acks[i-1] = tp->selective_acks[i];
3760 if (num_sacks != tp->rx_opt.num_sacks) {
3761 tp->rx_opt.num_sacks = num_sacks;
3762 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3766 /* This one checks to see if we can put data from the
3767 * out_of_order queue into the receive_queue.
3769 static void tcp_ofo_queue(struct sock *sk)
3771 struct tcp_sock *tp = tcp_sk(sk);
3772 __u32 dsack_high = tp->rcv_nxt;
3773 struct sk_buff *skb;
3775 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3776 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3779 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3780 __u32 dsack = dsack_high;
3781 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3782 dsack_high = TCP_SKB_CB(skb)->end_seq;
3783 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3786 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3787 SOCK_DEBUG(sk, "ofo packet was already received \n");
3788 __skb_unlink(skb, &tp->out_of_order_queue);
3792 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3793 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3794 TCP_SKB_CB(skb)->end_seq);
3796 __skb_unlink(skb, &tp->out_of_order_queue);
3797 __skb_queue_tail(&sk->sk_receive_queue, skb);
3798 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3799 if (tcp_hdr(skb)->fin)
3800 tcp_fin(skb, sk, tcp_hdr(skb));
3804 static int tcp_prune_queue(struct sock *sk);
3806 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3808 struct tcphdr *th = tcp_hdr(skb);
3809 struct tcp_sock *tp = tcp_sk(sk);
3812 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3815 __skb_pull(skb, th->doff*4);
3817 TCP_ECN_accept_cwr(tp, skb);
3819 if (tp->rx_opt.dsack) {
3820 tp->rx_opt.dsack = 0;
3821 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3822 4 - tp->rx_opt.tstamp_ok);
3825 /* Queue data for delivery to the user.
3826 * Packets in sequence go to the receive queue.
3827 * Out of sequence packets to the out_of_order_queue.
3829 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3830 if (tcp_receive_window(tp) == 0)
3833 /* Ok. In sequence. In window. */
3834 if (tp->ucopy.task == current &&
3835 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3836 sock_owned_by_user(sk) && !tp->urg_data) {
3837 int chunk = min_t(unsigned int, skb->len,
3840 __set_current_state(TASK_RUNNING);
3843 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3844 tp->ucopy.len -= chunk;
3845 tp->copied_seq += chunk;
3846 eaten = (chunk == skb->len && !th->fin);
3847 tcp_rcv_space_adjust(sk);
3855 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3856 !sk_stream_rmem_schedule(sk, skb))) {
3857 if (tcp_prune_queue(sk) < 0 ||
3858 !sk_stream_rmem_schedule(sk, skb))
3861 sk_stream_set_owner_r(skb, sk);
3862 __skb_queue_tail(&sk->sk_receive_queue, skb);
3864 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3866 tcp_event_data_recv(sk, skb);
3868 tcp_fin(skb, sk, th);
3870 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3873 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3874 * gap in queue is filled.
3876 if (skb_queue_empty(&tp->out_of_order_queue))
3877 inet_csk(sk)->icsk_ack.pingpong = 0;
3880 if (tp->rx_opt.num_sacks)
3881 tcp_sack_remove(tp);
3883 tcp_fast_path_check(sk);
3887 else if (!sock_flag(sk, SOCK_DEAD))
3888 sk->sk_data_ready(sk, 0);
3892 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3893 /* A retransmit, 2nd most common case. Force an immediate ack. */
3894 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3895 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3898 tcp_enter_quickack_mode(sk);
3899 inet_csk_schedule_ack(sk);
3905 /* Out of window. F.e. zero window probe. */
3906 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3909 tcp_enter_quickack_mode(sk);
3911 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3912 /* Partial packet, seq < rcv_next < end_seq */
3913 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3914 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3915 TCP_SKB_CB(skb)->end_seq);
3917 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3919 /* If window is closed, drop tail of packet. But after
3920 * remembering D-SACK for its head made in previous line.
