1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/init.h>
59 #include <linux/delay.h>
60 #include <linux/stddef.h>
61 #include <linux/ioctl.h>
62 #include <linux/timex.h>
63 #include <linux/sched.h>
64 #include <linux/ethtool.h>
65 #include <linux/workqueue.h>
66 #include <linux/if_vlan.h>
68 #include <linux/tcp.h>
71 #include <asm/system.h>
72 #include <asm/uaccess.h>
74 #include <asm/div64.h>
78 #include "s2io-regs.h"
80 #define DRV_VERSION "2.0.14.2"
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
116 mac_info_t *mac_control;
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
289 nic_t *nic = dev->priv;
292 spin_lock_irqsave(&nic->tx_lock, flags);
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
300 nic_t *nic = dev->priv;
303 spin_lock_irqsave(&nic->tx_lock, flags);
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
310 * Constants to be programmed into the Xena's registers, to configure
315 static const u64 herc_act_dtx_cfg[] = {
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
336 static const u64 xena_dtx_cfg[] = {
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
353 * Constants for Fixing the MacAddress problem seen mostly on
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
374 /* Module Loadable parameters. */
375 static unsigned int tx_fifo_num = 1;
376 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
377 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
378 static unsigned int rx_ring_num = 1;
379 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
380 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
381 static unsigned int rts_frm_len[MAX_RX_RINGS] =
382 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
383 static unsigned int rx_ring_mode = 1;
384 static unsigned int use_continuous_tx_intrs = 1;
385 static unsigned int rmac_pause_time = 0x100;
386 static unsigned int mc_pause_threshold_q0q3 = 187;
387 static unsigned int mc_pause_threshold_q4q7 = 187;
388 static unsigned int shared_splits;
389 static unsigned int tmac_util_period = 5;
390 static unsigned int rmac_util_period = 5;
391 static unsigned int bimodal = 0;
392 static unsigned int l3l4hdr_size = 128;
393 #ifndef CONFIG_S2IO_NAPI
394 static unsigned int indicate_max_pkts;
396 /* Frequency of Rx desc syncs expressed as power of 2 */
397 static unsigned int rxsync_frequency = 3;
398 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
399 static unsigned int intr_type = 0;
400 /* Large receive offload feature */
401 static unsigned int lro = 0;
402 /* Max pkts to be aggregated by LRO at one time. If not specified,
403 * aggregation happens until we hit max IP pkt size(64K)
405 static unsigned int lro_max_pkts = 0xFFFF;
409 * This table lists all the devices that this driver supports.
411 static struct pci_device_id s2io_tbl[] __devinitdata = {
412 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
413 PCI_ANY_ID, PCI_ANY_ID},
414 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
415 PCI_ANY_ID, PCI_ANY_ID},
416 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
417 PCI_ANY_ID, PCI_ANY_ID},
418 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
419 PCI_ANY_ID, PCI_ANY_ID},
423 MODULE_DEVICE_TABLE(pci, s2io_tbl);
425 static struct pci_driver s2io_driver = {
427 .id_table = s2io_tbl,
428 .probe = s2io_init_nic,
429 .remove = __devexit_p(s2io_rem_nic),
432 /* A simplifier macro used both by init and free shared_mem Fns(). */
433 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
436 * init_shared_mem - Allocation and Initialization of Memory
437 * @nic: Device private variable.
438 * Description: The function allocates all the memory areas shared
439 * between the NIC and the driver. This includes Tx descriptors,
440 * Rx descriptors and the statistics block.
443 static int init_shared_mem(struct s2io_nic *nic)
446 void *tmp_v_addr, *tmp_v_addr_next;
447 dma_addr_t tmp_p_addr, tmp_p_addr_next;
448 RxD_block_t *pre_rxd_blk = NULL;
449 int i, j, blk_cnt, rx_sz, tx_sz;
450 int lst_size, lst_per_page;
451 struct net_device *dev = nic->dev;
455 mac_info_t *mac_control;
456 struct config_param *config;
458 mac_control = &nic->mac_control;
459 config = &nic->config;
462 /* Allocation and initialization of TXDLs in FIOFs */
464 for (i = 0; i < config->tx_fifo_num; i++) {
465 size += config->tx_cfg[i].fifo_len;
467 if (size > MAX_AVAILABLE_TXDS) {
468 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
470 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
474 lst_size = (sizeof(TxD_t) * config->max_txds);
475 tx_sz = lst_size * size;
476 lst_per_page = PAGE_SIZE / lst_size;
478 for (i = 0; i < config->tx_fifo_num; i++) {
479 int fifo_len = config->tx_cfg[i].fifo_len;
480 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
481 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
483 if (!mac_control->fifos[i].list_info) {
485 "Malloc failed for list_info\n");
488 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
490 for (i = 0; i < config->tx_fifo_num; i++) {
491 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
493 mac_control->fifos[i].tx_curr_put_info.offset = 0;
494 mac_control->fifos[i].tx_curr_put_info.fifo_len =
495 config->tx_cfg[i].fifo_len - 1;
496 mac_control->fifos[i].tx_curr_get_info.offset = 0;
497 mac_control->fifos[i].tx_curr_get_info.fifo_len =
498 config->tx_cfg[i].fifo_len - 1;
499 mac_control->fifos[i].fifo_no = i;
500 mac_control->fifos[i].nic = nic;
501 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
503 for (j = 0; j < page_num; j++) {
507 tmp_v = pci_alloc_consistent(nic->pdev,
511 "pci_alloc_consistent ");
512 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
515 /* If we got a zero DMA address(can happen on
516 * certain platforms like PPC), reallocate.
517 * Store virtual address of page we don't want,
521 mac_control->zerodma_virt_addr = tmp_v;
523 "%s: Zero DMA address for TxDL. ", dev->name);
525 "Virtual address %p\n", tmp_v);
526 tmp_v = pci_alloc_consistent(nic->pdev,
530 "pci_alloc_consistent ");
531 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
535 while (k < lst_per_page) {
536 int l = (j * lst_per_page) + k;
537 if (l == config->tx_cfg[i].fifo_len)
539 mac_control->fifos[i].list_info[l].list_virt_addr =
540 tmp_v + (k * lst_size);
541 mac_control->fifos[i].list_info[l].list_phy_addr =
542 tmp_p + (k * lst_size);
548 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
549 if (!nic->ufo_in_band_v)
552 /* Allocation and initialization of RXDs in Rings */
554 for (i = 0; i < config->rx_ring_num; i++) {
555 if (config->rx_cfg[i].num_rxd %
556 (rxd_count[nic->rxd_mode] + 1)) {
557 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
558 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
560 DBG_PRINT(ERR_DBG, "RxDs per Block");
563 size += config->rx_cfg[i].num_rxd;
564 mac_control->rings[i].block_count =
565 config->rx_cfg[i].num_rxd /
566 (rxd_count[nic->rxd_mode] + 1 );
567 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
568 mac_control->rings[i].block_count;
570 if (nic->rxd_mode == RXD_MODE_1)
571 size = (size * (sizeof(RxD1_t)));
573 size = (size * (sizeof(RxD3_t)));
576 for (i = 0; i < config->rx_ring_num; i++) {
577 mac_control->rings[i].rx_curr_get_info.block_index = 0;
578 mac_control->rings[i].rx_curr_get_info.offset = 0;
579 mac_control->rings[i].rx_curr_get_info.ring_len =
580 config->rx_cfg[i].num_rxd - 1;
581 mac_control->rings[i].rx_curr_put_info.block_index = 0;
582 mac_control->rings[i].rx_curr_put_info.offset = 0;
583 mac_control->rings[i].rx_curr_put_info.ring_len =
584 config->rx_cfg[i].num_rxd - 1;
585 mac_control->rings[i].nic = nic;
586 mac_control->rings[i].ring_no = i;
588 blk_cnt = config->rx_cfg[i].num_rxd /
589 (rxd_count[nic->rxd_mode] + 1);
590 /* Allocating all the Rx blocks */
591 for (j = 0; j < blk_cnt; j++) {
592 rx_block_info_t *rx_blocks;
595 rx_blocks = &mac_control->rings[i].rx_blocks[j];
596 size = SIZE_OF_BLOCK; //size is always page size
597 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
599 if (tmp_v_addr == NULL) {
601 * In case of failure, free_shared_mem()
602 * is called, which should free any
603 * memory that was alloced till the
606 rx_blocks->block_virt_addr = tmp_v_addr;
609 memset(tmp_v_addr, 0, size);
610 rx_blocks->block_virt_addr = tmp_v_addr;
611 rx_blocks->block_dma_addr = tmp_p_addr;
612 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
613 rxd_count[nic->rxd_mode],
615 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
616 rx_blocks->rxds[l].virt_addr =
617 rx_blocks->block_virt_addr +
618 (rxd_size[nic->rxd_mode] * l);
619 rx_blocks->rxds[l].dma_addr =
620 rx_blocks->block_dma_addr +
621 (rxd_size[nic->rxd_mode] * l);
624 /* Interlinking all Rx Blocks */
625 for (j = 0; j < blk_cnt; j++) {
627 mac_control->rings[i].rx_blocks[j].block_virt_addr;
629 mac_control->rings[i].rx_blocks[(j + 1) %
630 blk_cnt].block_virt_addr;
632 mac_control->rings[i].rx_blocks[j].block_dma_addr;
634 mac_control->rings[i].rx_blocks[(j + 1) %
635 blk_cnt].block_dma_addr;
637 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
638 pre_rxd_blk->reserved_2_pNext_RxD_block =
639 (unsigned long) tmp_v_addr_next;
640 pre_rxd_blk->pNext_RxD_Blk_physical =
641 (u64) tmp_p_addr_next;
644 if (nic->rxd_mode >= RXD_MODE_3A) {
646 * Allocation of Storages for buffer addresses in 2BUFF mode
647 * and the buffers as well.
649 for (i = 0; i < config->rx_ring_num; i++) {
650 blk_cnt = config->rx_cfg[i].num_rxd /
651 (rxd_count[nic->rxd_mode]+ 1);
652 mac_control->rings[i].ba =
653 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
655 if (!mac_control->rings[i].ba)
657 for (j = 0; j < blk_cnt; j++) {
659 mac_control->rings[i].ba[j] =
660 kmalloc((sizeof(buffAdd_t) *
661 (rxd_count[nic->rxd_mode] + 1)),
663 if (!mac_control->rings[i].ba[j])
665 while (k != rxd_count[nic->rxd_mode]) {
666 ba = &mac_control->rings[i].ba[j][k];
668 ba->ba_0_org = (void *) kmalloc
669 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
672 tmp = (unsigned long)ba->ba_0_org;
674 tmp &= ~((unsigned long) ALIGN_SIZE);
675 ba->ba_0 = (void *) tmp;
677 ba->ba_1_org = (void *) kmalloc
678 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
681 tmp = (unsigned long) ba->ba_1_org;
683 tmp &= ~((unsigned long) ALIGN_SIZE);
684 ba->ba_1 = (void *) tmp;
691 /* Allocation and initialization of Statistics block */
692 size = sizeof(StatInfo_t);
693 mac_control->stats_mem = pci_alloc_consistent
694 (nic->pdev, size, &mac_control->stats_mem_phy);
696 if (!mac_control->stats_mem) {
698 * In case of failure, free_shared_mem() is called, which
699 * should free any memory that was alloced till the
704 mac_control->stats_mem_sz = size;
706 tmp_v_addr = mac_control->stats_mem;
707 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
708 memset(tmp_v_addr, 0, size);
709 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
710 (unsigned long long) tmp_p_addr);
716 * free_shared_mem - Free the allocated Memory
717 * @nic: Device private variable.
718 * Description: This function is to free all memory locations allocated by
719 * the init_shared_mem() function and return it to the kernel.
722 static void free_shared_mem(struct s2io_nic *nic)
724 int i, j, blk_cnt, size;
726 dma_addr_t tmp_p_addr;
727 mac_info_t *mac_control;
728 struct config_param *config;
729 int lst_size, lst_per_page;
730 struct net_device *dev = nic->dev;
735 mac_control = &nic->mac_control;
736 config = &nic->config;
738 lst_size = (sizeof(TxD_t) * config->max_txds);
739 lst_per_page = PAGE_SIZE / lst_size;
741 for (i = 0; i < config->tx_fifo_num; i++) {
742 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
744 for (j = 0; j < page_num; j++) {
745 int mem_blks = (j * lst_per_page);
746 if (!mac_control->fifos[i].list_info)
748 if (!mac_control->fifos[i].list_info[mem_blks].
751 pci_free_consistent(nic->pdev, PAGE_SIZE,
752 mac_control->fifos[i].
755 mac_control->fifos[i].
759 /* If we got a zero DMA address during allocation,
762 if (mac_control->zerodma_virt_addr) {
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->zerodma_virt_addr,
767 "%s: Freeing TxDL with zero DMA addr. ",
769 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
770 mac_control->zerodma_virt_addr);
772 kfree(mac_control->fifos[i].list_info);
775 size = SIZE_OF_BLOCK;
776 for (i = 0; i < config->rx_ring_num; i++) {
777 blk_cnt = mac_control->rings[i].block_count;
778 for (j = 0; j < blk_cnt; j++) {
779 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
781 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
783 if (tmp_v_addr == NULL)
785 pci_free_consistent(nic->pdev, size,
786 tmp_v_addr, tmp_p_addr);
787 kfree(mac_control->rings[i].rx_blocks[j].rxds);
791 if (nic->rxd_mode >= RXD_MODE_3A) {
792 /* Freeing buffer storage addresses in 2BUFF mode. */
793 for (i = 0; i < config->rx_ring_num; i++) {
794 blk_cnt = config->rx_cfg[i].num_rxd /
795 (rxd_count[nic->rxd_mode] + 1);
796 for (j = 0; j < blk_cnt; j++) {
798 if (!mac_control->rings[i].ba[j])
800 while (k != rxd_count[nic->rxd_mode]) {
802 &mac_control->rings[i].ba[j][k];
807 kfree(mac_control->rings[i].ba[j]);
809 kfree(mac_control->rings[i].ba);
813 if (mac_control->stats_mem) {
814 pci_free_consistent(nic->pdev,
815 mac_control->stats_mem_sz,
816 mac_control->stats_mem,
817 mac_control->stats_mem_phy);
819 if (nic->ufo_in_band_v)
820 kfree(nic->ufo_in_band_v);
824 * s2io_verify_pci_mode -
827 static int s2io_verify_pci_mode(nic_t *nic)
829 XENA_dev_config_t __iomem *bar0 = nic->bar0;
830 register u64 val64 = 0;
833 val64 = readq(&bar0->pci_mode);
834 mode = (u8)GET_PCI_MODE(val64);
836 if ( val64 & PCI_MODE_UNKNOWN_MODE)
837 return -1; /* Unknown PCI mode */
841 #define NEC_VENID 0x1033
842 #define NEC_DEVID 0x0125
843 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
845 struct pci_dev *tdev = NULL;
846 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
847 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
848 if (tdev->bus == s2io_pdev->bus->parent)
855 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
857 * s2io_print_pci_mode -
859 static int s2io_print_pci_mode(nic_t *nic)
861 XENA_dev_config_t __iomem *bar0 = nic->bar0;
862 register u64 val64 = 0;
864 struct config_param *config = &nic->config;
866 val64 = readq(&bar0->pci_mode);
867 mode = (u8)GET_PCI_MODE(val64);
869 if ( val64 & PCI_MODE_UNKNOWN_MODE)
870 return -1; /* Unknown PCI mode */
872 config->bus_speed = bus_speed[mode];
874 if (s2io_on_nec_bridge(nic->pdev)) {
875 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
880 if (val64 & PCI_MODE_32_BITS) {
881 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
883 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
887 case PCI_MODE_PCI_33:
888 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
890 case PCI_MODE_PCI_66:
891 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
893 case PCI_MODE_PCIX_M1_66:
894 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
896 case PCI_MODE_PCIX_M1_100:
897 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
899 case PCI_MODE_PCIX_M1_133:
900 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
902 case PCI_MODE_PCIX_M2_66:
903 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
905 case PCI_MODE_PCIX_M2_100:
906 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
908 case PCI_MODE_PCIX_M2_133:
909 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
912 return -1; /* Unsupported bus speed */
919 * init_nic - Initialization of hardware
920 * @nic: device peivate variable
921 * Description: The function sequentially configures every block
922 * of the H/W from their reset values.
923 * Return Value: SUCCESS on success and
924 * '-1' on failure (endian settings incorrect).
927 static int init_nic(struct s2io_nic *nic)
929 XENA_dev_config_t __iomem *bar0 = nic->bar0;
930 struct net_device *dev = nic->dev;
931 register u64 val64 = 0;
935 mac_info_t *mac_control;
936 struct config_param *config;
938 unsigned long long mem_share;
941 mac_control = &nic->mac_control;
942 config = &nic->config;
944 /* to set the swapper controle on the card */
945 if(s2io_set_swapper(nic)) {
946 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
951 * Herc requires EOI to be removed from reset before XGXS, so..
953 if (nic->device_type & XFRAME_II_DEVICE) {
954 val64 = 0xA500000000ULL;
955 writeq(val64, &bar0->sw_reset);
957 val64 = readq(&bar0->sw_reset);
960 /* Remove XGXS from reset state */
962 writeq(val64, &bar0->sw_reset);
964 val64 = readq(&bar0->sw_reset);
966 /* Enable Receiving broadcasts */
967 add = &bar0->mac_cfg;
968 val64 = readq(&bar0->mac_cfg);
969 val64 |= MAC_RMAC_BCAST_ENABLE;
970 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
971 writel((u32) val64, add);
972 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
973 writel((u32) (val64 >> 32), (add + 4));
975 /* Read registers in all blocks */
976 val64 = readq(&bar0->mac_int_mask);
977 val64 = readq(&bar0->mc_int_mask);
978 val64 = readq(&bar0->xgxs_int_mask);
982 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
984 if (nic->device_type & XFRAME_II_DEVICE) {
985 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
986 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
987 &bar0->dtx_control, UF);
989 msleep(1); /* Necessary!! */
993 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
994 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
995 &bar0->dtx_control, UF);
996 val64 = readq(&bar0->dtx_control);
1001 /* Tx DMA Initialization */
1003 writeq(val64, &bar0->tx_fifo_partition_0);
1004 writeq(val64, &bar0->tx_fifo_partition_1);
1005 writeq(val64, &bar0->tx_fifo_partition_2);
1006 writeq(val64, &bar0->tx_fifo_partition_3);
1009 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1011 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1012 13) | vBIT(config->tx_cfg[i].fifo_priority,
1015 if (i == (config->tx_fifo_num - 1)) {
1022 writeq(val64, &bar0->tx_fifo_partition_0);
1026 writeq(val64, &bar0->tx_fifo_partition_1);
1030 writeq(val64, &bar0->tx_fifo_partition_2);
1034 writeq(val64, &bar0->tx_fifo_partition_3);
1040 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1041 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1043 if ((nic->device_type == XFRAME_I_DEVICE) &&
1044 (get_xena_rev_id(nic->pdev) < 4))
1045 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1047 val64 = readq(&bar0->tx_fifo_partition_0);
1048 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1049 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1052 * Initialization of Tx_PA_CONFIG register to ignore packet
1053 * integrity checking.
