2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
59 #define NR_STRIPES 256
60 #define STRIPE_SIZE PAGE_SIZE
61 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD 1
64 #define BYPASS_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_PARANOIA 1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 # define CHECK_DEVLOCK()
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio *bio)
103 return bio->bi_phys_segments & 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio *bio)
108 return (bio->bi_phys_segments >> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 --bio->bi_phys_segments;
114 return raid5_bi_phys_segments(bio);
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 unsigned short val = raid5_bi_hw_segments(bio);
122 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
135 /* ddf always start from first device */
137 /* md starts just after Q block */
138 if (sh->qd_idx == sh->disks - 1)
141 return sh->qd_idx + 1;
143 static inline int raid6_next_disk(int disk, int raid_disks)
146 return (disk < raid_disks) ? disk : 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155 int *count, int syndrome_disks)
159 if (idx == sh->pd_idx)
160 return syndrome_disks;
161 if (idx == sh->qd_idx)
162 return syndrome_disks + 1;
167 static void return_io(struct bio *return_bi)
169 struct bio *bi = return_bi;
172 return_bi = bi->bi_next;
180 static void print_raid5_conf (raid5_conf_t *conf);
182 static int stripe_operations_active(struct stripe_head *sh)
184 return sh->check_state || sh->reconstruct_state ||
185 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
191 if (atomic_dec_and_test(&sh->count)) {
192 BUG_ON(!list_empty(&sh->lru));
193 BUG_ON(atomic_read(&conf->active_stripes)==0);
194 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195 if (test_bit(STRIPE_DELAYED, &sh->state)) {
196 list_add_tail(&sh->lru, &conf->delayed_list);
197 blk_plug_device(conf->mddev->queue);
198 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199 sh->bm_seq - conf->seq_write > 0) {
200 list_add_tail(&sh->lru, &conf->bitmap_list);
201 blk_plug_device(conf->mddev->queue);
203 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204 list_add_tail(&sh->lru, &conf->handle_list);
206 md_wakeup_thread(conf->mddev->thread);
208 BUG_ON(stripe_operations_active(sh));
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210 atomic_dec(&conf->preread_active_stripes);
211 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212 md_wakeup_thread(conf->mddev->thread);
214 atomic_dec(&conf->active_stripes);
215 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216 list_add_tail(&sh->lru, &conf->inactive_list);
217 wake_up(&conf->wait_for_stripe);
218 if (conf->retry_read_aligned)
219 md_wakeup_thread(conf->mddev->thread);
225 static void release_stripe(struct stripe_head *sh)
227 raid5_conf_t *conf = sh->raid_conf;
230 spin_lock_irqsave(&conf->device_lock, flags);
231 __release_stripe(conf, sh);
232 spin_unlock_irqrestore(&conf->device_lock, flags);
235 static inline void remove_hash(struct stripe_head *sh)
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh->sector);
240 hlist_del_init(&sh->hash);
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
245 struct hlist_head *hp = stripe_hash(conf, sh->sector);
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh->sector);
251 hlist_add_head(&sh->hash, hp);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
262 if (list_empty(&conf->inactive_list))
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
268 atomic_inc(&conf->active_stripes);
273 static void shrink_buffers(struct stripe_head *sh, int num)
278 for (i=0; i<num ; i++) {
282 sh->dev[i].page = NULL;
287 static int grow_buffers(struct stripe_head *sh, int num)
291 for (i=0; i<num; i++) {
294 if (!(page = alloc_page(GFP_KERNEL))) {
297 sh->dev[i].page = page;
302 static void raid5_build_block(struct stripe_head *sh, int i);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304 struct stripe_head *sh);
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 raid5_conf_t *conf = sh->raid_conf;
311 BUG_ON(atomic_read(&sh->count) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313 BUG_ON(stripe_operations_active(sh));
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh->sector);
321 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 stripe_set_idx(sector, conf, previous, sh);
327 for (i = sh->disks; i--; ) {
328 struct r5dev *dev = &sh->dev[i];
330 if (dev->toread || dev->read || dev->towrite || dev->written ||
331 test_bit(R5_LOCKED, &dev->flags)) {
332 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
333 (unsigned long long)sh->sector, i, dev->toread,
334 dev->read, dev->towrite, dev->written,
335 test_bit(R5_LOCKED, &dev->flags));
339 raid5_build_block(sh, i);
341 insert_hash(conf, sh);
344 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
346 struct stripe_head *sh;
347 struct hlist_node *hn;
350 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
351 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
352 if (sh->sector == sector && sh->disks == disks)
354 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358 static void unplug_slaves(mddev_t *mddev);
359 static void raid5_unplug_device(struct request_queue *q);
361 static struct stripe_head *
362 get_active_stripe(raid5_conf_t *conf, sector_t sector,
363 int previous, int noblock)
365 struct stripe_head *sh;
366 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
368 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370 spin_lock_irq(&conf->device_lock);
373 wait_event_lock_irq(conf->wait_for_stripe,
375 conf->device_lock, /* nothing */);
376 sh = __find_stripe(conf, sector, disks);
378 if (!conf->inactive_blocked)
379 sh = get_free_stripe(conf);
380 if (noblock && sh == NULL)
383 conf->inactive_blocked = 1;
384 wait_event_lock_irq(conf->wait_for_stripe,
385 !list_empty(&conf->inactive_list) &&
386 (atomic_read(&conf->active_stripes)
387 < (conf->max_nr_stripes *3/4)
388 || !conf->inactive_blocked),
390 raid5_unplug_device(conf->mddev->queue)
392 conf->inactive_blocked = 0;
394 init_stripe(sh, sector, previous);
396 if (atomic_read(&sh->count)) {
397 BUG_ON(!list_empty(&sh->lru));
399 if (!test_bit(STRIPE_HANDLE, &sh->state))
400 atomic_inc(&conf->active_stripes);
401 if (list_empty(&sh->lru) &&
402 !test_bit(STRIPE_EXPANDING, &sh->state))
404 list_del_init(&sh->lru);
407 } while (sh == NULL);
410 atomic_inc(&sh->count);
412 spin_unlock_irq(&conf->device_lock);
417 raid5_end_read_request(struct bio *bi, int error);
419 raid5_end_write_request(struct bio *bi, int error);
421 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 raid5_conf_t *conf = sh->raid_conf;
424 int i, disks = sh->disks;
428 for (i = disks; i--; ) {
432 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
434 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
439 bi = &sh->dev[i].req;
443 bi->bi_end_io = raid5_end_write_request;
445 bi->bi_end_io = raid5_end_read_request;
448 rdev = rcu_dereference(conf->disks[i].rdev);
449 if (rdev && test_bit(Faulty, &rdev->flags))
452 atomic_inc(&rdev->nr_pending);
456 if (s->syncing || s->expanding || s->expanded)
457 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459 set_bit(STRIPE_IO_STARTED, &sh->state);
461 bi->bi_bdev = rdev->bdev;
462 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
463 __func__, (unsigned long long)sh->sector,
465 atomic_inc(&sh->count);
466 bi->bi_sector = sh->sector + rdev->data_offset;
467 bi->bi_flags = 1 << BIO_UPTODATE;
471 bi->bi_io_vec = &sh->dev[i].vec;
472 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
473 bi->bi_io_vec[0].bv_offset = 0;
474 bi->bi_size = STRIPE_SIZE;
477 test_bit(R5_ReWrite, &sh->dev[i].flags))
478 atomic_add(STRIPE_SECTORS,
479 &rdev->corrected_errors);
480 generic_make_request(bi);
483 set_bit(STRIPE_DEGRADED, &sh->state);
484 pr_debug("skip op %ld on disc %d for sector %llu\n",
485 bi->bi_rw, i, (unsigned long long)sh->sector);
486 clear_bit(R5_LOCKED, &sh->dev[i].flags);
487 set_bit(STRIPE_HANDLE, &sh->state);
492 static struct dma_async_tx_descriptor *
493 async_copy_data(int frombio, struct bio *bio, struct page *page,
494 sector_t sector, struct dma_async_tx_descriptor *tx)
497 struct page *bio_page;
501 if (bio->bi_sector >= sector)
502 page_offset = (signed)(bio->bi_sector - sector) * 512;
504 page_offset = (signed)(sector - bio->bi_sector) * -512;
505 bio_for_each_segment(bvl, bio, i) {
506 int len = bio_iovec_idx(bio, i)->bv_len;
510 if (page_offset < 0) {
511 b_offset = -page_offset;
512 page_offset += b_offset;
516 if (len > 0 && page_offset + len > STRIPE_SIZE)
517 clen = STRIPE_SIZE - page_offset;
522 b_offset += bio_iovec_idx(bio, i)->bv_offset;
523 bio_page = bio_iovec_idx(bio, i)->bv_page;
525 tx = async_memcpy(page, bio_page, page_offset,
530 tx = async_memcpy(bio_page, page, b_offset,
535 if (clen < len) /* hit end of page */
543 static void ops_complete_biofill(void *stripe_head_ref)
545 struct stripe_head *sh = stripe_head_ref;
546 struct bio *return_bi = NULL;
547 raid5_conf_t *conf = sh->raid_conf;
550 pr_debug("%s: stripe %llu\n", __func__,
551 (unsigned long long)sh->sector);
553 /* clear completed biofills */
554 spin_lock_irq(&conf->device_lock);
555 for (i = sh->disks; i--; ) {
556 struct r5dev *dev = &sh->dev[i];
558 /* acknowledge completion of a biofill operation */
559 /* and check if we need to reply to a read request,
560 * new R5_Wantfill requests are held off until
561 * !STRIPE_BIOFILL_RUN
563 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
564 struct bio *rbi, *rbi2;
569 while (rbi && rbi->bi_sector <
570 dev->sector + STRIPE_SECTORS) {
571 rbi2 = r5_next_bio(rbi, dev->sector);
572 if (!raid5_dec_bi_phys_segments(rbi)) {
573 rbi->bi_next = return_bi;
580 spin_unlock_irq(&conf->device_lock);
581 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583 return_io(return_bi);
585 set_bit(STRIPE_HANDLE, &sh->state);
589 static void ops_run_biofill(struct stripe_head *sh)
591 struct dma_async_tx_descriptor *tx = NULL;
592 raid5_conf_t *conf = sh->raid_conf;
595 pr_debug("%s: stripe %llu\n", __func__,
596 (unsigned long long)sh->sector);
598 for (i = sh->disks; i--; ) {
599 struct r5dev *dev = &sh->dev[i];
600 if (test_bit(R5_Wantfill, &dev->flags)) {
602 spin_lock_irq(&conf->device_lock);
603 dev->read = rbi = dev->toread;
605 spin_unlock_irq(&conf->device_lock);
606 while (rbi && rbi->bi_sector <
607 dev->sector + STRIPE_SECTORS) {
608 tx = async_copy_data(0, rbi, dev->page,
610 rbi = r5_next_bio(rbi, dev->sector);
615 atomic_inc(&sh->count);
616 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
617 ops_complete_biofill, sh);
620 static void ops_complete_compute5(void *stripe_head_ref)
622 struct stripe_head *sh = stripe_head_ref;
623 int target = sh->ops.target;
624 struct r5dev *tgt = &sh->dev[target];
626 pr_debug("%s: stripe %llu\n", __func__,
627 (unsigned long long)sh->sector);
629 set_bit(R5_UPTODATE, &tgt->flags);
630 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631 clear_bit(R5_Wantcompute, &tgt->flags);
632 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
633 if (sh->check_state == check_state_compute_run)
634 sh->check_state = check_state_compute_result;
635 set_bit(STRIPE_HANDLE, &sh->state);
639 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 /* kernel stack size limits the total number of disks */
642 int disks = sh->disks;
643 struct page *xor_srcs[disks];
644 int target = sh->ops.target;
645 struct r5dev *tgt = &sh->dev[target];
646 struct page *xor_dest = tgt->page;
648 struct dma_async_tx_descriptor *tx;
651 pr_debug("%s: stripe %llu block: %d\n",
652 __func__, (unsigned long long)sh->sector, target);
653 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655 for (i = disks; i--; )
657 xor_srcs[count++] = sh->dev[i].page;
659 atomic_inc(&sh->count);
661 if (unlikely(count == 1))
662 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
663 0, NULL, ops_complete_compute5, sh);
665 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
666 ASYNC_TX_XOR_ZERO_DST, NULL,
667 ops_complete_compute5, sh);
672 static void ops_complete_prexor(void *stripe_head_ref)
674 struct stripe_head *sh = stripe_head_ref;
676 pr_debug("%s: stripe %llu\n", __func__,
677 (unsigned long long)sh->sector);
680 static struct dma_async_tx_descriptor *
681 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683 /* kernel stack size limits the total number of disks */
684 int disks = sh->disks;
685 struct page *xor_srcs[disks];
686 int count = 0, pd_idx = sh->pd_idx, i;
688 /* existing parity data subtracted */
689 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691 pr_debug("%s: stripe %llu\n", __func__,
692 (unsigned long long)sh->sector);
694 for (i = disks; i--; ) {
695 struct r5dev *dev = &sh->dev[i];
696 /* Only process blocks that are known to be uptodate */
697 if (test_bit(R5_Wantdrain, &dev->flags))
698 xor_srcs[count++] = dev->page;
701 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
702 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
703 ops_complete_prexor, sh);
708 static struct dma_async_tx_descriptor *
709 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 int disks = sh->disks;
714 pr_debug("%s: stripe %llu\n", __func__,
715 (unsigned long long)sh->sector);
717 for (i = disks; i--; ) {
718 struct r5dev *dev = &sh->dev[i];
721 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724 spin_lock(&sh->lock);
725 chosen = dev->towrite;
727 BUG_ON(dev->written);
728 wbi = dev->written = chosen;
729 spin_unlock(&sh->lock);
731 while (wbi && wbi->bi_sector <
732 dev->sector + STRIPE_SECTORS) {
733 tx = async_copy_data(1, wbi, dev->page,
735 wbi = r5_next_bio(wbi, dev->sector);
743 static void ops_complete_postxor(void *stripe_head_ref)
745 struct stripe_head *sh = stripe_head_ref;
746 int disks = sh->disks, i, pd_idx = sh->pd_idx;
748 pr_debug("%s: stripe %llu\n", __func__,
749 (unsigned long long)sh->sector);
751 for (i = disks; i--; ) {
752 struct r5dev *dev = &sh->dev[i];
753 if (dev->written || i == pd_idx)
754 set_bit(R5_UPTODATE, &dev->flags);
757 if (sh->reconstruct_state == reconstruct_state_drain_run)
758 sh->reconstruct_state = reconstruct_state_drain_result;
759 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
760 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
762 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
763 sh->reconstruct_state = reconstruct_state_result;
766 set_bit(STRIPE_HANDLE, &sh->state);
771 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 /* kernel stack size limits the total number of disks */
774 int disks = sh->disks;
775 struct page *xor_srcs[disks];
777 int count = 0, pd_idx = sh->pd_idx, i;
778 struct page *xor_dest;
782 pr_debug("%s: stripe %llu\n", __func__,
783 (unsigned long long)sh->sector);
785 /* check if prexor is active which means only process blocks
786 * that are part of a read-modify-write (written)
788 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
790 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
791 for (i = disks; i--; ) {
792 struct r5dev *dev = &sh->dev[i];
794 xor_srcs[count++] = dev->page;
797 xor_dest = sh->dev[pd_idx].page;
798 for (i = disks; i--; ) {
799 struct r5dev *dev = &sh->dev[i];
801 xor_srcs[count++] = dev->page;
805 /* 1/ if we prexor'd then the dest is reused as a source
806 * 2/ if we did not prexor then we are redoing the parity
807 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
808 * for the synchronous xor case
810 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
811 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813 atomic_inc(&sh->count);
815 if (unlikely(count == 1)) {
816 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
817 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
818 flags, tx, ops_complete_postxor, sh);
820 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
821 flags, tx, ops_complete_postxor, sh);
824 static void ops_complete_check(void *stripe_head_ref)
826 struct stripe_head *sh = stripe_head_ref;
828 pr_debug("%s: stripe %llu\n", __func__,
829 (unsigned long long)sh->sector);
831 sh->check_state = check_state_check_result;
832 set_bit(STRIPE_HANDLE, &sh->state);
836 static void ops_run_check(struct stripe_head *sh)
838 /* kernel stack size limits the total number of disks */
839 int disks = sh->disks;
840 struct page *xor_srcs[disks];
841 struct dma_async_tx_descriptor *tx;
843 int count = 0, pd_idx = sh->pd_idx, i;
844 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846 pr_debug("%s: stripe %llu\n", __func__,
847 (unsigned long long)sh->sector);
849 for (i = disks; i--; ) {
850 struct r5dev *dev = &sh->dev[i];
852 xor_srcs[count++] = dev->page;
855 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
856 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858 atomic_inc(&sh->count);
859 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
860 ops_complete_check, sh);
863 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 int overlap_clear = 0, i, disks = sh->disks;
866 struct dma_async_tx_descriptor *tx = NULL;
868 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
873 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
874 tx = ops_run_compute5(sh);
875 /* terminate the chain if postxor is not set to be run */
876 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
880 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
881 tx = ops_run_prexor(sh, tx);
883 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
884 tx = ops_run_biodrain(sh, tx);
888 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
889 ops_run_postxor(sh, tx);
891 if (test_bit(STRIPE_OP_CHECK, &ops_request))
895 for (i = disks; i--; ) {
896 struct r5dev *dev = &sh->dev[i];
897 if (test_and_clear_bit(R5_Overlap, &dev->flags))
898 wake_up(&sh->raid_conf->wait_for_overlap);
902 static int grow_one_stripe(raid5_conf_t *conf)
904 struct stripe_head *sh;
905 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
909 sh->raid_conf = conf;
910 spin_lock_init(&sh->lock);
912 if (grow_buffers(sh, conf->raid_disks)) {
913 shrink_buffers(sh, conf->raid_disks);
914 kmem_cache_free(conf->slab_cache, sh);
917 sh->disks = conf->raid_disks;
918 /* we just created an active stripe so... */
919 atomic_set(&sh->count, 1);
920 atomic_inc(&conf->active_stripes);
921 INIT_LIST_HEAD(&sh->lru);
926 static int grow_stripes(raid5_conf_t *conf, int num)
928 struct kmem_cache *sc;
929 int devs = conf->raid_disks;
931 sprintf(conf->cache_name[0],
932 "raid%d-%s", conf->level, mdname(conf->mddev));
933 sprintf(conf->cache_name[1],
934 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
935 conf->active_name = 0;
936 sc = kmem_cache_create(conf->cache_name[conf->active_name],
937 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
941 conf->slab_cache = sc;
942 conf->pool_size = devs;
944 if (!grow_one_stripe(conf))
949 #ifdef CONFIG_MD_RAID5_RESHAPE
950 static int resize_stripes(raid5_conf_t *conf, int newsize)
952 /* Make all the stripes able to hold 'newsize' devices.