3922 if (!tcp_receive_window(tp))
3927 TCP_ECN_check_ce(tp, skb);
3929 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3930 !sk_stream_rmem_schedule(sk, skb)) {
3931 if (tcp_prune_queue(sk) < 0 ||
3932 !sk_stream_rmem_schedule(sk, skb))
3936 /* Disable header prediction. */
3938 inet_csk_schedule_ack(sk);
3940 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3941 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3943 sk_stream_set_owner_r(skb, sk);
3945 if (!skb_peek(&tp->out_of_order_queue)) {
3946 /* Initial out of order segment, build 1 SACK. */
3947 if (tcp_is_sack(tp)) {
3948 tp->rx_opt.num_sacks = 1;
3949 tp->rx_opt.dsack = 0;
3950 tp->rx_opt.eff_sacks = 1;
3951 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3952 tp->selective_acks[0].end_seq =
3953 TCP_SKB_CB(skb)->end_seq;
3955 __skb_queue_head(&tp->out_of_order_queue,skb);
3957 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3958 u32 seq = TCP_SKB_CB(skb)->seq;
3959 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3961 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3962 __skb_append(skb1, skb, &tp->out_of_order_queue);
3964 if (!tp->rx_opt.num_sacks ||
3965 tp->selective_acks[0].end_seq != seq)
3968 /* Common case: data arrive in order after hole. */
3969 tp->selective_acks[0].end_seq = end_seq;
3973 /* Find place to insert this segment. */
3975 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3977 } while ((skb1 = skb1->prev) !=
3978 (struct sk_buff*)&tp->out_of_order_queue);
3980 /* Do skb overlap to previous one? */
3981 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3982 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3983 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3984 /* All the bits are present. Drop. */
3986 tcp_dsack_set(tp, seq, end_seq);
3989 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3990 /* Partial overlap. */
3991 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3996 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3998 /* And clean segments covered by new one as whole. */
3999 while ((skb1 = skb->next) !=
4000 (struct sk_buff*)&tp->out_of_order_queue &&
4001 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4002 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4003 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
4006 __skb_unlink(skb1, &tp->out_of_order_queue);
4007 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
4012 if (tcp_is_sack(tp))
4013 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4017 /* Collapse contiguous sequence of skbs head..tail with
4018 * sequence numbers start..end.
4019 * Segments with FIN/SYN are not collapsed (only because this
4023 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4024 struct sk_buff *head, struct sk_buff *tail,
4027 struct sk_buff *skb;
4029 /* First, check that queue is collapsible and find
4030 * the point where collapsing can be useful. */
4031 for (skb = head; skb != tail; ) {
4032 /* No new bits? It is possible on ofo queue. */
4033 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4034 struct sk_buff *next = skb->next;
4035 __skb_unlink(skb, list);
4037 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4042 /* The first skb to collapse is:
4044 * - bloated or contains data before "start" or
4045 * overlaps to the next one.
4047 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4048 (tcp_win_from_space(skb->truesize) > skb->len ||
4049 before(TCP_SKB_CB(skb)->seq, start) ||
4050 (skb->next != tail &&
4051 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4054 /* Decided to skip this, advance start seq. */
4055 start = TCP_SKB_CB(skb)->end_seq;
4058 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4061 while (before(start, end)) {
4062 struct sk_buff *nskb;
4063 unsigned int header = skb_headroom(skb);
4064 int copy = SKB_MAX_ORDER(header, 0);
4066 /* Too big header? This can happen with IPv6. */
4069 if (end-start < copy)
4071 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4075 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4076 skb_set_network_header(nskb, (skb_network_header(skb) -
4078 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4080 skb_reserve(nskb, header);
4081 memcpy(nskb->head, skb->head, header);
4082 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4083 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4084 __skb_insert(nskb, skb->prev, skb, list);
4085 sk_stream_set_owner_r(nskb, sk);
4087 /* Copy data, releasing collapsed skbs. */
4089 int offset = start - TCP_SKB_CB(skb)->seq;
4090 int size = TCP_SKB_CB(skb)->end_seq - start;
4094 size = min(copy, size);
4095 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4097 TCP_SKB_CB(nskb)->end_seq += size;
4101 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4102 struct sk_buff *next = skb->next;
4103 __skb_unlink(skb, list);
4105 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4108 tcp_hdr(skb)->syn ||
4116 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4117 * and tcp_collapse() them until all the queue is collapsed.
4119 static void tcp_collapse_ofo_queue(struct sock *sk)
4121 struct tcp_sock *tp = tcp_sk(sk);
4122 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4123 struct sk_buff *head;
4129 start = TCP_SKB_CB(skb)->seq;
4130 end = TCP_SKB_CB(skb)->end_seq;
4136 /* Segment is terminated when we see gap or when
4137 * we are at the end of all the queue. */
4138 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4139 after(TCP_SKB_CB(skb)->seq, end) ||
4140 before(TCP_SKB_CB(skb)->end_seq, start)) {
4141 tcp_collapse(sk, &tp->out_of_order_queue,
4142 head, skb, start, end);
4144 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4146 /* Start new segment */
4147 start = TCP_SKB_CB(skb)->seq;
4148 end = TCP_SKB_CB(skb)->end_seq;
4150 if (before(TCP_SKB_CB(skb)->seq, start))
4151 start = TCP_SKB_CB(skb)->seq;
4152 if (after(TCP_SKB_CB(skb)->end_seq, end))
4153 end = TCP_SKB_CB(skb)->end_seq;
4158 /* Reduce allocated memory if we can, trying to get
4159 * the socket within its memory limits again.