1055 val64 = readq(&bar0->tx_pa_cfg);
1056 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1057 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1058 writeq(val64, &bar0->tx_pa_cfg);
1060 /* Rx DMA intialization. */
1062 for (i = 0; i < config->rx_ring_num; i++) {
1064 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1067 writeq(val64, &bar0->rx_queue_priority);
1070 * Allocating equal share of memory to all the
1074 if (nic->device_type & XFRAME_II_DEVICE)
1079 for (i = 0; i < config->rx_ring_num; i++) {
1082 mem_share = (mem_size / config->rx_ring_num +
1083 mem_size % config->rx_ring_num);
1084 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1087 mem_share = (mem_size / config->rx_ring_num);
1088 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1091 mem_share = (mem_size / config->rx_ring_num);
1092 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1095 mem_share = (mem_size / config->rx_ring_num);
1096 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1099 mem_share = (mem_size / config->rx_ring_num);
1100 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1103 mem_share = (mem_size / config->rx_ring_num);
1104 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1107 mem_share = (mem_size / config->rx_ring_num);
1108 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1111 mem_share = (mem_size / config->rx_ring_num);
1112 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1116 writeq(val64, &bar0->rx_queue_cfg);
1119 * Filling Tx round robin registers
1120 * as per the number of FIFOs
1122 switch (config->tx_fifo_num) {
1124 val64 = 0x0000000000000000ULL;
1125 writeq(val64, &bar0->tx_w_round_robin_0);
1126 writeq(val64, &bar0->tx_w_round_robin_1);
1127 writeq(val64, &bar0->tx_w_round_robin_2);
1128 writeq(val64, &bar0->tx_w_round_robin_3);
1129 writeq(val64, &bar0->tx_w_round_robin_4);
1132 val64 = 0x0000010000010000ULL;
1133 writeq(val64, &bar0->tx_w_round_robin_0);
1134 val64 = 0x0100000100000100ULL;
1135 writeq(val64, &bar0->tx_w_round_robin_1);
1136 val64 = 0x0001000001000001ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_2);
1138 val64 = 0x0000010000010000ULL;
1139 writeq(val64, &bar0->tx_w_round_robin_3);
1140 val64 = 0x0100000000000000ULL;
1141 writeq(val64, &bar0->tx_w_round_robin_4);
1144 val64 = 0x0001000102000001ULL;
1145 writeq(val64, &bar0->tx_w_round_robin_0);
1146 val64 = 0x0001020000010001ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_1);
1148 val64 = 0x0200000100010200ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_2);
1150 val64 = 0x0001000102000001ULL;
1151 writeq(val64, &bar0->tx_w_round_robin_3);
1152 val64 = 0x0001020000000000ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_4);
1156 val64 = 0x0001020300010200ULL;
1157 writeq(val64, &bar0->tx_w_round_robin_0);
1158 val64 = 0x0100000102030001ULL;
1159 writeq(val64, &bar0->tx_w_round_robin_1);
1160 val64 = 0x0200010000010203ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_2);
1162 val64 = 0x0001020001000001ULL;
1163 writeq(val64, &bar0->tx_w_round_robin_3);
1164 val64 = 0x0203000100000000ULL;
1165 writeq(val64, &bar0->tx_w_round_robin_4);
1168 val64 = 0x0001000203000102ULL;
1169 writeq(val64, &bar0->tx_w_round_robin_0);
1170 val64 = 0x0001020001030004ULL;
1171 writeq(val64, &bar0->tx_w_round_robin_1);
1172 val64 = 0x0001000203000102ULL;
1173 writeq(val64, &bar0->tx_w_round_robin_2);
1174 val64 = 0x0001020001030004ULL;
1175 writeq(val64, &bar0->tx_w_round_robin_3);
1176 val64 = 0x0001000000000000ULL;
1177 writeq(val64, &bar0->tx_w_round_robin_4);
1180 val64 = 0x0001020304000102ULL;
1181 writeq(val64, &bar0->tx_w_round_robin_0);
1182 val64 = 0x0304050001020001ULL;
1183 writeq(val64, &bar0->tx_w_round_robin_1);
1184 val64 = 0x0203000100000102ULL;
1185 writeq(val64, &bar0->tx_w_round_robin_2);
1186 val64 = 0x0304000102030405ULL;
1187 writeq(val64, &bar0->tx_w_round_robin_3);
1188 val64 = 0x0001000200000000ULL;
1189 writeq(val64, &bar0->tx_w_round_robin_4);
1192 val64 = 0x0001020001020300ULL;
1193 writeq(val64, &bar0->tx_w_round_robin_0);
1194 val64 = 0x0102030400010203ULL;
1195 writeq(val64, &bar0->tx_w_round_robin_1);
1196 val64 = 0x0405060001020001ULL;
1197 writeq(val64, &bar0->tx_w_round_robin_2);
1198 val64 = 0x0304050000010200ULL;
1199 writeq(val64, &bar0->tx_w_round_robin_3);
1200 val64 = 0x0102030000000000ULL;
1201 writeq(val64, &bar0->tx_w_round_robin_4);
1204 val64 = 0x0001020300040105ULL;
1205 writeq(val64, &bar0->tx_w_round_robin_0);
1206 val64 = 0x0200030106000204ULL;
1207 writeq(val64, &bar0->tx_w_round_robin_1);
1208 val64 = 0x0103000502010007ULL;
1209 writeq(val64, &bar0->tx_w_round_robin_2);
1210 val64 = 0x0304010002060500ULL;
1211 writeq(val64, &bar0->tx_w_round_robin_3);
1212 val64 = 0x0103020400000000ULL;
1213 writeq(val64, &bar0->tx_w_round_robin_4);
1217 /* Enable Tx FIFO partition 0. */
1218 val64 = readq(&bar0->tx_fifo_partition_0);
1219 val64 |= (TX_FIFO_PARTITION_EN);
1220 writeq(val64, &bar0->tx_fifo_partition_0);
1222 /* Filling the Rx round robin registers as per the
1223 * number of Rings and steering based on QoS.
1225 switch (config->rx_ring_num) {
1227 val64 = 0x8080808080808080ULL;
1228 writeq(val64, &bar0->rts_qos_steering);
1231 val64 = 0x0000010000010000ULL;
1232 writeq(val64, &bar0->rx_w_round_robin_0);
1233 val64 = 0x0100000100000100ULL;
1234 writeq(val64, &bar0->rx_w_round_robin_1);
1235 val64 = 0x0001000001000001ULL;
1236 writeq(val64, &bar0->rx_w_round_robin_2);
1237 val64 = 0x0000010000010000ULL;
1238 writeq(val64, &bar0->rx_w_round_robin_3);
1239 val64 = 0x0100000000000000ULL;
1240 writeq(val64, &bar0->rx_w_round_robin_4);
1242 val64 = 0x8080808040404040ULL;
1243 writeq(val64, &bar0->rts_qos_steering);
1246 val64 = 0x0001000102000001ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_0);
1248 val64 = 0x0001020000010001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_1);
1250 val64 = 0x0200000100010200ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_2);
1252 val64 = 0x0001000102000001ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_3);
1254 val64 = 0x0001020000000000ULL;
1255 writeq(val64, &bar0->rx_w_round_robin_4);
1257 val64 = 0x8080804040402020ULL;
1258 writeq(val64, &bar0->rts_qos_steering);
1261 val64 = 0x0001020300010200ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_0);
1263 val64 = 0x0100000102030001ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_1);
1265 val64 = 0x0200010000010203ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_2);
1267 val64 = 0x0001020001000001ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_3);
1269 val64 = 0x0203000100000000ULL;
1270 writeq(val64, &bar0->rx_w_round_robin_4);
1272 val64 = 0x8080404020201010ULL;
1273 writeq(val64, &bar0->rts_qos_steering);
1276 val64 = 0x0001000203000102ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_0);
1278 val64 = 0x0001020001030004ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_1);
1280 val64 = 0x0001000203000102ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_2);
1282 val64 = 0x0001020001030004ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_3);
1284 val64 = 0x0001000000000000ULL;
1285 writeq(val64, &bar0->rx_w_round_robin_4);
1287 val64 = 0x8080404020201008ULL;
1288 writeq(val64, &bar0->rts_qos_steering);
1291 val64 = 0x0001020304000102ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_0);
1293 val64 = 0x0304050001020001ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_1);
1295 val64 = 0x0203000100000102ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_2);
1297 val64 = 0x0304000102030405ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_3);
1299 val64 = 0x0001000200000000ULL;
1300 writeq(val64, &bar0->rx_w_round_robin_4);
1302 val64 = 0x8080404020100804ULL;
1303 writeq(val64, &bar0->rts_qos_steering);
1306 val64 = 0x0001020001020300ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_0);
1308 val64 = 0x0102030400010203ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_1);
1310 val64 = 0x0405060001020001ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_2);
1312 val64 = 0x0304050000010200ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_3);
1314 val64 = 0x0102030000000000ULL;
1315 writeq(val64, &bar0->rx_w_round_robin_4);
1317 val64 = 0x8080402010080402ULL;
1318 writeq(val64, &bar0->rts_qos_steering);
1321 val64 = 0x0001020300040105ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_0);
1323 val64 = 0x0200030106000204ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_1);
1325 val64 = 0x0103000502010007ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_2);
1327 val64 = 0x0304010002060500ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_3);
1329 val64 = 0x0103020400000000ULL;
1330 writeq(val64, &bar0->rx_w_round_robin_4);
1332 val64 = 0x8040201008040201ULL;
1333 writeq(val64, &bar0->rts_qos_steering);
1339 for (i = 0; i < 8; i++)
1340 writeq(val64, &bar0->rts_frm_len_n[i]);
1342 /* Set the default rts frame length for the rings configured */
1343 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1344 for (i = 0 ; i < config->rx_ring_num ; i++)
1345 writeq(val64, &bar0->rts_frm_len_n[i]);
1347 /* Set the frame length for the configured rings
1348 * desired by the user
1350 for (i = 0; i < config->rx_ring_num; i++) {
1351 /* If rts_frm_len[i] == 0 then it is assumed that user not
1352 * specified frame length steering.
1353 * If the user provides the frame length then program
1354 * the rts_frm_len register for those values or else
1355 * leave it as it is.
1357 if (rts_frm_len[i] != 0) {
1358 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1359 &bar0->rts_frm_len_n[i]);
1363 /* Program statistics memory */
1364 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1366 if (nic->device_type == XFRAME_II_DEVICE) {
1367 val64 = STAT_BC(0x320);
1368 writeq(val64, &bar0->stat_byte_cnt);
1372 * Initializing the sampling rate for the device to calculate the
1373 * bandwidth utilization.
1375 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1376 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1377 writeq(val64, &bar0->mac_link_util);
1381 * Initializing the Transmit and Receive Traffic Interrupt
1385 * TTI Initialization. Default Tx timer gets us about
1386 * 250 interrupts per sec. Continuous interrupts are enabled
1389 if (nic->device_type == XFRAME_II_DEVICE) {
1390 int count = (nic->config.bus_speed * 125)/2;
1391 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1394 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1396 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1397 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1398 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1399 if (use_continuous_tx_intrs)
1400 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1401 writeq(val64, &bar0->tti_data1_mem);
1403 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1404 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1405 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1406 writeq(val64, &bar0->tti_data2_mem);
1408 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1409 writeq(val64, &bar0->tti_command_mem);
1412 * Once the operation completes, the Strobe bit of the command
1413 * register will be reset. We poll for this particular condition
1414 * We wait for a maximum of 500ms for the operation to complete,
1415 * if it's not complete by then we return error.
1419 val64 = readq(&bar0->tti_command_mem);
1420 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1424 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1432 if (nic->config.bimodal) {
1434 for (k = 0; k < config->rx_ring_num; k++) {
1435 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1436 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1437 writeq(val64, &bar0->tti_command_mem);
1440 * Once the operation completes, the Strobe bit of the command
1441 * register will be reset. We poll for this particular condition
1442 * We wait for a maximum of 500ms for the operation to complete,
1443 * if it's not complete by then we return error.
1447 val64 = readq(&bar0->tti_command_mem);
1448 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1453 "%s: TTI init Failed\n",
1463 /* RTI Initialization */
1464 if (nic->device_type == XFRAME_II_DEVICE) {
1466 * Programmed to generate Apprx 500 Intrs per
1469 int count = (nic->config.bus_speed * 125)/4;
1470 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1472 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1474 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1475 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1476 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1478 writeq(val64, &bar0->rti_data1_mem);
1480 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1481 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1482 if (nic->intr_type == MSI_X)
1483 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1484 RTI_DATA2_MEM_RX_UFC_D(0x40));
1486 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1487 RTI_DATA2_MEM_RX_UFC_D(0x80));
1488 writeq(val64, &bar0->rti_data2_mem);
1490 for (i = 0; i < config->rx_ring_num; i++) {
1491 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1492 | RTI_CMD_MEM_OFFSET(i);
1493 writeq(val64, &bar0->rti_command_mem);
1496 * Once the operation completes, the Strobe bit of the
1497 * command register will be reset. We poll for this
1498 * particular condition. We wait for a maximum of 500ms
1499 * for the operation to complete, if it's not complete
1500 * by then we return error.
1504 val64 = readq(&bar0->rti_command_mem);
1505 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1509 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1520 * Initializing proper values as Pause threshold into all
1521 * the 8 Queues on Rx side.
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1524 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1526 /* Disable RMAC PAD STRIPPING */
1527 add = &bar0->mac_cfg;
1528 val64 = readq(&bar0->mac_cfg);
1529 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1530 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1531 writel((u32) (val64), add);
1532 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1533 writel((u32) (val64 >> 32), (add + 4));
1534 val64 = readq(&bar0->mac_cfg);
1536 /* Enable FCS stripping by adapter */
1537 add = &bar0->mac_cfg;
1538 val64 = readq(&bar0->mac_cfg);
1539 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1540 if (nic->device_type == XFRAME_II_DEVICE)
1541 writeq(val64, &bar0->mac_cfg);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1550 * Set the time value to be inserted in the pause frame
1551 * generated by xena.
1553 val64 = readq(&bar0->rmac_pause_cfg);
1554 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1555 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1556 writeq(val64, &bar0->rmac_pause_cfg);
1559 * Set the Threshold Limit for Generating the pause frame
1560 * If the amount of data in any Queue exceeds ratio of
1561 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1562 * pause frame is generated
1565 for (i = 0; i < 4; i++) {
1567 (((u64) 0xFF00 | nic->mac_control.
1568 mc_pause_threshold_q0q3)
1571 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1574 for (i = 0; i < 4; i++) {
1576 (((u64) 0xFF00 | nic->mac_control.
1577 mc_pause_threshold_q4q7)
1580 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1583 * TxDMA will stop Read request if the number of read split has
1584 * exceeded the limit pointed by shared_splits
1586 val64 = readq(&bar0->pic_control);
1587 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1588 writeq(val64, &bar0->pic_control);
1590 if (nic->config.bus_speed == 266) {
1591 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1592 writeq(0x0, &bar0->read_retry_delay);
1593 writeq(0x0, &bar0->write_retry_delay);
1597 * Programming the Herc to split every write transaction
1598 * that does not start on an ADB to reduce disconnects.
1600 if (nic->device_type == XFRAME_II_DEVICE) {
1601 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1602 writeq(val64, &bar0->misc_control);
1603 val64 = readq(&bar0->pic_control2);
1604 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1605 writeq(val64, &bar0->pic_control2);
1607 if (strstr(nic->product_name, "CX4")) {
1608 val64 = TMAC_AVG_IPG(0x17);
1609 writeq(val64, &bar0->tmac_avg_ipg);
1614 #define LINK_UP_DOWN_INTERRUPT 1
1615 #define MAC_RMAC_ERR_TIMER 2
1617 static int s2io_link_fault_indication(nic_t *nic)
1619 if (nic->intr_type != INTA)
1620 return MAC_RMAC_ERR_TIMER;
1621 if (nic->device_type == XFRAME_II_DEVICE)
1622 return LINK_UP_DOWN_INTERRUPT;
1624 return MAC_RMAC_ERR_TIMER;
1628 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1629 * @nic: device private variable,
1630 * @mask: A mask indicating which Intr block must be modified and,
1631 * @flag: A flag indicating whether to enable or disable the Intrs.
1632 * Description: This function will either disable or enable the interrupts
1633 * depending on the flag argument. The mask argument can be used to
1634 * enable/disable any Intr block.
1635 * Return Value: NONE.
1638 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1640 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1641 register u64 val64 = 0, temp64 = 0;
1643 /* Top level interrupt classification */
1644 /* PIC Interrupts */
1645 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1646 /* Enable PIC Intrs in the general intr mask register */
1647 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1648 if (flag == ENABLE_INTRS) {
1649 temp64 = readq(&bar0->general_int_mask);
1650 temp64 &= ~((u64) val64);
1651 writeq(temp64, &bar0->general_int_mask);
1653 * If Hercules adapter enable GPIO otherwise
1654 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1655 * interrupts for now.
1658 if (s2io_link_fault_indication(nic) ==
1659 LINK_UP_DOWN_INTERRUPT ) {
1660 temp64 = readq(&bar0->pic_int_mask);
1661 temp64 &= ~((u64) PIC_INT_GPIO);
1662 writeq(temp64, &bar0->pic_int_mask);
1663 temp64 = readq(&bar0->gpio_int_mask);
1664 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1665 writeq(temp64, &bar0->gpio_int_mask);
1667 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1670 * No MSI Support is available presently, so TTI and
1671 * RTI interrupts are also disabled.
1673 } else if (flag == DISABLE_INTRS) {
1675 * Disable PIC Intrs in the general
1676 * intr mask register
1678 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1679 temp64 = readq(&bar0->general_int_mask);
1681 writeq(val64, &bar0->general_int_mask);
1685 /* DMA Interrupts */
1686 /* Enabling/Disabling Tx DMA interrupts */
1687 if (mask & TX_DMA_INTR) {
1688 /* Enable TxDMA Intrs in the general intr mask register */
1689 val64 = TXDMA_INT_M;
1690 if (flag == ENABLE_INTRS) {
1691 temp64 = readq(&bar0->general_int_mask);
1692 temp64 &= ~((u64) val64);
1693 writeq(temp64, &bar0->general_int_mask);
1695 * Keep all interrupts other than PFC interrupt
1696 * and PCC interrupt disabled in DMA level.
1698 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1700 writeq(val64, &bar0->txdma_int_mask);
1702 * Enable only the MISC error 1 interrupt in PFC block
1704 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1705 writeq(val64, &bar0->pfc_err_mask);
1707 * Enable only the FB_ECC error interrupt in PCC block
1709 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1710 writeq(val64, &bar0->pcc_err_mask);
1711 } else if (flag == DISABLE_INTRS) {
1713 * Disable TxDMA Intrs in the general intr mask
1716 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1717 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1718 temp64 = readq(&bar0->general_int_mask);
1720 writeq(val64, &bar0->general_int_mask);
1724 /* Enabling/Disabling Rx DMA interrupts */
1725 if (mask & RX_DMA_INTR) {
1726 /* Enable RxDMA Intrs in the general intr mask register */
1727 val64 = RXDMA_INT_M;
1728 if (flag == ENABLE_INTRS) {
1729 temp64 = readq(&bar0->general_int_mask);
1730 temp64 &= ~((u64) val64);
1731 writeq(temp64, &bar0->general_int_mask);
1733 * All RxDMA block interrupts are disabled for now
1736 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1737 } else if (flag == DISABLE_INTRS) {
1739 * Disable RxDMA Intrs in the general intr mask
1742 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1743 temp64 = readq(&bar0->general_int_mask);
1745 writeq(val64, &bar0->general_int_mask);
1749 /* MAC Interrupts */
1750 /* Enabling/Disabling MAC interrupts */
1751 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1752 val64 = TXMAC_INT_M | RXMAC_INT_M;
1753 if (flag == ENABLE_INTRS) {
1754 temp64 = readq(&bar0->general_int_mask);
1755 temp64 &= ~((u64) val64);
1756 writeq(temp64, &bar0->general_int_mask);
1758 * All MAC block error interrupts are disabled for now
1761 } else if (flag == DISABLE_INTRS) {
1763 * Disable MAC Intrs in the general intr mask register
1765 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1766 writeq(DISABLE_ALL_INTRS,
1767 &bar0->mac_rmac_err_mask);
1769 temp64 = readq(&bar0->general_int_mask);
1771 writeq(val64, &bar0->general_int_mask);
1775 /* XGXS Interrupts */
1776 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1777 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1778 if (flag == ENABLE_INTRS) {
1779 temp64 = readq(&bar0->general_int_mask);
1780 temp64 &= ~((u64) val64);
1781 writeq(temp64, &bar0->general_int_mask);
1783 * All XGXS block error interrupts are disabled for now
1786 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1787 } else if (flag == DISABLE_INTRS) {
1789 * Disable MC Intrs in the general intr mask register
1791 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1792 temp64 = readq(&bar0->general_int_mask);
1794 writeq(val64, &bar0->general_int_mask);
1798 /* Memory Controller(MC) interrupts */
1799 if (mask & MC_INTR) {
1801 if (flag == ENABLE_INTRS) {
1802 temp64 = readq(&bar0->general_int_mask);
1803 temp64 &= ~((u64) val64);
1804 writeq(temp64, &bar0->general_int_mask);
1806 * Enable all MC Intrs.
1808 writeq(0x0, &bar0->mc_int_mask);
1809 writeq(0x0, &bar0->mc_err_mask);
1810 } else if (flag == DISABLE_INTRS) {
1812 * Disable MC Intrs in the general intr mask register
1814 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1815 temp64 = readq(&bar0->general_int_mask);
1817 writeq(val64, &bar0->general_int_mask);
1822 /* Tx traffic interrupts */
1823 if (mask & TX_TRAFFIC_INTR) {
1824 val64 = TXTRAFFIC_INT_M;
1825 if (flag == ENABLE_INTRS) {
1826 temp64 = readq(&bar0->general_int_mask);
1827 temp64 &= ~((u64) val64);
1828 writeq(temp64, &bar0->general_int_mask);
1830 * Enable all the Tx side interrupts
1831 * writing 0 Enables all 64 TX interrupt levels
1833 writeq(0x0, &bar0->tx_traffic_mask);
1834 } else if (flag == DISABLE_INTRS) {
1836 * Disable Tx Traffic Intrs in the general intr mask
1839 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1840 temp64 = readq(&bar0->general_int_mask);
1842 writeq(val64, &bar0->general_int_mask);
1846 /* Rx traffic interrupts */
1847 if (mask & RX_TRAFFIC_INTR) {
1848 val64 = RXTRAFFIC_INT_M;
1849 if (flag == ENABLE_INTRS) {
1850 temp64 = readq(&bar0->general_int_mask);
1851 temp64 &= ~((u64) val64);
1852 writeq(temp64, &bar0->general_int_mask);
1853 /* writing 0 Enables all 8 RX interrupt levels */
1854 writeq(0x0, &bar0->rx_traffic_mask);
1855 } else if (flag == DISABLE_INTRS) {
1857 * Disable Rx Traffic Intrs in the general intr mask
1860 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1861 temp64 = readq(&bar0->general_int_mask);
1863 writeq(val64, &bar0->general_int_mask);
1868 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1872 if (flag == FALSE) {
1873 if ((!herc && (rev_id >= 4)) || herc) {
1874 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1875 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1876 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1881 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1882 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1887 if ((!herc && (rev_id >= 4)) || herc) {
1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1890 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1891 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1892 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1896 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1897 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1898 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1899 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1900 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1909 * verify_xena_quiescence - Checks whether the H/W is ready
1910 * @val64 : Value read from adapter status register.
1911 * @flag : indicates if the adapter enable bit was ever written once
1913 * Description: Returns whether the H/W is ready to go or not. Depending
1914 * on whether adapter enable bit was written or not the comparison
1915 * differs and the calling function passes the input argument flag to
1917 * Return: 1 If xena is quiescence
1918 * 0 If Xena is not quiescence
1921 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1924 u64 tmp64 = ~((u64) val64);
1925 int rev_id = get_xena_rev_id(sp->pdev);
1927 herc = (sp->device_type == XFRAME_II_DEVICE);
1930 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1931 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1932 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1933 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1934 ADAPTER_STATUS_P_PLL_LOCK))) {
1935 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1942 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1943 * @sp: Pointer to device specifc structure
1945 * New procedure to clear mac address reading problems on Alpha platforms
1949 static void fix_mac_address(nic_t * sp)
1951 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1955 while (fix_mac[i] != END_SIGN) {
1956 writeq(fix_mac[i++], &bar0->gpio_control);
1958 val64 = readq(&bar0->gpio_control);
1963 * start_nic - Turns the device on
1964 * @nic : device private variable.
1966 * This function actually turns the device on. Before this function is
1967 * called,all Registers are configured from their reset states
1968 * and shared memory is allocated but the NIC is still quiescent. On
1969 * calling this function, the device interrupts are cleared and the NIC is
1970 * literally switched on by writing into the adapter control register.