953 * New slots in each stripe get 'page' set to a new page.
955 * This happens in stages:
956 * 1/ create a new kmem_cache and allocate the required number of
958 * 2/ gather all the old stripe_heads and tranfer the pages across
959 * to the new stripe_heads. This will have the side effect of
960 * freezing the array as once all stripe_heads have been collected,
961 * no IO will be possible. Old stripe heads are freed once their
962 * pages have been transferred over, and the old kmem_cache is
963 * freed when all stripes are done.
964 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
965 * we simple return a failre status - no need to clean anything up.
966 * 4/ allocate new pages for the new slots in the new stripe_heads.
967 * If this fails, we don't bother trying the shrink the
968 * stripe_heads down again, we just leave them as they are.
969 * As each stripe_head is processed the new one is released into
972 * Once step2 is started, we cannot afford to wait for a write,
973 * so we use GFP_NOIO allocations.
975 struct stripe_head *osh, *nsh;
976 LIST_HEAD(newstripes);
977 struct disk_info *ndisks;
979 struct kmem_cache *sc;
982 if (newsize <= conf->pool_size)
983 return 0; /* never bother to shrink */
985 err = md_allow_write(conf->mddev);
990 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
991 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
996 for (i = conf->max_nr_stripes; i; i--) {
997 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1001 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003 nsh->raid_conf = conf;
1004 spin_lock_init(&nsh->lock);
1006 list_add(&nsh->lru, &newstripes);
1009 /* didn't get enough, give up */
1010 while (!list_empty(&newstripes)) {
1011 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1012 list_del(&nsh->lru);
1013 kmem_cache_free(sc, nsh);
1015 kmem_cache_destroy(sc);
1018 /* Step 2 - Must use GFP_NOIO now.
1019 * OK, we have enough stripes, start collecting inactive
1020 * stripes and copying them over
1022 list_for_each_entry(nsh, &newstripes, lru) {
1023 spin_lock_irq(&conf->device_lock);
1024 wait_event_lock_irq(conf->wait_for_stripe,
1025 !list_empty(&conf->inactive_list),
1027 unplug_slaves(conf->mddev)
1029 osh = get_free_stripe(conf);
1030 spin_unlock_irq(&conf->device_lock);
1031 atomic_set(&nsh->count, 1);
1032 for(i=0; i<conf->pool_size; i++)
1033 nsh->dev[i].page = osh->dev[i].page;
1034 for( ; i<newsize; i++)
1035 nsh->dev[i].page = NULL;
1036 kmem_cache_free(conf->slab_cache, osh);
1038 kmem_cache_destroy(conf->slab_cache);
1041 * At this point, we are holding all the stripes so the array
1042 * is completely stalled, so now is a good time to resize
1045 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047 for (i=0; i<conf->raid_disks; i++)
1048 ndisks[i] = conf->disks[i];
1050 conf->disks = ndisks;
1054 /* Step 4, return new stripes to service */
1055 while(!list_empty(&newstripes)) {
1056 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1057 list_del_init(&nsh->lru);
1058 for (i=conf->raid_disks; i < newsize; i++)
1059 if (nsh->dev[i].page == NULL) {
1060 struct page *p = alloc_page(GFP_NOIO);
1061 nsh->dev[i].page = p;
1065 release_stripe(nsh);
1067 /* critical section pass, GFP_NOIO no longer needed */
1069 conf->slab_cache = sc;
1070 conf->active_name = 1-conf->active_name;
1071 conf->pool_size = newsize;
1076 static int drop_one_stripe(raid5_conf_t *conf)
1078 struct stripe_head *sh;
1080 spin_lock_irq(&conf->device_lock);
1081 sh = get_free_stripe(conf);
1082 spin_unlock_irq(&conf->device_lock);
1085 BUG_ON(atomic_read(&sh->count));
1086 shrink_buffers(sh, conf->pool_size);
1087 kmem_cache_free(conf->slab_cache, sh);
1088 atomic_dec(&conf->active_stripes);
1092 static void shrink_stripes(raid5_conf_t *conf)
1094 while (drop_one_stripe(conf))
1097 if (conf->slab_cache)
1098 kmem_cache_destroy(conf->slab_cache);
1099 conf->slab_cache = NULL;
1102 static void raid5_end_read_request(struct bio * bi, int error)
1104 struct stripe_head *sh = bi->bi_private;
1105 raid5_conf_t *conf = sh->raid_conf;
1106 int disks = sh->disks, i;
1107 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108 char b[BDEVNAME_SIZE];
1112 for (i=0 ; i<disks; i++)
1113 if (bi == &sh->dev[i].req)
1116 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1125 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127 rdev = conf->disks[i].rdev;
1128 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1129 " (%lu sectors at %llu on %s)\n",
1130 mdname(conf->mddev), STRIPE_SECTORS,
1131 (unsigned long long)(sh->sector
1132 + rdev->data_offset),
1133 bdevname(rdev->bdev, b));
1134 clear_bit(R5_ReadError, &sh->dev[i].flags);
1135 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137 if (atomic_read(&conf->disks[i].rdev->read_errors))
1138 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1140 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142 rdev = conf->disks[i].rdev;
1144 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145 atomic_inc(&rdev->read_errors);
1146 if (conf->mddev->degraded)
1147 printk_rl(KERN_WARNING
1148 "raid5:%s: read error not correctable "
1149 "(sector %llu on %s).\n",
1150 mdname(conf->mddev),
1151 (unsigned long long)(sh->sector
1152 + rdev->data_offset),
1154 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156 printk_rl(KERN_WARNING
1157 "raid5:%s: read error NOT corrected!! "
1158 "(sector %llu on %s).\n",
1159 mdname(conf->mddev),
1160 (unsigned long long)(sh->sector
1161 + rdev->data_offset),
1163 else if (atomic_read(&rdev->read_errors)
1164 > conf->max_nr_stripes)
1166 "raid5:%s: Too many read errors, failing device %s.\n",
1167 mdname(conf->mddev), bdn);
1171 set_bit(R5_ReadError, &sh->dev[i].flags);
1173 clear_bit(R5_ReadError, &sh->dev[i].flags);
1174 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175 md_error(conf->mddev, rdev);
1178 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1179 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1180 set_bit(STRIPE_HANDLE, &sh->state);
1184 static void raid5_end_write_request(struct bio *bi, int error)
1186 struct stripe_head *sh = bi->bi_private;
1187 raid5_conf_t *conf = sh->raid_conf;
1188 int disks = sh->disks, i;
1189 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191 for (i=0 ; i<disks; i++)
1192 if (bi == &sh->dev[i].req)
1195 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1204 md_error(conf->mddev, conf->disks[i].rdev);
1206 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 set_bit(STRIPE_HANDLE, &sh->state);
1214 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1216 static void raid5_build_block(struct stripe_head *sh, int i)
1218 struct r5dev *dev = &sh->dev[i];
1220 bio_init(&dev->req);
1221 dev->req.bi_io_vec = &dev->vec;
1223 dev->req.bi_max_vecs++;
1224 dev->vec.bv_page = dev->page;
1225 dev->vec.bv_len = STRIPE_SIZE;
1226 dev->vec.bv_offset = 0;
1228 dev->req.bi_sector = sh->sector;
1229 dev->req.bi_private = sh;
1232 dev->sector = compute_blocknr(sh, i);
1235 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237 char b[BDEVNAME_SIZE];
1238 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239 pr_debug("raid5: error called\n");
1241 if (!test_bit(Faulty, &rdev->flags)) {
1242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1244 unsigned long flags;
1245 spin_lock_irqsave(&conf->device_lock, flags);
1247 spin_unlock_irqrestore(&conf->device_lock, flags);
1249 * if recovery was running, make sure it aborts.
1251 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253 set_bit(Faulty, &rdev->flags);
1255 "raid5: Disk failure on %s, disabling device.\n"
1256 "raid5: Operation continuing on %d devices.\n",
1257 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1265 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266 int previous, int *dd_idx,
1267 struct stripe_head *sh)
1270 unsigned long chunk_number;
1271 unsigned int chunk_offset;
1274 sector_t new_sector;
1275 int sectors_per_chunk = conf->chunk_size >> 9;
1276 int raid_disks = previous ? conf->previous_raid_disks
1278 int data_disks = raid_disks - conf->max_degraded;
1280 /* First compute the information on this sector */
1283 * Compute the chunk number and the sector offset inside the chunk
1285 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1286 chunk_number = r_sector;
1287 BUG_ON(r_sector != chunk_number);
1290 * Compute the stripe number
1292 stripe = chunk_number / data_disks;
1295 * Compute the data disk and parity disk indexes inside the stripe
1297 *dd_idx = chunk_number % data_disks;
1300 * Select the parity disk based on the user selected algorithm.
1302 pd_idx = qd_idx = ~0;
1303 switch(conf->level) {
1305 pd_idx = data_disks;
1308 switch (conf->algorithm) {
1309 case ALGORITHM_LEFT_ASYMMETRIC:
1310 pd_idx = data_disks - stripe % raid_disks;
1311 if (*dd_idx >= pd_idx)
1314 case ALGORITHM_RIGHT_ASYMMETRIC:
1315 pd_idx = stripe % raid_disks;
1316 if (*dd_idx >= pd_idx)
1319 case ALGORITHM_LEFT_SYMMETRIC:
1320 pd_idx = data_disks - stripe % raid_disks;
1321 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1323 case ALGORITHM_RIGHT_SYMMETRIC:
1324 pd_idx = stripe % raid_disks;
1325 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1327 case ALGORITHM_PARITY_0:
1331 case ALGORITHM_PARITY_N:
1332 pd_idx = data_disks;
1335 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1342 switch (conf->algorithm) {
1343 case ALGORITHM_LEFT_ASYMMETRIC:
1344 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1345 qd_idx = pd_idx + 1;
1346 if (pd_idx == raid_disks-1) {
1347 (*dd_idx)++; /* Q D D D P */
1349 } else if (*dd_idx >= pd_idx)
1350 (*dd_idx) += 2; /* D D P Q D */
1352 case ALGORITHM_RIGHT_ASYMMETRIC:
1353 pd_idx = stripe % raid_disks;
1354 qd_idx = pd_idx + 1;
1355 if (pd_idx == raid_disks-1) {
1356 (*dd_idx)++; /* Q D D D P */
1358 } else if (*dd_idx >= pd_idx)
1359 (*dd_idx) += 2; /* D D P Q D */
1361 case ALGORITHM_LEFT_SYMMETRIC:
1362 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1363 qd_idx = (pd_idx + 1) % raid_disks;
1364 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1366 case ALGORITHM_RIGHT_SYMMETRIC:
1367 pd_idx = stripe % raid_disks;
1368 qd_idx = (pd_idx + 1) % raid_disks;
1369 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1372 case ALGORITHM_PARITY_0:
1377 case ALGORITHM_PARITY_N:
1378 pd_idx = data_disks;
1379 qd_idx = data_disks + 1;
1382 case ALGORITHM_ROTATING_ZERO_RESTART:
1383 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1384 * of blocks for computing Q is different.