4161 * Return less than zero if we should start dropping frames
4162 * until the socket owning process reads some of the data
4163 * to stabilize the situation.
4165 static int tcp_prune_queue(struct sock *sk)
4167 struct tcp_sock *tp = tcp_sk(sk);
4169 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4171 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4173 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4174 tcp_clamp_window(sk);
4175 else if (tcp_memory_pressure)
4176 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4178 tcp_collapse_ofo_queue(sk);
4179 tcp_collapse(sk, &sk->sk_receive_queue,
4180 sk->sk_receive_queue.next,
4181 (struct sk_buff*)&sk->sk_receive_queue,
4182 tp->copied_seq, tp->rcv_nxt);
4183 sk_stream_mem_reclaim(sk);
4185 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4188 /* Collapsing did not help, destructive actions follow.
4189 * This must not ever occur. */
4191 /* First, purge the out_of_order queue. */
4192 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4193 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4194 __skb_queue_purge(&tp->out_of_order_queue);
4196 /* Reset SACK state. A conforming SACK implementation will
4197 * do the same at a timeout based retransmit. When a connection
4198 * is in a sad state like this, we care only about integrity
4199 * of the connection not performance.
4201 if (tcp_is_sack(tp))
4202 tcp_sack_reset(&tp->rx_opt);
4203 sk_stream_mem_reclaim(sk);
4206 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4209 /* If we are really being abused, tell the caller to silently
4210 * drop receive data on the floor. It will get retransmitted
4211 * and hopefully then we'll have sufficient space.
4213 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4215 /* Massive buffer overcommit. */
4221 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4222 * As additional protections, we do not touch cwnd in retransmission phases,
4223 * and if application hit its sndbuf limit recently.
4225 void tcp_cwnd_application_limited(struct sock *sk)
4227 struct tcp_sock *tp = tcp_sk(sk);
4229 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4230 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4231 /* Limited by application or receiver window. */
4232 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4233 u32 win_used = max(tp->snd_cwnd_used, init_win);
4234 if (win_used < tp->snd_cwnd) {
4235 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4236 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4238 tp->snd_cwnd_used = 0;
4240 tp->snd_cwnd_stamp = tcp_time_stamp;
4243 static int tcp_should_expand_sndbuf(struct sock *sk)
4245 struct tcp_sock *tp = tcp_sk(sk);
4247 /* If the user specified a specific send buffer setting, do
4250 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4253 /* If we are under global TCP memory pressure, do not expand. */
4254 if (tcp_memory_pressure)
4257 /* If we are under soft global TCP memory pressure, do not expand. */
4258 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4261 /* If we filled the congestion window, do not expand. */
4262 if (tp->packets_out >= tp->snd_cwnd)
4268 /* When incoming ACK allowed to free some skb from write_queue,
4269 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4270 * on the exit from tcp input handler.
4272 * PROBLEM: sndbuf expansion does not work well with largesend.
4274 static void tcp_new_space(struct sock *sk)
4276 struct tcp_sock *tp = tcp_sk(sk);
4278 if (tcp_should_expand_sndbuf(sk)) {
4279 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4280 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4281 demanded = max_t(unsigned int, tp->snd_cwnd,
4282 tp->reordering + 1);
4283 sndmem *= 2*demanded;
4284 if (sndmem > sk->sk_sndbuf)
4285 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4286 tp->snd_cwnd_stamp = tcp_time_stamp;
4289 sk->sk_write_space(sk);
4292 static void tcp_check_space(struct sock *sk)
4294 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4295 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4296 if (sk->sk_socket &&
4297 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4302 static inline void tcp_data_snd_check(struct sock *sk)
4304 tcp_push_pending_frames(sk);
4305 tcp_check_space(sk);
4309 * Check if sending an ack is needed.
4311 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4313 struct tcp_sock *tp = tcp_sk(sk);
4315 /* More than one full frame received... */
4316 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4317 /* ... and right edge of window advances far enough.
4318 * (tcp_recvmsg() will send ACK otherwise). Or...