1972 * SUCCESS on success and -1 on failure.
1975 static int start_nic(struct s2io_nic *nic)
1977 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1978 struct net_device *dev = nic->dev;
1979 register u64 val64 = 0;
1982 mac_info_t *mac_control;
1983 struct config_param *config;
1985 mac_control = &nic->mac_control;
1986 config = &nic->config;
1988 /* PRC Initialization and configuration */
1989 for (i = 0; i < config->rx_ring_num; i++) {
1990 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1991 &bar0->prc_rxd0_n[i]);
1993 val64 = readq(&bar0->prc_ctrl_n[i]);
1994 if (nic->config.bimodal)
1995 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1996 if (nic->rxd_mode == RXD_MODE_1)
1997 val64 |= PRC_CTRL_RC_ENABLED;
1999 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2000 if (nic->device_type == XFRAME_II_DEVICE)
2001 val64 |= PRC_CTRL_GROUP_READS;
2002 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2003 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2004 writeq(val64, &bar0->prc_ctrl_n[i]);
2007 if (nic->rxd_mode == RXD_MODE_3B) {
2008 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2009 val64 = readq(&bar0->rx_pa_cfg);
2010 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2011 writeq(val64, &bar0->rx_pa_cfg);
2015 * Enabling MC-RLDRAM. After enabling the device, we timeout
2016 * for around 100ms, which is approximately the time required
2017 * for the device to be ready for operation.
2019 val64 = readq(&bar0->mc_rldram_mrs);
2020 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2021 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2022 val64 = readq(&bar0->mc_rldram_mrs);
2024 msleep(100); /* Delay by around 100 ms. */
2026 /* Enabling ECC Protection. */
2027 val64 = readq(&bar0->adapter_control);
2028 val64 &= ~ADAPTER_ECC_EN;
2029 writeq(val64, &bar0->adapter_control);
2032 * Clearing any possible Link state change interrupts that
2033 * could have popped up just before Enabling the card.
2035 val64 = readq(&bar0->mac_rmac_err_reg);
2037 writeq(val64, &bar0->mac_rmac_err_reg);
2040 * Verify if the device is ready to be enabled, if so enable
2043 val64 = readq(&bar0->adapter_status);
2044 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2045 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2046 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2047 (unsigned long long) val64);
2051 /* Enable select interrupts */
2052 if (nic->intr_type != INTA)
2053 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2055 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2056 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2057 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2058 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2062 * With some switches, link might be already up at this point.
2063 * Because of this weird behavior, when we enable laser,
2064 * we may not get link. We need to handle this. We cannot
2065 * figure out which switch is misbehaving. So we are forced to
2066 * make a global change.
2069 /* Enabling Laser. */
2070 val64 = readq(&bar0->adapter_control);
2071 val64 |= ADAPTER_EOI_TX_ON;
2072 writeq(val64, &bar0->adapter_control);
2074 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2076 * Dont see link state interrupts initally on some switches,
2077 * so directly scheduling the link state task here.
2079 schedule_work(&nic->set_link_task);
2081 /* SXE-002: Initialize link and activity LED */
2082 subid = nic->pdev->subsystem_device;
2083 if (((subid & 0xFF) >= 0x07) &&
2084 (nic->device_type == XFRAME_I_DEVICE)) {
2085 val64 = readq(&bar0->gpio_control);
2086 val64 |= 0x0000800000000000ULL;
2087 writeq(val64, &bar0->gpio_control);
2088 val64 = 0x0411040400000000ULL;
2089 writeq(val64, (void __iomem *)bar0 + 0x2700);
2095 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2097 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2099 nic_t *nic = fifo_data->nic;
2100 struct sk_buff *skb;
2105 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2106 pci_unmap_single(nic->pdev, (dma_addr_t)
2107 txds->Buffer_Pointer, sizeof(u64),
2112 skb = (struct sk_buff *) ((unsigned long)
2113 txds->Host_Control);
2115 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2118 pci_unmap_single(nic->pdev, (dma_addr_t)
2119 txds->Buffer_Pointer,
2120 skb->len - skb->data_len,
2122 frg_cnt = skb_shinfo(skb)->nr_frags;
2125 for (j = 0; j < frg_cnt; j++, txds++) {
2126 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2127 if (!txds->Buffer_Pointer)
2129 pci_unmap_page(nic->pdev, (dma_addr_t)
2130 txds->Buffer_Pointer,
2131 frag->size, PCI_DMA_TODEVICE);
2134 txdlp->Host_Control = 0;
2139 * free_tx_buffers - Free all queued Tx buffers
2140 * @nic : device private variable.
2142 * Free all queued Tx buffers.
2143 * Return Value: void
2146 static void free_tx_buffers(struct s2io_nic *nic)
2148 struct net_device *dev = nic->dev;
2149 struct sk_buff *skb;
2152 mac_info_t *mac_control;
2153 struct config_param *config;
2156 mac_control = &nic->mac_control;
2157 config = &nic->config;
2159 for (i = 0; i < config->tx_fifo_num; i++) {
2160 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2161 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2163 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2170 "%s:forcibly freeing %d skbs on FIFO%d\n",
2172 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2173 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2178 * stop_nic - To stop the nic
2179 * @nic ; device private variable.
2181 * This function does exactly the opposite of what the start_nic()
2182 * function does. This function is called to stop the device.
2187 static void stop_nic(struct s2io_nic *nic)
2189 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2190 register u64 val64 = 0;
2192 mac_info_t *mac_control;
2193 struct config_param *config;
2195 mac_control = &nic->mac_control;
2196 config = &nic->config;
2198 /* Disable all interrupts */
2199 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2200 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2201 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2202 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2204 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2205 val64 = readq(&bar0->adapter_control);
2206 val64 &= ~(ADAPTER_CNTL_EN);
2207 writeq(val64, &bar0->adapter_control);
2210 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2212 struct net_device *dev = nic->dev;
2213 struct sk_buff *frag_list;
2216 /* Buffer-1 receives L3/L4 headers */
2217 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2218 (nic->pdev, skb->data, l3l4hdr_size + 4,
2219 PCI_DMA_FROMDEVICE);
2221 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2222 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2223 if (skb_shinfo(skb)->frag_list == NULL) {
2224 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2227 frag_list = skb_shinfo(skb)->frag_list;
2228 frag_list->next = NULL;
2229 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2230 frag_list->data = tmp;
2231 frag_list->tail = tmp;
2233 /* Buffer-2 receives L4 data payload */
2234 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2235 frag_list->data, dev->mtu,
2236 PCI_DMA_FROMDEVICE);
2237 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2238 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2244 * fill_rx_buffers - Allocates the Rx side skbs
2245 * @nic: device private variable
2246 * @ring_no: ring number
2248 * The function allocates Rx side skbs and puts the physical
2249 * address of these buffers into the RxD buffer pointers, so that the NIC
2250 * can DMA the received frame into these locations.
2251 * The NIC supports 3 receive modes, viz
2253 * 2. three buffer and
2254 * 3. Five buffer modes.
2255 * Each mode defines how many fragments the received frame will be split
2256 * up into by the NIC. The frame is split into L3 header, L4 Header,
2257 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2258 * is split into 3 fragments. As of now only single buffer mode is
2261 * SUCCESS on success or an appropriate -ve value on failure.
2264 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2266 struct net_device *dev = nic->dev;
2267 struct sk_buff *skb;
2269 int off, off1, size, block_no, block_no1;
2272 mac_info_t *mac_control;
2273 struct config_param *config;
2276 #ifndef CONFIG_S2IO_NAPI
2277 unsigned long flags;
2279 RxD_t *first_rxdp = NULL;
2281 mac_control = &nic->mac_control;
2282 config = &nic->config;
2283 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2284 atomic_read(&nic->rx_bufs_left[ring_no]);
2286 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2287 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2288 while (alloc_tab < alloc_cnt) {
2289 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2291 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2293 rxdp = mac_control->rings[ring_no].
2294 rx_blocks[block_no].rxds[off].virt_addr;
2296 if ((block_no == block_no1) && (off == off1) &&
2297 (rxdp->Host_Control)) {
2298 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2300 DBG_PRINT(INTR_DBG, " info equated\n");
2303 if (off && (off == rxd_count[nic->rxd_mode])) {
2304 mac_control->rings[ring_no].rx_curr_put_info.
2306 if (mac_control->rings[ring_no].rx_curr_put_info.
2307 block_index == mac_control->rings[ring_no].
2309 mac_control->rings[ring_no].rx_curr_put_info.
2311 block_no = mac_control->rings[ring_no].
2312 rx_curr_put_info.block_index;
2313 if (off == rxd_count[nic->rxd_mode])
2315 mac_control->rings[ring_no].rx_curr_put_info.
2317 rxdp = mac_control->rings[ring_no].
2318 rx_blocks[block_no].block_virt_addr;
2319 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2322 #ifndef CONFIG_S2IO_NAPI
2323 spin_lock_irqsave(&nic->put_lock, flags);
2324 mac_control->rings[ring_no].put_pos =
2325 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326 spin_unlock_irqrestore(&nic->put_lock, flags);
2328 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2329 ((nic->rxd_mode >= RXD_MODE_3A) &&
2330 (rxdp->Control_2 & BIT(0)))) {
2331 mac_control->rings[ring_no].rx_curr_put_info.
2335 /* calculate size of skb based on ring mode */
2336 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2337 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2338 if (nic->rxd_mode == RXD_MODE_1)
2339 size += NET_IP_ALIGN;
2340 else if (nic->rxd_mode == RXD_MODE_3B)
2341 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2343 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2346 skb = dev_alloc_skb(size);
2348 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2349 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2352 first_rxdp->Control_1 |= RXD_OWN_XENA;
2356 if (nic->rxd_mode == RXD_MODE_1) {
2357 /* 1 buffer mode - normal operation mode */
2358 memset(rxdp, 0, sizeof(RxD1_t));
2359 skb_reserve(skb, NET_IP_ALIGN);
2360 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2361 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2362 PCI_DMA_FROMDEVICE);
2363 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2365 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2367 * 2 or 3 buffer mode -
2368 * Both 2 buffer mode and 3 buffer mode provides 128
2369 * byte aligned receive buffers.
2371 * 3 buffer mode provides header separation where in
2372 * skb->data will have L3/L4 headers where as
2373 * skb_shinfo(skb)->frag_list will have the L4 data
2377 memset(rxdp, 0, sizeof(RxD3_t));
2378 ba = &mac_control->rings[ring_no].ba[block_no][off];
2379 skb_reserve(skb, BUF0_LEN);
2380 tmp = (u64)(unsigned long) skb->data;
2383 skb->data = (void *) (unsigned long)tmp;
2384 skb->tail = (void *) (unsigned long)tmp;
2386 ((RxD3_t*)rxdp)->Buffer0_ptr =
2387 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2388 PCI_DMA_FROMDEVICE);
2389 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2390 if (nic->rxd_mode == RXD_MODE_3B) {
2391 /* Two buffer mode */
2394 * Buffer2 will have L3/L4 header plus
2397 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2398 (nic->pdev, skb->data, dev->mtu + 4,
2399 PCI_DMA_FROMDEVICE);
2401 /* Buffer-1 will be dummy buffer not used */
2402 ((RxD3_t*)rxdp)->Buffer1_ptr =
2403 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2404 PCI_DMA_FROMDEVICE);
2405 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2406 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2410 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2411 dev_kfree_skb_irq(skb);
2414 first_rxdp->Control_1 |=
2420 rxdp->Control_2 |= BIT(0);
2422 rxdp->Host_Control = (unsigned long) (skb);
2423 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2424 rxdp->Control_1 |= RXD_OWN_XENA;
2426 if (off == (rxd_count[nic->rxd_mode] + 1))
2428 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2430 rxdp->Control_2 |= SET_RXD_MARKER;
2431 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2434 first_rxdp->Control_1 |= RXD_OWN_XENA;
2438 atomic_inc(&nic->rx_bufs_left[ring_no]);
2443 /* Transfer ownership of first descriptor to adapter just before
2444 * exiting. Before that, use memory barrier so that ownership
2445 * and other fields are seen by adapter correctly.
2449 first_rxdp->Control_1 |= RXD_OWN_XENA;
2455 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2457 struct net_device *dev = sp->dev;
2459 struct sk_buff *skb;
2461 mac_info_t *mac_control;
2464 mac_control = &sp->mac_control;
2465 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2466 rxdp = mac_control->rings[ring_no].
2467 rx_blocks[blk].rxds[j].virt_addr;
2468 skb = (struct sk_buff *)
2469 ((unsigned long) rxdp->Host_Control);
2473 if (sp->rxd_mode == RXD_MODE_1) {
2474 pci_unmap_single(sp->pdev, (dma_addr_t)
2475 ((RxD1_t*)rxdp)->Buffer0_ptr,
2477 HEADER_ETHERNET_II_802_3_SIZE
2478 + HEADER_802_2_SIZE +
2480 PCI_DMA_FROMDEVICE);
2481 memset(rxdp, 0, sizeof(RxD1_t));
2482 } else if(sp->rxd_mode == RXD_MODE_3B) {
2483 ba = &mac_control->rings[ring_no].
2485 pci_unmap_single(sp->pdev, (dma_addr_t)
2486 ((RxD3_t*)rxdp)->Buffer0_ptr,
2488 PCI_DMA_FROMDEVICE);
2489 pci_unmap_single(sp->pdev, (dma_addr_t)
2490 ((RxD3_t*)rxdp)->Buffer1_ptr,
2492 PCI_DMA_FROMDEVICE);
2493 pci_unmap_single(sp->pdev, (dma_addr_t)
2494 ((RxD3_t*)rxdp)->Buffer2_ptr,
2496 PCI_DMA_FROMDEVICE);
2497 memset(rxdp, 0, sizeof(RxD3_t));
2499 pci_unmap_single(sp->pdev, (dma_addr_t)
2500 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2501 PCI_DMA_FROMDEVICE);
2502 pci_unmap_single(sp->pdev, (dma_addr_t)
2503 ((RxD3_t*)rxdp)->Buffer1_ptr,
2505 PCI_DMA_FROMDEVICE);
2506 pci_unmap_single(sp->pdev, (dma_addr_t)
2507 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2508 PCI_DMA_FROMDEVICE);
2509 memset(rxdp, 0, sizeof(RxD3_t));
2512 atomic_dec(&sp->rx_bufs_left[ring_no]);
2517 * free_rx_buffers - Frees all Rx buffers
2518 * @sp: device private variable.
2520 * This function will free all Rx buffers allocated by host.
2525 static void free_rx_buffers(struct s2io_nic *sp)
2527 struct net_device *dev = sp->dev;
2528 int i, blk = 0, buf_cnt = 0;
2529 mac_info_t *mac_control;
2530 struct config_param *config;
2532 mac_control = &sp->mac_control;
2533 config = &sp->config;
2535 for (i = 0; i < config->rx_ring_num; i++) {
2536 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2537 free_rxd_blk(sp,i,blk);
2539 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2540 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2541 mac_control->rings[i].rx_curr_put_info.offset = 0;
2542 mac_control->rings[i].rx_curr_get_info.offset = 0;
2543 atomic_set(&sp->rx_bufs_left[i], 0);
2544 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2545 dev->name, buf_cnt, i);
2550 * s2io_poll - Rx interrupt handler for NAPI support
2551 * @dev : pointer to the device structure.
2552 * @budget : The number of packets that were budgeted to be processed
2553 * during one pass through the 'Poll" function.
2555 * Comes into picture only if NAPI support has been incorporated. It does
2556 * the same thing that rx_intr_handler does, but not in a interrupt context
2557 * also It will process only a given number of packets.
2559 * 0 on success and 1 if there are No Rx packets to be processed.
2562 #if defined(CONFIG_S2IO_NAPI)
2563 static int s2io_poll(struct net_device *dev, int *budget)
2565 nic_t *nic = dev->priv;
2566 int pkt_cnt = 0, org_pkts_to_process;
2567 mac_info_t *mac_control;
2568 struct config_param *config;
2569 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2570 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2573 atomic_inc(&nic->isr_cnt);
2574 mac_control = &nic->mac_control;
2575 config = &nic->config;
2577 nic->pkts_to_process = *budget;
2578 if (nic->pkts_to_process > dev->quota)
2579 nic->pkts_to_process = dev->quota;
2580 org_pkts_to_process = nic->pkts_to_process;
2582 writeq(val64, &bar0->rx_traffic_int);
2583 val64 = readl(&bar0->rx_traffic_int);
2585 for (i = 0; i < config->rx_ring_num; i++) {
2586 rx_intr_handler(&mac_control->rings[i]);
2587 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2588 if (!nic->pkts_to_process) {
2589 /* Quota for the current iteration has been met */
2596 dev->quota -= pkt_cnt;
2598 netif_rx_complete(dev);
2600 for (i = 0; i < config->rx_ring_num; i++) {
2601 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2602 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2603 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2607 /* Re enable the Rx interrupts. */
2608 writeq(0x0, &bar0->rx_traffic_mask);
2609 val64 = readl(&bar0->rx_traffic_mask);
2610 atomic_dec(&nic->isr_cnt);
2614 dev->quota -= pkt_cnt;
2617 for (i = 0; i < config->rx_ring_num; i++) {
2618 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2619 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2620 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2624 atomic_dec(&nic->isr_cnt);
2630 * rx_intr_handler - Rx interrupt handler
2631 * @nic: device private variable.
2633 * If the interrupt is because of a received frame or if the
2634 * receive ring contains fresh as yet un-processed frames,this function is
2635 * called. It picks out the RxD at which place the last Rx processing had
2636 * stopped and sends the skb to the OSM's Rx handler and then increments
2641 static void rx_intr_handler(ring_info_t *ring_data)
2643 nic_t *nic = ring_data->nic;
2644 struct net_device *dev = (struct net_device *) nic->dev;
2645 int get_block, put_block, put_offset;
2646 rx_curr_get_info_t get_info, put_info;
2648 struct sk_buff *skb;
2649 #ifndef CONFIG_S2IO_NAPI
2654 spin_lock(&nic->rx_lock);
2655 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2656 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2657 __FUNCTION__, dev->name);
2658 spin_unlock(&nic->rx_lock);
2662 get_info = ring_data->rx_curr_get_info;
2663 get_block = get_info.block_index;
2664 put_info = ring_data->rx_curr_put_info;
2665 put_block = put_info.block_index;
2666 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2667 #ifndef CONFIG_S2IO_NAPI
2668 spin_lock(&nic->put_lock);
2669 put_offset = ring_data->put_pos;
2670 spin_unlock(&nic->put_lock);
2672 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2675 while (RXD_IS_UP2DT(rxdp)) {
2676 /* If your are next to put index then it's FIFO full condition */
2677 if ((get_block == put_block) &&
2678 (get_info.offset + 1) == put_info.offset) {
2679 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2682 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2684 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2686 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2687 spin_unlock(&nic->rx_lock);
2690 if (nic->rxd_mode == RXD_MODE_1) {
2691 pci_unmap_single(nic->pdev, (dma_addr_t)
2692 ((RxD1_t*)rxdp)->Buffer0_ptr,
2694 HEADER_ETHERNET_II_802_3_SIZE +
2697 PCI_DMA_FROMDEVICE);
2698 } else if (nic->rxd_mode == RXD_MODE_3B) {
2699 pci_unmap_single(nic->pdev, (dma_addr_t)
2700 ((RxD3_t*)rxdp)->Buffer0_ptr,
2701 BUF0_LEN, PCI_DMA_FROMDEVICE);
2702 pci_unmap_single(nic->pdev, (dma_addr_t)
2703 ((RxD3_t*)rxdp)->Buffer1_ptr,
2704 BUF1_LEN, PCI_DMA_FROMDEVICE);
2705 pci_unmap_single(nic->pdev, (dma_addr_t)
2706 ((RxD3_t*)rxdp)->Buffer2_ptr,
2708 PCI_DMA_FROMDEVICE);
2710 pci_unmap_single(nic->pdev, (dma_addr_t)
2711 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2712 PCI_DMA_FROMDEVICE);
2713 pci_unmap_single(nic->pdev, (dma_addr_t)
2714 ((RxD3_t*)rxdp)->Buffer1_ptr,
2716 PCI_DMA_FROMDEVICE);
2717 pci_unmap_single(nic->pdev, (dma_addr_t)
2718 ((RxD3_t*)rxdp)->Buffer2_ptr,
2719 dev->mtu, PCI_DMA_FROMDEVICE);
2721 prefetch(skb->data);
2722 rx_osm_handler(ring_data, rxdp);
2724 ring_data->rx_curr_get_info.offset = get_info.offset;
2725 rxdp = ring_data->rx_blocks[get_block].
2726 rxds[get_info.offset].virt_addr;
2727 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2728 get_info.offset = 0;
2729 ring_data->rx_curr_get_info.offset = get_info.offset;
2731 if (get_block == ring_data->block_count)
2733 ring_data->rx_curr_get_info.block_index = get_block;
2734 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2737 #ifdef CONFIG_S2IO_NAPI
2738 nic->pkts_to_process -= 1;
2739 if (!nic->pkts_to_process)
2743 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2748 /* Clear all LRO sessions before exiting */
2749 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2750 lro_t *lro = &nic->lro0_n[i];
2752 update_L3L4_header(nic, lro);
2753 queue_rx_frame(lro->parent);
2754 clear_lro_session(lro);
2759 spin_unlock(&nic->rx_lock);
2763 * tx_intr_handler - Transmit interrupt handler
2764 * @nic : device private variable
2766 * If an interrupt was raised to indicate DMA complete of the
2767 * Tx packet, this function is called. It identifies the last TxD
2768 * whose buffer was freed and frees all skbs whose data have already
2769 * DMA'ed into the NICs internal memory.