1386 pd_idx = stripe % raid_disks;
1387 qd_idx = pd_idx + 1;
1388 if (pd_idx == raid_disks-1) {
1389 (*dd_idx)++; /* Q D D D P */
1391 } else if (*dd_idx >= pd_idx)
1392 (*dd_idx) += 2; /* D D P Q D */
1396 case ALGORITHM_ROTATING_N_RESTART:
1397 /* Same a left_asymmetric, by first stripe is
1398 * D D D P Q rather than
1401 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1402 qd_idx = pd_idx + 1;
1403 if (pd_idx == raid_disks-1) {
1404 (*dd_idx)++; /* Q D D D P */
1406 } else if (*dd_idx >= pd_idx)
1407 (*dd_idx) += 2; /* D D P Q D */
1411 case ALGORITHM_ROTATING_N_CONTINUE:
1412 /* Same as left_symmetric but Q is before P */
1413 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1414 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1415 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419 case ALGORITHM_LEFT_ASYMMETRIC_6:
1420 /* RAID5 left_asymmetric, with Q on last device */
1421 pd_idx = data_disks - stripe % (raid_disks-1);
1422 if (*dd_idx >= pd_idx)
1424 qd_idx = raid_disks - 1;
1427 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1428 pd_idx = stripe % (raid_disks-1);
1429 if (*dd_idx >= pd_idx)
1431 qd_idx = raid_disks - 1;
1434 case ALGORITHM_LEFT_SYMMETRIC_6:
1435 pd_idx = data_disks - stripe % (raid_disks-1);
1436 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1437 qd_idx = raid_disks - 1;
1440 case ALGORITHM_RIGHT_SYMMETRIC_6:
1441 pd_idx = stripe % (raid_disks-1);
1442 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1443 qd_idx = raid_disks - 1;
1446 case ALGORITHM_PARITY_0_6:
1449 qd_idx = raid_disks - 1;
1454 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1462 sh->pd_idx = pd_idx;
1463 sh->qd_idx = qd_idx;
1464 sh->ddf_layout = ddf_layout;
1467 * Finally, compute the new sector number
1469 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1474 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1476 raid5_conf_t *conf = sh->raid_conf;
1477 int raid_disks = sh->disks;
1478 int data_disks = raid_disks - conf->max_degraded;
1479 sector_t new_sector = sh->sector, check;
1480 int sectors_per_chunk = conf->chunk_size >> 9;
1483 int chunk_number, dummy1, dd_idx = i;
1485 struct stripe_head sh2;
1488 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1489 stripe = new_sector;
1490 BUG_ON(new_sector != stripe);
1492 if (i == sh->pd_idx)
1494 switch(conf->level) {
1497 switch (conf->algorithm) {
1498 case ALGORITHM_LEFT_ASYMMETRIC:
1499 case ALGORITHM_RIGHT_ASYMMETRIC:
1503 case ALGORITHM_LEFT_SYMMETRIC:
1504 case ALGORITHM_RIGHT_SYMMETRIC:
1507 i -= (sh->pd_idx + 1);
1509 case ALGORITHM_PARITY_0:
1512 case ALGORITHM_PARITY_N:
1515 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1521 if (i == sh->qd_idx)
1522 return 0; /* It is the Q disk */
1523 switch (conf->algorithm) {
1524 case ALGORITHM_LEFT_ASYMMETRIC:
1525 case ALGORITHM_RIGHT_ASYMMETRIC:
1526 case ALGORITHM_ROTATING_ZERO_RESTART:
1527 case ALGORITHM_ROTATING_N_RESTART:
1528 if (sh->pd_idx == raid_disks-1)
1529 i--; /* Q D D D P */
1530 else if (i > sh->pd_idx)
1531 i -= 2; /* D D P Q D */
1533 case ALGORITHM_LEFT_SYMMETRIC:
1534 case ALGORITHM_RIGHT_SYMMETRIC:
1535 if (sh->pd_idx == raid_disks-1)
1536 i--; /* Q D D D P */
1541 i -= (sh->pd_idx + 2);
1544 case ALGORITHM_PARITY_0:
1547 case ALGORITHM_PARITY_N:
1549 case ALGORITHM_ROTATING_N_CONTINUE:
1550 if (sh->pd_idx == 0)
1551 i--; /* P D D D Q */
1552 else if (i > sh->pd_idx)
1553 i -= 2; /* D D Q P D */
1555 case ALGORITHM_LEFT_ASYMMETRIC_6:
1556 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1560 case ALGORITHM_LEFT_SYMMETRIC_6:
1561 case ALGORITHM_RIGHT_SYMMETRIC_6:
1563 i += data_disks + 1;
1564 i -= (sh->pd_idx + 1);
1566 case ALGORITHM_PARITY_0_6:
1570 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1577 chunk_number = stripe * data_disks + i;
1578 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1580 check = raid5_compute_sector(conf, r_sector,
1581 (raid_disks != conf->raid_disks),
1583 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1584 || sh2.qd_idx != sh->qd_idx) {
1585 printk(KERN_ERR "compute_blocknr: map not correct\n");
1594 * Copy data between a page in the stripe cache, and one or more bion
1595 * The page could align with the middle of the bio, or there could be
1596 * several bion, each with several bio_vecs, which cover part of the page
1597 * Multiple bion are linked together on bi_next. There may be extras
1598 * at the end of this list. We ignore them.
1600 static void copy_data(int frombio, struct bio *bio,
1604 char *pa = page_address(page);
1605 struct bio_vec *bvl;
1609 if (bio->bi_sector >= sector)
1610 page_offset = (signed)(bio->bi_sector - sector) * 512;
1612 page_offset = (signed)(sector - bio->bi_sector) * -512;
1613 bio_for_each_segment(bvl, bio, i) {
1614 int len = bio_iovec_idx(bio,i)->bv_len;
1618 if (page_offset < 0) {
1619 b_offset = -page_offset;
1620 page_offset += b_offset;
1624 if (len > 0 && page_offset + len > STRIPE_SIZE)
1625 clen = STRIPE_SIZE - page_offset;
1629 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1631 memcpy(pa+page_offset, ba+b_offset, clen);
1633 memcpy(ba+b_offset, pa+page_offset, clen);
1634 __bio_kunmap_atomic(ba, KM_USER0);
1636 if (clen < len) /* hit end of page */
1642 #define check_xor() do { \
1643 if (count == MAX_XOR_BLOCKS) { \
1644 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1649 static void compute_parity6(struct stripe_head *sh, int method)
1651 raid5_conf_t *conf = sh->raid_conf;
1652 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1653 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1655 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1656 void *ptrs[syndrome_disks+2];
1658 pd_idx = sh->pd_idx;
1659 qd_idx = sh->qd_idx;
1660 d0_idx = raid6_d0(sh);
1662 pr_debug("compute_parity, stripe %llu, method %d\n",
1663 (unsigned long long)sh->sector, method);
1666 case READ_MODIFY_WRITE:
1667 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1668 case RECONSTRUCT_WRITE:
1669 for (i= disks; i-- ;)
1670 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1671 chosen = sh->dev[i].towrite;
1672 sh->dev[i].towrite = NULL;
1674 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1675 wake_up(&conf->wait_for_overlap);
1677 BUG_ON(sh->dev[i].written);
1678 sh->dev[i].written = chosen;
1682 BUG(); /* Not implemented yet */
1685 for (i = disks; i--;)
1686 if (sh->dev[i].written) {
1687 sector_t sector = sh->dev[i].sector;
1688 struct bio *wbi = sh->dev[i].written;
1689 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1690 copy_data(1, wbi, sh->dev[i].page, sector);
1691 wbi = r5_next_bio(wbi, sector);
1694 set_bit(R5_LOCKED, &sh->dev[i].flags);
1695 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1698 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1700 for (i = 0; i < disks; i++)
1701 ptrs[i] = (void *)raid6_empty_zero_page;
1706 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1708 ptrs[slot] = page_address(sh->dev[i].page);
1709 if (slot < syndrome_disks &&
1710 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1711 printk(KERN_ERR "block %d/%d not uptodate "
1712 "on parity calc\n", i, count);
1716 i = raid6_next_disk(i, disks);
1717 } while (i != d0_idx);
1718 BUG_ON(count != syndrome_disks);
1720 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1723 case RECONSTRUCT_WRITE:
1724 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1725 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1726 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1727 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1730 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1731 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1737 /* Compute one missing block */
1738 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1740 int i, count, disks = sh->disks;
1741 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1742 int qd_idx = sh->qd_idx;
1744 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1745 (unsigned long long)sh->sector, dd_idx);
1747 if ( dd_idx == qd_idx ) {
1748 /* We're actually computing the Q drive */
1749 compute_parity6(sh, UPDATE_PARITY);
1751 dest = page_address(sh->dev[dd_idx].page);
1752 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1754 for (i = disks ; i--; ) {
1755 if (i == dd_idx || i == qd_idx)
1757 p = page_address(sh->dev[i].page);
1758 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1761 printk("compute_block() %d, stripe %llu, %d"
1762 " not present\n", dd_idx,
1763 (unsigned long long)sh->sector, i);
1768 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1769 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1770 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1774 /* Compute two missing blocks */
1775 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1777 int i, count, disks = sh->disks;
1778 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1779 int d0_idx = raid6_d0(sh);
1780 int faila = -1, failb = -1;
1781 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1782 void *ptrs[syndrome_disks+2];
1784 for (i = 0; i < disks ; i++)
1785 ptrs[i] = (void *)raid6_empty_zero_page;
1789 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1791 ptrs[slot] = page_address(sh->dev[i].page);
1797 i = raid6_next_disk(i, disks);
1798 } while (i != d0_idx);
1799 BUG_ON(count != syndrome_disks);
1801 BUG_ON(faila == failb);
1802 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1804 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1805 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1808 if (failb == syndrome_disks+1) {
1809 /* Q disk is one of the missing disks */
1810 if (faila == syndrome_disks) {
1811 /* Missing P+Q, just recompute */
1812 compute_parity6(sh, UPDATE_PARITY);
1815 /* We're missing D+Q; recompute D from P */
1816 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1819 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1824 /* We're missing D+P or D+D; */
1825 if (failb == syndrome_disks) {
1826 /* We're missing D+P. */
1827 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1829 /* We're missing D+D. */
1830 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1834 /* Both the above update both missing blocks */
1835 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1836 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1840 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1841 int rcw, int expand)
1843 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1846 /* if we are not expanding this is a proper write request, and
1847 * there will be bios with new data to be drained into the
1851 sh->reconstruct_state = reconstruct_state_drain_run;
1852 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1854 sh->reconstruct_state = reconstruct_state_run;
1856 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1858 for (i = disks; i--; ) {
1859 struct r5dev *dev = &sh->dev[i];
1862 set_bit(R5_LOCKED, &dev->flags);
1863 set_bit(R5_Wantdrain, &dev->flags);
1865 clear_bit(R5_UPTODATE, &dev->flags);
1869 if (s->locked + 1 == disks)
1870 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1871 atomic_inc(&sh->raid_conf->pending_full_writes);
1873 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1874 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1876 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1877 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1878 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1879 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1881 for (i = disks; i--; ) {
1882 struct r5dev *dev = &sh->dev[i];
1887 (test_bit(R5_UPTODATE, &dev->flags) ||
1888 test_bit(R5_Wantcompute, &dev->flags))) {
1889 set_bit(R5_Wantdrain, &dev->flags);
1890 set_bit(R5_LOCKED, &dev->flags);
1891 clear_bit(R5_UPTODATE, &dev->flags);
1897 /* keep the parity disk locked while asynchronous operations
1900 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1901 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1904 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1905 __func__, (unsigned long long)sh->sector,
1906 s->locked, s->ops_request);
1910 * Each stripe/dev can have one or more bion attached.
1911 * toread/towrite point to the first in a chain.
1912 * The bi_next chain must be in order.
1914 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1917 raid5_conf_t *conf = sh->raid_conf;
1920 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1921 (unsigned long long)bi->bi_sector,
1922 (unsigned long long)sh->sector);
1925 spin_lock(&sh->lock);
1926 spin_lock_irq(&conf->device_lock);
1928 bip = &sh->dev[dd_idx].towrite;
1929 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1932 bip = &sh->dev[dd_idx].toread;
1933 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1934 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1936 bip = & (*bip)->bi_next;
1938 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1941 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1945 bi->bi_phys_segments++;
1946 spin_unlock_irq(&conf->device_lock);
1947 spin_unlock(&sh->lock);
1949 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1950 (unsigned long long)bi->bi_sector,
1951 (unsigned long long)sh->sector, dd_idx);
1953 if (conf->mddev->bitmap && firstwrite) {
1954 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1956 sh->bm_seq = conf->seq_flush+1;
1957 set_bit(STRIPE_BIT_DELAY, &sh->state);
1961 /* check if page is covered */
1962 sector_t sector = sh->dev[dd_idx].sector;
1963 for (bi=sh->dev[dd_idx].towrite;
1964 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1965 bi && bi->bi_sector <= sector;
1966 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1967 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1968 sector = bi->bi_sector + (bi->bi_size>>9);
1970 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1971 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1976 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1977 spin_unlock_irq(&conf->device_lock);
1978 spin_unlock(&sh->lock);
1982 static void end_reshape(raid5_conf_t *conf);
1984 static int page_is_zero(struct page *p)
1986 char *a = page_address(p);
1987 return ((*(u32*)a) == 0 &&
1988 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1991 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1992 struct stripe_head *sh)
1994 int sectors_per_chunk = conf->chunk_size >> 9;
1996 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1997 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1999 raid5_compute_sector(conf,
2000 stripe * (disks - conf->max_degraded)
2001 *sectors_per_chunk + chunk_offset,
2007 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2008 struct stripe_head_state *s, int disks,
2009 struct bio **return_bi)
2012 for (i = disks; i--; ) {
2016 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2019 rdev = rcu_dereference(conf->disks[i].rdev);
2020 if (rdev && test_bit(In_sync, &rdev->flags))
2021 /* multiple read failures in one stripe */
2022 md_error(conf->mddev, rdev);
2025 spin_lock_irq(&conf->device_lock);
2026 /* fail all writes first */
2027 bi = sh->dev[i].towrite;
2028 sh->dev[i].towrite = NULL;
2034 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2035 wake_up(&conf->wait_for_overlap);
2037 while (bi && bi->bi_sector <
2038 sh->dev[i].sector + STRIPE_SECTORS) {
2039 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2040 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2041 if (!raid5_dec_bi_phys_segments(bi)) {
2042 md_write_end(conf->mddev);
2043 bi->bi_next = *return_bi;
2048 /* and fail all 'written' */
2049 bi = sh->dev[i].written;
2050 sh->dev[i].written = NULL;
2051 if (bi) bitmap_end = 1;
2052 while (bi && bi->bi_sector <
2053 sh->dev[i].sector + STRIPE_SECTORS) {
2054 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2055 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2056 if (!raid5_dec_bi_phys_segments(bi)) {
2057 md_write_end(conf->mddev);
2058 bi->bi_next = *return_bi;
2064 /* fail any reads if this device is non-operational and
2065 * the data has not reached the cache yet.
2067 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2068 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2069 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2070 bi = sh->dev[i].toread;
2071 sh->dev[i].toread = NULL;
2072 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2073 wake_up(&conf->wait_for_overlap);
2074 if (bi) s->to_read--;
2075 while (bi && bi->bi_sector <
2076 sh->dev[i].sector + STRIPE_SECTORS) {
2077 struct bio *nextbi =
2078 r5_next_bio(bi, sh->dev[i].sector);
2079 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2080 if (!raid5_dec_bi_phys_segments(bi)) {
2081 bi->bi_next = *return_bi;
2087 spin_unlock_irq(&conf->device_lock);
2089 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2090 STRIPE_SECTORS, 0, 0);
2093 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2094 if (atomic_dec_and_test(&conf->pending_full_writes))
2095 md_wakeup_thread(conf->mddev->thread);
2098 /* fetch_block5 - checks the given member device to see if its data needs
2099 * to be read or computed to satisfy a request.
2101 * Returns 1 when no more member devices need to be checked, otherwise returns
2102 * 0 to tell the loop in handle_stripe_fill5 to continue
2104 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2105 int disk_idx, int disks)
2107 struct r5dev *dev = &sh->dev[disk_idx];
2108 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2110 /* is the data in this block needed, and can we get it? */
2111 if (!test_bit(R5_LOCKED, &dev->flags) &&
2112 !test_bit(R5_UPTODATE, &dev->flags) &&
2114 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2115 s->syncing || s->expanding ||
2117 (failed_dev->toread ||
2118 (failed_dev->towrite &&
2119 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2120 /* We would like to get this block, possibly by computing it,
2121 * otherwise read it if the backing disk is insync
2123 if ((s->uptodate == disks - 1) &&
2124 (s->failed && disk_idx == s->failed_num)) {
2125 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2126 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2127 set_bit(R5_Wantcompute, &dev->flags);
2128 sh->ops.target = disk_idx;
2130 /* Careful: from this point on 'uptodate' is in the eye
2131 * of raid5_run_ops which services 'compute' operations
2132 * before writes. R5_Wantcompute flags a block that will
2133 * be R5_UPTODATE by the time it is needed for a
2134 * subsequent operation.