4320 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4321 /* We ACK each frame or... */
4322 tcp_in_quickack_mode(sk) ||
4323 /* We have out of order data. */
4325 skb_peek(&tp->out_of_order_queue))) {
4326 /* Then ack it now */
4329 /* Else, send delayed ack. */
4330 tcp_send_delayed_ack(sk);
4334 static inline void tcp_ack_snd_check(struct sock *sk)
4336 if (!inet_csk_ack_scheduled(sk)) {
4337 /* We sent a data segment already. */
4340 __tcp_ack_snd_check(sk, 1);
4344 * This routine is only called when we have urgent data
4345 * signaled. Its the 'slow' part of tcp_urg. It could be
4346 * moved inline now as tcp_urg is only called from one
4347 * place. We handle URGent data wrong. We have to - as
4348 * BSD still doesn't use the correction from RFC961.
4349 * For 1003.1g we should support a new option TCP_STDURG to permit
4350 * either form (or just set the sysctl tcp_stdurg).
4353 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4355 struct tcp_sock *tp = tcp_sk(sk);
4356 u32 ptr = ntohs(th->urg_ptr);
4358 if (ptr && !sysctl_tcp_stdurg)
4360 ptr += ntohl(th->seq);
4362 /* Ignore urgent data that we've already seen and read. */
4363 if (after(tp->copied_seq, ptr))
4366 /* Do not replay urg ptr.
4368 * NOTE: interesting situation not covered by specs.
4369 * Misbehaving sender may send urg ptr, pointing to segment,
4370 * which we already have in ofo queue. We are not able to fetch
4371 * such data and will stay in TCP_URG_NOTYET until will be eaten
4372 * by recvmsg(). Seems, we are not obliged to handle such wicked
4373 * situations. But it is worth to think about possibility of some
4374 * DoSes using some hypothetical application level deadlock.
4376 if (before(ptr, tp->rcv_nxt))
4379 /* Do we already have a newer (or duplicate) urgent pointer? */
4380 if (tp->urg_data && !after(ptr, tp->urg_seq))
4383 /* Tell the world about our new urgent pointer. */
4386 /* We may be adding urgent data when the last byte read was
4387 * urgent. To do this requires some care. We cannot just ignore
4388 * tp->copied_seq since we would read the last urgent byte again
4389 * as data, nor can we alter copied_seq until this data arrives
4390 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4392 * NOTE. Double Dutch. Rendering to plain English: author of comment
4393 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4394 * and expect that both A and B disappear from stream. This is _wrong_.
4395 * Though this happens in BSD with high probability, this is occasional.
4396 * Any application relying on this is buggy. Note also, that fix "works"
4397 * only in this artificial test. Insert some normal data between A and B and we will
4398 * decline of BSD again. Verdict: it is better to remove to trap
4401 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4402 !sock_flag(sk, SOCK_URGINLINE) &&
4403 tp->copied_seq != tp->rcv_nxt) {
4404 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4406 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4407 __skb_unlink(skb, &sk->sk_receive_queue);
4412 tp->urg_data = TCP_URG_NOTYET;
4415 /* Disable header prediction. */
4419 /* This is the 'fast' part of urgent handling. */
4420 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4422 struct tcp_sock *tp = tcp_sk(sk);
4424 /* Check if we get a new urgent pointer - normally not. */
4426 tcp_check_urg(sk,th);
4428 /* Do we wait for any urgent data? - normally not... */
4429 if (tp->urg_data == TCP_URG_NOTYET) {
4430 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4433 /* Is the urgent pointer pointing into this packet? */
4434 if (ptr < skb->len) {
4436 if (skb_copy_bits(skb, ptr, &tmp, 1))
4438 tp->urg_data = TCP_URG_VALID | tmp;
4439 if (!sock_flag(sk, SOCK_DEAD))
4440 sk->sk_data_ready(sk, 0);
4445 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4447 struct tcp_sock *tp = tcp_sk(sk);
4448 int chunk = skb->len - hlen;
4452 if (skb_csum_unnecessary(skb))
4453 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4455 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4459 tp->ucopy.len -= chunk;
4460 tp->copied_seq += chunk;
4461 tcp_rcv_space_adjust(sk);
4468 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4472 if (sock_owned_by_user(sk)) {
4474 result = __tcp_checksum_complete(skb);
4477 result = __tcp_checksum_complete(skb);
4482 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4484 return !skb_csum_unnecessary(skb) &&
4485 __tcp_checksum_complete_user(sk, skb);
4488 #ifdef CONFIG_NET_DMA
4489 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4491 struct tcp_sock *tp = tcp_sk(sk);
4492 int chunk = skb->len - hlen;
4494 int copied_early = 0;
4496 if (tp->ucopy.wakeup)
4499 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4500 tp->ucopy.dma_chan = get_softnet_dma();
4502 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4504 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4505 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4510 tp->ucopy.dma_cookie = dma_cookie;
4513 tp->ucopy.len -= chunk;
4514 tp->copied_seq += chunk;
4515 tcp_rcv_space_adjust(sk);
4517 if ((tp->ucopy.len == 0) ||
4518 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4519 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4520 tp->ucopy.wakeup = 1;
4521 sk->sk_data_ready(sk, 0);
4523 } else if (chunk > 0) {
4524 tp->ucopy.wakeup = 1;
4525 sk->sk_data_ready(sk, 0);
4528 return copied_early;
4530 #endif /* CONFIG_NET_DMA */
4533 * TCP receive function for the ESTABLISHED state.