2774 static void tx_intr_handler(fifo_info_t *fifo_data)
2776 nic_t *nic = fifo_data->nic;
2777 struct net_device *dev = (struct net_device *) nic->dev;
2778 tx_curr_get_info_t get_info, put_info;
2779 struct sk_buff *skb;
2782 get_info = fifo_data->tx_curr_get_info;
2783 put_info = fifo_data->tx_curr_put_info;
2784 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2786 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2787 (get_info.offset != put_info.offset) &&
2788 (txdlp->Host_Control)) {
2789 /* Check for TxD errors */
2790 if (txdlp->Control_1 & TXD_T_CODE) {
2791 unsigned long long err;
2792 err = txdlp->Control_1 & TXD_T_CODE;
2794 nic->mac_control.stats_info->sw_stat.
2797 if ((err >> 48) == 0xA) {
2798 DBG_PRINT(TX_DBG, "TxD returned due \
2799 to loss of link\n");
2802 DBG_PRINT(ERR_DBG, "***TxD error \
2807 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2809 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2811 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2815 /* Updating the statistics block */
2816 nic->stats.tx_bytes += skb->len;
2817 dev_kfree_skb_irq(skb);
2820 if (get_info.offset == get_info.fifo_len + 1)
2821 get_info.offset = 0;
2822 txdlp = (TxD_t *) fifo_data->list_info
2823 [get_info.offset].list_virt_addr;
2824 fifo_data->tx_curr_get_info.offset =
2828 spin_lock(&nic->tx_lock);
2829 if (netif_queue_stopped(dev))
2830 netif_wake_queue(dev);
2831 spin_unlock(&nic->tx_lock);
2835 * s2io_mdio_write - Function to write in to MDIO registers
2836 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2837 * @addr : address value
2838 * @value : data value
2839 * @dev : pointer to net_device structure
2841 * This function is used to write values to the MDIO registers
2844 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2847 nic_t *sp = dev->priv;
2848 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2850 //address transaction
2851 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2852 | MDIO_MMD_DEV_ADDR(mmd_type)
2853 | MDIO_MMS_PRT_ADDR(0x0);
2854 writeq(val64, &bar0->mdio_control);
2855 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2856 writeq(val64, &bar0->mdio_control);
2861 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2862 | MDIO_MMD_DEV_ADDR(mmd_type)
2863 | MDIO_MMS_PRT_ADDR(0x0)
2864 | MDIO_MDIO_DATA(value)
2865 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2866 writeq(val64, &bar0->mdio_control);
2867 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2868 writeq(val64, &bar0->mdio_control);
2872 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2873 | MDIO_MMD_DEV_ADDR(mmd_type)
2874 | MDIO_MMS_PRT_ADDR(0x0)
2875 | MDIO_OP(MDIO_OP_READ_TRANS);
2876 writeq(val64, &bar0->mdio_control);
2877 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2878 writeq(val64, &bar0->mdio_control);
2884 * s2io_mdio_read - Function to write in to MDIO registers
2885 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2886 * @addr : address value
2887 * @dev : pointer to net_device structure
2889 * This function is used to read values to the MDIO registers
2892 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2896 nic_t *sp = dev->priv;
2897 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2899 /* address transaction */
2900 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2901 | MDIO_MMD_DEV_ADDR(mmd_type)
2902 | MDIO_MMS_PRT_ADDR(0x0);
2903 writeq(val64, &bar0->mdio_control);
2904 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2905 writeq(val64, &bar0->mdio_control);
2908 /* Data transaction */
2910 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2911 | MDIO_MMD_DEV_ADDR(mmd_type)
2912 | MDIO_MMS_PRT_ADDR(0x0)
2913 | MDIO_OP(MDIO_OP_READ_TRANS);
2914 writeq(val64, &bar0->mdio_control);
2915 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2916 writeq(val64, &bar0->mdio_control);
2919 /* Read the value from regs */
2920 rval64 = readq(&bar0->mdio_control);
2921 rval64 = rval64 & 0xFFFF0000;
2922 rval64 = rval64 >> 16;
2926 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2927 * @counter : couter value to be updated
2928 * @flag : flag to indicate the status
2929 * @type : counter type
2931 * This function is to check the status of the xpak counters value
2935 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2940 for(i = 0; i <index; i++)
2945 *counter = *counter + 1;
2946 val64 = *regs_stat & mask;
2947 val64 = val64 >> (index * 0x2);
2954 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2955 "service. Excessive temperatures may "
2956 "result in premature transceiver "
2960 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2961 "service Excessive bias currents may "
2962 "indicate imminent laser diode "
2966 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2967 "service Excessive laser output "
2968 "power may saturate far-end "
2972 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2977 val64 = val64 << (index * 0x2);
2978 *regs_stat = (*regs_stat & (~mask)) | (val64);
2981 *regs_stat = *regs_stat & (~mask);
2986 * s2io_updt_xpak_counter - Function to update the xpak counters
2987 * @dev : pointer to net_device struct
2989 * This function is to upate the status of the xpak counters value
2992 static void s2io_updt_xpak_counter(struct net_device *dev)
3000 nic_t *sp = dev->priv;
3001 StatInfo_t *stat_info = sp->mac_control.stats_info;
3003 /* Check the communication with the MDIO slave */
3006 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3007 if((val64 == 0xFFFF) || (val64 == 0x0000))
3009 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3010 "Returned %llx\n", (unsigned long long)val64);
3014 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3017 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3018 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3019 (unsigned long long)val64);
3023 /* Loading the DOM register to MDIO register */
3025 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3026 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3028 /* Reading the Alarm flags */
3031 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3033 flag = CHECKBIT(val64, 0x7);
3035 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3036 &stat_info->xpak_stat.xpak_regs_stat,
3039 if(CHECKBIT(val64, 0x6))
3040 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3042 flag = CHECKBIT(val64, 0x3);
3044 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3045 &stat_info->xpak_stat.xpak_regs_stat,
3048 if(CHECKBIT(val64, 0x2))
3049 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3051 flag = CHECKBIT(val64, 0x1);
3053 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3054 &stat_info->xpak_stat.xpak_regs_stat,
3057 if(CHECKBIT(val64, 0x0))
3058 stat_info->xpak_stat.alarm_laser_output_power_low++;
3060 /* Reading the Warning flags */
3063 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3065 if(CHECKBIT(val64, 0x7))
3066 stat_info->xpak_stat.warn_transceiver_temp_high++;
3068 if(CHECKBIT(val64, 0x6))
3069 stat_info->xpak_stat.warn_transceiver_temp_low++;
3071 if(CHECKBIT(val64, 0x3))
3072 stat_info->xpak_stat.warn_laser_bias_current_high++;
3074 if(CHECKBIT(val64, 0x2))
3075 stat_info->xpak_stat.warn_laser_bias_current_low++;
3077 if(CHECKBIT(val64, 0x1))
3078 stat_info->xpak_stat.warn_laser_output_power_high++;
3080 if(CHECKBIT(val64, 0x0))
3081 stat_info->xpak_stat.warn_laser_output_power_low++;
3085 * alarm_intr_handler - Alarm Interrrupt handler
3086 * @nic: device private variable
3087 * Description: If the interrupt was neither because of Rx packet or Tx
3088 * complete, this function is called. If the interrupt was to indicate
3089 * a loss of link, the OSM link status handler is invoked for any other
3090 * alarm interrupt the block that raised the interrupt is displayed
3091 * and a H/W reset is issued.
3096 static void alarm_intr_handler(struct s2io_nic *nic)
3098 struct net_device *dev = (struct net_device *) nic->dev;
3099 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3100 register u64 val64 = 0, err_reg = 0;
3103 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3104 /* Handling the XPAK counters update */
3105 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3106 /* waiting for an hour */
3107 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3109 s2io_updt_xpak_counter(dev);
3110 /* reset the count to zero */
3111 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3114 /* Handling link status change error Intr */
3115 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3116 err_reg = readq(&bar0->mac_rmac_err_reg);
3117 writeq(err_reg, &bar0->mac_rmac_err_reg);
3118 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3119 schedule_work(&nic->set_link_task);
3123 /* Handling Ecc errors */
3124 val64 = readq(&bar0->mc_err_reg);
3125 writeq(val64, &bar0->mc_err_reg);
3126 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3127 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3128 nic->mac_control.stats_info->sw_stat.
3130 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3132 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3133 if (nic->device_type != XFRAME_II_DEVICE) {
3134 /* Reset XframeI only if critical error */
3135 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3136 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3137 netif_stop_queue(dev);
3138 schedule_work(&nic->rst_timer_task);
3139 nic->mac_control.stats_info->sw_stat.
3144 nic->mac_control.stats_info->sw_stat.
3149 /* In case of a serious error, the device will be Reset. */
3150 val64 = readq(&bar0->serr_source);
3151 if (val64 & SERR_SOURCE_ANY) {
3152 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3153 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3154 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3155 (unsigned long long)val64);
3156 netif_stop_queue(dev);
3157 schedule_work(&nic->rst_timer_task);
3158 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3162 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3163 * Error occurs, the adapter will be recycled by disabling the
3164 * adapter enable bit and enabling it again after the device
3165 * becomes Quiescent.
3167 val64 = readq(&bar0->pcc_err_reg);
3168 writeq(val64, &bar0->pcc_err_reg);
3169 if (val64 & PCC_FB_ECC_DB_ERR) {
3170 u64 ac = readq(&bar0->adapter_control);
3171 ac &= ~(ADAPTER_CNTL_EN);
3172 writeq(ac, &bar0->adapter_control);
3173 ac = readq(&bar0->adapter_control);
3174 schedule_work(&nic->set_link_task);
3176 /* Check for data parity error */
3177 val64 = readq(&bar0->pic_int_status);
3178 if (val64 & PIC_INT_GPIO) {
3179 val64 = readq(&bar0->gpio_int_reg);
3180 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3181 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3182 schedule_work(&nic->rst_timer_task);
3183 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3187 /* Check for ring full counter */
3188 if (nic->device_type & XFRAME_II_DEVICE) {
3189 val64 = readq(&bar0->ring_bump_counter1);
3190 for (i=0; i<4; i++) {
3191 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3192 cnt >>= 64 - ((i+1)*16);
3193 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3197 val64 = readq(&bar0->ring_bump_counter2);
3198 for (i=0; i<4; i++) {
3199 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3200 cnt >>= 64 - ((i+1)*16);
3201 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3206 /* Other type of interrupts are not being handled now, TODO */
3210 * wait_for_cmd_complete - waits for a command to complete.
3211 * @sp : private member of the device structure, which is a pointer to the
3212 * s2io_nic structure.
3213 * Description: Function that waits for a command to Write into RMAC
3214 * ADDR DATA registers to be completed and returns either success or
3215 * error depending on whether the command was complete or not.
3217 * SUCCESS on success and FAILURE on failure.
3220 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3222 int ret = FAILURE, cnt = 0;
3226 val64 = readq(addr);
3227 if (!(val64 & busy_bit)) {
3244 * s2io_reset - Resets the card.
3245 * @sp : private member of the device structure.
3246 * Description: Function to Reset the card. This function then also
3247 * restores the previously saved PCI configuration space registers as
3248 * the card reset also resets the configuration space.
3253 static void s2io_reset(nic_t * sp)
3255 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3259 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3260 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3262 val64 = SW_RESET_ALL;
3263 writeq(val64, &bar0->sw_reset);
3266 * At this stage, if the PCI write is indeed completed, the
3267 * card is reset and so is the PCI Config space of the device.
3268 * So a read cannot be issued at this stage on any of the
3269 * registers to ensure the write into "sw_reset" register
3271 * Question: Is there any system call that will explicitly force
3272 * all the write commands still pending on the bus to be pushed
3274 * As of now I'am just giving a 250ms delay and hoping that the
3275 * PCI write to sw_reset register is done by this time.
3278 if (strstr(sp->product_name, "CX4")) {
3282 /* Restore the PCI state saved during initialization. */
3283 pci_restore_state(sp->pdev);
3284 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3290 /* Set swapper to enable I/O register access */
3291 s2io_set_swapper(sp);
3293 /* Restore the MSIX table entries from local variables */
3294 restore_xmsi_data(sp);
3296 /* Clear certain PCI/PCI-X fields after reset */
3297 if (sp->device_type == XFRAME_II_DEVICE) {
3298 /* Clear parity err detect bit */
3299 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3301 /* Clearing PCIX Ecc status register */
3302 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3304 /* Clearing PCI_STATUS error reflected here */
3305 writeq(BIT(62), &bar0->txpic_int_reg);
3308 /* Reset device statistics maintained by OS */
3309 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3311 /* SXE-002: Configure link and activity LED to turn it off */
3312 subid = sp->pdev->subsystem_device;
3313 if (((subid & 0xFF) >= 0x07) &&
3314 (sp->device_type == XFRAME_I_DEVICE)) {
3315 val64 = readq(&bar0->gpio_control);
3316 val64 |= 0x0000800000000000ULL;
3317 writeq(val64, &bar0->gpio_control);
3318 val64 = 0x0411040400000000ULL;
3319 writeq(val64, (void __iomem *)bar0 + 0x2700);
3323 * Clear spurious ECC interrupts that would have occured on
3324 * XFRAME II cards after reset.
3326 if (sp->device_type == XFRAME_II_DEVICE) {
3327 val64 = readq(&bar0->pcc_err_reg);
3328 writeq(val64, &bar0->pcc_err_reg);
3331 sp->device_enabled_once = FALSE;
3335 * s2io_set_swapper - to set the swapper controle on the card
3336 * @sp : private member of the device structure,
3337 * pointer to the s2io_nic structure.
3338 * Description: Function to set the swapper control on the card
3339 * correctly depending on the 'endianness' of the system.
3341 * SUCCESS on success and FAILURE on failure.
3344 static int s2io_set_swapper(nic_t * sp)
3346 struct net_device *dev = sp->dev;
3347 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3348 u64 val64, valt, valr;
3351 * Set proper endian settings and verify the same by reading
3352 * the PIF Feed-back register.
3355 val64 = readq(&bar0->pif_rd_swapper_fb);
3356 if (val64 != 0x0123456789ABCDEFULL) {
3358 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3359 0x8100008181000081ULL, /* FE=1, SE=0 */
3360 0x4200004242000042ULL, /* FE=0, SE=1 */
3361 0}; /* FE=0, SE=0 */
3364 writeq(value[i], &bar0->swapper_ctrl);
3365 val64 = readq(&bar0->pif_rd_swapper_fb);
3366 if (val64 == 0x0123456789ABCDEFULL)
3371 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3373 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3374 (unsigned long long) val64);
3379 valr = readq(&bar0->swapper_ctrl);
3382 valt = 0x0123456789ABCDEFULL;
3383 writeq(valt, &bar0->xmsi_address);
3384 val64 = readq(&bar0->xmsi_address);
3388 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3389 0x0081810000818100ULL, /* FE=1, SE=0 */
3390 0x0042420000424200ULL, /* FE=0, SE=1 */
3391 0}; /* FE=0, SE=0 */
3394 writeq((value[i] | valr), &bar0->swapper_ctrl);
3395 writeq(valt, &bar0->xmsi_address);
3396 val64 = readq(&bar0->xmsi_address);
3402 unsigned long long x = val64;
3403 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3404 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3408 val64 = readq(&bar0->swapper_ctrl);
3409 val64 &= 0xFFFF000000000000ULL;
3413 * The device by default set to a big endian format, so a
3414 * big endian driver need not set anything.
3416 val64 |= (SWAPPER_CTRL_TXP_FE |
3417 SWAPPER_CTRL_TXP_SE |
3418 SWAPPER_CTRL_TXD_R_FE |
3419 SWAPPER_CTRL_TXD_W_FE |
3420 SWAPPER_CTRL_TXF_R_FE |
3421 SWAPPER_CTRL_RXD_R_FE |
3422 SWAPPER_CTRL_RXD_W_FE |
3423 SWAPPER_CTRL_RXF_W_FE |
3424 SWAPPER_CTRL_XMSI_FE |
3425 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3426 if (sp->intr_type == INTA)
3427 val64 |= SWAPPER_CTRL_XMSI_SE;
3428 writeq(val64, &bar0->swapper_ctrl);
3431 * Initially we enable all bits to make it accessible by the
3432 * driver, then we selectively enable only those bits that
3435 val64 |= (SWAPPER_CTRL_TXP_FE |
3436 SWAPPER_CTRL_TXP_SE |
3437 SWAPPER_CTRL_TXD_R_FE |
3438 SWAPPER_CTRL_TXD_R_SE |
3439 SWAPPER_CTRL_TXD_W_FE |
3440 SWAPPER_CTRL_TXD_W_SE |
3441 SWAPPER_CTRL_TXF_R_FE |
3442 SWAPPER_CTRL_RXD_R_FE |
3443 SWAPPER_CTRL_RXD_R_SE |
3444 SWAPPER_CTRL_RXD_W_FE |
3445 SWAPPER_CTRL_RXD_W_SE |
3446 SWAPPER_CTRL_RXF_W_FE |
3447 SWAPPER_CTRL_XMSI_FE |
3448 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3449 if (sp->intr_type == INTA)
3450 val64 |= SWAPPER_CTRL_XMSI_SE;
3451 writeq(val64, &bar0->swapper_ctrl);
3453 val64 = readq(&bar0->swapper_ctrl);
3456 * Verifying if endian settings are accurate by reading a
3457 * feedback register.
3459 val64 = readq(&bar0->pif_rd_swapper_fb);
3460 if (val64 != 0x0123456789ABCDEFULL) {
3461 /* Endian settings are incorrect, calls for another dekko. */
3462 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3464 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3465 (unsigned long long) val64);
3472 static int wait_for_msix_trans(nic_t *nic, int i)
3474 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3476 int ret = 0, cnt = 0;
3479 val64 = readq(&bar0->xmsi_access);
3480 if (!(val64 & BIT(15)))
3486 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3493 static void restore_xmsi_data(nic_t *nic)
3495 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3499 for (i=0; i< nic->avail_msix_vectors; i++) {
3500 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3501 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3502 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3503 writeq(val64, &bar0->xmsi_access);
3504 if (wait_for_msix_trans(nic, i)) {
3505 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3511 static void store_xmsi_data(nic_t *nic)
3513 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3514 u64 val64, addr, data;
3517 /* Store and display */
3518 for (i=0; i< nic->avail_msix_vectors; i++) {
3519 val64 = (BIT(15) | vBIT(i, 26, 6));
3520 writeq(val64, &bar0->xmsi_access);
3521 if (wait_for_msix_trans(nic, i)) {
3522 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3525 addr = readq(&bar0->xmsi_address);
3526 data = readq(&bar0->xmsi_data);
3528 nic->msix_info[i].addr = addr;
3529 nic->msix_info[i].data = data;
3534 int s2io_enable_msi(nic_t *nic)
3536 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3537 u16 msi_ctrl, msg_val;
3538 struct config_param *config = &nic->config;
3539 struct net_device *dev = nic->dev;
3540 u64 val64, tx_mat, rx_mat;
3543 val64 = readq(&bar0->pic_control);
3545 writeq(val64, &bar0->pic_control);
3547 err = pci_enable_msi(nic->pdev);
3549 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3555 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3556 * for interrupt handling.
3558 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3560 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3561 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3563 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3565 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3567 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3568 tx_mat = readq(&bar0->tx_mat0_n[0]);
3569 for (i=0; i<config->tx_fifo_num; i++) {
3570 tx_mat |= TX_MAT_SET(i, 1);
3572 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3574 rx_mat = readq(&bar0->rx_mat);
3575 for (i=0; i<config->rx_ring_num; i++) {
3576 rx_mat |= RX_MAT_SET(i, 1);
3578 writeq(rx_mat, &bar0->rx_mat);
3580 dev->irq = nic->pdev->irq;
3584 static int s2io_enable_msi_x(nic_t *nic)
3586 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3588 u16 msi_control; /* Temp variable */
3589 int ret, i, j, msix_indx = 1;
3591 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3593 if (nic->entries == NULL) {
3594 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3597 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3600 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3602 if (nic->s2io_entries == NULL) {
3603 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3604 kfree(nic->entries);
3607 memset(nic->s2io_entries, 0,
3608 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3610 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3611 nic->entries[i].entry = i;
3612 nic->s2io_entries[i].entry = i;
3613 nic->s2io_entries[i].arg = NULL;
3614 nic->s2io_entries[i].in_use = 0;
3617 tx_mat = readq(&bar0->tx_mat0_n[0]);
3618 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3619 tx_mat |= TX_MAT_SET(i, msix_indx);
3620 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3621 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3622 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3624 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3626 if (!nic->config.bimodal) {
3627 rx_mat = readq(&bar0->rx_mat);
3628 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3629 rx_mat |= RX_MAT_SET(j, msix_indx);
3630 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3631 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3632 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3634 writeq(rx_mat, &bar0->rx_mat);
3636 tx_mat = readq(&bar0->tx_mat0_n[7]);
3637 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3638 tx_mat |= TX_MAT_SET(i, msix_indx);
3639 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3640 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3641 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3643 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3646 nic->avail_msix_vectors = 0;
3647 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3648 /* We fail init if error or we get less vectors than min required */
3649 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3650 nic->avail_msix_vectors = ret;
3651 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3654 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3655 kfree(nic->entries);
3656 kfree(nic->s2io_entries);
3657 nic->entries = NULL;
3658 nic->s2io_entries = NULL;
3659 nic->avail_msix_vectors = 0;
3662 if (!nic->avail_msix_vectors)
3663 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3666 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3667 * in the herc NIC. (Temp change, needs to be removed later)
3669 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3670 msi_control |= 0x1; /* Enable MSI */
3671 pci_write_config_word(nic->pdev, 0x42, msi_control);
3676 /* ********************************************************* *
3677 * Functions defined below concern the OS part of the driver *
3678 * ********************************************************* */
3681 * s2io_open - open entry point of the driver
3682 * @dev : pointer to the device structure.
3684 * This function is the open entry point of the driver. It mainly calls a
3685 * function to allocate Rx buffers and inserts them into the buffer
3686 * descriptors and then enables the Rx part of the NIC.