2137 return 1; /* uptodate + compute == disks */
2138 } else if (test_bit(R5_Insync, &dev->flags)) {
2139 set_bit(R5_LOCKED, &dev->flags);
2140 set_bit(R5_Wantread, &dev->flags);
2142 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2151 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2153 static void handle_stripe_fill5(struct stripe_head *sh,
2154 struct stripe_head_state *s, int disks)
2158 /* look for blocks to read/compute, skip this if a compute
2159 * is already in flight, or if the stripe contents are in the
2160 * midst of changing due to a write
2162 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2163 !sh->reconstruct_state)
2164 for (i = disks; i--; )
2165 if (fetch_block5(sh, s, i, disks))
2167 set_bit(STRIPE_HANDLE, &sh->state);
2170 static void handle_stripe_fill6(struct stripe_head *sh,
2171 struct stripe_head_state *s, struct r6_state *r6s,
2175 for (i = disks; i--; ) {
2176 struct r5dev *dev = &sh->dev[i];
2177 if (!test_bit(R5_LOCKED, &dev->flags) &&
2178 !test_bit(R5_UPTODATE, &dev->flags) &&
2179 (dev->toread || (dev->towrite &&
2180 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2181 s->syncing || s->expanding ||
2183 (sh->dev[r6s->failed_num[0]].toread ||
2186 (sh->dev[r6s->failed_num[1]].toread ||
2188 /* we would like to get this block, possibly
2189 * by computing it, but we might not be able to
2191 if ((s->uptodate == disks - 1) &&
2192 (s->failed && (i == r6s->failed_num[0] ||
2193 i == r6s->failed_num[1]))) {
2194 pr_debug("Computing stripe %llu block %d\n",
2195 (unsigned long long)sh->sector, i);
2196 compute_block_1(sh, i, 0);
2198 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2199 /* Computing 2-failure is *very* expensive; only
2200 * do it if failed >= 2
2203 for (other = disks; other--; ) {
2206 if (!test_bit(R5_UPTODATE,
2207 &sh->dev[other].flags))
2211 pr_debug("Computing stripe %llu blocks %d,%d\n",
2212 (unsigned long long)sh->sector,
2214 compute_block_2(sh, i, other);
2216 } else if (test_bit(R5_Insync, &dev->flags)) {
2217 set_bit(R5_LOCKED, &dev->flags);
2218 set_bit(R5_Wantread, &dev->flags);
2220 pr_debug("Reading block %d (sync=%d)\n",
2225 set_bit(STRIPE_HANDLE, &sh->state);
2229 /* handle_stripe_clean_event
2230 * any written block on an uptodate or failed drive can be returned.
2231 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2232 * never LOCKED, so we don't need to test 'failed' directly.
2234 static void handle_stripe_clean_event(raid5_conf_t *conf,
2235 struct stripe_head *sh, int disks, struct bio **return_bi)
2240 for (i = disks; i--; )
2241 if (sh->dev[i].written) {
2243 if (!test_bit(R5_LOCKED, &dev->flags) &&
2244 test_bit(R5_UPTODATE, &dev->flags)) {
2245 /* We can return any write requests */
2246 struct bio *wbi, *wbi2;
2248 pr_debug("Return write for disc %d\n", i);
2249 spin_lock_irq(&conf->device_lock);
2251 dev->written = NULL;
2252 while (wbi && wbi->bi_sector <
2253 dev->sector + STRIPE_SECTORS) {
2254 wbi2 = r5_next_bio(wbi, dev->sector);
2255 if (!raid5_dec_bi_phys_segments(wbi)) {
2256 md_write_end(conf->mddev);
2257 wbi->bi_next = *return_bi;
2262 if (dev->towrite == NULL)
2264 spin_unlock_irq(&conf->device_lock);
2266 bitmap_endwrite(conf->mddev->bitmap,
2269 !test_bit(STRIPE_DEGRADED, &sh->state),
2274 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2275 if (atomic_dec_and_test(&conf->pending_full_writes))
2276 md_wakeup_thread(conf->mddev->thread);
2279 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2280 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2282 int rmw = 0, rcw = 0, i;
2283 for (i = disks; i--; ) {
2284 /* would I have to read this buffer for read_modify_write */
2285 struct r5dev *dev = &sh->dev[i];
2286 if ((dev->towrite || i == sh->pd_idx) &&
2287 !test_bit(R5_LOCKED, &dev->flags) &&
2288 !(test_bit(R5_UPTODATE, &dev->flags) ||
2289 test_bit(R5_Wantcompute, &dev->flags))) {
2290 if (test_bit(R5_Insync, &dev->flags))
2293 rmw += 2*disks; /* cannot read it */
2295 /* Would I have to read this buffer for reconstruct_write */
2296 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2297 !test_bit(R5_LOCKED, &dev->flags) &&
2298 !(test_bit(R5_UPTODATE, &dev->flags) ||
2299 test_bit(R5_Wantcompute, &dev->flags))) {
2300 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2305 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2306 (unsigned long long)sh->sector, rmw, rcw);
2307 set_bit(STRIPE_HANDLE, &sh->state);
2308 if (rmw < rcw && rmw > 0)
2309 /* prefer read-modify-write, but need to get some data */
2310 for (i = disks; i--; ) {
2311 struct r5dev *dev = &sh->dev[i];
2312 if ((dev->towrite || i == sh->pd_idx) &&
2313 !test_bit(R5_LOCKED, &dev->flags) &&
2314 !(test_bit(R5_UPTODATE, &dev->flags) ||
2315 test_bit(R5_Wantcompute, &dev->flags)) &&
2316 test_bit(R5_Insync, &dev->flags)) {
2318 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2319 pr_debug("Read_old block "
2320 "%d for r-m-w\n", i);
2321 set_bit(R5_LOCKED, &dev->flags);
2322 set_bit(R5_Wantread, &dev->flags);
2325 set_bit(STRIPE_DELAYED, &sh->state);
2326 set_bit(STRIPE_HANDLE, &sh->state);
2330 if (rcw <= rmw && rcw > 0)
2331 /* want reconstruct write, but need to get some data */
2332 for (i = disks; i--; ) {
2333 struct r5dev *dev = &sh->dev[i];
2334 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2336 !test_bit(R5_LOCKED, &dev->flags) &&
2337 !(test_bit(R5_UPTODATE, &dev->flags) ||
2338 test_bit(R5_Wantcompute, &dev->flags)) &&
2339 test_bit(R5_Insync, &dev->flags)) {
2341 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342 pr_debug("Read_old block "
2343 "%d for Reconstruct\n", i);
2344 set_bit(R5_LOCKED, &dev->flags);
2345 set_bit(R5_Wantread, &dev->flags);
2348 set_bit(STRIPE_DELAYED, &sh->state);
2349 set_bit(STRIPE_HANDLE, &sh->state);
2353 /* now if nothing is locked, and if we have enough data,
2354 * we can start a write request
2356 /* since handle_stripe can be called at any time we need to handle the
2357 * case where a compute block operation has been submitted and then a
2358 * subsequent call wants to start a write request. raid5_run_ops only
2359 * handles the case where compute block and postxor are requested
2360 * simultaneously. If this is not the case then new writes need to be
2361 * held off until the compute completes.
2363 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2364 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2365 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2366 schedule_reconstruction5(sh, s, rcw == 0, 0);
2369 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2370 struct stripe_head *sh, struct stripe_head_state *s,
2371 struct r6_state *r6s, int disks)
2373 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2374 int qd_idx = sh->qd_idx;
2375 for (i = disks; i--; ) {
2376 struct r5dev *dev = &sh->dev[i];
2377 /* Would I have to read this buffer for reconstruct_write */
2378 if (!test_bit(R5_OVERWRITE, &dev->flags)
2379 && i != pd_idx && i != qd_idx
2380 && (!test_bit(R5_LOCKED, &dev->flags)
2382 !test_bit(R5_UPTODATE, &dev->flags)) {
2383 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2385 pr_debug("raid6: must_compute: "
2386 "disk %d flags=%#lx\n", i, dev->flags);
2391 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2392 (unsigned long long)sh->sector, rcw, must_compute);
2393 set_bit(STRIPE_HANDLE, &sh->state);
2396 /* want reconstruct write, but need to get some data */
2397 for (i = disks; i--; ) {
2398 struct r5dev *dev = &sh->dev[i];
2399 if (!test_bit(R5_OVERWRITE, &dev->flags)
2400 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2401 && !test_bit(R5_LOCKED, &dev->flags) &&
2402 !test_bit(R5_UPTODATE, &dev->flags) &&
2403 test_bit(R5_Insync, &dev->flags)) {
2405 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2406 pr_debug("Read_old stripe %llu "
2407 "block %d for Reconstruct\n",
2408 (unsigned long long)sh->sector, i);
2409 set_bit(R5_LOCKED, &dev->flags);
2410 set_bit(R5_Wantread, &dev->flags);
2413 pr_debug("Request delayed stripe %llu "
2414 "block %d for Reconstruct\n",
2415 (unsigned long long)sh->sector, i);
2416 set_bit(STRIPE_DELAYED, &sh->state);
2417 set_bit(STRIPE_HANDLE, &sh->state);
2421 /* now if nothing is locked, and if we have enough data, we can start a
2424 if (s->locked == 0 && rcw == 0 &&
2425 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2426 if (must_compute > 0) {
2427 /* We have failed blocks and need to compute them */
2428 switch (s->failed) {
2432 compute_block_1(sh, r6s->failed_num[0], 0);
2435 compute_block_2(sh, r6s->failed_num[0],
2436 r6s->failed_num[1]);
2438 default: /* This request should have been failed? */
2443 pr_debug("Computing parity for stripe %llu\n",
2444 (unsigned long long)sh->sector);
2445 compute_parity6(sh, RECONSTRUCT_WRITE);
2446 /* now every locked buffer is ready to be written */
2447 for (i = disks; i--; )
2448 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2449 pr_debug("Writing stripe %llu block %d\n",
2450 (unsigned long long)sh->sector, i);
2452 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2454 if (s->locked == disks)
2455 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2456 atomic_inc(&conf->pending_full_writes);
2457 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2458 set_bit(STRIPE_INSYNC, &sh->state);
2460 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2461 atomic_dec(&conf->preread_active_stripes);
2462 if (atomic_read(&conf->preread_active_stripes) <
2464 md_wakeup_thread(conf->mddev->thread);
2469 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2470 struct stripe_head_state *s, int disks)
2472 struct r5dev *dev = NULL;
2474 set_bit(STRIPE_HANDLE, &sh->state);
2476 switch (sh->check_state) {
2477 case check_state_idle:
2478 /* start a new check operation if there are no failures */
2479 if (s->failed == 0) {
2480 BUG_ON(s->uptodate != disks);
2481 sh->check_state = check_state_run;
2482 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2483 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2487 dev = &sh->dev[s->failed_num];
2489 case check_state_compute_result:
2490 sh->check_state = check_state_idle;
2492 dev = &sh->dev[sh->pd_idx];
2494 /* check that a write has not made the stripe insync */
2495 if (test_bit(STRIPE_INSYNC, &sh->state))
2498 /* either failed parity check, or recovery is happening */
2499 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2500 BUG_ON(s->uptodate != disks);
2502 set_bit(R5_LOCKED, &dev->flags);
2504 set_bit(R5_Wantwrite, &dev->flags);
2506 clear_bit(STRIPE_DEGRADED, &sh->state);
2507 set_bit(STRIPE_INSYNC, &sh->state);
2509 case check_state_run:
2510 break; /* we will be called again upon completion */
2511 case check_state_check_result:
2512 sh->check_state = check_state_idle;
2514 /* if a failure occurred during the check operation, leave
2515 * STRIPE_INSYNC not set and let the stripe be handled again
2520 /* handle a successful check operation, if parity is correct
2521 * we are done. Otherwise update the mismatch count and repair
2522 * parity if !MD_RECOVERY_CHECK
2524 if (sh->ops.zero_sum_result == 0)
2525 /* parity is correct (on disc,
2526 * not in buffer any more)
2528 set_bit(STRIPE_INSYNC, &sh->state);
2530 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2531 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2532 /* don't try to repair!! */
2533 set_bit(STRIPE_INSYNC, &sh->state);
2535 sh->check_state = check_state_compute_run;
2536 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2537 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2538 set_bit(R5_Wantcompute,
2539 &sh->dev[sh->pd_idx].flags);
2540 sh->ops.target = sh->pd_idx;
2545 case check_state_compute_run:
2548 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2549 __func__, sh->check_state,
2550 (unsigned long long) sh->sector);
2556 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2557 struct stripe_head_state *s,
2558 struct r6_state *r6s, struct page *tmp_page,
2561 int update_p = 0, update_q = 0;
2563 int pd_idx = sh->pd_idx;
2564 int qd_idx = sh->qd_idx;
2566 set_bit(STRIPE_HANDLE, &sh->state);
2568 BUG_ON(s->failed > 2);
2569 BUG_ON(s->uptodate < disks);
2570 /* Want to check and possibly repair P and Q.
2571 * However there could be one 'failed' device, in which
2572 * case we can only check one of them, possibly using the
2573 * other to generate missing data
2576 /* If !tmp_page, we cannot do the calculations,
2577 * but as we have set STRIPE_HANDLE, we will soon be called
2578 * by stripe_handle with a tmp_page - just wait until then.
2581 if (s->failed == r6s->q_failed) {
2582 /* The only possible failed device holds 'Q', so it
2583 * makes sense to check P (If anything else were failed,
2584 * we would have used P to recreate it).
2586 compute_block_1(sh, pd_idx, 1);
2587 if (!page_is_zero(sh->dev[pd_idx].page)) {
2588 compute_block_1(sh, pd_idx, 0);
2592 if (!r6s->q_failed && s->failed < 2) {
2593 /* q is not failed, and we didn't use it to generate
2594 * anything, so it makes sense to check it
2596 memcpy(page_address(tmp_page),
2597 page_address(sh->dev[qd_idx].page),
2599 compute_parity6(sh, UPDATE_PARITY);
2600 if (memcmp(page_address(tmp_page),
2601 page_address(sh->dev[qd_idx].page),
2602 STRIPE_SIZE) != 0) {
2603 clear_bit(STRIPE_INSYNC, &sh->state);
2607 if (update_p || update_q) {
2608 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2609 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2610 /* don't try to repair!! */
2611 update_p = update_q = 0;
2614 /* now write out any block on a failed drive,
2615 * or P or Q if they need it
2618 if (s->failed == 2) {
2619 dev = &sh->dev[r6s->failed_num[1]];
2621 set_bit(R5_LOCKED, &dev->flags);
2622 set_bit(R5_Wantwrite, &dev->flags);
2624 if (s->failed >= 1) {
2625 dev = &sh->dev[r6s->failed_num[0]];
2627 set_bit(R5_LOCKED, &dev->flags);
2628 set_bit(R5_Wantwrite, &dev->flags);
2632 dev = &sh->dev[pd_idx];
2634 set_bit(R5_LOCKED, &dev->flags);
2635 set_bit(R5_Wantwrite, &dev->flags);
2638 dev = &sh->dev[qd_idx];
2640 set_bit(R5_LOCKED, &dev->flags);
2641 set_bit(R5_Wantwrite, &dev->flags);
2643 clear_bit(STRIPE_DEGRADED, &sh->state);
2645 set_bit(STRIPE_INSYNC, &sh->state);
2649 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2650 struct r6_state *r6s)
2654 /* We have read all the blocks in this stripe and now we need to
2655 * copy some of them into a target stripe for expand.
2657 struct dma_async_tx_descriptor *tx = NULL;
2658 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2659 for (i = 0; i < sh->disks; i++)
2660 if (i != sh->pd_idx && i != sh->qd_idx) {
2662 struct stripe_head *sh2;
2664 sector_t bn = compute_blocknr(sh, i);
2665 sector_t s = raid5_compute_sector(conf, bn, 0,
2667 sh2 = get_active_stripe(conf, s, 0, 1);
2669 /* so far only the early blocks of this stripe
2670 * have been requested. When later blocks
2671 * get requested, we will try again
2674 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2675 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2676 /* must have already done this block */
2677 release_stripe(sh2);
2681 /* place all the copies on one channel */
2682 tx = async_memcpy(sh2->dev[dd_idx].page,
2683 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2684 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2686 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2687 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2688 for (j = 0; j < conf->raid_disks; j++)
2689 if (j != sh2->pd_idx &&
2690 (!r6s || j != sh2->qd_idx) &&
2691 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2693 if (j == conf->raid_disks) {
2694 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2695 set_bit(STRIPE_HANDLE, &sh2->state);
2697 release_stripe(sh2);
2700 /* done submitting copies, wait for them to complete */
2703 dma_wait_for_async_tx(tx);
2709 * handle_stripe - do things to a stripe.
2711 * We lock the stripe and then examine the state of various bits
2712 * to see what needs to be done.
