2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
11 * This file handles the architecture-dependent parts of initialization
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/screen_info.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/initrd.h>
29 #include <linux/highmem.h>
30 #include <linux/bootmem.h>
31 #include <linux/module.h>
32 #include <asm/processor.h>
33 #include <linux/console.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/root_dev.h>
37 #include <linux/pci.h>
38 #include <linux/acpi.h>
39 #include <linux/kallsyms.h>
40 #include <linux/edd.h>
41 #include <linux/mmzone.h>
42 #include <linux/kexec.h>
43 #include <linux/cpufreq.h>
44 #include <linux/dmi.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/ctype.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
55 #include <video/edid.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
65 #include <asm/sections.h>
72 struct cpuinfo_x86 boot_cpu_data __read_mostly;
73 EXPORT_SYMBOL(boot_cpu_data);
75 unsigned long mmu_cr4_features;
78 EXPORT_SYMBOL(acpi_disabled);
80 extern int __initdata acpi_ht;
81 extern acpi_interrupt_flags acpi_sci_flags;
82 int __initdata acpi_force = 0;
85 int acpi_numa __initdata;
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
90 unsigned long saved_video_mode;
96 char dmi_alloc_data[DMI_MAX_DATA];
101 struct screen_info screen_info;
102 EXPORT_SYMBOL(screen_info);
103 struct sys_desc_table_struct {
104 unsigned short length;
105 unsigned char table[0];
108 struct edid_info edid_info;
109 EXPORT_SYMBOL_GPL(edid_info);
112 extern int root_mountflags;
114 char command_line[COMMAND_LINE_SIZE];
116 struct resource standard_io_resources[] = {
117 { .name = "dma1", .start = 0x00, .end = 0x1f,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "pic1", .start = 0x20, .end = 0x21,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "timer0", .start = 0x40, .end = 0x43,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "timer1", .start = 0x50, .end = 0x53,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "keyboard", .start = 0x60, .end = 0x6f,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "pic2", .start = 0xa0, .end = 0xa1,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
131 { .name = "dma2", .start = 0xc0, .end = 0xdf,
132 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
133 { .name = "fpu", .start = 0xf0, .end = 0xff,
134 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
137 #define STANDARD_IO_RESOURCES \
138 (sizeof standard_io_resources / sizeof standard_io_resources[0])
140 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
142 struct resource data_resource = {
143 .name = "Kernel data",
146 .flags = IORESOURCE_RAM,
148 struct resource code_resource = {
149 .name = "Kernel code",
152 .flags = IORESOURCE_RAM,
155 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
157 static struct resource system_rom_resource = {
158 .name = "System ROM",
161 .flags = IORESOURCE_ROM,
164 static struct resource extension_rom_resource = {
165 .name = "Extension ROM",
168 .flags = IORESOURCE_ROM,
171 static struct resource adapter_rom_resources[] = {
172 { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
173 .flags = IORESOURCE_ROM },
174 { .name = "Adapter ROM", .start = 0, .end = 0,
175 .flags = IORESOURCE_ROM },
176 { .name = "Adapter ROM", .start = 0, .end = 0,
177 .flags = IORESOURCE_ROM },
178 { .name = "Adapter ROM", .start = 0, .end = 0,
179 .flags = IORESOURCE_ROM },
180 { .name = "Adapter ROM", .start = 0, .end = 0,
181 .flags = IORESOURCE_ROM },
182 { .name = "Adapter ROM", .start = 0, .end = 0,
183 .flags = IORESOURCE_ROM }
186 #define ADAPTER_ROM_RESOURCES \
187 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
189 static struct resource video_rom_resource = {
193 .flags = IORESOURCE_ROM,
196 static struct resource video_ram_resource = {
197 .name = "Video RAM area",
200 .flags = IORESOURCE_RAM,
203 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
205 static int __init romchecksum(unsigned char *rom, unsigned long length)
207 unsigned char *p, sum = 0;
209 for (p = rom; p < rom + length; p++)