4535 * It is split into a fast path and a slow path. The fast path is
4537 * - A zero window was announced from us - zero window probing
4538 * is only handled properly in the slow path.
4539 * - Out of order segments arrived.
4540 * - Urgent data is expected.
4541 * - There is no buffer space left
4542 * - Unexpected TCP flags/window values/header lengths are received
4543 * (detected by checking the TCP header against pred_flags)
4544 * - Data is sent in both directions. Fast path only supports pure senders
4545 * or pure receivers (this means either the sequence number or the ack
4546 * value must stay constant)
4547 * - Unexpected TCP option.
4549 * When these conditions are not satisfied it drops into a standard
4550 * receive procedure patterned after RFC793 to handle all cases.
4551 * The first three cases are guaranteed by proper pred_flags setting,
4552 * the rest is checked inline. Fast processing is turned on in
4553 * tcp_data_queue when everything is OK.
4555 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4556 struct tcphdr *th, unsigned len)
4558 struct tcp_sock *tp = tcp_sk(sk);
4561 * Header prediction.
4562 * The code loosely follows the one in the famous
4563 * "30 instruction TCP receive" Van Jacobson mail.
4565 * Van's trick is to deposit buffers into socket queue
4566 * on a device interrupt, to call tcp_recv function
4567 * on the receive process context and checksum and copy
4568 * the buffer to user space. smart...
4570 * Our current scheme is not silly either but we take the
4571 * extra cost of the net_bh soft interrupt processing...
4572 * We do checksum and copy also but from device to kernel.
4575 tp->rx_opt.saw_tstamp = 0;
4577 /* pred_flags is 0xS?10 << 16 + snd_wnd
4578 * if header_prediction is to be made
4579 * 'S' will always be tp->tcp_header_len >> 2
4580 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4581 * turn it off (when there are holes in the receive
4582 * space for instance)
4583 * PSH flag is ignored.
4586 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4587 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4588 int tcp_header_len = tp->tcp_header_len;
4590 /* Timestamp header prediction: tcp_header_len
4591 * is automatically equal to th->doff*4 due to pred_flags
4595 /* Check timestamp */
4596 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4597 __be32 *ptr = (__be32 *)(th + 1);
4599 /* No? Slow path! */
4600 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4601 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4604 tp->rx_opt.saw_tstamp = 1;
4606 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4608 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4610 /* If PAWS failed, check it more carefully in slow path */
4611 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4614 /* DO NOT update ts_recent here, if checksum fails
4615 * and timestamp was corrupted part, it will result
4616 * in a hung connection since we will drop all
4617 * future packets due to the PAWS test.
4621 if (len <= tcp_header_len) {
4622 /* Bulk data transfer: sender */
4623 if (len == tcp_header_len) {
4624 /* Predicted packet is in window by definition.
4625 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4626 * Hence, check seq<=rcv_wup reduces to:
4628 if (tcp_header_len ==
4629 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4630 tp->rcv_nxt == tp->rcv_wup)
4631 tcp_store_ts_recent(tp);
4633 /* We know that such packets are checksummed
4636 tcp_ack(sk, skb, 0);
4638 tcp_data_snd_check(sk);
4640 } else { /* Header too small */
4641 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4646 int copied_early = 0;
4648 if (tp->copied_seq == tp->rcv_nxt &&
4649 len - tcp_header_len <= tp->ucopy.len) {
4650 #ifdef CONFIG_NET_DMA
4651 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4656 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4657 __set_current_state(TASK_RUNNING);
4659 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4663 /* Predicted packet is in window by definition.
4664 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4665 * Hence, check seq<=rcv_wup reduces to:
4667 if (tcp_header_len ==
4668 (sizeof(struct tcphdr) +
4669 TCPOLEN_TSTAMP_ALIGNED) &&
4670 tp->rcv_nxt == tp->rcv_wup)
4671 tcp_store_ts_recent(tp);
4673 tcp_rcv_rtt_measure_ts(sk, skb);
4675 __skb_pull(skb, tcp_header_len);
4676 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4677 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4680 tcp_cleanup_rbuf(sk, skb->len);
4683 if (tcp_checksum_complete_user(sk, skb))
4686 /* Predicted packet is in window by definition.