2714 * return some read request which now have data
2715 * return some write requests which are safely on disc
2716 * schedule a read on some buffers
2717 * schedule a write of some buffers
2718 * return confirmation of parity correctness
2720 * buffers are taken off read_list or write_list, and bh_cache buffers
2721 * get BH_Lock set before the stripe lock is released.
2725 static bool handle_stripe5(struct stripe_head *sh)
2727 raid5_conf_t *conf = sh->raid_conf;
2728 int disks = sh->disks, i;
2729 struct bio *return_bi = NULL;
2730 struct stripe_head_state s;
2732 mdk_rdev_t *blocked_rdev = NULL;
2735 memset(&s, 0, sizeof(s));
2736 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2737 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2738 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2739 sh->reconstruct_state);
2741 spin_lock(&sh->lock);
2742 clear_bit(STRIPE_HANDLE, &sh->state);
2743 clear_bit(STRIPE_DELAYED, &sh->state);
2745 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2746 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2747 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2749 /* Now to look around and see what can be done */
2751 for (i=disks; i--; ) {
2753 struct r5dev *dev = &sh->dev[i];
2754 clear_bit(R5_Insync, &dev->flags);
2756 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2757 "written %p\n", i, dev->flags, dev->toread, dev->read,
2758 dev->towrite, dev->written);
2760 /* maybe we can request a biofill operation
2762 * new wantfill requests are only permitted while
2763 * ops_complete_biofill is guaranteed to be inactive
2765 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2766 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2767 set_bit(R5_Wantfill, &dev->flags);
2769 /* now count some things */
2770 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2771 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2772 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2774 if (test_bit(R5_Wantfill, &dev->flags))
2776 else if (dev->toread)
2780 if (!test_bit(R5_OVERWRITE, &dev->flags))
2785 rdev = rcu_dereference(conf->disks[i].rdev);
2786 if (blocked_rdev == NULL &&
2787 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2788 blocked_rdev = rdev;
2789 atomic_inc(&rdev->nr_pending);
2791 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2792 /* The ReadError flag will just be confusing now */
2793 clear_bit(R5_ReadError, &dev->flags);
2794 clear_bit(R5_ReWrite, &dev->flags);
2796 if (!rdev || !test_bit(In_sync, &rdev->flags)
2797 || test_bit(R5_ReadError, &dev->flags)) {
2801 set_bit(R5_Insync, &dev->flags);
2805 if (unlikely(blocked_rdev)) {
2806 if (s.syncing || s.expanding || s.expanded ||
2807 s.to_write || s.written) {
2808 set_bit(STRIPE_HANDLE, &sh->state);
2811 /* There is nothing for the blocked_rdev to block */
2812 rdev_dec_pending(blocked_rdev, conf->mddev);
2813 blocked_rdev = NULL;
2816 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2817 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2818 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2821 pr_debug("locked=%d uptodate=%d to_read=%d"
2822 " to_write=%d failed=%d failed_num=%d\n",
2823 s.locked, s.uptodate, s.to_read, s.to_write,
2824 s.failed, s.failed_num);
2825 /* check if the array has lost two devices and, if so, some requests might
2828 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2829 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2830 if (s.failed > 1 && s.syncing) {
2831 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2832 clear_bit(STRIPE_SYNCING, &sh->state);
2836 /* might be able to return some write requests if the parity block
2837 * is safe, or on a failed drive
2839 dev = &sh->dev[sh->pd_idx];
2841 ((test_bit(R5_Insync, &dev->flags) &&
2842 !test_bit(R5_LOCKED, &dev->flags) &&
2843 test_bit(R5_UPTODATE, &dev->flags)) ||
2844 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2845 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2847 /* Now we might consider reading some blocks, either to check/generate
2848 * parity, or to satisfy requests
2849 * or to load a block that is being partially written.
2851 if (s.to_read || s.non_overwrite ||
2852 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2853 handle_stripe_fill5(sh, &s, disks);
2855 /* Now we check to see if any write operations have recently
2859 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2861 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2862 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2863 sh->reconstruct_state = reconstruct_state_idle;
2865 /* All the 'written' buffers and the parity block are ready to
2866 * be written back to disk
2868 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2869 for (i = disks; i--; ) {
2871 if (test_bit(R5_LOCKED, &dev->flags) &&
2872 (i == sh->pd_idx || dev->written)) {
2873 pr_debug("Writing block %d\n", i);
2874 set_bit(R5_Wantwrite, &dev->flags);
2877 if (!test_bit(R5_Insync, &dev->flags) ||
2878 (i == sh->pd_idx && s.failed == 0))
2879 set_bit(STRIPE_INSYNC, &sh->state);
2882 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2883 atomic_dec(&conf->preread_active_stripes);
2884 if (atomic_read(&conf->preread_active_stripes) <
2886 md_wakeup_thread(conf->mddev->thread);
2890 /* Now to consider new write requests and what else, if anything
2891 * should be read. We do not handle new writes when:
2892 * 1/ A 'write' operation (copy+xor) is already in flight.
2893 * 2/ A 'check' operation is in flight, as it may clobber the parity
2896 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2897 handle_stripe_dirtying5(conf, sh, &s, disks);
2899 /* maybe we need to check and possibly fix the parity for this stripe
2900 * Any reads will already have been scheduled, so we just see if enough
2901 * data is available. The parity check is held off while parity
2902 * dependent operations are in flight.
2904 if (sh->check_state ||
2905 (s.syncing && s.locked == 0 &&
2906 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2907 !test_bit(STRIPE_INSYNC, &sh->state)))
2908 handle_parity_checks5(conf, sh, &s, disks);
2910 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2911 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2912 clear_bit(STRIPE_SYNCING, &sh->state);
2915 /* If the failed drive is just a ReadError, then we might need to progress
2916 * the repair/check process
2918 if (s.failed == 1 && !conf->mddev->ro &&
2919 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2920 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2921 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2923 dev = &sh->dev[s.failed_num];
2924 if (!test_bit(R5_ReWrite, &dev->flags)) {
2925 set_bit(R5_Wantwrite, &dev->flags);
2926 set_bit(R5_ReWrite, &dev->flags);
2927 set_bit(R5_LOCKED, &dev->flags);
2930 /* let's read it back */
2931 set_bit(R5_Wantread, &dev->flags);
2932 set_bit(R5_LOCKED, &dev->flags);
2937 /* Finish reconstruct operations initiated by the expansion process */
2938 if (sh->reconstruct_state == reconstruct_state_result) {
2939 sh->reconstruct_state = reconstruct_state_idle;
2940 clear_bit(STRIPE_EXPANDING, &sh->state);
2941 for (i = conf->raid_disks; i--; ) {
2942 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2943 set_bit(R5_LOCKED, &sh->dev[i].flags);
2948 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2949 !sh->reconstruct_state) {
2950 /* Need to write out all blocks after computing parity */
2951 sh->disks = conf->raid_disks;
2952 stripe_set_idx(sh->sector, conf, 0, sh);
2953 schedule_reconstruction5(sh, &s, 1, 1);
2954 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2955 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2956 atomic_dec(&conf->reshape_stripes);
2957 wake_up(&conf->wait_for_overlap);
2958 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2961 if (s.expanding && s.locked == 0 &&
2962 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2963 handle_stripe_expansion(conf, sh, NULL);
2966 spin_unlock(&sh->lock);
2968 /* wait for this device to become unblocked */
2969 if (unlikely(blocked_rdev))
2970 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2973 raid5_run_ops(sh, s.ops_request);
2977 return_io(return_bi);
2979 return blocked_rdev == NULL;
2982 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2984 raid5_conf_t *conf = sh->raid_conf;
2985 int disks = sh->disks;
2986 struct bio *return_bi = NULL;
2987 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2988 struct stripe_head_state s;
2989 struct r6_state r6s;
2990 struct r5dev *dev, *pdev, *qdev;
2991 mdk_rdev_t *blocked_rdev = NULL;
2993 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2994 "pd_idx=%d, qd_idx=%d\n",
2995 (unsigned long long)sh->sector, sh->state,
2996 atomic_read(&sh->count), pd_idx, qd_idx);
2997 memset(&s, 0, sizeof(s));
2999 spin_lock(&sh->lock);
3000 clear_bit(STRIPE_HANDLE, &sh->state);
3001 clear_bit(STRIPE_DELAYED, &sh->state);
3003 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3004 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3005 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3006 /* Now to look around and see what can be done */
3009 for (i=disks; i--; ) {
3012 clear_bit(R5_Insync, &dev->flags);
3014 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015 i, dev->flags, dev->toread, dev->towrite, dev->written);
3016 /* maybe we can reply to a read */
3017 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3018 struct bio *rbi, *rbi2;
3019 pr_debug("Return read for disc %d\n", i);
3020 spin_lock_irq(&conf->device_lock);
3023 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3024 wake_up(&conf->wait_for_overlap);
3025 spin_unlock_irq(&conf->device_lock);
3026 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3027 copy_data(0, rbi, dev->page, dev->sector);
3028 rbi2 = r5_next_bio(rbi, dev->sector);
3029 spin_lock_irq(&conf->device_lock);
3030 if (!raid5_dec_bi_phys_segments(rbi)) {
3031 rbi->bi_next = return_bi;
3034 spin_unlock_irq(&conf->device_lock);
3039 /* now count some things */
3040 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3041 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3048 if (!test_bit(R5_OVERWRITE, &dev->flags))
3053 rdev = rcu_dereference(conf->disks[i].rdev);
3054 if (blocked_rdev == NULL &&
3055 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3056 blocked_rdev = rdev;
3057 atomic_inc(&rdev->nr_pending);
3059 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3060 /* The ReadError flag will just be confusing now */
3061 clear_bit(R5_ReadError, &dev->flags);
3062 clear_bit(R5_ReWrite, &dev->flags);
3064 if (!rdev || !test_bit(In_sync, &rdev->flags)
3065 || test_bit(R5_ReadError, &dev->flags)) {
3067 r6s.failed_num[s.failed] = i;
3070 set_bit(R5_Insync, &dev->flags);
3074 if (unlikely(blocked_rdev)) {
3075 if (s.syncing || s.expanding || s.expanded ||
3076 s.to_write || s.written) {
3077 set_bit(STRIPE_HANDLE, &sh->state);
3080 /* There is nothing for the blocked_rdev to block */
3081 rdev_dec_pending(blocked_rdev, conf->mddev);
3082 blocked_rdev = NULL;
3085 pr_debug("locked=%d uptodate=%d to_read=%d"
3086 " to_write=%d failed=%d failed_num=%d,%d\n",
3087 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3088 r6s.failed_num[0], r6s.failed_num[1]);
3089 /* check if the array has lost >2 devices and, if so, some requests
3090 * might need to be failed
3092 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3093 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3094 if (s.failed > 2 && s.syncing) {
3095 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3096 clear_bit(STRIPE_SYNCING, &sh->state);
3101 * might be able to return some write requests if the parity blocks
3102 * are safe, or on a failed drive
3104 pdev = &sh->dev[pd_idx];
3105 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3106 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3107 qdev = &sh->dev[qd_idx];
3108 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3109 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3112 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3113 && !test_bit(R5_LOCKED, &pdev->flags)
3114 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3115 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3116 && !test_bit(R5_LOCKED, &qdev->flags)
3117 && test_bit(R5_UPTODATE, &qdev->flags)))))
3118 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3120 /* Now we might consider reading some blocks, either to check/generate
3121 * parity, or to satisfy requests
3122 * or to load a block that is being partially written.
3124 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3125 (s.syncing && (s.uptodate < disks)) || s.expanding)
3126 handle_stripe_fill6(sh, &s, &r6s, disks);
3128 /* now to consider writing and what else, if anything should be read */
3130 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3132 /* maybe we need to check and possibly fix the parity for this stripe
3133 * Any reads will already have been scheduled, so we just see if enough
3136 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3137 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3139 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3140 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3141 clear_bit(STRIPE_SYNCING, &sh->state);
3144 /* If the failed drives are just a ReadError, then we might need
3145 * to progress the repair/check process
3147 if (s.failed <= 2 && !conf->mddev->ro)
3148 for (i = 0; i < s.failed; i++) {
3149 dev = &sh->dev[r6s.failed_num[i]];
3150 if (test_bit(R5_ReadError, &dev->flags)
3151 && !test_bit(R5_LOCKED, &dev->flags)
3152 && test_bit(R5_UPTODATE, &dev->flags)
3154 if (!test_bit(R5_ReWrite, &dev->flags)) {
3155 set_bit(R5_Wantwrite, &dev->flags);
3156 set_bit(R5_ReWrite, &dev->flags);
3157 set_bit(R5_LOCKED, &dev->flags);
3159 /* let's read it back */
3160 set_bit(R5_Wantread, &dev->flags);
3161 set_bit(R5_LOCKED, &dev->flags);
3166 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3167 /* Need to write out all blocks after computing P&Q */
3168 sh->disks = conf->raid_disks;
3169 stripe_set_idx(sh->sector, conf, 0, sh);
3170 compute_parity6(sh, RECONSTRUCT_WRITE);
3171 for (i = conf->raid_disks ; i-- ; ) {
3172 set_bit(R5_LOCKED, &sh->dev[i].flags);
3174 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3176 clear_bit(STRIPE_EXPANDING, &sh->state);
3177 } else if (s.expanded) {
3178 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3179 atomic_dec(&conf->reshape_stripes);
3180 wake_up(&conf->wait_for_overlap);
3181 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3184 if (s.expanding && s.locked == 0 &&
3185 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3186 handle_stripe_expansion(conf, sh, &r6s);
3189 spin_unlock(&sh->lock);
3191 /* wait for this device to become unblocked */
3192 if (unlikely(blocked_rdev))
3193 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3197 return_io(return_bi);
3199 return blocked_rdev == NULL;
3202 /* returns true if the stripe was handled */
3203 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3205 if (sh->raid_conf->level == 6)
3206 return handle_stripe6(sh, tmp_page);
3208 return handle_stripe5(sh);
3213 static void raid5_activate_delayed(raid5_conf_t *conf)
3215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3216 while (!list_empty(&conf->delayed_list)) {
3217 struct list_head *l = conf->delayed_list.next;
3218 struct stripe_head *sh;
3219 sh = list_entry(l, struct stripe_head, lru);
3221 clear_bit(STRIPE_DELAYED, &sh->state);
3222 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3223 atomic_inc(&conf->preread_active_stripes);
3224 list_add_tail(&sh->lru, &conf->hold_list);
3227 blk_plug_device(conf->mddev->queue);
3230 static void activate_bit_delay(raid5_conf_t *conf)
3232 /* device_lock is held */
3233 struct list_head head;
3234 list_add(&head, &conf->bitmap_list);
3235 list_del_init(&conf->bitmap_list);
3236 while (!list_empty(&head)) {
3237 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3238 list_del_init(&sh->lru);
3239 atomic_inc(&sh->count);
3240 __release_stripe(conf, sh);
3244 static void unplug_slaves(mddev_t *mddev)
3246 raid5_conf_t *conf = mddev_to_conf(mddev);
3250 for (i=0; i<mddev->raid_disks; i++) {
3251 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3252 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3253 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3255 atomic_inc(&rdev->nr_pending);
3258 blk_unplug(r_queue);
3260 rdev_dec_pending(rdev, mddev);
3267 static void raid5_unplug_device(struct request_queue *q)
3269 mddev_t *mddev = q->queuedata;
3270 raid5_conf_t *conf = mddev_to_conf(mddev);
3271 unsigned long flags;
3273 spin_lock_irqsave(&conf->device_lock, flags);
3275 if (blk_remove_plug(q)) {
3277 raid5_activate_delayed(conf);
3279 md_wakeup_thread(mddev->thread);
3281 spin_unlock_irqrestore(&conf->device_lock, flags);
3283 unplug_slaves(mddev);
3286 static int raid5_congested(void *data, int bits)
3288 mddev_t *mddev = data;
3289 raid5_conf_t *conf = mddev_to_conf(mddev);
3291 /* No difference between reads and writes. Just check
3292 * how busy the stripe_cache is
3294 if (conf->inactive_blocked)
3298 if (list_empty_careful(&conf->inactive_list))
3304 /* We want read requests to align with chunks where possible,
3305 * but write requests don't need to.