3688 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3692 static int s2io_open(struct net_device *dev)
3694 nic_t *sp = dev->priv;
3698 * Make sure you have link off by default every time
3699 * Nic is initialized
3701 netif_carrier_off(dev);
3702 sp->last_link_state = 0;
3704 /* Initialize H/W and enable interrupts */
3705 err = s2io_card_up(sp);
3707 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3710 goto hw_init_failed;
3712 goto hw_enable_failed;
3715 /* Store the values of the MSIX table in the nic_t structure */
3716 store_xmsi_data(sp);
3718 /* After proper initialization of H/W, register ISR */
3719 if (sp->intr_type == MSI) {
3720 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3721 SA_SHIRQ, sp->name, dev);
3723 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3724 failed\n", dev->name);
3725 goto isr_registration_failed;
3728 if (sp->intr_type == MSI_X) {
3731 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3732 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3733 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3735 err = request_irq(sp->entries[i].vector,
3736 s2io_msix_fifo_handle, 0, sp->desc1,
3737 sp->s2io_entries[i].arg);
3738 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3739 (unsigned long long)sp->msix_info[i].addr);
3741 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3743 err = request_irq(sp->entries[i].vector,
3744 s2io_msix_ring_handle, 0, sp->desc2,
3745 sp->s2io_entries[i].arg);
3746 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3747 (unsigned long long)sp->msix_info[i].addr);
3750 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3751 failed\n", dev->name, i);
3752 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3753 goto isr_registration_failed;
3755 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3758 if (sp->intr_type == INTA) {
3759 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3762 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3764 goto isr_registration_failed;
3768 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3769 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3771 goto setting_mac_address_failed;
3774 netif_start_queue(dev);
3777 setting_mac_address_failed:
3778 if (sp->intr_type != MSI_X)
3779 free_irq(sp->pdev->irq, dev);
3780 isr_registration_failed:
3781 del_timer_sync(&sp->alarm_timer);
3782 if (sp->intr_type == MSI_X) {
3784 u16 msi_control; /* Temp variable */
3786 for (i=1; (sp->s2io_entries[i].in_use ==
3787 MSIX_REGISTERED_SUCCESS); i++) {
3788 int vector = sp->entries[i].vector;
3789 void *arg = sp->s2io_entries[i].arg;
3791 free_irq(vector, arg);
3793 pci_disable_msix(sp->pdev);
3796 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3797 msi_control &= 0xFFFE; /* Disable MSI */
3798 pci_write_config_word(sp->pdev, 0x42, msi_control);
3800 else if (sp->intr_type == MSI)
3801 pci_disable_msi(sp->pdev);
3805 if (sp->intr_type == MSI_X) {
3808 if (sp->s2io_entries)
3809 kfree(sp->s2io_entries);
3815 * s2io_close -close entry point of the driver
3816 * @dev : device pointer.
3818 * This is the stop entry point of the driver. It needs to undo exactly
3819 * whatever was done by the open entry point,thus it's usually referred to
3820 * as the close function.Among other things this function mainly stops the
3821 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3823 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3827 static int s2io_close(struct net_device *dev)
3829 nic_t *sp = dev->priv;
3831 flush_scheduled_work();
3832 netif_stop_queue(dev);
3833 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3834 s2io_card_down(sp, 1);
3836 sp->device_close_flag = TRUE; /* Device is shut down. */
3841 * s2io_xmit - Tx entry point of te driver
3842 * @skb : the socket buffer containing the Tx data.
3843 * @dev : device pointer.
3845 * This function is the Tx entry point of the driver. S2IO NIC supports
3846 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3847 * NOTE: when device cant queue the pkt,just the trans_start variable will
3850 * 0 on success & 1 on failure.
3853 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3855 nic_t *sp = dev->priv;
3856 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3859 TxFIFO_element_t __iomem *tx_fifo;
3860 unsigned long flags;
3865 int vlan_priority = 0;
3866 mac_info_t *mac_control;
3867 struct config_param *config;
3869 mac_control = &sp->mac_control;
3870 config = &sp->config;
3872 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3873 spin_lock_irqsave(&sp->tx_lock, flags);
3874 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3875 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3877 spin_unlock_irqrestore(&sp->tx_lock, flags);
3884 /* Get Fifo number to Transmit based on vlan priority */
3885 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3886 vlan_tag = vlan_tx_tag_get(skb);
3887 vlan_priority = vlan_tag >> 13;
3888 queue = config->fifo_mapping[vlan_priority];
3891 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3892 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3893 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3896 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3897 /* Avoid "put" pointer going beyond "get" pointer */
3898 if (txdp->Host_Control ||
3899 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3900 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3901 netif_stop_queue(dev);
3903 spin_unlock_irqrestore(&sp->tx_lock, flags);
3907 /* A buffer with no data will be dropped */
3909 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3911 spin_unlock_irqrestore(&sp->tx_lock, flags);
3915 txdp->Control_1 = 0;
3916 txdp->Control_2 = 0;
3918 mss = skb_shinfo(skb)->tso_size;
3920 txdp->Control_1 |= TXD_TCP_LSO_EN;
3921 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3924 if (skb->ip_summed == CHECKSUM_HW) {
3926 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3929 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3930 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3931 txdp->Control_2 |= config->tx_intr_type;
3933 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3934 txdp->Control_2 |= TXD_VLAN_ENABLE;
3935 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3938 frg_len = skb->len - skb->data_len;
3939 if (skb_shinfo(skb)->ufo_size) {
3942 ufo_size = skb_shinfo(skb)->ufo_size;
3944 txdp->Control_1 |= TXD_UFO_EN;
3945 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3946 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3948 sp->ufo_in_band_v[put_off] =
3949 (u64)skb_shinfo(skb)->ip6_frag_id;
3951 sp->ufo_in_band_v[put_off] =
3952 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3954 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3955 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3957 sizeof(u64), PCI_DMA_TODEVICE);
3959 txdp->Control_1 = 0;
3960 txdp->Control_2 = 0;
3963 txdp->Buffer_Pointer = pci_map_single
3964 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3965 txdp->Host_Control = (unsigned long) skb;
3966 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3968 if (skb_shinfo(skb)->ufo_size)
3969 txdp->Control_1 |= TXD_UFO_EN;
3971 frg_cnt = skb_shinfo(skb)->nr_frags;
3972 /* For fragmented SKB. */
3973 for (i = 0; i < frg_cnt; i++) {
3974 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3975 /* A '0' length fragment will be ignored */
3979 txdp->Buffer_Pointer = (u64) pci_map_page
3980 (sp->pdev, frag->page, frag->page_offset,
3981 frag->size, PCI_DMA_TODEVICE);
3982 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3983 if (skb_shinfo(skb)->ufo_size)
3984 txdp->Control_1 |= TXD_UFO_EN;
3986 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3988 if (skb_shinfo(skb)->ufo_size)
3989 frg_cnt++; /* as Txd0 was used for inband header */
3991 tx_fifo = mac_control->tx_FIFO_start[queue];
3992 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3993 writeq(val64, &tx_fifo->TxDL_Pointer);
3995 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4000 val64 |= TX_FIFO_SPECIAL_FUNC;
4002 if (skb_shinfo(skb)->ufo_size)
4003 val64 |= TX_FIFO_SPECIAL_FUNC;
4004 writeq(val64, &tx_fifo->List_Control);
4009 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4011 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4013 /* Avoid "put" pointer going beyond "get" pointer */
4014 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4015 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4017 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4019 netif_stop_queue(dev);
4022 dev->trans_start = jiffies;
4023 spin_unlock_irqrestore(&sp->tx_lock, flags);
4029 s2io_alarm_handle(unsigned long data)
4031 nic_t *sp = (nic_t *)data;
4033 alarm_intr_handler(sp);
4034 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4038 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4040 struct net_device *dev = (struct net_device *) dev_id;
4041 nic_t *sp = dev->priv;
4044 mac_info_t *mac_control;
4045 struct config_param *config;
4047 atomic_inc(&sp->isr_cnt);
4048 mac_control = &sp->mac_control;
4049 config = &sp->config;
4050 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4052 /* If Intr is because of Rx Traffic */
4053 for (i = 0; i < config->rx_ring_num; i++)
4054 rx_intr_handler(&mac_control->rings[i]);
4056 /* If Intr is because of Tx Traffic */
4057 for (i = 0; i < config->tx_fifo_num; i++)
4058 tx_intr_handler(&mac_control->fifos[i]);
4061 * If the Rx buffer count is below the panic threshold then
4062 * reallocate the buffers from the interrupt handler itself,
4063 * else schedule a tasklet to reallocate the buffers.
4065 for (i = 0; i < config->rx_ring_num; i++) {
4067 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4068 int level = rx_buffer_level(sp, rxb_size, i);
4070 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4071 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4073 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4074 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4075 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4077 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4078 clear_bit(0, (&sp->tasklet_status));
4079 atomic_dec(&sp->isr_cnt);
4082 clear_bit(0, (&sp->tasklet_status));
4083 } else if (level == LOW) {
4084 tasklet_schedule(&sp->task);
4087 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4088 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4090 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4095 atomic_dec(&sp->isr_cnt);
4100 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4102 ring_info_t *ring = (ring_info_t *)dev_id;
4103 nic_t *sp = ring->nic;
4104 struct net_device *dev = (struct net_device *) dev_id;
4105 int rxb_size, level, rng_n;
4107 atomic_inc(&sp->isr_cnt);
4108 rx_intr_handler(ring);
4110 rng_n = ring->ring_no;
4112 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4113 level = rx_buffer_level(sp, rxb_size, rng_n);
4115 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4117 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4118 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4119 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4120 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4122 clear_bit(0, (&sp->tasklet_status));
4125 clear_bit(0, (&sp->tasklet_status));
4126 } else if (level == LOW) {
4127 tasklet_schedule(&sp->task);
4130 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4131 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4132 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4135 atomic_dec(&sp->isr_cnt);
4141 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4143 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4144 nic_t *sp = fifo->nic;
4146 atomic_inc(&sp->isr_cnt);
4147 tx_intr_handler(fifo);
4148 atomic_dec(&sp->isr_cnt);
4151 static void s2io_txpic_intr_handle(nic_t *sp)
4153 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4156 val64 = readq(&bar0->pic_int_status);
4157 if (val64 & PIC_INT_GPIO) {
4158 val64 = readq(&bar0->gpio_int_reg);
4159 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4160 (val64 & GPIO_INT_REG_LINK_UP)) {
4162 * This is unstable state so clear both up/down
4163 * interrupt and adapter to re-evaluate the link state.
4165 val64 |= GPIO_INT_REG_LINK_DOWN;
4166 val64 |= GPIO_INT_REG_LINK_UP;
4167 writeq(val64, &bar0->gpio_int_reg);
4168 val64 = readq(&bar0->gpio_int_mask);
4169 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4170 GPIO_INT_MASK_LINK_DOWN);
4171 writeq(val64, &bar0->gpio_int_mask);
4173 else if (val64 & GPIO_INT_REG_LINK_UP) {
4174 val64 = readq(&bar0->adapter_status);
4175 if (verify_xena_quiescence(sp, val64,
4176 sp->device_enabled_once)) {
4177 /* Enable Adapter */
4178 val64 = readq(&bar0->adapter_control);
4179 val64 |= ADAPTER_CNTL_EN;
4180 writeq(val64, &bar0->adapter_control);
4181 val64 |= ADAPTER_LED_ON;
4182 writeq(val64, &bar0->adapter_control);
4183 if (!sp->device_enabled_once)
4184 sp->device_enabled_once = 1;
4186 s2io_link(sp, LINK_UP);
4188 * unmask link down interrupt and mask link-up
4191 val64 = readq(&bar0->gpio_int_mask);
4192 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4193 val64 |= GPIO_INT_MASK_LINK_UP;
4194 writeq(val64, &bar0->gpio_int_mask);
4197 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4198 val64 = readq(&bar0->adapter_status);
4199 if (verify_xena_quiescence(sp, val64,
4200 sp->device_enabled_once)) {
4201 s2io_link(sp, LINK_DOWN);
4202 /* Link is down so unmaks link up interrupt */
4203 val64 = readq(&bar0->gpio_int_mask);
4204 val64 &= ~GPIO_INT_MASK_LINK_UP;
4205 val64 |= GPIO_INT_MASK_LINK_DOWN;
4206 writeq(val64, &bar0->gpio_int_mask);
4210 val64 = readq(&bar0->gpio_int_mask);
4214 * s2io_isr - ISR handler of the device .
4215 * @irq: the irq of the device.
4216 * @dev_id: a void pointer to the dev structure of the NIC.
4217 * @pt_regs: pointer to the registers pushed on the stack.
4218 * Description: This function is the ISR handler of the device. It
4219 * identifies the reason for the interrupt and calls the relevant
4220 * service routines. As a contongency measure, this ISR allocates the
4221 * recv buffers, if their numbers are below the panic value which is
4222 * presently set to 25% of the original number of rcv buffers allocated.
4224 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4225 * IRQ_NONE: will be returned if interrupt is not from our device
4227 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4229 struct net_device *dev = (struct net_device *) dev_id;
4230 nic_t *sp = dev->priv;
4231 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4233 u64 reason = 0, val64, org_mask;
4234 mac_info_t *mac_control;
4235 struct config_param *config;
4237 atomic_inc(&sp->isr_cnt);
4238 mac_control = &sp->mac_control;
4239 config = &sp->config;
4242 * Identify the cause for interrupt and call the appropriate
4243 * interrupt handler. Causes for the interrupt could be;
4247 * 4. Error in any functional blocks of the NIC.
4249 reason = readq(&bar0->general_int_status);
4252 /* The interrupt was not raised by Xena. */
4253 atomic_dec(&sp->isr_cnt);
4257 val64 = 0xFFFFFFFFFFFFFFFFULL;
4258 /* Store current mask before masking all interrupts */
4259 org_mask = readq(&bar0->general_int_mask);
4260 writeq(val64, &bar0->general_int_mask);
4262 #ifdef CONFIG_S2IO_NAPI
4263 if (reason & GEN_INTR_RXTRAFFIC) {
4264 if (netif_rx_schedule_prep(dev)) {
4265 writeq(val64, &bar0->rx_traffic_mask);
4266 __netif_rx_schedule(dev);
4271 * Rx handler is called by default, without checking for the
4272 * cause of interrupt.
4273 * rx_traffic_int reg is an R1 register, writing all 1's
4274 * will ensure that the actual interrupt causing bit get's
4275 * cleared and hence a read can be avoided.
4277 writeq(val64, &bar0->rx_traffic_int);
4278 for (i = 0; i < config->rx_ring_num; i++) {
4279 rx_intr_handler(&mac_control->rings[i]);
4284 * tx_traffic_int reg is an R1 register, writing all 1's
4285 * will ensure that the actual interrupt causing bit get's
4286 * cleared and hence a read can be avoided.
4288 writeq(val64, &bar0->tx_traffic_int);
4290 for (i = 0; i < config->tx_fifo_num; i++)
4291 tx_intr_handler(&mac_control->fifos[i]);
4293 if (reason & GEN_INTR_TXPIC)
4294 s2io_txpic_intr_handle(sp);
4296 * If the Rx buffer count is below the panic threshold then
4297 * reallocate the buffers from the interrupt handler itself,
4298 * else schedule a tasklet to reallocate the buffers.
4300 #ifndef CONFIG_S2IO_NAPI
4301 for (i = 0; i < config->rx_ring_num; i++) {
4304 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4305 int level = rx_buffer_level(sp, rxb_size, i);
4307 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4308 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4310 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4311 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4312 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4314 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4315 clear_bit(0, (&sp->tasklet_status));
4316 atomic_dec(&sp->isr_cnt);
4317 writeq(org_mask, &bar0->general_int_mask);
4320 clear_bit(0, (&sp->tasklet_status));
4321 } else if (level == LOW) {
4322 tasklet_schedule(&sp->task);
4325 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4326 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4328 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4333 writeq(org_mask, &bar0->general_int_mask);
4334 atomic_dec(&sp->isr_cnt);
4341 static void s2io_updt_stats(nic_t *sp)
4343 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4347 if (atomic_read(&sp->card_state) == CARD_UP) {
4348 /* Apprx 30us on a 133 MHz bus */
4349 val64 = SET_UPDT_CLICKS(10) |
4350 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4351 writeq(val64, &bar0->stat_cfg);
4354 val64 = readq(&bar0->stat_cfg);
4355 if (!(val64 & BIT(0)))
4359 break; /* Updt failed */
4365 * s2io_get_stats - Updates the device statistics structure.
4366 * @dev : pointer to the device structure.
4368 * This function updates the device statistics structure in the s2io_nic
4369 * structure and returns a pointer to the same.
4371 * pointer to the updated net_device_stats structure.
4374 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4376 nic_t *sp = dev->priv;
4377 mac_info_t *mac_control;
4378 struct config_param *config;
4381 mac_control = &sp->mac_control;
4382 config = &sp->config;
4384 /* Configure Stats for immediate updt */
4385 s2io_updt_stats(sp);
4387 sp->stats.tx_packets =
4388 le32_to_cpu(mac_control->stats_info->tmac_frms);
4389 sp->stats.tx_errors =
4390 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4391 sp->stats.rx_errors =
4392 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4393 sp->stats.multicast =
4394 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4395 sp->stats.rx_length_errors =
4396 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4398 return (&sp->stats);
4402 * s2io_set_multicast - entry point for multicast address enable/disable.
4403 * @dev : pointer to the device structure
4405 * This function is a driver entry point which gets called by the kernel
4406 * whenever multicast addresses must be enabled/disabled. This also gets
4407 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4408 * determine, if multicast address must be enabled or if promiscuous mode
4409 * is to be disabled etc.
4414 static void s2io_set_multicast(struct net_device *dev)
4417 struct dev_mc_list *mclist;
4418 nic_t *sp = dev->priv;
4419 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4420 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4422 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4425 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4426 /* Enable all Multicast addresses */
4427 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4428 &bar0->rmac_addr_data0_mem);
4429 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4430 &bar0->rmac_addr_data1_mem);
4431 val64 = RMAC_ADDR_CMD_MEM_WE |
4432 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4433 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4434 writeq(val64, &bar0->rmac_addr_cmd_mem);
4435 /* Wait till command completes */
4436 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4437 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4440 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4441 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4442 /* Disable all Multicast addresses */
4443 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4444 &bar0->rmac_addr_data0_mem);
4445 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4446 &bar0->rmac_addr_data1_mem);
4447 val64 = RMAC_ADDR_CMD_MEM_WE |
4448 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4449 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4450 writeq(val64, &bar0->rmac_addr_cmd_mem);
4451 /* Wait till command completes */
4452 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4453 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4456 sp->all_multi_pos = 0;
4459 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4460 /* Put the NIC into promiscuous mode */
4461 add = &bar0->mac_cfg;
4462 val64 = readq(&bar0->mac_cfg);
4463 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4465 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4466 writel((u32) val64, add);
4467 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4468 writel((u32) (val64 >> 32), (add + 4));
4470 val64 = readq(&bar0->mac_cfg);
4471 sp->promisc_flg = 1;
4472 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4474 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4475 /* Remove the NIC from promiscuous mode */
4476 add = &bar0->mac_cfg;
4477 val64 = readq(&bar0->mac_cfg);
4478 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4480 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4481 writel((u32) val64, add);
4482 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4483 writel((u32) (val64 >> 32), (add + 4));
4485 val64 = readq(&bar0->mac_cfg);
4486 sp->promisc_flg = 0;
4487 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4491 /* Update individual M_CAST address list */
4492 if ((!sp->m_cast_flg) && dev->mc_count) {
4494 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4495 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4497 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4498 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4502 prev_cnt = sp->mc_addr_count;
4503 sp->mc_addr_count = dev->mc_count;
4505 /* Clear out the previous list of Mc in the H/W. */
4506 for (i = 0; i < prev_cnt; i++) {
4507 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4508 &bar0->rmac_addr_data0_mem);
4509 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4510 &bar0->rmac_addr_data1_mem);
4511 val64 = RMAC_ADDR_CMD_MEM_WE |
4512 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4513 RMAC_ADDR_CMD_MEM_OFFSET
4514 (MAC_MC_ADDR_START_OFFSET + i);
4515 writeq(val64, &bar0->rmac_addr_cmd_mem);
4517 /* Wait for command completes */
4518 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4519 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4520 DBG_PRINT(ERR_DBG, "%s: Adding ",
4522 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4527 /* Create the new Rx filter list and update the same in H/W. */
4528 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4529 i++, mclist = mclist->next) {
4530 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4533 for (j = 0; j < ETH_ALEN; j++) {
4534 mac_addr |= mclist->dmi_addr[j];
4538 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4539 &bar0->rmac_addr_data0_mem);
4540 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4541 &bar0->rmac_addr_data1_mem);
4542 val64 = RMAC_ADDR_CMD_MEM_WE |
4543 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4544 RMAC_ADDR_CMD_MEM_OFFSET
4545 (i + MAC_MC_ADDR_START_OFFSET);
4546 writeq(val64, &bar0->rmac_addr_cmd_mem);
4548 /* Wait for command completes */
4549 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4550 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4551 DBG_PRINT(ERR_DBG, "%s: Adding ",
4553 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4561 * s2io_set_mac_addr - Programs the Xframe mac address
4562 * @dev : pointer to the device structure.
4563 * @addr: a uchar pointer to the new mac address which is to be set.
4564 * Description : This procedure will program the Xframe to receive
4565 * frames with new Mac Address
4566 * Return value: SUCCESS on success and an appropriate (-)ve integer
4567 * as defined in errno.h file on failure.
4570 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4572 nic_t *sp = dev->priv;
4573 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4574 register u64 val64, mac_addr = 0;
4578 * Set the new MAC address as the new unicast filter and reflect this
4579 * change on the device address registered with the OS. It will be
4582 for (i = 0; i < ETH_ALEN; i++) {
4584 mac_addr |= addr[i];
4587 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4588 &bar0->rmac_addr_data0_mem);
4591 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4592 RMAC_ADDR_CMD_MEM_OFFSET(0);
4593 writeq(val64, &bar0->rmac_addr_cmd_mem);
4594 /* Wait till command completes */
4595 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4596 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4597 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4605 * s2io_ethtool_sset - Sets different link parameters.