4687 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4688 * Hence, check seq<=rcv_wup reduces to:
4690 if (tcp_header_len ==
4691 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4692 tp->rcv_nxt == tp->rcv_wup)
4693 tcp_store_ts_recent(tp);
4695 tcp_rcv_rtt_measure_ts(sk, skb);
4697 if ((int)skb->truesize > sk->sk_forward_alloc)
4700 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4702 /* Bulk data transfer: receiver */
4703 __skb_pull(skb,tcp_header_len);
4704 __skb_queue_tail(&sk->sk_receive_queue, skb);
4705 sk_stream_set_owner_r(skb, sk);
4706 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4709 tcp_event_data_recv(sk, skb);
4711 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4712 /* Well, only one small jumplet in fast path... */
4713 tcp_ack(sk, skb, FLAG_DATA);
4714 tcp_data_snd_check(sk);
4715 if (!inet_csk_ack_scheduled(sk))
4719 __tcp_ack_snd_check(sk, 0);
4721 #ifdef CONFIG_NET_DMA
4723 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4729 sk->sk_data_ready(sk, 0);
4735 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4739 * RFC1323: H1. Apply PAWS check first.
4741 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4742 tcp_paws_discard(sk, skb)) {
4744 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4745 tcp_send_dupack(sk, skb);
4748 /* Resets are accepted even if PAWS failed.
4750 ts_recent update must be made after we are sure
4751 that the packet is in window.
4756 * Standard slow path.
4759 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4760 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4761 * (RST) segments are validated by checking their SEQ-fields."
4762 * And page 69: "If an incoming segment is not acceptable,
4763 * an acknowledgment should be sent in reply (unless the RST bit
4764 * is set, if so drop the segment and return)".
4767 tcp_send_dupack(sk, skb);
4776 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4778 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4779 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4780 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4787 tcp_ack(sk, skb, FLAG_SLOWPATH);
4789 tcp_rcv_rtt_measure_ts(sk, skb);
4791 /* Process urgent data. */
4792 tcp_urg(sk, skb, th);
4794 /* step 7: process the segment text */
4795 tcp_data_queue(sk, skb);
4797 tcp_data_snd_check(sk);
4798 tcp_ack_snd_check(sk);
4802 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4809 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4810 struct tcphdr *th, unsigned len)
4812 struct tcp_sock *tp = tcp_sk(sk);
4813 struct inet_connection_sock *icsk = inet_csk(sk);
4814 int saved_clamp = tp->rx_opt.mss_clamp;
4816 tcp_parse_options(skb, &tp->rx_opt, 0);
4820 * "If the state is SYN-SENT then
4821 * first check the ACK bit
4822 * If the ACK bit is set
4823 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4824 * a reset (unless the RST bit is set, if so drop
4825 * the segment and return)"
4827 * We do not send data with SYN, so that RFC-correct
4830 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4831 goto reset_and_undo;
4833 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4834 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4836 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4837 goto reset_and_undo;
4840 /* Now ACK is acceptable.
4842 * "If the RST bit is set
4843 * If the ACK was acceptable then signal the user "error:
4844 * connection reset", drop the segment, enter CLOSED state,
4845 * delete TCB, and return."
4854 * "fifth, if neither of the SYN or RST bits is set then
4855 * drop the segment and return."
4861 goto discard_and_undo;
4864 * "If the SYN bit is on ...
4865 * are acceptable then ...
4866 * (our SYN has been ACKed), change the connection
4867 * state to ESTABLISHED..."
4870 TCP_ECN_rcv_synack(tp, th);
4872 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4873 tcp_ack(sk, skb, FLAG_SLOWPATH);
4875 /* Ok.. it's good. Set up sequence numbers and
4876 * move to established.
4878 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4879 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4881 /* RFC1323: The window in SYN & SYN/ACK segments is
4884 tp->snd_wnd = ntohs(th->window);
4885 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4887 if (!tp->rx_opt.wscale_ok) {
4888 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4889 tp->window_clamp = min(tp->window_clamp, 65535U);
4892 if (tp->rx_opt.saw_tstamp) {
4893 tp->rx_opt.tstamp_ok = 1;
4894 tp->tcp_header_len =
4895 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4896 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4897 tcp_store_ts_recent(tp);
4899 tp->tcp_header_len = sizeof(struct tcphdr);
4902 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4903 tcp_enable_fack(tp);
4906 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4907 tcp_initialize_rcv_mss(sk);
4909 /* Remember, tcp_poll() does not lock socket!