3307 static int raid5_mergeable_bvec(struct request_queue *q,
3308 struct bvec_merge_data *bvm,
3309 struct bio_vec *biovec)
3311 mddev_t *mddev = q->queuedata;
3312 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3314 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3315 unsigned int bio_sectors = bvm->bi_size >> 9;
3317 if ((bvm->bi_rw & 1) == WRITE)
3318 return biovec->bv_len; /* always allow writes to be mergeable */
3320 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3321 if (max < 0) max = 0;
3322 if (max <= biovec->bv_len && bio_sectors == 0)
3323 return biovec->bv_len;
3329 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3332 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3333 unsigned int bio_sectors = bio->bi_size >> 9;
3335 return chunk_sectors >=
3336 ((sector & (chunk_sectors - 1)) + bio_sectors);
3340 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3341 * later sampled by raid5d.
3343 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3345 unsigned long flags;
3347 spin_lock_irqsave(&conf->device_lock, flags);
3349 bi->bi_next = conf->retry_read_aligned_list;
3350 conf->retry_read_aligned_list = bi;
3352 spin_unlock_irqrestore(&conf->device_lock, flags);
3353 md_wakeup_thread(conf->mddev->thread);
3357 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3361 bi = conf->retry_read_aligned;
3363 conf->retry_read_aligned = NULL;
3366 bi = conf->retry_read_aligned_list;
3368 conf->retry_read_aligned_list = bi->bi_next;
3371 * this sets the active strip count to 1 and the processed
3372 * strip count to zero (upper 8 bits)
3374 bi->bi_phys_segments = 1; /* biased count of active stripes */
3382 * The "raid5_align_endio" should check if the read succeeded and if it
3383 * did, call bio_endio on the original bio (having bio_put the new bio
3385 * If the read failed..
3387 static void raid5_align_endio(struct bio *bi, int error)
3389 struct bio* raid_bi = bi->bi_private;
3392 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3397 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3398 conf = mddev_to_conf(mddev);
3399 rdev = (void*)raid_bi->bi_next;
3400 raid_bi->bi_next = NULL;
3402 rdev_dec_pending(rdev, conf->mddev);
3404 if (!error && uptodate) {
3405 bio_endio(raid_bi, 0);
3406 if (atomic_dec_and_test(&conf->active_aligned_reads))
3407 wake_up(&conf->wait_for_stripe);
3412 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3414 add_bio_to_retry(raid_bi, conf);
3417 static int bio_fits_rdev(struct bio *bi)
3419 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3421 if ((bi->bi_size>>9) > q->max_sectors)
3423 blk_recount_segments(q, bi);
3424 if (bi->bi_phys_segments > q->max_phys_segments)
3427 if (q->merge_bvec_fn)
3428 /* it's too hard to apply the merge_bvec_fn at this stage,
3437 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3439 mddev_t *mddev = q->queuedata;
3440 raid5_conf_t *conf = mddev_to_conf(mddev);
3441 unsigned int dd_idx;
3442 struct bio* align_bi;
3445 if (!in_chunk_boundary(mddev, raid_bio)) {
3446 pr_debug("chunk_aligned_read : non aligned\n");
3450 * use bio_clone to make a copy of the bio
3452 align_bi = bio_clone(raid_bio, GFP_NOIO);
3456 * set bi_end_io to a new function, and set bi_private to the
3459 align_bi->bi_end_io = raid5_align_endio;
3460 align_bi->bi_private = raid_bio;
3464 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3469 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3470 if (rdev && test_bit(In_sync, &rdev->flags)) {
3471 atomic_inc(&rdev->nr_pending);
3473 raid_bio->bi_next = (void*)rdev;
3474 align_bi->bi_bdev = rdev->bdev;
3475 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3476 align_bi->bi_sector += rdev->data_offset;
3478 if (!bio_fits_rdev(align_bi)) {
3479 /* too big in some way */
3481 rdev_dec_pending(rdev, mddev);
3485 spin_lock_irq(&conf->device_lock);
3486 wait_event_lock_irq(conf->wait_for_stripe,
3488 conf->device_lock, /* nothing */);
3489 atomic_inc(&conf->active_aligned_reads);
3490 spin_unlock_irq(&conf->device_lock);
3492 generic_make_request(align_bi);
3501 /* __get_priority_stripe - get the next stripe to process
3503 * Full stripe writes are allowed to pass preread active stripes up until
3504 * the bypass_threshold is exceeded. In general the bypass_count
3505 * increments when the handle_list is handled before the hold_list; however, it
3506 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3507 * stripe with in flight i/o. The bypass_count will be reset when the
3508 * head of the hold_list has changed, i.e. the head was promoted to the
3511 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3513 struct stripe_head *sh;
3515 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3517 list_empty(&conf->handle_list) ? "empty" : "busy",
3518 list_empty(&conf->hold_list) ? "empty" : "busy",
3519 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3521 if (!list_empty(&conf->handle_list)) {
3522 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3524 if (list_empty(&conf->hold_list))
3525 conf->bypass_count = 0;
3526 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3527 if (conf->hold_list.next == conf->last_hold)
3528 conf->bypass_count++;
3530 conf->last_hold = conf->hold_list.next;
3531 conf->bypass_count -= conf->bypass_threshold;
3532 if (conf->bypass_count < 0)
3533 conf->bypass_count = 0;
3536 } else if (!list_empty(&conf->hold_list) &&
3537 ((conf->bypass_threshold &&
3538 conf->bypass_count > conf->bypass_threshold) ||
3539 atomic_read(&conf->pending_full_writes) == 0)) {
3540 sh = list_entry(conf->hold_list.next,
3542 conf->bypass_count -= conf->bypass_threshold;
3543 if (conf->bypass_count < 0)
3544 conf->bypass_count = 0;
3548 list_del_init(&sh->lru);
3549 atomic_inc(&sh->count);
3550 BUG_ON(atomic_read(&sh->count) != 1);
3554 static int make_request(struct request_queue *q, struct bio * bi)
3556 mddev_t *mddev = q->queuedata;
3557 raid5_conf_t *conf = mddev_to_conf(mddev);
3559 sector_t new_sector;
3560 sector_t logical_sector, last_sector;
3561 struct stripe_head *sh;
3562 const int rw = bio_data_dir(bi);
3565 if (unlikely(bio_barrier(bi))) {
3566 bio_endio(bi, -EOPNOTSUPP);
3570 md_write_start(mddev, bi);
3572 cpu = part_stat_lock();
3573 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3574 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3579 mddev->reshape_position == MaxSector &&
3580 chunk_aligned_read(q,bi))
3583 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3584 last_sector = bi->bi_sector + (bi->bi_size>>9);
3586 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3588 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3590 int disks, data_disks;
3595 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3596 if (likely(conf->expand_progress == MaxSector))
3597 disks = conf->raid_disks;
3599 /* spinlock is needed as expand_progress may be
3600 * 64bit on a 32bit platform, and so it might be
3601 * possible to see a half-updated value
3602 * Ofcourse expand_progress could change after
3603 * the lock is dropped, so once we get a reference
3604 * to the stripe that we think it is, we will have
3607 spin_lock_irq(&conf->device_lock);
3608 disks = conf->raid_disks;
3609 if (logical_sector >= conf->expand_progress) {
3610 disks = conf->previous_raid_disks;
3613 if (logical_sector >= conf->expand_lo) {
3614 spin_unlock_irq(&conf->device_lock);
3619 spin_unlock_irq(&conf->device_lock);
3621 data_disks = disks - conf->max_degraded;
3623 new_sector = raid5_compute_sector(conf, logical_sector,
3626 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3627 (unsigned long long)new_sector,
3628 (unsigned long long)logical_sector);
3630 sh = get_active_stripe(conf, new_sector, previous,
3631 (bi->bi_rw&RWA_MASK));
3633 if (unlikely(conf->expand_progress != MaxSector)) {
3634 /* expansion might have moved on while waiting for a
3635 * stripe, so we must do the range check again.
3636 * Expansion could still move past after this
3637 * test, but as we are holding a reference to
3638 * 'sh', we know that if that happens,
3639 * STRIPE_EXPANDING will get set and the expansion
3640 * won't proceed until we finish with the stripe.
3643 spin_lock_irq(&conf->device_lock);
3644 if (logical_sector < conf->expand_progress &&
3645 disks == conf->previous_raid_disks)
3646 /* mismatch, need to try again */
3648 spin_unlock_irq(&conf->device_lock);
3654 /* FIXME what if we get a false positive because these
3655 * are being updated.
3657 if (logical_sector >= mddev->suspend_lo &&
3658 logical_sector < mddev->suspend_hi) {
3664 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3665 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3666 /* Stripe is busy expanding or
3667 * add failed due to overlap. Flush everything
3670 raid5_unplug_device(mddev->queue);
3675 finish_wait(&conf->wait_for_overlap, &w);
3676 set_bit(STRIPE_HANDLE, &sh->state);
3677 clear_bit(STRIPE_DELAYED, &sh->state);
3680 /* cannot get stripe for read-ahead, just give-up */
3681 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3682 finish_wait(&conf->wait_for_overlap, &w);
3687 spin_lock_irq(&conf->device_lock);
3688 remaining = raid5_dec_bi_phys_segments(bi);
3689 spin_unlock_irq(&conf->device_lock);
3690 if (remaining == 0) {
3693 md_write_end(mddev);
3700 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3702 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3704 /* reshaping is quite different to recovery/resync so it is
3705 * handled quite separately ... here.
3707 * On each call to sync_request, we gather one chunk worth of
3708 * destination stripes and flag them as expanding.
3709 * Then we find all the source stripes and request reads.
3710 * As the reads complete, handle_stripe will copy the data
3711 * into the destination stripe and release that stripe.
3713 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3714 struct stripe_head *sh;
3715 sector_t first_sector, last_sector;
3716 int raid_disks = conf->previous_raid_disks;
3717 int data_disks = raid_disks - conf->max_degraded;
3718 int new_data_disks = conf->raid_disks - conf->max_degraded;
3721 sector_t writepos, safepos, gap;
3723 if (sector_nr == 0 &&
3724 conf->expand_progress != 0) {
3725 /* restarting in the middle, skip the initial sectors */
3726 sector_nr = conf->expand_progress;
3727 sector_div(sector_nr, new_data_disks);
3732 /* we update the metadata when there is more than 3Meg
3733 * in the block range (that is rather arbitrary, should
3734 * probably be time based) or when the data about to be
3735 * copied would over-write the source of the data at
3736 * the front of the range.
3737 * i.e. one new_stripe forward from expand_progress new_maps
3738 * to after where expand_lo old_maps to
3740 writepos = conf->expand_progress +
3741 conf->chunk_size/512*(new_data_disks);
3742 sector_div(writepos, new_data_disks);
3743 safepos = conf->expand_lo;
3744 sector_div(safepos, data_disks);
3745 gap = conf->expand_progress - conf->expand_lo;
3747 if (writepos >= safepos ||
3748 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3749 /* Cannot proceed until we've updated the superblock... */
3750 wait_event(conf->wait_for_overlap,
3751 atomic_read(&conf->reshape_stripes)==0);
3752 mddev->reshape_position = conf->expand_progress;
3753 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3754 md_wakeup_thread(mddev->thread);
3755 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3756 kthread_should_stop());
3757 spin_lock_irq(&conf->device_lock);
3758 conf->expand_lo = mddev->reshape_position;
3759 spin_unlock_irq(&conf->device_lock);
3760 wake_up(&conf->wait_for_overlap);
3763 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3766 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3767 set_bit(STRIPE_EXPANDING, &sh->state);
3768 atomic_inc(&conf->reshape_stripes);
3769 /* If any of this stripe is beyond the end of the old
3770 * array, then we need to zero those blocks
3772 for (j=sh->disks; j--;) {
3774 if (j == sh->pd_idx)
3776 if (conf->level == 6 &&
3779 s = compute_blocknr(sh, j);
3780 if (s < raid5_size(mddev, 0, 0)) {
3784 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3785 set_bit(R5_Expanded, &sh->dev[j].flags);
3786 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3789 set_bit(STRIPE_EXPAND_READY, &sh->state);
3790 set_bit(STRIPE_HANDLE, &sh->state);
3794 spin_lock_irq(&conf->device_lock);
3795 conf->expand_progress = (sector_nr + i) * new_data_disks;
3796 spin_unlock_irq(&conf->device_lock);
3797 /* Ok, those stripe are ready. We can start scheduling
3798 * reads on the source stripes.
3799 * The source stripes are determined by mapping the first and last
3800 * block on the destination stripes.
3803 raid5_compute_sector(conf, sector_nr*(new_data_disks),
3806 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3807 *(new_data_disks) - 1),
3809 if (last_sector >= mddev->dev_sectors)
3810 last_sector = mddev->dev_sectors - 1;
3811 while (first_sector <= last_sector) {
3812 sh = get_active_stripe(conf, first_sector, 1, 0);
3813 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3814 set_bit(STRIPE_HANDLE, &sh->state);
3816 first_sector += STRIPE_SECTORS;
3818 /* If this takes us to the resync_max point where we have to pause,
3819 * then we need to write out the superblock.
3821 sector_nr += conf->chunk_size>>9;
3822 if (sector_nr >= mddev->resync_max) {
3823 /* Cannot proceed until we've updated the superblock... */
3824 wait_event(conf->wait_for_overlap,
3825 atomic_read(&conf->reshape_stripes) == 0);
3826 mddev->reshape_position = conf->expand_progress;
3827 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3828 md_wakeup_thread(mddev->thread);
3829 wait_event(mddev->sb_wait,
3830 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3831 || kthread_should_stop());
3832 spin_lock_irq(&conf->device_lock);
3833 conf->expand_lo = mddev->reshape_position;
3834 spin_unlock_irq(&conf->device_lock);
3835 wake_up(&conf->wait_for_overlap);
3837 return conf->chunk_size>>9;
3840 /* FIXME go_faster isn't used */
3841 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3843 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3844 struct stripe_head *sh;
3845 sector_t max_sector = mddev->dev_sectors;
3847 int still_degraded = 0;
3850 if (sector_nr >= max_sector) {
3851 /* just being told to finish up .. nothing much to do */
3852 unplug_slaves(mddev);
3854 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3859 if (mddev->curr_resync < max_sector) /* aborted */
3860 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3862 else /* completed sync */
3864 bitmap_close_sync(mddev->bitmap);
3869 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3870 return reshape_request(mddev, sector_nr, skipped);
3872 /* No need to check resync_max as we never do more than one
3873 * stripe, and as resync_max will always be on a chunk boundary,
3874 * if the check in md_do_sync didn't fire, there is no chance
3875 * of overstepping resync_max here
3878 /* if there is too many failed drives and we are trying
3879 * to resync, then assert that we are finished, because there is
3880 * nothing we can do.
3882 if (mddev->degraded >= conf->max_degraded &&
3883 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3884 sector_t rv = mddev->dev_sectors - sector_nr;
3888 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3889 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3890 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3891 /* we can skip this block, and probably more */
3892 sync_blocks /= STRIPE_SECTORS;
3894 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3898 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3900 sh = get_active_stripe(conf, sector_nr, 0, 1);
3902 sh = get_active_stripe(conf, sector_nr, 0, 0);
3903 /* make sure we don't swamp the stripe cache if someone else
3904 * is trying to get access
3906 schedule_timeout_uninterruptible(1);
3908 /* Need to check if array will still be degraded after recovery/resync
3909 * We don't need to check the 'failed' flag as when that gets set,
3912 for (i=0; i<mddev->raid_disks; i++)
3913 if (conf->disks[i].rdev == NULL)
3916 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3918 spin_lock(&sh->lock);
3919 set_bit(STRIPE_SYNCING, &sh->state);
3920 clear_bit(STRIPE_INSYNC, &sh->state);
3921 spin_unlock(&sh->lock);
3923 /* wait for any blocked device to be handled */
3924 while(unlikely(!handle_stripe(sh, NULL)))
3928 return STRIPE_SECTORS;
3931 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3933 /* We may not be able to submit a whole bio at once as there
3934 * may not be enough stripe_heads available.