4606 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4607 * @info: pointer to the structure with parameters given by ethtool to set
4610 * The function sets different link parameters provided by the user onto
4616 static int s2io_ethtool_sset(struct net_device *dev,
4617 struct ethtool_cmd *info)
4619 nic_t *sp = dev->priv;
4620 if ((info->autoneg == AUTONEG_ENABLE) ||
4621 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4624 s2io_close(sp->dev);
4632 * s2io_ethtol_gset - Return link specific information.
4633 * @sp : private member of the device structure, pointer to the
4634 * s2io_nic structure.
4635 * @info : pointer to the structure with parameters given by ethtool
4636 * to return link information.
4638 * Returns link specific information like speed, duplex etc.. to ethtool.
4640 * return 0 on success.
4643 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4645 nic_t *sp = dev->priv;
4646 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4647 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4648 info->port = PORT_FIBRE;
4649 /* info->transceiver?? TODO */
4651 if (netif_carrier_ok(sp->dev)) {
4652 info->speed = 10000;
4653 info->duplex = DUPLEX_FULL;
4659 info->autoneg = AUTONEG_DISABLE;
4664 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4665 * @sp : private member of the device structure, which is a pointer to the
4666 * s2io_nic structure.
4667 * @info : pointer to the structure with parameters given by ethtool to
4668 * return driver information.
4670 * Returns driver specefic information like name, version etc.. to ethtool.
4675 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4676 struct ethtool_drvinfo *info)
4678 nic_t *sp = dev->priv;
4680 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4681 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4682 strncpy(info->fw_version, "", sizeof(info->fw_version));
4683 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4684 info->regdump_len = XENA_REG_SPACE;
4685 info->eedump_len = XENA_EEPROM_SPACE;
4686 info->testinfo_len = S2IO_TEST_LEN;
4687 info->n_stats = S2IO_STAT_LEN;
4691 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4692 * @sp: private member of the device structure, which is a pointer to the
4693 * s2io_nic structure.
4694 * @regs : pointer to the structure with parameters given by ethtool for
4695 * dumping the registers.
4696 * @reg_space: The input argumnet into which all the registers are dumped.
4698 * Dumps the entire register space of xFrame NIC into the user given
4704 static void s2io_ethtool_gregs(struct net_device *dev,
4705 struct ethtool_regs *regs, void *space)
4709 u8 *reg_space = (u8 *) space;
4710 nic_t *sp = dev->priv;
4712 regs->len = XENA_REG_SPACE;
4713 regs->version = sp->pdev->subsystem_device;
4715 for (i = 0; i < regs->len; i += 8) {
4716 reg = readq(sp->bar0 + i);
4717 memcpy((reg_space + i), ®, 8);
4722 * s2io_phy_id - timer function that alternates adapter LED.
4723 * @data : address of the private member of the device structure, which
4724 * is a pointer to the s2io_nic structure, provided as an u32.
4725 * Description: This is actually the timer function that alternates the
4726 * adapter LED bit of the adapter control bit to set/reset every time on
4727 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4728 * once every second.
4730 static void s2io_phy_id(unsigned long data)
4732 nic_t *sp = (nic_t *) data;
4733 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4737 subid = sp->pdev->subsystem_device;
4738 if ((sp->device_type == XFRAME_II_DEVICE) ||
4739 ((subid & 0xFF) >= 0x07)) {
4740 val64 = readq(&bar0->gpio_control);
4741 val64 ^= GPIO_CTRL_GPIO_0;
4742 writeq(val64, &bar0->gpio_control);
4744 val64 = readq(&bar0->adapter_control);
4745 val64 ^= ADAPTER_LED_ON;
4746 writeq(val64, &bar0->adapter_control);
4749 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4753 * s2io_ethtool_idnic - To physically identify the nic on the system.
4754 * @sp : private member of the device structure, which is a pointer to the
4755 * s2io_nic structure.
4756 * @id : pointer to the structure with identification parameters given by
4758 * Description: Used to physically identify the NIC on the system.
4759 * The Link LED will blink for a time specified by the user for
4761 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4762 * identification is possible only if it's link is up.
4764 * int , returns 0 on success
4767 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4769 u64 val64 = 0, last_gpio_ctrl_val;
4770 nic_t *sp = dev->priv;
4771 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4774 subid = sp->pdev->subsystem_device;
4775 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4776 if ((sp->device_type == XFRAME_I_DEVICE) &&
4777 ((subid & 0xFF) < 0x07)) {
4778 val64 = readq(&bar0->adapter_control);
4779 if (!(val64 & ADAPTER_CNTL_EN)) {
4781 "Adapter Link down, cannot blink LED\n");
4785 if (sp->id_timer.function == NULL) {
4786 init_timer(&sp->id_timer);
4787 sp->id_timer.function = s2io_phy_id;
4788 sp->id_timer.data = (unsigned long) sp;
4790 mod_timer(&sp->id_timer, jiffies);
4792 msleep_interruptible(data * HZ);
4794 msleep_interruptible(MAX_FLICKER_TIME);
4795 del_timer_sync(&sp->id_timer);
4797 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4798 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4799 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4806 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4807 * @sp : private member of the device structure, which is a pointer to the
4808 * s2io_nic structure.
4809 * @ep : pointer to the structure with pause parameters given by ethtool.
4811 * Returns the Pause frame generation and reception capability of the NIC.
4815 static void s2io_ethtool_getpause_data(struct net_device *dev,
4816 struct ethtool_pauseparam *ep)
4819 nic_t *sp = dev->priv;
4820 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4822 val64 = readq(&bar0->rmac_pause_cfg);
4823 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4824 ep->tx_pause = TRUE;
4825 if (val64 & RMAC_PAUSE_RX_ENABLE)
4826 ep->rx_pause = TRUE;
4827 ep->autoneg = FALSE;
4831 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4832 * @sp : private member of the device structure, which is a pointer to the
4833 * s2io_nic structure.
4834 * @ep : pointer to the structure with pause parameters given by ethtool.
4836 * It can be used to set or reset Pause frame generation or reception
4837 * support of the NIC.
4839 * int, returns 0 on Success
4842 static int s2io_ethtool_setpause_data(struct net_device *dev,
4843 struct ethtool_pauseparam *ep)
4846 nic_t *sp = dev->priv;
4847 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4849 val64 = readq(&bar0->rmac_pause_cfg);
4851 val64 |= RMAC_PAUSE_GEN_ENABLE;
4853 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4855 val64 |= RMAC_PAUSE_RX_ENABLE;
4857 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4858 writeq(val64, &bar0->rmac_pause_cfg);
4863 * read_eeprom - reads 4 bytes of data from user given offset.
4864 * @sp : private member of the device structure, which is a pointer to the
4865 * s2io_nic structure.
4866 * @off : offset at which the data must be written
4867 * @data : Its an output parameter where the data read at the given
4870 * Will read 4 bytes of data from the user given offset and return the
4872 * NOTE: Will allow to read only part of the EEPROM visible through the
4875 * -1 on failure and 0 on success.
4878 #define S2IO_DEV_ID 5
4879 static int read_eeprom(nic_t * sp, int off, u64 * data)
4884 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4886 if (sp->device_type == XFRAME_I_DEVICE) {
4887 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4888 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4889 I2C_CONTROL_CNTL_START;
4890 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4892 while (exit_cnt < 5) {
4893 val64 = readq(&bar0->i2c_control);
4894 if (I2C_CONTROL_CNTL_END(val64)) {
4895 *data = I2C_CONTROL_GET_DATA(val64);
4904 if (sp->device_type == XFRAME_II_DEVICE) {
4905 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4906 SPI_CONTROL_BYTECNT(0x3) |
4907 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4908 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4909 val64 |= SPI_CONTROL_REQ;
4910 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4911 while (exit_cnt < 5) {
4912 val64 = readq(&bar0->spi_control);
4913 if (val64 & SPI_CONTROL_NACK) {
4916 } else if (val64 & SPI_CONTROL_DONE) {
4917 *data = readq(&bar0->spi_data);
4930 * write_eeprom - actually writes the relevant part of the data value.
4931 * @sp : private member of the device structure, which is a pointer to the
4932 * s2io_nic structure.
4933 * @off : offset at which the data must be written
4934 * @data : The data that is to be written
4935 * @cnt : Number of bytes of the data that are actually to be written into
4936 * the Eeprom. (max of 3)
4938 * Actually writes the relevant part of the data value into the Eeprom
4939 * through the I2C bus.
4941 * 0 on success, -1 on failure.
4944 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4946 int exit_cnt = 0, ret = -1;
4948 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4950 if (sp->device_type == XFRAME_I_DEVICE) {
4951 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4952 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4953 I2C_CONTROL_CNTL_START;
4954 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4956 while (exit_cnt < 5) {
4957 val64 = readq(&bar0->i2c_control);
4958 if (I2C_CONTROL_CNTL_END(val64)) {
4959 if (!(val64 & I2C_CONTROL_NACK))
4968 if (sp->device_type == XFRAME_II_DEVICE) {
4969 int write_cnt = (cnt == 8) ? 0 : cnt;
4970 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4972 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4973 SPI_CONTROL_BYTECNT(write_cnt) |
4974 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4975 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4976 val64 |= SPI_CONTROL_REQ;
4977 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4978 while (exit_cnt < 5) {
4979 val64 = readq(&bar0->spi_control);
4980 if (val64 & SPI_CONTROL_NACK) {
4983 } else if (val64 & SPI_CONTROL_DONE) {
4993 static void s2io_vpd_read(nic_t *nic)
4995 u8 vpd_data[256],data;
4996 int i=0, cnt, fail = 0;
4997 int vpd_addr = 0x80;
4999 if (nic->device_type == XFRAME_II_DEVICE) {
5000 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5004 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5008 for (i = 0; i < 256; i +=4 ) {
5009 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5010 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5011 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5012 for (cnt = 0; cnt <5; cnt++) {
5014 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5019 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5023 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5024 (u32 *)&vpd_data[i]);
5026 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5027 memset(nic->product_name, 0, vpd_data[1]);
5028 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5033 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5034 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5035 * @eeprom : pointer to the user level structure provided by ethtool,
5036 * containing all relevant information.
5037 * @data_buf : user defined value to be written into Eeprom.
5038 * Description: Reads the values stored in the Eeprom at given offset
5039 * for a given length. Stores these values int the input argument data
5040 * buffer 'data_buf' and returns these to the caller (ethtool.)
5045 static int s2io_ethtool_geeprom(struct net_device *dev,
5046 struct ethtool_eeprom *eeprom, u8 * data_buf)
5050 nic_t *sp = dev->priv;
5052 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5054 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5055 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5057 for (i = 0; i < eeprom->len; i += 4) {
5058 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5059 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5063 memcpy((data_buf + i), &valid, 4);
5069 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5070 * @sp : private member of the device structure, which is a pointer to the
5071 * s2io_nic structure.
5072 * @eeprom : pointer to the user level structure provided by ethtool,
5073 * containing all relevant information.
5074 * @data_buf ; user defined value to be written into Eeprom.
5076 * Tries to write the user provided value in the Eeprom, at the offset
5077 * given by the user.
5079 * 0 on success, -EFAULT on failure.
5082 static int s2io_ethtool_seeprom(struct net_device *dev,
5083 struct ethtool_eeprom *eeprom,
5086 int len = eeprom->len, cnt = 0;
5087 u64 valid = 0, data;
5088 nic_t *sp = dev->priv;
5090 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5092 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5093 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5099 data = (u32) data_buf[cnt] & 0x000000FF;
5101 valid = (u32) (data << 24);
5105 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5107 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5109 "write into the specified offset\n");
5120 * s2io_register_test - reads and writes into all clock domains.
5121 * @sp : private member of the device structure, which is a pointer to the
5122 * s2io_nic structure.
5123 * @data : variable that returns the result of each of the test conducted b
5126 * Read and write into all clock domains. The NIC has 3 clock domains,
5127 * see that registers in all the three regions are accessible.
5132 static int s2io_register_test(nic_t * sp, uint64_t * data)
5134 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5135 u64 val64 = 0, exp_val;
5138 val64 = readq(&bar0->pif_rd_swapper_fb);
5139 if (val64 != 0x123456789abcdefULL) {
5141 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5144 val64 = readq(&bar0->rmac_pause_cfg);
5145 if (val64 != 0xc000ffff00000000ULL) {
5147 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5150 val64 = readq(&bar0->rx_queue_cfg);
5151 if (sp->device_type == XFRAME_II_DEVICE)
5152 exp_val = 0x0404040404040404ULL;
5154 exp_val = 0x0808080808080808ULL;
5155 if (val64 != exp_val) {
5157 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5160 val64 = readq(&bar0->xgxs_efifo_cfg);
5161 if (val64 != 0x000000001923141EULL) {
5163 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5166 val64 = 0x5A5A5A5A5A5A5A5AULL;
5167 writeq(val64, &bar0->xmsi_data);
5168 val64 = readq(&bar0->xmsi_data);
5169 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5171 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5174 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5175 writeq(val64, &bar0->xmsi_data);
5176 val64 = readq(&bar0->xmsi_data);
5177 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5179 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5187 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5188 * @sp : private member of the device structure, which is a pointer to the
5189 * s2io_nic structure.
5190 * @data:variable that returns the result of each of the test conducted by
5193 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5199 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5202 u64 ret_data, org_4F0, org_7F0;
5203 u8 saved_4F0 = 0, saved_7F0 = 0;
5204 struct net_device *dev = sp->dev;
5206 /* Test Write Error at offset 0 */
5207 /* Note that SPI interface allows write access to all areas
5208 * of EEPROM. Hence doing all negative testing only for Xframe I.
5210 if (sp->device_type == XFRAME_I_DEVICE)
5211 if (!write_eeprom(sp, 0, 0, 3))
5214 /* Save current values at offsets 0x4F0 and 0x7F0 */
5215 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5217 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5220 /* Test Write at offset 4f0 */
5221 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5223 if (read_eeprom(sp, 0x4F0, &ret_data))
5226 if (ret_data != 0x012345) {
5227 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5228 "Data written %llx Data read %llx\n",
5229 dev->name, (unsigned long long)0x12345,
5230 (unsigned long long)ret_data);
5234 /* Reset the EEPROM data go FFFF */
5235 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5237 /* Test Write Request Error at offset 0x7c */
5238 if (sp->device_type == XFRAME_I_DEVICE)
5239 if (!write_eeprom(sp, 0x07C, 0, 3))
5242 /* Test Write Request at offset 0x7f0 */
5243 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5245 if (read_eeprom(sp, 0x7F0, &ret_data))
5248 if (ret_data != 0x012345) {
5249 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5250 "Data written %llx Data read %llx\n",
5251 dev->name, (unsigned long long)0x12345,
5252 (unsigned long long)ret_data);
5256 /* Reset the EEPROM data go FFFF */
5257 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5259 if (sp->device_type == XFRAME_I_DEVICE) {
5260 /* Test Write Error at offset 0x80 */
5261 if (!write_eeprom(sp, 0x080, 0, 3))
5264 /* Test Write Error at offset 0xfc */
5265 if (!write_eeprom(sp, 0x0FC, 0, 3))
5268 /* Test Write Error at offset 0x100 */
5269 if (!write_eeprom(sp, 0x100, 0, 3))
5272 /* Test Write Error at offset 4ec */
5273 if (!write_eeprom(sp, 0x4EC, 0, 3))
5277 /* Restore values at offsets 0x4F0 and 0x7F0 */
5279 write_eeprom(sp, 0x4F0, org_4F0, 3);
5281 write_eeprom(sp, 0x7F0, org_7F0, 3);
5288 * s2io_bist_test - invokes the MemBist test of the card .
5289 * @sp : private member of the device structure, which is a pointer to the
5290 * s2io_nic structure.
5291 * @data:variable that returns the result of each of the test conducted by
5294 * This invokes the MemBist test of the card. We give around
5295 * 2 secs time for the Test to complete. If it's still not complete
5296 * within this peiod, we consider that the test failed.
5298 * 0 on success and -1 on failure.
5301 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5304 int cnt = 0, ret = -1;
5306 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5307 bist |= PCI_BIST_START;
5308 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5311 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5312 if (!(bist & PCI_BIST_START)) {
5313 *data = (bist & PCI_BIST_CODE_MASK);
5325 * s2io-link_test - verifies the link state of the nic
5326 * @sp ; private member of the device structure, which is a pointer to the
5327 * s2io_nic structure.
5328 * @data: variable that returns the result of each of the test conducted by
5331 * The function verifies the link state of the NIC and updates the input
5332 * argument 'data' appropriately.
5337 static int s2io_link_test(nic_t * sp, uint64_t * data)
5339 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5342 val64 = readq(&bar0->adapter_status);
5343 if(!(LINK_IS_UP(val64)))
5352 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5353 * @sp - private member of the device structure, which is a pointer to the
5354 * s2io_nic structure.
5355 * @data - variable that returns the result of each of the test
5356 * conducted by the driver.
5358 * This is one of the offline test that tests the read and write
5359 * access to the RldRam chip on the NIC.
5364 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5366 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5368 int cnt, iteration = 0, test_fail = 0;
5370 val64 = readq(&bar0->adapter_control);
5371 val64 &= ~ADAPTER_ECC_EN;
5372 writeq(val64, &bar0->adapter_control);
5374 val64 = readq(&bar0->mc_rldram_test_ctrl);
5375 val64 |= MC_RLDRAM_TEST_MODE;
5376 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5378 val64 = readq(&bar0->mc_rldram_mrs);
5379 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5380 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5382 val64 |= MC_RLDRAM_MRS_ENABLE;
5383 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5385 while (iteration < 2) {
5386 val64 = 0x55555555aaaa0000ULL;
5387 if (iteration == 1) {
5388 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5390 writeq(val64, &bar0->mc_rldram_test_d0);
5392 val64 = 0xaaaa5a5555550000ULL;
5393 if (iteration == 1) {
5394 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5396 writeq(val64, &bar0->mc_rldram_test_d1);
5398 val64 = 0x55aaaaaaaa5a0000ULL;
5399 if (iteration == 1) {
5400 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5402 writeq(val64, &bar0->mc_rldram_test_d2);
5404 val64 = (u64) (0x0000003ffffe0100ULL);
5405 writeq(val64, &bar0->mc_rldram_test_add);
5407 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5409 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5411 for (cnt = 0; cnt < 5; cnt++) {
5412 val64 = readq(&bar0->mc_rldram_test_ctrl);
5413 if (val64 & MC_RLDRAM_TEST_DONE)
5421 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5422 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5424 for (cnt = 0; cnt < 5; cnt++) {
5425 val64 = readq(&bar0->mc_rldram_test_ctrl);
5426 if (val64 & MC_RLDRAM_TEST_DONE)
5434 val64 = readq(&bar0->mc_rldram_test_ctrl);
5435 if (!(val64 & MC_RLDRAM_TEST_PASS))
5443 /* Bring the adapter out of test mode */
5444 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5450 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5451 * @sp : private member of the device structure, which is a pointer to the
5452 * s2io_nic structure.
5453 * @ethtest : pointer to a ethtool command specific structure that will be
5454 * returned to the user.
5455 * @data : variable that returns the result of each of the test
5456 * conducted by the driver.
5458 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5459 * the health of the card.
5464 static void s2io_ethtool_test(struct net_device *dev,
5465 struct ethtool_test *ethtest,
5468 nic_t *sp = dev->priv;
5469 int orig_state = netif_running(sp->dev);
5471 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5472 /* Offline Tests. */
5474 s2io_close(sp->dev);
5476 if (s2io_register_test(sp, &data[0]))
5477 ethtest->flags |= ETH_TEST_FL_FAILED;
5481 if (s2io_rldram_test(sp, &data[3]))
5482 ethtest->flags |= ETH_TEST_FL_FAILED;
5486 if (s2io_eeprom_test(sp, &data[1]))
5487 ethtest->flags |= ETH_TEST_FL_FAILED;
5489 if (s2io_bist_test(sp, &data[4]))
5490 ethtest->flags |= ETH_TEST_FL_FAILED;
5500 "%s: is not up, cannot run test\n",
5509 if (s2io_link_test(sp, &data[2]))
5510 ethtest->flags |= ETH_TEST_FL_FAILED;
5519 static void s2io_get_ethtool_stats(struct net_device *dev,
5520 struct ethtool_stats *estats,
5524 nic_t *sp = dev->priv;
5525 StatInfo_t *stat_info = sp->mac_control.stats_info;
5527 s2io_updt_stats(sp);
5529 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5530 le32_to_cpu(stat_info->tmac_frms);
5532 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5533 le32_to_cpu(stat_info->tmac_data_octets);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5536 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5537 le32_to_cpu(stat_info->tmac_mcst_frms);
5539 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5540 le32_to_cpu(stat_info->tmac_bcst_frms);
5541 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5543 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5544 le32_to_cpu(stat_info->tmac_ttl_octets);
5546 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5547 le32_to_cpu(stat_info->tmac_ucst_frms);
5549 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5550 le32_to_cpu(stat_info->tmac_nucst_frms);
5552 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5553 le32_to_cpu(stat_info->tmac_any_err_frms);
5554 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5555 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5557 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5558 le32_to_cpu(stat_info->tmac_vld_ip);
5560 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5561 le32_to_cpu(stat_info->tmac_drop_ip);
5563 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5564 le32_to_cpu(stat_info->tmac_icmp);
5566 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5567 le32_to_cpu(stat_info->tmac_rst_tcp);
5568 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5569 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5570 le32_to_cpu(stat_info->tmac_udp);
5572 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5573 le32_to_cpu(stat_info->rmac_vld_frms);
5575 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5576 le32_to_cpu(stat_info->rmac_data_octets);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5580 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5581 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5583 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5584 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5587 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5588 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5589 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5591 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5592 le32_to_cpu(stat_info->rmac_ttl_octets);
5594 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5595 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5597 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5598 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5600 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5601 le32_to_cpu(stat_info->rmac_discarded_frms);
5603 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5604 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5605 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5606 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5608 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5609 le32_to_cpu(stat_info->rmac_usized_frms);
5611 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5612 le32_to_cpu(stat_info->rmac_osized_frms);
5614 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5615 le32_to_cpu(stat_info->rmac_frag_frms);
5617 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5618 le32_to_cpu(stat_info->rmac_jabber_frms);
5619 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5622 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5623 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5624 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5626 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5627 le32_to_cpu(stat_info->rmac_ip);
5628 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5629 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5631 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5632 le32_to_cpu(stat_info->rmac_drop_ip);
5634 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5635 le32_to_cpu(stat_info->rmac_icmp);
5636 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5638 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5639 le32_to_cpu(stat_info->rmac_udp);
5641 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5642 le32_to_cpu(stat_info->rmac_err_drp_udp);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5645 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5646 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5647 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5649 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5650 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5651 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5652 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5653 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5654 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5655 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5656 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5657 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5658 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5659 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5661 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5662 le32_to_cpu(stat_info->rmac_pause_cnt);
5663 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5664 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5666 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5667 le32_to_cpu(stat_info->rmac_accepted_ip);
5668 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5671 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5673 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5674 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5675 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5677 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5678 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5679 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5680 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5681 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5682 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5683 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5684 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5685 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5686 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5695 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5696 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5697 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5698 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5699 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5700 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5701 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5702 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5704 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5705 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5706 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5707 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5708 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5709 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5710 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5711 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5712 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5713 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5714 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5715 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5716 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5717 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5718 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5719 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5720 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5721 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5722 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5723 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5724 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5725 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5726 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5727 if (stat_info->sw_stat.num_aggregations) {
5728 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5731 * Since 64-bit divide does not work on all platforms,
5732 * do repeated subtraction.