4910 * Change state from SYN-SENT only after copied_seq
4911 * is initialized. */
4912 tp->copied_seq = tp->rcv_nxt;
4914 tcp_set_state(sk, TCP_ESTABLISHED);
4916 security_inet_conn_established(sk, skb);
4918 /* Make sure socket is routed, for correct metrics. */
4919 icsk->icsk_af_ops->rebuild_header(sk);
4921 tcp_init_metrics(sk);
4923 tcp_init_congestion_control(sk);
4925 /* Prevent spurious tcp_cwnd_restart() on first data
4928 tp->lsndtime = tcp_time_stamp;
4930 tcp_init_buffer_space(sk);
4932 if (sock_flag(sk, SOCK_KEEPOPEN))
4933 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4935 if (!tp->rx_opt.snd_wscale)
4936 __tcp_fast_path_on(tp, tp->snd_wnd);
4940 if (!sock_flag(sk, SOCK_DEAD)) {
4941 sk->sk_state_change(sk);
4942 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4945 if (sk->sk_write_pending ||
4946 icsk->icsk_accept_queue.rskq_defer_accept ||
4947 icsk->icsk_ack.pingpong) {
4948 /* Save one ACK. Data will be ready after
4949 * several ticks, if write_pending is set.
4951 * It may be deleted, but with this feature tcpdumps
4952 * look so _wonderfully_ clever, that I was not able
4953 * to stand against the temptation 8) --ANK
4955 inet_csk_schedule_ack(sk);
4956 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4957 icsk->icsk_ack.ato = TCP_ATO_MIN;
4958 tcp_incr_quickack(sk);
4959 tcp_enter_quickack_mode(sk);
4960 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4961 TCP_DELACK_MAX, TCP_RTO_MAX);
4972 /* No ACK in the segment */
4976 * "If the RST bit is set
4978 * Otherwise (no ACK) drop the segment and return."
4981 goto discard_and_undo;
4985 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4986 goto discard_and_undo;
4989 /* We see SYN without ACK. It is attempt of
4990 * simultaneous connect with crossed SYNs.
4991 * Particularly, it can be connect to self.
4993 tcp_set_state(sk, TCP_SYN_RECV);
4995 if (tp->rx_opt.saw_tstamp) {
4996 tp->rx_opt.tstamp_ok = 1;
4997 tcp_store_ts_recent(tp);
4998 tp->tcp_header_len =
4999 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5001 tp->tcp_header_len = sizeof(struct tcphdr);
5004 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5005 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5007 /* RFC1323: The window in SYN & SYN/ACK segments is
5010 tp->snd_wnd = ntohs(th->window);
5011 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5012 tp->max_window = tp->snd_wnd;
5014 TCP_ECN_rcv_syn(tp, th);
5017 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5018 tcp_initialize_rcv_mss(sk);
5021 tcp_send_synack(sk);
5023 /* Note, we could accept data and URG from this segment.
5024 * There are no obstacles to make this.
5026 * However, if we ignore data in ACKless segments sometimes,
5027 * we have no reasons to accept it sometimes.
5028 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5029 * is not flawless. So, discard packet for sanity.
5030 * Uncomment this return to process the data.
5037 /* "fifth, if neither of the SYN or RST bits is set then
5038 * drop the segment and return."
5042 tcp_clear_options(&tp->rx_opt);
5043 tp->rx_opt.mss_clamp = saved_clamp;
5047 tcp_clear_options(&tp->rx_opt);
5048 tp->rx_opt.mss_clamp = saved_clamp;
5054 * This function implements the receiving procedure of RFC 793 for
5055 * all states except ESTABLISHED and TIME_WAIT.
5056 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5057 * address independent.
5060 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5061 struct tcphdr *th, unsigned len)
5063 struct tcp_sock *tp = tcp_sk(sk);
5064 struct inet_connection_sock *icsk = inet_csk(sk);
5067 tp->rx_opt.saw_tstamp = 0;
5069 switch (sk->sk_state) {
5081 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5084 /* Now we have several options: In theory there is
5085 * nothing else in the frame. KA9Q has an option to
5086 * send data with the syn, BSD accepts data with the
5087 * syn up to the [to be] advertised window and
5088 * Solaris 2.1 gives you a protocol error. For now
5089 * we just ignore it, that fits the spec precisely
5090 * and avoids incompatibilities. It would be nice in
5091 * future to drop through and process the data.