3935 * We cannot pre-allocate enough stripe_heads as we may need
3936 * more than exist in the cache (if we allow ever large chunks).
3937 * So we do one stripe head at a time and record in
3938 * ->bi_hw_segments how many have been done.
3940 * We *know* that this entire raid_bio is in one chunk, so
3941 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3943 struct stripe_head *sh;
3945 sector_t sector, logical_sector, last_sector;
3950 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3951 sector = raid5_compute_sector(conf, logical_sector,
3953 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3955 for (; logical_sector < last_sector;
3956 logical_sector += STRIPE_SECTORS,
3957 sector += STRIPE_SECTORS,
3960 if (scnt < raid5_bi_hw_segments(raid_bio))
3961 /* already done this stripe */
3964 sh = get_active_stripe(conf, sector, 0, 1);
3967 /* failed to get a stripe - must wait */
3968 raid5_set_bi_hw_segments(raid_bio, scnt);
3969 conf->retry_read_aligned = raid_bio;
3973 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3974 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3976 raid5_set_bi_hw_segments(raid_bio, scnt);
3977 conf->retry_read_aligned = raid_bio;
3981 handle_stripe(sh, NULL);
3985 spin_lock_irq(&conf->device_lock);
3986 remaining = raid5_dec_bi_phys_segments(raid_bio);
3987 spin_unlock_irq(&conf->device_lock);
3989 bio_endio(raid_bio, 0);
3990 if (atomic_dec_and_test(&conf->active_aligned_reads))
3991 wake_up(&conf->wait_for_stripe);
3998 * This is our raid5 kernel thread.
4000 * We scan the hash table for stripes which can be handled now.
4001 * During the scan, completed stripes are saved for us by the interrupt
4002 * handler, so that they will not have to wait for our next wakeup.
4004 static void raid5d(mddev_t *mddev)
4006 struct stripe_head *sh;
4007 raid5_conf_t *conf = mddev_to_conf(mddev);
4010 pr_debug("+++ raid5d active\n");
4012 md_check_recovery(mddev);
4015 spin_lock_irq(&conf->device_lock);
4019 if (conf->seq_flush != conf->seq_write) {
4020 int seq = conf->seq_flush;
4021 spin_unlock_irq(&conf->device_lock);
4022 bitmap_unplug(mddev->bitmap);
4023 spin_lock_irq(&conf->device_lock);
4024 conf->seq_write = seq;
4025 activate_bit_delay(conf);
4028 while ((bio = remove_bio_from_retry(conf))) {
4030 spin_unlock_irq(&conf->device_lock);
4031 ok = retry_aligned_read(conf, bio);
4032 spin_lock_irq(&conf->device_lock);
4038 sh = __get_priority_stripe(conf);
4042 spin_unlock_irq(&conf->device_lock);
4045 handle_stripe(sh, conf->spare_page);
4048 spin_lock_irq(&conf->device_lock);
4050 pr_debug("%d stripes handled\n", handled);
4052 spin_unlock_irq(&conf->device_lock);
4054 async_tx_issue_pending_all();
4055 unplug_slaves(mddev);
4057 pr_debug("--- raid5d inactive\n");
4061 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4063 raid5_conf_t *conf = mddev_to_conf(mddev);
4065 return sprintf(page, "%d\n", conf->max_nr_stripes);
4071 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4073 raid5_conf_t *conf = mddev_to_conf(mddev);
4077 if (len >= PAGE_SIZE)
4082 if (strict_strtoul(page, 10, &new))
4084 if (new <= 16 || new > 32768)
4086 while (new < conf->max_nr_stripes) {
4087 if (drop_one_stripe(conf))
4088 conf->max_nr_stripes--;
4092 err = md_allow_write(mddev);
4095 while (new > conf->max_nr_stripes) {
4096 if (grow_one_stripe(conf))
4097 conf->max_nr_stripes++;
4103 static struct md_sysfs_entry
4104 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4105 raid5_show_stripe_cache_size,
4106 raid5_store_stripe_cache_size);
4109 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4111 raid5_conf_t *conf = mddev_to_conf(mddev);
4113 return sprintf(page, "%d\n", conf->bypass_threshold);
4119 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4121 raid5_conf_t *conf = mddev_to_conf(mddev);
4123 if (len >= PAGE_SIZE)
4128 if (strict_strtoul(page, 10, &new))
4130 if (new > conf->max_nr_stripes)
4132 conf->bypass_threshold = new;
4136 static struct md_sysfs_entry
4137 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4139 raid5_show_preread_threshold,
4140 raid5_store_preread_threshold);
4143 stripe_cache_active_show(mddev_t *mddev, char *page)
4145 raid5_conf_t *conf = mddev_to_conf(mddev);
4147 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4152 static struct md_sysfs_entry
4153 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4155 static struct attribute *raid5_attrs[] = {
4156 &raid5_stripecache_size.attr,
4157 &raid5_stripecache_active.attr,
4158 &raid5_preread_bypass_threshold.attr,
4161 static struct attribute_group raid5_attrs_group = {
4163 .attrs = raid5_attrs,
4167 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4169 raid5_conf_t *conf = mddev_to_conf(mddev);
4172 sectors = mddev->dev_sectors;
4174 /* size is defined by the smallest of previous and new size */
4175 if (conf->raid_disks < conf->previous_raid_disks)
4176 raid_disks = conf->raid_disks;
4178 raid_disks = conf->previous_raid_disks;
4181 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4182 return sectors * (raid_disks - conf->max_degraded);
4185 static raid5_conf_t *setup_conf(mddev_t *mddev)
4188 int raid_disk, memory;
4190 struct disk_info *disk;
4192 if (mddev->new_level != 5
4193 && mddev->new_level != 4
4194 && mddev->new_level != 6) {
4195 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4196 mdname(mddev), mddev->new_level);
4197 return ERR_PTR(-EIO);
4199 if ((mddev->new_level == 5
4200 && !algorithm_valid_raid5(mddev->new_layout)) ||
4201 (mddev->new_level == 6
4202 && !algorithm_valid_raid6(mddev->new_layout))) {
4203 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4204 mdname(mddev), mddev->new_layout);
4205 return ERR_PTR(-EIO);
4207 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4208 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4209 mdname(mddev), mddev->raid_disks);
4210 return ERR_PTR(-EINVAL);
4213 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4214 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4215 mddev->new_chunk, mdname(mddev));
4216 return ERR_PTR(-EINVAL);
4219 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4223 conf->raid_disks = mddev->raid_disks;
4224 if (mddev->reshape_position == MaxSector)
4225 conf->previous_raid_disks = mddev->raid_disks;
4227 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4229 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4234 conf->mddev = mddev;
4236 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4239 if (mddev->new_level == 6) {
4240 conf->spare_page = alloc_page(GFP_KERNEL);
4241 if (!conf->spare_page)
4244 spin_lock_init(&conf->device_lock);
4245 init_waitqueue_head(&conf->wait_for_stripe);
4246 init_waitqueue_head(&conf->wait_for_overlap);
4247 INIT_LIST_HEAD(&conf->handle_list);
4248 INIT_LIST_HEAD(&conf->hold_list);
4249 INIT_LIST_HEAD(&conf->delayed_list);
4250 INIT_LIST_HEAD(&conf->bitmap_list);
4251 INIT_LIST_HEAD(&conf->inactive_list);
4252 atomic_set(&conf->active_stripes, 0);
4253 atomic_set(&conf->preread_active_stripes, 0);
4254 atomic_set(&conf->active_aligned_reads, 0);
4255 conf->bypass_threshold = BYPASS_THRESHOLD;
4257 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4259 list_for_each_entry(rdev, &mddev->disks, same_set) {
4260 raid_disk = rdev->raid_disk;
4261 if (raid_disk >= conf->raid_disks
4264 disk = conf->disks + raid_disk;
4268 if (test_bit(In_sync, &rdev->flags)) {
4269 char b[BDEVNAME_SIZE];
4270 printk(KERN_INFO "raid5: device %s operational as raid"
4271 " disk %d\n", bdevname(rdev->bdev,b),
4274 /* Cannot rely on bitmap to complete recovery */
4278 conf->chunk_size = mddev->new_chunk;
4279 conf->level = mddev->new_level;
4280 if (conf->level == 6)
4281 conf->max_degraded = 2;
4283 conf->max_degraded = 1;
4284 conf->algorithm = mddev->new_layout;
4285 conf->max_nr_stripes = NR_STRIPES;
4286 conf->expand_progress = mddev->reshape_position;
4288 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4289 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4290 if (grow_stripes(conf, conf->max_nr_stripes)) {
4292 "raid5: couldn't allocate %dkB for buffers\n", memory);
4295 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4296 memory, mdname(mddev));
4298 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4299 if (!conf->thread) {
4301 "raid5: couldn't allocate thread for %s\n",
4310 shrink_stripes(conf);
4311 safe_put_page(conf->spare_page);
4313 kfree(conf->stripe_hashtbl);
4315 return ERR_PTR(-EIO);
4317 return ERR_PTR(-ENOMEM);
4320 static int run(mddev_t *mddev)
4323 int working_disks = 0;
4326 if (mddev->reshape_position != MaxSector) {
4327 /* Check that we can continue the reshape.
4328 * Currently only disks can change, it must
4329 * increase, and we must be past the point where
4330 * a stripe over-writes itself
4332 sector_t here_new, here_old;
4334 int max_degraded = (mddev->level == 6 ? 2 : 1);
4336 if (mddev->new_level != mddev->level ||
4337 mddev->new_layout != mddev->layout ||
4338 mddev->new_chunk != mddev->chunk_size) {
4339 printk(KERN_ERR "raid5: %s: unsupported reshape "
4340 "required - aborting.\n",
4344 if (mddev->delta_disks <= 0) {
4345 printk(KERN_ERR "raid5: %s: unsupported reshape "
4346 "(reduce disks) required - aborting.\n",
4350 old_disks = mddev->raid_disks - mddev->delta_disks;
4351 /* reshape_position must be on a new-stripe boundary, and one
4352 * further up in new geometry must map after here in old
4355 here_new = mddev->reshape_position;
4356 if (sector_div(here_new, (mddev->chunk_size>>9)*
4357 (mddev->raid_disks - max_degraded))) {
4358 printk(KERN_ERR "raid5: reshape_position not "
4359 "on a stripe boundary\n");
4362 /* here_new is the stripe we will write to */
4363 here_old = mddev->reshape_position;
4364 sector_div(here_old, (mddev->chunk_size>>9)*
4365 (old_disks-max_degraded));
4366 /* here_old is the first stripe that we might need to read
4368 if (here_new >= here_old) {
4369 /* Reading from the same stripe as writing to - bad */
4370 printk(KERN_ERR "raid5: reshape_position too early for "
4371 "auto-recovery - aborting.\n");
4374 printk(KERN_INFO "raid5: reshape will continue\n");
4375 /* OK, we should be able to continue; */
4377 BUG_ON(mddev->level != mddev->new_level);
4378 BUG_ON(mddev->layout != mddev->new_layout);
4379 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4380 BUG_ON(mddev->delta_disks != 0);
4383 if (mddev->private == NULL)
4384 conf = setup_conf(mddev);
4386 conf = mddev->private;
4389 return PTR_ERR(conf);
4391 mddev->thread = conf->thread;
4392 conf->thread = NULL;
4393 mddev->private = conf;
4396 * 0 for a fully functional array, 1 or 2 for a degraded array.
4398 list_for_each_entry(rdev, &mddev->disks, same_set)
4399 if (rdev->raid_disk >= 0 &&
4400 test_bit(In_sync, &rdev->flags))
4403 mddev->degraded = conf->raid_disks - working_disks;
4405 if (mddev->degraded > conf->max_degraded) {
4406 printk(KERN_ERR "raid5: not enough operational devices for %s"
4407 " (%d/%d failed)\n",
4408 mdname(mddev), mddev->degraded, conf->raid_disks);
4412 /* device size must be a multiple of chunk size */
4413 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4414 mddev->resync_max_sectors = mddev->dev_sectors;
4416 if (mddev->degraded > 0 &&
4417 mddev->recovery_cp != MaxSector) {
4418 if (mddev->ok_start_degraded)
4420 "raid5: starting dirty degraded array: %s"
4421 "- data corruption possible.\n",
4425 "raid5: cannot start dirty degraded array for %s\n",
4431 if (mddev->degraded == 0)
4432 printk("raid5: raid level %d set %s active with %d out of %d"
4433 " devices, algorithm %d\n", conf->level, mdname(mddev),
4434 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4437 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4438 " out of %d devices, algorithm %d\n", conf->level,
4439 mdname(mddev), mddev->raid_disks - mddev->degraded,
4440 mddev->raid_disks, conf->algorithm);
4442 print_raid5_conf(conf);
4444 if (conf->expand_progress != MaxSector) {
4445 printk("...ok start reshape thread\n");
4446 conf->expand_lo = conf->expand_progress;
4447 atomic_set(&conf->reshape_stripes, 0);
4448 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4449 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4450 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4451 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4452 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4456 /* read-ahead size must cover two whole stripes, which is
4457 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4460 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4461 int stripe = data_disks *
4462 (mddev->chunk_size / PAGE_SIZE);
4463 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4464 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4467 /* Ok, everything is just fine now */
4468 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4470 "raid5: failed to create sysfs attributes for %s\n",
4473 mddev->queue->queue_lock = &conf->device_lock;
4475 mddev->queue->unplug_fn = raid5_unplug_device;
4476 mddev->queue->backing_dev_info.congested_data = mddev;
4477 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4479 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4481 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4485 md_unregister_thread(mddev->thread);
4486 mddev->thread = NULL;
4488 shrink_stripes(conf);
4489 print_raid5_conf(conf);
4490 safe_put_page(conf->spare_page);
4492 kfree(conf->stripe_hashtbl);
4495 mddev->private = NULL;
4496 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4502 static int stop(mddev_t *mddev)
4504 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4506 md_unregister_thread(mddev->thread);
4507 mddev->thread = NULL;
4508 shrink_stripes(conf);
4509 kfree(conf->stripe_hashtbl);
4510 mddev->queue->backing_dev_info.congested_fn = NULL;
4511 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4512 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4515 mddev->private = NULL;
4520 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4524 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4525 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4526 seq_printf(seq, "sh %llu, count %d.\n",
4527 (unsigned long long)sh->sector, atomic_read(&sh->count));
4528 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4529 for (i = 0; i < sh->disks; i++) {
4530 seq_printf(seq, "(cache%d: %p %ld) ",
4531 i, sh->dev[i].page, sh->dev[i].flags);
4533 seq_printf(seq, "\n");
4536 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4538 struct stripe_head *sh;
4539 struct hlist_node *hn;
4542 spin_lock_irq(&conf->device_lock);
4543 for (i = 0; i < NR_HASH; i++) {
4544 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4545 if (sh->raid_conf != conf)
4550 spin_unlock_irq(&conf->device_lock);
4554 static void status(struct seq_file *seq, mddev_t *mddev)
4556 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4559 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4560 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4561 for (i = 0; i < conf->raid_disks; i++)
4562 seq_printf (seq, "%s",
4563 conf->disks[i].rdev &&
4564 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4565 seq_printf (seq, "]");
4567 seq_printf (seq, "\n");
4568 printall(seq, conf);
4572 static void print_raid5_conf (raid5_conf_t *conf)
4575 struct disk_info *tmp;
4577 printk("RAID5 conf printout:\n");
4579 printk("(conf==NULL)\n");
4582 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4583 conf->raid_disks - conf->mddev->degraded);
4585 for (i = 0; i < conf->raid_disks; i++) {
4586 char b[BDEVNAME_SIZE];
4587 tmp = conf->disks + i;
4589 printk(" disk %d, o:%d, dev:%s\n",
4590 i, !test_bit(Faulty, &tmp->rdev->flags),
4591 bdevname(tmp->rdev->bdev,b));
4595 static int raid5_spare_active(mddev_t *mddev)
4598 raid5_conf_t *conf = mddev->private;
4599 struct disk_info *tmp;
4601 for (i = 0; i < conf->raid_disks; i++) {
4602 tmp = conf->disks + i;
4604 && !test_bit(Faulty, &tmp->rdev->flags)
4605 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4606 unsigned long flags;
4607 spin_lock_irqsave(&conf->device_lock, flags);
4609 spin_unlock_irqrestore(&conf->device_lock, flags);
4612 print_raid5_conf(conf);
4616 static int raid5_remove_disk(mddev_t *mddev, int number)
4618 raid5_conf_t *conf = mddev->private;
4621 struct disk_info *p = conf->disks + number;
4623 print_raid5_conf(conf);
4626 if (test_bit(In_sync, &rdev->flags) ||
4627 atomic_read(&rdev->nr_pending)) {
4631 /* Only remove non-faulty devices if recovery
4634 if (!test_bit(Faulty, &rdev->flags) &&
4635 mddev->degraded <= conf->max_degraded) {
4641 if (atomic_read(&rdev->nr_pending)) {
4642 /* lost the race, try later */
4649 print_raid5_conf(conf);
4653 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4655 raid5_conf_t *conf = mddev->private;
4658 struct disk_info *p;
4660 int last = conf->raid_disks - 1;
4662 if (mddev->degraded > conf->max_degraded)
4663 /* no point adding a device */
4666 if (rdev->raid_disk >= 0)
4667 first = last = rdev->raid_disk;
4670 * find the disk ... but prefer rdev->saved_raid_disk
4673 if (rdev->saved_raid_disk >= 0 &&
4674 rdev->saved_raid_disk >= first &&
4675 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4676 disk = rdev->saved_raid_disk;
4679 for ( ; disk <= last ; disk++)
4680 if ((p=conf->disks + disk)->rdev == NULL) {
4681 clear_bit(In_sync, &rdev->flags);
4682 rdev->raid_disk = disk;
4684 if (rdev->saved_raid_disk != disk)
4686 rcu_assign_pointer(p->rdev, rdev);
4689 print_raid5_conf(conf);
4693 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4695 /* no resync is happening, and there is enough space
4696 * on all devices, so we can resize.