5734 while (tmp >= stat_info->sw_stat.num_aggregations) {
5735 tmp -= stat_info->sw_stat.num_aggregations;
5738 tmp_stats[i++] = count;
5744 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5746 return (XENA_REG_SPACE);
5750 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5752 nic_t *sp = dev->priv;
5754 return (sp->rx_csum);
5757 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5759 nic_t *sp = dev->priv;
5769 static int s2io_get_eeprom_len(struct net_device *dev)
5771 return (XENA_EEPROM_SPACE);
5774 static int s2io_ethtool_self_test_count(struct net_device *dev)
5776 return (S2IO_TEST_LEN);
5779 static void s2io_ethtool_get_strings(struct net_device *dev,
5780 u32 stringset, u8 * data)
5782 switch (stringset) {
5784 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5787 memcpy(data, ðtool_stats_keys,
5788 sizeof(ethtool_stats_keys));
5791 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5793 return (S2IO_STAT_LEN);
5796 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5799 dev->features |= NETIF_F_IP_CSUM;
5801 dev->features &= ~NETIF_F_IP_CSUM;
5807 static struct ethtool_ops netdev_ethtool_ops = {
5808 .get_settings = s2io_ethtool_gset,
5809 .set_settings = s2io_ethtool_sset,
5810 .get_drvinfo = s2io_ethtool_gdrvinfo,
5811 .get_regs_len = s2io_ethtool_get_regs_len,
5812 .get_regs = s2io_ethtool_gregs,
5813 .get_link = ethtool_op_get_link,
5814 .get_eeprom_len = s2io_get_eeprom_len,
5815 .get_eeprom = s2io_ethtool_geeprom,
5816 .set_eeprom = s2io_ethtool_seeprom,
5817 .get_pauseparam = s2io_ethtool_getpause_data,
5818 .set_pauseparam = s2io_ethtool_setpause_data,
5819 .get_rx_csum = s2io_ethtool_get_rx_csum,
5820 .set_rx_csum = s2io_ethtool_set_rx_csum,
5821 .get_tx_csum = ethtool_op_get_tx_csum,
5822 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5823 .get_sg = ethtool_op_get_sg,
5824 .set_sg = ethtool_op_set_sg,
5826 .get_tso = ethtool_op_get_tso,
5827 .set_tso = ethtool_op_set_tso,
5829 .get_ufo = ethtool_op_get_ufo,
5830 .set_ufo = ethtool_op_set_ufo,
5831 .self_test_count = s2io_ethtool_self_test_count,
5832 .self_test = s2io_ethtool_test,
5833 .get_strings = s2io_ethtool_get_strings,
5834 .phys_id = s2io_ethtool_idnic,
5835 .get_stats_count = s2io_ethtool_get_stats_count,
5836 .get_ethtool_stats = s2io_get_ethtool_stats
5840 * s2io_ioctl - Entry point for the Ioctl
5841 * @dev : Device pointer.
5842 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5843 * a proprietary structure used to pass information to the driver.
5844 * @cmd : This is used to distinguish between the different commands that
5845 * can be passed to the IOCTL functions.
5847 * Currently there are no special functionality supported in IOCTL, hence
5848 * function always return EOPNOTSUPPORTED
5851 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5857 * s2io_change_mtu - entry point to change MTU size for the device.
5858 * @dev : device pointer.
5859 * @new_mtu : the new MTU size for the device.
5860 * Description: A driver entry point to change MTU size for the device.
5861 * Before changing the MTU the device must be stopped.
5863 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5867 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5869 nic_t *sp = dev->priv;
5871 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5872 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5878 if (netif_running(dev)) {
5879 s2io_card_down(sp, 0);
5880 netif_stop_queue(dev);
5881 if (s2io_card_up(sp)) {
5882 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5885 if (netif_queue_stopped(dev))
5886 netif_wake_queue(dev);
5887 } else { /* Device is down */
5888 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5889 u64 val64 = new_mtu;
5891 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5898 * s2io_tasklet - Bottom half of the ISR.
5899 * @dev_adr : address of the device structure in dma_addr_t format.
5901 * This is the tasklet or the bottom half of the ISR. This is
5902 * an extension of the ISR which is scheduled by the scheduler to be run
5903 * when the load on the CPU is low. All low priority tasks of the ISR can
5904 * be pushed into the tasklet. For now the tasklet is used only to
5905 * replenish the Rx buffers in the Rx buffer descriptors.
5910 static void s2io_tasklet(unsigned long dev_addr)
5912 struct net_device *dev = (struct net_device *) dev_addr;
5913 nic_t *sp = dev->priv;
5915 mac_info_t *mac_control;
5916 struct config_param *config;
5918 mac_control = &sp->mac_control;
5919 config = &sp->config;
5921 if (!TASKLET_IN_USE) {
5922 for (i = 0; i < config->rx_ring_num; i++) {
5923 ret = fill_rx_buffers(sp, i);
5924 if (ret == -ENOMEM) {
5925 DBG_PRINT(ERR_DBG, "%s: Out of ",
5927 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5929 } else if (ret == -EFILL) {
5931 "%s: Rx Ring %d is full\n",
5936 clear_bit(0, (&sp->tasklet_status));
5941 * s2io_set_link - Set the LInk status
5942 * @data: long pointer to device private structue
5943 * Description: Sets the link status for the adapter
5946 static void s2io_set_link(unsigned long data)
5948 nic_t *nic = (nic_t *) data;
5949 struct net_device *dev = nic->dev;
5950 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5954 if (test_and_set_bit(0, &(nic->link_state))) {
5955 /* The card is being reset, no point doing anything */
5959 subid = nic->pdev->subsystem_device;
5960 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5962 * Allow a small delay for the NICs self initiated
5963 * cleanup to complete.
5968 val64 = readq(&bar0->adapter_status);
5969 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5970 if (LINK_IS_UP(val64)) {
5971 val64 = readq(&bar0->adapter_control);
5972 val64 |= ADAPTER_CNTL_EN;
5973 writeq(val64, &bar0->adapter_control);
5974 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5976 val64 = readq(&bar0->gpio_control);
5977 val64 |= GPIO_CTRL_GPIO_0;
5978 writeq(val64, &bar0->gpio_control);
5979 val64 = readq(&bar0->gpio_control);
5981 val64 |= ADAPTER_LED_ON;
5982 writeq(val64, &bar0->adapter_control);
5984 if (s2io_link_fault_indication(nic) ==
5985 MAC_RMAC_ERR_TIMER) {
5986 val64 = readq(&bar0->adapter_status);
5987 if (!LINK_IS_UP(val64)) {
5988 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5989 DBG_PRINT(ERR_DBG, " Link down");
5990 DBG_PRINT(ERR_DBG, "after ");
5991 DBG_PRINT(ERR_DBG, "enabling ");
5992 DBG_PRINT(ERR_DBG, "device \n");
5995 if (nic->device_enabled_once == FALSE) {
5996 nic->device_enabled_once = TRUE;
5998 s2io_link(nic, LINK_UP);
6000 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6002 val64 = readq(&bar0->gpio_control);
6003 val64 &= ~GPIO_CTRL_GPIO_0;
6004 writeq(val64, &bar0->gpio_control);
6005 val64 = readq(&bar0->gpio_control);
6007 s2io_link(nic, LINK_DOWN);
6009 } else { /* NIC is not Quiescent. */
6010 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6011 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6012 netif_stop_queue(dev);
6014 clear_bit(0, &(nic->link_state));
6017 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
6018 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6019 u64 *temp2, int size)
6021 struct net_device *dev = sp->dev;
6022 struct sk_buff *frag_list;
6024 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6027 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6029 * As Rx frame are not going to be processed,
6030 * using same mapped address for the Rxd
6033 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
6035 *skb = dev_alloc_skb(size);
6037 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6038 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6041 /* storing the mapped addr in a temp variable
6042 * such it will be used for next rxd whose
6043 * Host Control is NULL
6045 ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
6046 pci_map_single( sp->pdev, (*skb)->data,
6047 size - NET_IP_ALIGN,
6048 PCI_DMA_FROMDEVICE);
6049 rxdp->Host_Control = (unsigned long) (*skb);
6051 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6052 /* Two buffer Mode */
6054 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6055 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6056 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6058 *skb = dev_alloc_skb(size);
6059 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6060 pci_map_single(sp->pdev, (*skb)->data,
6062 PCI_DMA_FROMDEVICE);
6063 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6064 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6065 PCI_DMA_FROMDEVICE);
6066 rxdp->Host_Control = (unsigned long) (*skb);
6068 /* Buffer-1 will be dummy buffer not used */
6069 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6070 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6071 PCI_DMA_FROMDEVICE);
6073 } else if ((rxdp->Host_Control == 0)) {
6074 /* Three buffer mode */
6076 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6077 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6078 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6080 *skb = dev_alloc_skb(size);
6082 ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6083 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6084 PCI_DMA_FROMDEVICE);
6085 /* Buffer-1 receives L3/L4 headers */
6086 ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6087 pci_map_single( sp->pdev, (*skb)->data,
6089 PCI_DMA_FROMDEVICE);
6091 * skb_shinfo(skb)->frag_list will have L4
6094 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6096 if (skb_shinfo(*skb)->frag_list == NULL) {
6097 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6098 failed\n ", dev->name);
6101 frag_list = skb_shinfo(*skb)->frag_list;
6102 frag_list->next = NULL;
6104 * Buffer-2 receives L4 data payload
6106 ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6107 pci_map_single( sp->pdev, frag_list->data,
6108 dev->mtu, PCI_DMA_FROMDEVICE);
6113 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6115 struct net_device *dev = sp->dev;
6116 if (sp->rxd_mode == RXD_MODE_1) {
6117 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6118 } else if (sp->rxd_mode == RXD_MODE_3B) {
6119 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6120 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6121 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6123 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6124 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6125 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6129 static int rxd_owner_bit_reset(nic_t *sp)
6131 int i, j, k, blk_cnt = 0, size;
6132 mac_info_t * mac_control = &sp->mac_control;
6133 struct config_param *config = &sp->config;
6134 struct net_device *dev = sp->dev;
6136 struct sk_buff *skb = NULL;
6137 buffAdd_t *ba = NULL;
6138 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6140 /* Calculate the size based on ring mode */
6141 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6142 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6143 if (sp->rxd_mode == RXD_MODE_1)
6144 size += NET_IP_ALIGN;
6145 else if (sp->rxd_mode == RXD_MODE_3B)
6146 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6148 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6150 for (i = 0; i < config->rx_ring_num; i++) {
6151 blk_cnt = config->rx_cfg[i].num_rxd /
6152 (rxd_count[sp->rxd_mode] +1);
6154 for (j = 0; j < blk_cnt; j++) {
6155 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6156 rxdp = mac_control->rings[i].
6157 rx_blocks[j].rxds[k].virt_addr;
6158 if(sp->rxd_mode >= RXD_MODE_3A)
6159 ba = &mac_control->rings[i].ba[j][k];
6160 set_rxd_buffer_pointer(sp, rxdp, ba,
6161 &skb,(u64 *)&temp0_64,
6163 (u64 *)&temp2_64, size);
6165 set_rxd_buffer_size(sp, rxdp, size);
6167 /* flip the Ownership bit to Hardware */
6168 rxdp->Control_1 |= RXD_OWN_XENA;
6176 static void s2io_card_down(nic_t * sp, int flag)
6179 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6180 unsigned long flags;
6181 register u64 val64 = 0;
6182 struct net_device *dev = sp->dev;
6184 del_timer_sync(&sp->alarm_timer);
6185 /* If s2io_set_link task is executing, wait till it completes. */
6186 while (test_and_set_bit(0, &(sp->link_state))) {
6189 atomic_set(&sp->card_state, CARD_DOWN);
6191 /* disable Tx and Rx traffic on the NIC */
6194 if (sp->intr_type == MSI_X) {
6198 for (i=1; (sp->s2io_entries[i].in_use ==
6199 MSIX_REGISTERED_SUCCESS); i++) {
6200 int vector = sp->entries[i].vector;
6201 void *arg = sp->s2io_entries[i].arg;
6203 free_irq(vector, arg);
6205 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6206 msi_control &= 0xFFFE; /* Disable MSI */
6207 pci_write_config_word(sp->pdev, 0x42, msi_control);
6208 pci_disable_msix(sp->pdev);
6210 free_irq(sp->pdev->irq, dev);
6211 if (sp->intr_type == MSI)
6212 pci_disable_msi(sp->pdev);
6215 /* Waiting till all Interrupt handlers are complete */
6219 if (!atomic_read(&sp->isr_cnt))
6225 tasklet_kill(&sp->task);
6227 /* Check if the device is Quiescent and then Reset the NIC */
6229 /* As per the HW requirement we need to replenish the
6230 * receive buffer to avoid the ring bump. Since there is
6231 * no intention of processing the Rx frame at this pointwe are
6232 * just settting the ownership bit of rxd in Each Rx
6233 * ring to HW and set the appropriate buffer size
6234 * based on the ring mode
6236 rxd_owner_bit_reset(sp);
6238 val64 = readq(&bar0->adapter_status);
6239 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6247 "s2io_close:Device not Quiescent ");
6248 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6249 (unsigned long long) val64);
6255 spin_lock_irqsave(&sp->tx_lock, flags);
6256 /* Free all Tx buffers */
6257 free_tx_buffers(sp);
6258 spin_unlock_irqrestore(&sp->tx_lock, flags);
6260 /* Free all Rx buffers */
6261 spin_lock_irqsave(&sp->rx_lock, flags);
6262 free_rx_buffers(sp);
6263 spin_unlock_irqrestore(&sp->rx_lock, flags);
6265 clear_bit(0, &(sp->link_state));
6268 static int s2io_card_up(nic_t * sp)
6271 mac_info_t *mac_control;
6272 struct config_param *config;
6273 struct net_device *dev = (struct net_device *) sp->dev;
6275 /* Initialize the H/W I/O registers */
6276 if (init_nic(sp) != 0) {
6277 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6282 if (sp->intr_type == MSI)
6283 ret = s2io_enable_msi(sp);
6284 else if (sp->intr_type == MSI_X)
6285 ret = s2io_enable_msi_x(sp);
6287 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6288 sp->intr_type = INTA;
6292 * Initializing the Rx buffers. For now we are considering only 1
6293 * Rx ring and initializing buffers into 30 Rx blocks
6295 mac_control = &sp->mac_control;
6296 config = &sp->config;
6298 for (i = 0; i < config->rx_ring_num; i++) {
6299 if ((ret = fill_rx_buffers(sp, i))) {
6300 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6303 free_rx_buffers(sp);
6306 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6307 atomic_read(&sp->rx_bufs_left[i]));
6310 /* Setting its receive mode */
6311 s2io_set_multicast(dev);
6314 /* Initialize max aggregatable pkts based on MTU */
6315 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6316 /* Check if we can use(if specified) user provided value */
6317 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6318 sp->lro_max_aggr_per_sess = lro_max_pkts;
6321 /* Enable tasklet for the device */
6322 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6324 /* Enable Rx Traffic and interrupts on the NIC */
6325 if (start_nic(sp)) {
6326 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6327 tasklet_kill(&sp->task);
6329 free_irq(dev->irq, dev);
6330 free_rx_buffers(sp);
6334 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6336 atomic_set(&sp->card_state, CARD_UP);
6341 * s2io_restart_nic - Resets the NIC.
6342 * @data : long pointer to the device private structure
6344 * This function is scheduled to be run by the s2io_tx_watchdog
6345 * function after 0.5 secs to reset the NIC. The idea is to reduce
6346 * the run time of the watch dog routine which is run holding a
6350 static void s2io_restart_nic(unsigned long data)
6352 struct net_device *dev = (struct net_device *) data;
6353 nic_t *sp = dev->priv;
6355 s2io_card_down(sp, 0);
6356 if (s2io_card_up(sp)) {
6357 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6360 netif_wake_queue(dev);
6361 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6367 * s2io_tx_watchdog - Watchdog for transmit side.
6368 * @dev : Pointer to net device structure
6370 * This function is triggered if the Tx Queue is stopped
6371 * for a pre-defined amount of time when the Interface is still up.
6372 * If the Interface is jammed in such a situation, the hardware is
6373 * reset (by s2io_close) and restarted again (by s2io_open) to
6374 * overcome any problem that might have been caused in the hardware.
6379 static void s2io_tx_watchdog(struct net_device *dev)
6381 nic_t *sp = dev->priv;
6383 if (netif_carrier_ok(dev)) {
6384 schedule_work(&sp->rst_timer_task);
6385 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6390 * rx_osm_handler - To perform some OS related operations on SKB.
6391 * @sp: private member of the device structure,pointer to s2io_nic structure.
6392 * @skb : the socket buffer pointer.
6393 * @len : length of the packet
6394 * @cksum : FCS checksum of the frame.
6395 * @ring_no : the ring from which this RxD was extracted.
6397 * This function is called by the Tx interrupt serivce routine to perform
6398 * some OS related operations on the SKB before passing it to the upper
6399 * layers. It mainly checks if the checksum is OK, if so adds it to the
6400 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6401 * to the upper layer. If the checksum is wrong, it increments the Rx
6402 * packet error count, frees the SKB and returns error.
6404 * SUCCESS on success and -1 on failure.
6406 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6408 nic_t *sp = ring_data->nic;
6409 struct net_device *dev = (struct net_device *) sp->dev;
6410 struct sk_buff *skb = (struct sk_buff *)
6411 ((unsigned long) rxdp->Host_Control);
6412 int ring_no = ring_data->ring_no;
6413 u16 l3_csum, l4_csum;
6414 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6420 /* Check for parity error */
6422 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6426 * Drop the packet if bad transfer code. Exception being
6427 * 0x5, which could be due to unsupported IPv6 extension header.
6428 * In this case, we let stack handle the packet.
6429 * Note that in this case, since checksum will be incorrect,
6430 * stack will validate the same.
6432 if (err && ((err >> 48) != 0x5)) {
6433 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6435 sp->stats.rx_crc_errors++;
6437 atomic_dec(&sp->rx_bufs_left[ring_no]);
6438 rxdp->Host_Control = 0;
6443 /* Updating statistics */
6444 rxdp->Host_Control = 0;
6446 sp->stats.rx_packets++;
6447 if (sp->rxd_mode == RXD_MODE_1) {
6448 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6450 sp->stats.rx_bytes += len;
6453 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6454 int get_block = ring_data->rx_curr_get_info.block_index;
6455 int get_off = ring_data->rx_curr_get_info.offset;
6456 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6457 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6458 unsigned char *buff = skb_push(skb, buf0_len);
6460 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6461 sp->stats.rx_bytes += buf0_len + buf2_len;
6462 memcpy(buff, ba->ba_0, buf0_len);
6464 if (sp->rxd_mode == RXD_MODE_3A) {
6465 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6467 skb_put(skb, buf1_len);
6468 skb->len += buf2_len;
6469 skb->data_len += buf2_len;
6470 skb->truesize += buf2_len;
6471 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6472 sp->stats.rx_bytes += buf1_len;
6475 skb_put(skb, buf2_len);
6478 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6479 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6481 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6482 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6483 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6485 * NIC verifies if the Checksum of the received
6486 * frame is Ok or not and accordingly returns
6487 * a flag in the RxD.
6489 skb->ip_summed = CHECKSUM_UNNECESSARY;
6495 ret = s2io_club_tcp_session(skb->data, &tcp,
6496 &tcp_len, &lro, rxdp, sp);
6498 case 3: /* Begin anew */
6501 case 1: /* Aggregate */
6503 lro_append_pkt(sp, lro,
6507 case 4: /* Flush session */
6509 lro_append_pkt(sp, lro,
6511 queue_rx_frame(lro->parent);
6512 clear_lro_session(lro);
6513 sp->mac_control.stats_info->
6514 sw_stat.flush_max_pkts++;
6517 case 2: /* Flush both */
6518 lro->parent->data_len =
6520 sp->mac_control.stats_info->
6521 sw_stat.sending_both++;
6522 queue_rx_frame(lro->parent);
6523 clear_lro_session(lro);
6525 case 0: /* sessions exceeded */
6526 case -1: /* non-TCP or not
6530 * First pkt in session not
6531 * L3/L4 aggregatable
6536 "%s: Samadhana!!\n",
6543 * Packet with erroneous checksum, let the
6544 * upper layers deal with it.