5093 * Now that TTCP is starting to be used we ought to
5095 * But, this leaves one open to an easy denial of
5096 * service attack, and SYN cookies can't defend
5097 * against this problem. So, we drop the data
5098 * in the interest of security over speed unless
5099 * it's still in use.
5107 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5111 /* Do step6 onward by hand. */
5112 tcp_urg(sk, skb, th);
5114 tcp_data_snd_check(sk);
5118 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5119 tcp_paws_discard(sk, skb)) {
5121 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5122 tcp_send_dupack(sk, skb);
5125 /* Reset is accepted even if it did not pass PAWS. */
5128 /* step 1: check sequence number */
5129 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5131 tcp_send_dupack(sk, skb);
5135 /* step 2: check RST bit */
5141 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5143 /* step 3: check security and precedence [ignored] */
5147 * Check for a SYN in window.
5149 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5150 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5155 /* step 5: check the ACK field */
5157 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5159 switch (sk->sk_state) {
5162 tp->copied_seq = tp->rcv_nxt;
5164 tcp_set_state(sk, TCP_ESTABLISHED);
5165 sk->sk_state_change(sk);
5167 /* Note, that this wakeup is only for marginal
5168 * crossed SYN case. Passively open sockets
5169 * are not waked up, because sk->sk_sleep ==
5170 * NULL and sk->sk_socket == NULL.
5174 SOCK_WAKE_IO, POLL_OUT);
5176 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5177 tp->snd_wnd = ntohs(th->window) <<
5178 tp->rx_opt.snd_wscale;
5179 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5180 TCP_SKB_CB(skb)->seq);
5182 /* tcp_ack considers this ACK as duplicate
5183 * and does not calculate rtt.
5184 * Fix it at least with timestamps.
5186 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5188 tcp_ack_saw_tstamp(sk, 0);
5190 if (tp->rx_opt.tstamp_ok)
5191 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5193 /* Make sure socket is routed, for
5196 icsk->icsk_af_ops->rebuild_header(sk);
5198 tcp_init_metrics(sk);
5200 tcp_init_congestion_control(sk);
5202 /* Prevent spurious tcp_cwnd_restart() on
5203 * first data packet.
5205 tp->lsndtime = tcp_time_stamp;
5208 tcp_initialize_rcv_mss(sk);
5209 tcp_init_buffer_space(sk);
5210 tcp_fast_path_on(tp);
5217 if (tp->snd_una == tp->write_seq) {
5218 tcp_set_state(sk, TCP_FIN_WAIT2);
5219 sk->sk_shutdown |= SEND_SHUTDOWN;
5220 dst_confirm(sk->sk_dst_cache);
5222 if (!sock_flag(sk, SOCK_DEAD))
5223 /* Wake up lingering close() */
5224 sk->sk_state_change(sk);
5228 if (tp->linger2 < 0 ||
5229 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5230 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5232 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5236 tmo = tcp_fin_time(sk);
5237 if (tmo > TCP_TIMEWAIT_LEN) {
5238 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5239 } else if (th->fin || sock_owned_by_user(sk)) {
5240 /* Bad case. We could lose such FIN otherwise.
5241 * It is not a big problem, but it looks confusing
5242 * and not so rare event. We still can lose it now,
5243 * if it spins in bh_lock_sock(), but it is really
5246 inet_csk_reset_keepalive_timer(sk, tmo);
5248 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5256 if (tp->snd_una == tp->write_seq) {
5257 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5263 if (tp->snd_una == tp->write_seq) {
5264 tcp_update_metrics(sk);
5273 /* step 6: check the URG bit */
5274 tcp_urg(sk, skb, th);
5276 /* step 7: process the segment text */
5277 switch (sk->sk_state) {
5278 case TCP_CLOSE_WAIT:
5281 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5285 /* RFC 793 says to queue data in these states,
5286 * RFC 1122 says we MUST send a reset.
5287 * BSD 4.4 also does reset.
5289 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5290 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5291 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5292 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5298 case TCP_ESTABLISHED:
5299 tcp_data_queue(sk, skb);
5304 /* tcp_data could move socket to TIME-WAIT */
5305 if (sk->sk_state != TCP_CLOSE) {
5306 tcp_data_snd_check(sk);
5307 tcp_ack_snd_check(sk);
5317 EXPORT_SYMBOL(sysctl_tcp_ecn);
5318 EXPORT_SYMBOL(sysctl_tcp_reordering);
5319 EXPORT_SYMBOL(tcp_parse_options);
5320 EXPORT_SYMBOL(tcp_rcv_established);
5321 EXPORT_SYMBOL(tcp_rcv_state_process);
5322 EXPORT_SYMBOL(tcp_initialize_rcv_mss);