4697 * We need to make sure resync covers any new space.
4698 * If the array is shrinking we should possibly wait until
4699 * any io in the removed space completes, but it hardly seems
4702 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4703 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4704 mddev->raid_disks));
4705 if (mddev->array_sectors >
4706 raid5_size(mddev, sectors, mddev->raid_disks))
4708 set_capacity(mddev->gendisk, mddev->array_sectors);
4710 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4711 mddev->recovery_cp = mddev->dev_sectors;
4712 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4714 mddev->dev_sectors = sectors;
4715 mddev->resync_max_sectors = sectors;
4719 #ifdef CONFIG_MD_RAID5_RESHAPE
4720 static int raid5_check_reshape(mddev_t *mddev)
4722 raid5_conf_t *conf = mddev_to_conf(mddev);
4725 if (mddev->delta_disks < 0 ||
4726 mddev->new_level != mddev->level)
4727 return -EINVAL; /* Cannot shrink array or change level yet */
4728 if (mddev->delta_disks == 0)
4729 return 0; /* nothing to do */
4731 /* Cannot grow a bitmap yet */
4734 /* Can only proceed if there are plenty of stripe_heads.
4735 * We need a minimum of one full stripe,, and for sensible progress
4736 * it is best to have about 4 times that.
4737 * If we require 4 times, then the default 256 4K stripe_heads will
4738 * allow for chunk sizes up to 256K, which is probably OK.
4739 * If the chunk size is greater, user-space should request more
4740 * stripe_heads first.
4742 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4743 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4744 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4745 (mddev->chunk_size / STRIPE_SIZE)*4);
4749 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4753 if (mddev->degraded > conf->max_degraded)
4755 /* looks like we might be able to manage this */
4759 static int raid5_start_reshape(mddev_t *mddev)
4761 raid5_conf_t *conf = mddev_to_conf(mddev);
4764 int added_devices = 0;
4765 unsigned long flags;
4767 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4770 list_for_each_entry(rdev, &mddev->disks, same_set)
4771 if (rdev->raid_disk < 0 &&
4772 !test_bit(Faulty, &rdev->flags))
4775 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4776 /* Not enough devices even to make a degraded array
4781 atomic_set(&conf->reshape_stripes, 0);
4782 spin_lock_irq(&conf->device_lock);
4783 conf->previous_raid_disks = conf->raid_disks;
4784 conf->raid_disks += mddev->delta_disks;
4785 conf->expand_progress = 0;
4786 conf->expand_lo = 0;
4787 spin_unlock_irq(&conf->device_lock);
4789 /* Add some new drives, as many as will fit.
4790 * We know there are enough to make the newly sized array work.
4792 list_for_each_entry(rdev, &mddev->disks, same_set)
4793 if (rdev->raid_disk < 0 &&
4794 !test_bit(Faulty, &rdev->flags)) {
4795 if (raid5_add_disk(mddev, rdev) == 0) {
4797 set_bit(In_sync, &rdev->flags);
4799 rdev->recovery_offset = 0;
4800 sprintf(nm, "rd%d", rdev->raid_disk);
4801 if (sysfs_create_link(&mddev->kobj,
4804 "raid5: failed to create "
4805 " link %s for %s\n",
4811 spin_lock_irqsave(&conf->device_lock, flags);
4812 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4813 spin_unlock_irqrestore(&conf->device_lock, flags);
4814 mddev->raid_disks = conf->raid_disks;
4815 mddev->reshape_position = 0;
4816 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4818 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4819 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4820 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4821 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4822 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4824 if (!mddev->sync_thread) {
4825 mddev->recovery = 0;
4826 spin_lock_irq(&conf->device_lock);
4827 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4828 conf->expand_progress = MaxSector;
4829 spin_unlock_irq(&conf->device_lock);
4832 md_wakeup_thread(mddev->sync_thread);
4833 md_new_event(mddev);
4838 static void end_reshape(raid5_conf_t *conf)
4841 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4843 spin_lock_irq(&conf->device_lock);
4844 conf->previous_raid_disks = conf->raid_disks;
4845 conf->expand_progress = MaxSector;
4846 spin_unlock_irq(&conf->device_lock);
4848 /* read-ahead size must cover two whole stripes, which is
4849 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4852 int data_disks = conf->raid_disks - conf->max_degraded;
4853 int stripe = data_disks * (conf->chunk_size
4855 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4856 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4861 static void raid5_finish_reshape(mddev_t *mddev)
4863 struct block_device *bdev;
4865 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4867 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4868 set_capacity(mddev->gendisk, mddev->array_sectors);
4870 mddev->reshape_position = MaxSector;
4872 bdev = bdget_disk(mddev->gendisk, 0);
4874 mutex_lock(&bdev->bd_inode->i_mutex);
4875 i_size_write(bdev->bd_inode,
4876 (loff_t)mddev->array_sectors << 9);
4877 mutex_unlock(&bdev->bd_inode->i_mutex);
4883 static void raid5_quiesce(mddev_t *mddev, int state)
4885 raid5_conf_t *conf = mddev_to_conf(mddev);
4888 case 2: /* resume for a suspend */
4889 wake_up(&conf->wait_for_overlap);
4892 case 1: /* stop all writes */
4893 spin_lock_irq(&conf->device_lock);
4895 wait_event_lock_irq(conf->wait_for_stripe,
4896 atomic_read(&conf->active_stripes) == 0 &&
4897 atomic_read(&conf->active_aligned_reads) == 0,
4898 conf->device_lock, /* nothing */);
4899 spin_unlock_irq(&conf->device_lock);
4902 case 0: /* re-enable writes */
4903 spin_lock_irq(&conf->device_lock);
4905 wake_up(&conf->wait_for_stripe);
4906 wake_up(&conf->wait_for_overlap);
4907 spin_unlock_irq(&conf->device_lock);
4913 static void *raid5_takeover_raid1(mddev_t *mddev)
4917 if (mddev->raid_disks != 2 ||
4918 mddev->degraded > 1)
4919 return ERR_PTR(-EINVAL);
4921 /* Should check if there are write-behind devices? */
4923 chunksect = 64*2; /* 64K by default */
4925 /* The array must be an exact multiple of chunksize */
4926 while (chunksect && (mddev->array_sectors & (chunksect-1)))
4929 if ((chunksect<<9) < STRIPE_SIZE)
4930 /* array size does not allow a suitable chunk size */
4931 return ERR_PTR(-EINVAL);
4933 mddev->new_level = 5;
4934 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
4935 mddev->new_chunk = chunksect << 9;
4937 return setup_conf(mddev);
4940 static void *raid5_takeover_raid6(mddev_t *mddev)
4944 switch (mddev->layout) {
4945 case ALGORITHM_LEFT_ASYMMETRIC_6:
4946 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
4948 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4949 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
4951 case ALGORITHM_LEFT_SYMMETRIC_6:
4952 new_layout = ALGORITHM_LEFT_SYMMETRIC;
4954 case ALGORITHM_RIGHT_SYMMETRIC_6:
4955 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
4957 case ALGORITHM_PARITY_0_6:
4958 new_layout = ALGORITHM_PARITY_0;
4960 case ALGORITHM_PARITY_N:
4961 new_layout = ALGORITHM_PARITY_N;
4964 return ERR_PTR(-EINVAL);
4966 mddev->new_level = 5;
4967 mddev->new_layout = new_layout;
4968 mddev->delta_disks = -1;
4969 mddev->raid_disks -= 1;
4970 return setup_conf(mddev);
4974 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
4976 /* Currently the layout and chunk size can only be changed
4977 * for a 2-drive raid array, as in that case no data shuffling
4979 * Later we might validate these and set new_* so a reshape
4980 * can complete the change.
4982 raid5_conf_t *conf = mddev_to_conf(mddev);
4984 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
4986 if (new_chunk > 0) {
4987 if (new_chunk & (new_chunk-1))
4988 /* not a power of 2 */
4990 if (new_chunk < PAGE_SIZE)
4992 if (mddev->array_sectors & ((new_chunk>>9)-1))
4993 /* not factor of array size */
4997 /* They look valid */
4999 if (mddev->raid_disks != 2)
5002 if (new_layout >= 0) {
5003 conf->algorithm = new_layout;
5004 mddev->layout = mddev->new_layout = new_layout;
5006 if (new_chunk > 0) {
5007 conf->chunk_size = new_chunk;
5008 mddev->chunk_size = mddev->new_chunk = new_chunk;
5010 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5011 md_wakeup_thread(mddev->thread);
5015 static void *raid5_takeover(mddev_t *mddev)
5017 /* raid5 can take over:
5018 * raid0 - if all devices are the same - make it a raid4 layout
5019 * raid1 - if there are two drives. We need to know the chunk size
5020 * raid4 - trivial - just use a raid4 layout.
5021 * raid6 - Providing it is a *_6 layout
5023 * For now, just do raid1
5026 if (mddev->level == 1)
5027 return raid5_takeover_raid1(mddev);
5028 if (mddev->level == 4) {
5029 mddev->new_layout = ALGORITHM_PARITY_N;
5030 mddev->new_level = 5;
5031 return setup_conf(mddev);
5033 if (mddev->level == 6)
5034 return raid5_takeover_raid6(mddev);
5036 return ERR_PTR(-EINVAL);
5040 static struct mdk_personality raid5_personality;
5042 static void *raid6_takeover(mddev_t *mddev)
5044 /* Currently can only take over a raid5. We map the
5045 * personality to an equivalent raid6 personality
5046 * with the Q block at the end.
5050 if (mddev->pers != &raid5_personality)
5051 return ERR_PTR(-EINVAL);
5052 if (mddev->degraded > 1)
5053 return ERR_PTR(-EINVAL);
5054 if (mddev->raid_disks > 253)
5055 return ERR_PTR(-EINVAL);
5056 if (mddev->raid_disks < 3)
5057 return ERR_PTR(-EINVAL);
5059 switch (mddev->layout) {
5060 case ALGORITHM_LEFT_ASYMMETRIC:
5061 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5063 case ALGORITHM_RIGHT_ASYMMETRIC:
5064 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5066 case ALGORITHM_LEFT_SYMMETRIC:
5067 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5069 case ALGORITHM_RIGHT_SYMMETRIC:
5070 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5072 case ALGORITHM_PARITY_0:
5073 new_layout = ALGORITHM_PARITY_0_6;
5075 case ALGORITHM_PARITY_N:
5076 new_layout = ALGORITHM_PARITY_N;
5079 return ERR_PTR(-EINVAL);
5081 mddev->new_level = 6;
5082 mddev->new_layout = new_layout;
5083 mddev->delta_disks = 1;
5084 mddev->raid_disks += 1;
5085 return setup_conf(mddev);
5089 static struct mdk_personality raid6_personality =
5093 .owner = THIS_MODULE,
5094 .make_request = make_request,
5098 .error_handler = error,
5099 .hot_add_disk = raid5_add_disk,
5100 .hot_remove_disk= raid5_remove_disk,
5101 .spare_active = raid5_spare_active,
5102 .sync_request = sync_request,
5103 .resize = raid5_resize,
5105 #ifdef CONFIG_MD_RAID5_RESHAPE
5106 .check_reshape = raid5_check_reshape,
5107 .start_reshape = raid5_start_reshape,
5108 .finish_reshape = raid5_finish_reshape,
5110 .quiesce = raid5_quiesce,
5111 .takeover = raid6_takeover,
5113 static struct mdk_personality raid5_personality =
5117 .owner = THIS_MODULE,
5118 .make_request = make_request,
5122 .error_handler = error,
5123 .hot_add_disk = raid5_add_disk,
5124 .hot_remove_disk= raid5_remove_disk,
5125 .spare_active = raid5_spare_active,
5126 .sync_request = sync_request,
5127 .resize = raid5_resize,
5129 #ifdef CONFIG_MD_RAID5_RESHAPE
5130 .check_reshape = raid5_check_reshape,
5131 .start_reshape = raid5_start_reshape,
5132 .finish_reshape = raid5_finish_reshape,
5134 .quiesce = raid5_quiesce,
5135 .takeover = raid5_takeover,
5136 .reconfig = raid5_reconfig,
5139 static struct mdk_personality raid4_personality =
5143 .owner = THIS_MODULE,
5144 .make_request = make_request,
5148 .error_handler = error,
5149 .hot_add_disk = raid5_add_disk,
5150 .hot_remove_disk= raid5_remove_disk,
5151 .spare_active = raid5_spare_active,
5152 .sync_request = sync_request,
5153 .resize = raid5_resize,
5155 #ifdef CONFIG_MD_RAID5_RESHAPE
5156 .check_reshape = raid5_check_reshape,
5157 .start_reshape = raid5_start_reshape,
5158 .finish_reshape = raid5_finish_reshape,
5160 .quiesce = raid5_quiesce,
5163 static int __init raid5_init(void)
5165 register_md_personality(&raid6_personality);
5166 register_md_personality(&raid5_personality);
5167 register_md_personality(&raid4_personality);
5171 static void raid5_exit(void)
5173 unregister_md_personality(&raid6_personality);
5174 unregister_md_personality(&raid5_personality);
5175 unregister_md_personality(&raid4_personality);
5178 module_init(raid5_init);
5179 module_exit(raid5_exit);
5180 MODULE_LICENSE("GPL");
5181 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5182 MODULE_ALIAS("md-raid5");
5183 MODULE_ALIAS("md-raid4");
5184 MODULE_ALIAS("md-level-5");
5185 MODULE_ALIAS("md-level-4");
5186 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5187 MODULE_ALIAS("md-raid6");
5188 MODULE_ALIAS("md-level-6");
5190 /* This used to be two separate modules, they were: */
5191 MODULE_ALIAS("raid5");
5192 MODULE_ALIAS("raid6");