6546 skb->ip_summed = CHECKSUM_NONE;
6549 skb->ip_summed = CHECKSUM_NONE;
6553 skb->protocol = eth_type_trans(skb, dev);
6554 #ifdef CONFIG_S2IO_NAPI
6555 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6556 /* Queueing the vlan frame to the upper layer */
6557 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6558 RXD_GET_VLAN_TAG(rxdp->Control_2));
6560 netif_receive_skb(skb);
6563 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6564 /* Queueing the vlan frame to the upper layer */
6565 vlan_hwaccel_rx(skb, sp->vlgrp,
6566 RXD_GET_VLAN_TAG(rxdp->Control_2));
6573 queue_rx_frame(skb);
6575 dev->last_rx = jiffies;
6577 atomic_dec(&sp->rx_bufs_left[ring_no]);
6582 * s2io_link - stops/starts the Tx queue.
6583 * @sp : private member of the device structure, which is a pointer to the
6584 * s2io_nic structure.
6585 * @link : inidicates whether link is UP/DOWN.
6587 * This function stops/starts the Tx queue depending on whether the link
6588 * status of the NIC is is down or up. This is called by the Alarm
6589 * interrupt handler whenever a link change interrupt comes up.
6594 static void s2io_link(nic_t * sp, int link)
6596 struct net_device *dev = (struct net_device *) sp->dev;
6598 if (link != sp->last_link_state) {
6599 if (link == LINK_DOWN) {
6600 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6601 netif_carrier_off(dev);
6603 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6604 netif_carrier_on(dev);
6607 sp->last_link_state = link;
6611 * get_xena_rev_id - to identify revision ID of xena.
6612 * @pdev : PCI Dev structure
6614 * Function to identify the Revision ID of xena.
6616 * returns the revision ID of the device.
6619 static int get_xena_rev_id(struct pci_dev *pdev)
6623 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6628 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6629 * @sp : private member of the device structure, which is a pointer to the
6630 * s2io_nic structure.
6632 * This function initializes a few of the PCI and PCI-X configuration registers
6633 * with recommended values.
6638 static void s2io_init_pci(nic_t * sp)
6640 u16 pci_cmd = 0, pcix_cmd = 0;
6642 /* Enable Data Parity Error Recovery in PCI-X command register. */
6643 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6645 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6647 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6650 /* Set the PErr Response bit in PCI command register. */
6651 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6652 pci_write_config_word(sp->pdev, PCI_COMMAND,
6653 (pci_cmd | PCI_COMMAND_PARITY));
6654 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6657 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6658 MODULE_LICENSE("GPL");
6659 MODULE_VERSION(DRV_VERSION);
6661 module_param(tx_fifo_num, int, 0);
6662 module_param(rx_ring_num, int, 0);
6663 module_param(rx_ring_mode, int, 0);
6664 module_param_array(tx_fifo_len, uint, NULL, 0);
6665 module_param_array(rx_ring_sz, uint, NULL, 0);
6666 module_param_array(rts_frm_len, uint, NULL, 0);
6667 module_param(use_continuous_tx_intrs, int, 1);
6668 module_param(rmac_pause_time, int, 0);
6669 module_param(mc_pause_threshold_q0q3, int, 0);
6670 module_param(mc_pause_threshold_q4q7, int, 0);
6671 module_param(shared_splits, int, 0);
6672 module_param(tmac_util_period, int, 0);
6673 module_param(rmac_util_period, int, 0);
6674 module_param(bimodal, bool, 0);
6675 module_param(l3l4hdr_size, int , 0);
6676 #ifndef CONFIG_S2IO_NAPI
6677 module_param(indicate_max_pkts, int, 0);
6679 module_param(rxsync_frequency, int, 0);
6680 module_param(intr_type, int, 0);
6681 module_param(lro, int, 0);
6682 module_param(lro_max_pkts, int, 0);
6684 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6686 if ( tx_fifo_num > 8) {
6687 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6689 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6692 if ( rx_ring_num > 8) {
6693 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6695 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6698 #ifdef CONFIG_S2IO_NAPI
6699 if (*dev_intr_type != INTA) {
6700 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6701 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6702 *dev_intr_type = INTA;
6705 #ifndef CONFIG_PCI_MSI
6706 if (*dev_intr_type != INTA) {
6707 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6708 "MSI/MSI-X. Defaulting to INTA\n");
6709 *dev_intr_type = INTA;
6712 if (*dev_intr_type > MSI_X) {
6713 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6714 "Defaulting to INTA\n");
6715 *dev_intr_type = INTA;
6718 if ((*dev_intr_type == MSI_X) &&
6719 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6720 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6721 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6722 "Defaulting to INTA\n");
6723 *dev_intr_type = INTA;
6725 if (rx_ring_mode > 3) {
6726 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6727 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6734 * s2io_init_nic - Initialization of the adapter .
6735 * @pdev : structure containing the PCI related information of the device.
6736 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6738 * The function initializes an adapter identified by the pci_dec structure.
6739 * All OS related initialization including memory and device structure and
6740 * initlaization of the device private variable is done. Also the swapper
6741 * control register is initialized to enable read and write into the I/O
6742 * registers of the device.
6744 * returns 0 on success and negative on failure.
6747 static int __devinit
6748 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6751 struct net_device *dev;
6753 int dma_flag = FALSE;
6754 u32 mac_up, mac_down;
6755 u64 val64 = 0, tmp64 = 0;
6756 XENA_dev_config_t __iomem *bar0 = NULL;
6758 mac_info_t *mac_control;
6759 struct config_param *config;
6761 u8 dev_intr_type = intr_type;
6763 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6766 if ((ret = pci_enable_device(pdev))) {
6768 "s2io_init_nic: pci_enable_device failed\n");
6772 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6773 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6775 if (pci_set_consistent_dma_mask
6776 (pdev, DMA_64BIT_MASK)) {
6778 "Unable to obtain 64bit DMA for \
6779 consistent allocations\n");
6780 pci_disable_device(pdev);
6783 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6784 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6786 pci_disable_device(pdev);
6789 if (dev_intr_type != MSI_X) {
6790 if (pci_request_regions(pdev, s2io_driver_name)) {
6791 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6792 pci_disable_device(pdev);
6797 if (!(request_mem_region(pci_resource_start(pdev, 0),
6798 pci_resource_len(pdev, 0), s2io_driver_name))) {
6799 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6800 pci_disable_device(pdev);
6803 if (!(request_mem_region(pci_resource_start(pdev, 2),
6804 pci_resource_len(pdev, 2), s2io_driver_name))) {
6805 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6806 release_mem_region(pci_resource_start(pdev, 0),
6807 pci_resource_len(pdev, 0));
6808 pci_disable_device(pdev);
6813 dev = alloc_etherdev(sizeof(nic_t));
6815 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6816 pci_disable_device(pdev);
6817 pci_release_regions(pdev);
6821 pci_set_master(pdev);
6822 pci_set_drvdata(pdev, dev);
6823 SET_MODULE_OWNER(dev);
6824 SET_NETDEV_DEV(dev, &pdev->dev);
6826 /* Private member variable initialized to s2io NIC structure */
6828 memset(sp, 0, sizeof(nic_t));
6831 sp->high_dma_flag = dma_flag;
6832 sp->device_enabled_once = FALSE;
6833 if (rx_ring_mode == 1)
6834 sp->rxd_mode = RXD_MODE_1;
6835 if (rx_ring_mode == 2)
6836 sp->rxd_mode = RXD_MODE_3B;
6837 if (rx_ring_mode == 3)
6838 sp->rxd_mode = RXD_MODE_3A;
6840 sp->intr_type = dev_intr_type;
6842 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6843 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6844 sp->device_type = XFRAME_II_DEVICE;
6846 sp->device_type = XFRAME_I_DEVICE;
6850 /* Initialize some PCI/PCI-X fields of the NIC. */
6854 * Setting the device configuration parameters.
6855 * Most of these parameters can be specified by the user during
6856 * module insertion as they are module loadable parameters. If
6857 * these parameters are not not specified during load time, they
6858 * are initialized with default values.
6860 mac_control = &sp->mac_control;
6861 config = &sp->config;
6863 /* Tx side parameters. */
6864 config->tx_fifo_num = tx_fifo_num;
6865 for (i = 0; i < MAX_TX_FIFOS; i++) {
6866 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6867 config->tx_cfg[i].fifo_priority = i;
6870 /* mapping the QoS priority to the configured fifos */
6871 for (i = 0; i < MAX_TX_FIFOS; i++)
6872 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6874 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6875 for (i = 0; i < config->tx_fifo_num; i++) {
6876 config->tx_cfg[i].f_no_snoop =
6877 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6878 if (config->tx_cfg[i].fifo_len < 65) {
6879 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6883 /* + 2 because one Txd for skb->data and one Txd for UFO */
6884 config->max_txds = MAX_SKB_FRAGS + 2;
6886 /* Rx side parameters. */
6887 config->rx_ring_num = rx_ring_num;
6888 for (i = 0; i < MAX_RX_RINGS; i++) {
6889 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6890 (rxd_count[sp->rxd_mode] + 1);
6891 config->rx_cfg[i].ring_priority = i;
6894 for (i = 0; i < rx_ring_num; i++) {
6895 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6896 config->rx_cfg[i].f_no_snoop =
6897 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6900 /* Setting Mac Control parameters */
6901 mac_control->rmac_pause_time = rmac_pause_time;
6902 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6903 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6906 /* Initialize Ring buffer parameters. */
6907 for (i = 0; i < config->rx_ring_num; i++)
6908 atomic_set(&sp->rx_bufs_left[i], 0);
6910 /* Initialize the number of ISRs currently running */
6911 atomic_set(&sp->isr_cnt, 0);
6913 /* initialize the shared memory used by the NIC and the host */
6914 if (init_shared_mem(sp)) {
6915 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6918 goto mem_alloc_failed;
6921 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6922 pci_resource_len(pdev, 0));
6924 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6927 goto bar0_remap_failed;
6930 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6931 pci_resource_len(pdev, 2));
6933 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6936 goto bar1_remap_failed;
6939 dev->irq = pdev->irq;
6940 dev->base_addr = (unsigned long) sp->bar0;
6942 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6943 for (j = 0; j < MAX_TX_FIFOS; j++) {
6944 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6945 (sp->bar1 + (j * 0x00020000));
6948 /* Driver entry points */
6949 dev->open = &s2io_open;
6950 dev->stop = &s2io_close;
6951 dev->hard_start_xmit = &s2io_xmit;
6952 dev->get_stats = &s2io_get_stats;
6953 dev->set_multicast_list = &s2io_set_multicast;
6954 dev->do_ioctl = &s2io_ioctl;
6955 dev->change_mtu = &s2io_change_mtu;
6956 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6957 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6958 dev->vlan_rx_register = s2io_vlan_rx_register;
6959 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6962 * will use eth_mac_addr() for dev->set_mac_address
6963 * mac address will be set every time dev->open() is called
6965 #if defined(CONFIG_S2IO_NAPI)
6966 dev->poll = s2io_poll;
6970 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6971 if (sp->high_dma_flag == TRUE)
6972 dev->features |= NETIF_F_HIGHDMA;
6974 dev->features |= NETIF_F_TSO;
6976 if (sp->device_type & XFRAME_II_DEVICE) {
6977 dev->features |= NETIF_F_UFO;
6978 dev->features |= NETIF_F_HW_CSUM;
6981 dev->tx_timeout = &s2io_tx_watchdog;
6982 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6983 INIT_WORK(&sp->rst_timer_task,
6984 (void (*)(void *)) s2io_restart_nic, dev);
6985 INIT_WORK(&sp->set_link_task,
6986 (void (*)(void *)) s2io_set_link, sp);
6988 pci_save_state(sp->pdev);
6990 /* Setting swapper control on the NIC, for proper reset operation */
6991 if (s2io_set_swapper(sp)) {
6992 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6995 goto set_swap_failed;
6998 /* Verify if the Herc works on the slot its placed into */
6999 if (sp->device_type & XFRAME_II_DEVICE) {
7000 mode = s2io_verify_pci_mode(sp);
7002 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7003 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7005 goto set_swap_failed;
7009 /* Not needed for Herc */
7010 if (sp->device_type & XFRAME_I_DEVICE) {
7012 * Fix for all "FFs" MAC address problems observed on
7015 fix_mac_address(sp);
7020 * MAC address initialization.
7021 * For now only one mac address will be read and used.
7024 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7025 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7026 writeq(val64, &bar0->rmac_addr_cmd_mem);
7027 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7028 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7029 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7030 mac_down = (u32) tmp64;
7031 mac_up = (u32) (tmp64 >> 32);
7033 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7035 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7036 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7037 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7038 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7039 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7040 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7042 /* Set the factory defined MAC address initially */
7043 dev->addr_len = ETH_ALEN;
7044 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7047 * Initialize the tasklet status and link state flags
7048 * and the card state parameter
7050 atomic_set(&(sp->card_state), 0);
7051 sp->tasklet_status = 0;
7054 /* Initialize spinlocks */
7055 spin_lock_init(&sp->tx_lock);
7056 #ifndef CONFIG_S2IO_NAPI
7057 spin_lock_init(&sp->put_lock);
7059 spin_lock_init(&sp->rx_lock);
7062 * SXE-002: Configure link and activity LED to init state
7065 subid = sp->pdev->subsystem_device;
7066 if ((subid & 0xFF) >= 0x07) {
7067 val64 = readq(&bar0->gpio_control);
7068 val64 |= 0x0000800000000000ULL;
7069 writeq(val64, &bar0->gpio_control);
7070 val64 = 0x0411040400000000ULL;
7071 writeq(val64, (void __iomem *) bar0 + 0x2700);
7072 val64 = readq(&bar0->gpio_control);
7075 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7077 if (register_netdev(dev)) {
7078 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7080 goto register_failed;
7083 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
7084 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
7085 get_xena_rev_id(sp->pdev),
7086 s2io_driver_version);
7087 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7088 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7089 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7090 sp->def_mac_addr[0].mac_addr[0],
7091 sp->def_mac_addr[0].mac_addr[1],
7092 sp->def_mac_addr[0].mac_addr[2],
7093 sp->def_mac_addr[0].mac_addr[3],
7094 sp->def_mac_addr[0].mac_addr[4],
7095 sp->def_mac_addr[0].mac_addr[5]);
7096 if (sp->device_type & XFRAME_II_DEVICE) {
7097 mode = s2io_print_pci_mode(sp);
7099 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7101 unregister_netdev(dev);
7102 goto set_swap_failed;
7105 switch(sp->rxd_mode) {
7107 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7111 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7115 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7119 #ifdef CONFIG_S2IO_NAPI
7120 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7122 switch(sp->intr_type) {
7124 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7127 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7130 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7134 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7137 /* Initialize device name */
7138 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7140 /* Initialize bimodal Interrupts */
7141 sp->config.bimodal = bimodal;
7142 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7143 sp->config.bimodal = 0;
7144 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7149 * Make Link state as off at this point, when the Link change
7150 * interrupt comes the state will be automatically changed to
7153 netif_carrier_off(dev);
7164 free_shared_mem(sp);
7165 pci_disable_device(pdev);
7166 if (dev_intr_type != MSI_X)
7167 pci_release_regions(pdev);
7169 release_mem_region(pci_resource_start(pdev, 0),
7170 pci_resource_len(pdev, 0));
7171 release_mem_region(pci_resource_start(pdev, 2),
7172 pci_resource_len(pdev, 2));
7174 pci_set_drvdata(pdev, NULL);
7181 * s2io_rem_nic - Free the PCI device
7182 * @pdev: structure containing the PCI related information of the device.
7183 * Description: This function is called by the Pci subsystem to release a
7184 * PCI device and free up all resource held up by the device. This could
7185 * be in response to a Hot plug event or when the driver is to be removed
7189 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7191 struct net_device *dev =
7192 (struct net_device *) pci_get_drvdata(pdev);
7196 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7201 unregister_netdev(dev);
7203 free_shared_mem(sp);
7206 pci_disable_device(pdev);
7207 if (sp->intr_type != MSI_X)
7208 pci_release_regions(pdev);
7210 release_mem_region(pci_resource_start(pdev, 0),
7211 pci_resource_len(pdev, 0));
7212 release_mem_region(pci_resource_start(pdev, 2),
7213 pci_resource_len(pdev, 2));
7215 pci_set_drvdata(pdev, NULL);
7220 * s2io_starter - Entry point for the driver
7221 * Description: This function is the entry point for the driver. It verifies
7222 * the module loadable parameters and initializes PCI configuration space.
7225 int __init s2io_starter(void)
7227 return pci_module_init(&s2io_driver);
7231 * s2io_closer - Cleanup routine for the driver
7232 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7235 static void s2io_closer(void)
7237 pci_unregister_driver(&s2io_driver);
7238 DBG_PRINT(INIT_DBG, "cleanup done\n");
7241 module_init(s2io_starter);
7242 module_exit(s2io_closer);
7244 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7245 struct tcphdr **tcp, RxD_t *rxdp)
7248 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7250 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7251 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7257 * By default the VLAN field in the MAC is stripped by the card, if this
7258 * feature is turned off in rx_pa_cfg register, then the ip_off field
7259 * has to be shifted by a further 2 bytes
7262 case 0: /* DIX type */
7263 case 4: /* DIX type with VLAN */
7264 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7266 /* LLC, SNAP etc are considered non-mergeable */
7271 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7272 ip_len = (u8)((*ip)->ihl);
7274 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7279 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7282 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7283 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7284 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7289 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7291 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7294 static void initiate_new_session(lro_t *lro, u8 *l2h,
7295 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7297 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7301 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7302 lro->tcp_ack = ntohl(tcp->ack_seq);
7304 lro->total_len = ntohs(ip->tot_len);
7307 * check if we saw TCP timestamp. Other consistency checks have
7308 * already been done.
7310 if (tcp->doff == 8) {
7312 ptr = (u32 *)(tcp+1);
7314 lro->cur_tsval = *(ptr+1);
7315 lro->cur_tsecr = *(ptr+2);
7320 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7322 struct iphdr *ip = lro->iph;
7323 struct tcphdr *tcp = lro->tcph;
7325 StatInfo_t *statinfo = sp->mac_control.stats_info;
7326 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7328 /* Update L3 header */
7329 ip->tot_len = htons(lro->total_len);
7331 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7334 /* Update L4 header */
7335 tcp->ack_seq = lro->tcp_ack;
7336 tcp->window = lro->window;
7338 /* Update tsecr field if this session has timestamps enabled */
7340 u32 *ptr = (u32 *)(tcp + 1);
7341 *(ptr+2) = lro->cur_tsecr;
7344 /* Update counters required for calculation of
7345 * average no. of packets aggregated.
7347 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7348 statinfo->sw_stat.num_aggregations++;
7351 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7352 struct tcphdr *tcp, u32 l4_pyld)
7354 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7355 lro->total_len += l4_pyld;
7356 lro->frags_len += l4_pyld;
7357 lro->tcp_next_seq += l4_pyld;
7360 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7361 lro->tcp_ack = tcp->ack_seq;
7362 lro->window = tcp->window;
7366 /* Update tsecr and tsval from this packet */
7367 ptr = (u32 *) (tcp + 1);
7368 lro->cur_tsval = *(ptr + 1);
7369 lro->cur_tsecr = *(ptr + 2);
7373 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7374 struct tcphdr *tcp, u32 tcp_pyld_len)
7378 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7380 if (!tcp_pyld_len) {
7381 /* Runt frame or a pure ack */
7385 if (ip->ihl != 5) /* IP has options */
7388 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7391 * Currently recognize only the ack control word and
7392 * any other control field being set would result in
7393 * flushing the LRO session
7399 * Allow only one TCP timestamp option. Don't aggregate if
7400 * any other options are detected.
7402 if (tcp->doff != 5 && tcp->doff != 8)
7405 if (tcp->doff == 8) {
7406 ptr = (u8 *)(tcp + 1);
7407 while (*ptr == TCPOPT_NOP)
7409 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7412 /* Ensure timestamp value increases monotonically */
7414 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7417 /* timestamp echo reply should be non-zero */
7418 if (*((u32 *)(ptr+6)) == 0)
7426 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7427 RxD_t *rxdp, nic_t *sp)
7430 struct tcphdr *tcph;
7433 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7435 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7436 ip->saddr, ip->daddr);
7441 tcph = (struct tcphdr *)*tcp;
7442 *tcp_len = get_l4_pyld_length(ip, tcph);
7443 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7444 lro_t *l_lro = &sp->lro0_n[i];
7445 if (l_lro->in_use) {
7446 if (check_for_socket_match(l_lro, ip, tcph))
7448 /* Sock pair matched */
7451 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7452 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7453 "0x%x, actual 0x%x\n", __FUNCTION__,
7454 (*lro)->tcp_next_seq,
7457 sp->mac_control.stats_info->
7458 sw_stat.outof_sequence_pkts++;
7463 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7464 ret = 1; /* Aggregate */
7466 ret = 2; /* Flush both */
7472 /* Before searching for available LRO objects,
7473 * check if the pkt is L3/L4 aggregatable. If not
7474 * don't create new LRO session. Just send this
7477 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7481 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7482 lro_t *l_lro = &sp->lro0_n[i];
7483 if (!(l_lro->in_use)) {
7485 ret = 3; /* Begin anew */
7491 if (ret == 0) { /* sessions exceeded */
7492 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7500 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7503 update_L3L4_header(sp, *lro);
7506 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7507 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7508 update_L3L4_header(sp, *lro);
7509 ret = 4; /* Flush the LRO */
7513 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7521 static void clear_lro_session(lro_t *lro)
7523 static u16 lro_struct_size = sizeof(lro_t);
7525 memset(lro, 0, lro_struct_size);
7528 static void queue_rx_frame(struct sk_buff *skb)
7530 struct net_device *dev = skb->dev;
7532 skb->protocol = eth_type_trans(skb, dev);
7533 #ifdef CONFIG_S2IO_NAPI
7534 netif_receive_skb(skb);
7540 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7543 struct sk_buff *tmp, *first = lro->parent;
7545 first->len += tcp_len;
7546 first->data_len = lro->frags_len;
7547 skb_pull(skb, (skb->len - tcp_len));
7548 if ((tmp = skb_shinfo(first)->frag_list)) {
7554 skb_shinfo(first)->frag_list = skb;
7555 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;