214 static void __init probe_roms(void)
216 unsigned long start, length, upper;
221 upper = adapter_rom_resources[0].start;
222 for (start = video_rom_resource.start; start < upper; start += 2048) {
223 rom = isa_bus_to_virt(start);
224 if (!romsignature(rom))
227 video_rom_resource.start = start;
229 /* 0 < length <= 0x7f * 512, historically */
230 length = rom[2] * 512;
232 /* if checksum okay, trust length byte */
233 if (length && romchecksum(rom, length))
234 video_rom_resource.end = start + length - 1;
236 request_resource(&iomem_resource, &video_rom_resource);
240 start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
245 request_resource(&iomem_resource, &system_rom_resource);
246 upper = system_rom_resource.start;
248 /* check for extension rom (ignore length byte!) */
249 rom = isa_bus_to_virt(extension_rom_resource.start);
250 if (romsignature(rom)) {
251 length = extension_rom_resource.end - extension_rom_resource.start + 1;
252 if (romchecksum(rom, length)) {
253 request_resource(&iomem_resource, &extension_rom_resource);
254 upper = extension_rom_resource.start;
258 /* check for adapter roms on 2k boundaries */
259 for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
260 rom = isa_bus_to_virt(start);
261 if (!romsignature(rom))
264 /* 0 < length <= 0x7f * 512, historically */
265 length = rom[2] * 512;
267 /* but accept any length that fits if checksum okay */
268 if (!length || start + length > upper || !romchecksum(rom, length))
271 adapter_rom_resources[i].start = start;
272 adapter_rom_resources[i].end = start + length - 1;
273 request_resource(&iomem_resource, &adapter_rom_resources[i]);
275 start = adapter_rom_resources[i++].end & ~2047UL;
279 /* Check for full argument with no trailing characters */
280 static int fullarg(char *p, char *arg)
283 return !memcmp(p, arg, l) && (p[l] == 0 || isspace(p[l]));
286 static __init void parse_cmdline_early (char ** cmdline_p)
288 char c = ' ', *to = command_line, *from = COMMAND_LINE;
298 * If the BIOS enumerates physical processors before logical,
299 * maxcpus=N at enumeration-time can be used to disable HT.
301 else if (!memcmp(from, "maxcpus=", 8)) {
302 extern unsigned int maxcpus;
304 maxcpus = simple_strtoul(from + 8, NULL, 0);
308 /* "acpi=off" disables both ACPI table parsing and interpreter init */
309 if (fullarg(from,"acpi=off"))
312 if (fullarg(from, "acpi=force")) {
313 /* add later when we do DMI horrors: */
318 /* acpi=ht just means: do ACPI MADT parsing
319 at bootup, but don't enable the full ACPI interpreter */
320 if (fullarg(from, "acpi=ht")) {
325 else if (fullarg(from, "pci=noacpi"))
327 else if (fullarg(from, "acpi=noirq"))
330 else if (fullarg(from, "acpi_sci=edge"))
331 acpi_sci_flags.trigger = 1;
332 else if (fullarg(from, "acpi_sci=level"))
333 acpi_sci_flags.trigger = 3;
334 else if (fullarg(from, "acpi_sci=high"))
335 acpi_sci_flags.polarity = 1;
336 else if (fullarg(from, "acpi_sci=low"))
337 acpi_sci_flags.polarity = 3;
339 /* acpi=strict disables out-of-spec workarounds */
340 else if (fullarg(from, "acpi=strict")) {
343 #ifdef CONFIG_X86_IO_APIC
344 else if (fullarg(from, "acpi_skip_timer_override"))
345 acpi_skip_timer_override = 1;
349 if (fullarg(from, "disable_timer_pin_1"))
350 disable_timer_pin_1 = 1;
351 if (fullarg(from, "enable_timer_pin_1"))
352 disable_timer_pin_1 = -1;
354 if (fullarg(from, "nolapic") || fullarg(from, "disableapic")) {
355 clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
359 if (fullarg(from, "noapic"))
360 skip_ioapic_setup = 1;
362 if (fullarg(from,"apic")) {
363 skip_ioapic_setup = 0;
367 if (!memcmp(from, "mem=", 4))
368 parse_memopt(from+4, &from);
370 if (!memcmp(from, "memmap=", 7)) {
371 /* exactmap option is for used defined memory */
372 if (!memcmp(from+7, "exactmap", 8)) {
373 #ifdef CONFIG_CRASH_DUMP
374 /* If we are doing a crash dump, we
375 * still need to know the real mem
376 * size before original memory map is
379 saved_max_pfn = e820_end_of_ram();
387 parse_memmapopt(from+7, &from);
393 if (!memcmp(from, "numa=", 5))
397 if (!memcmp(from,"iommu=",6)) {
401 if (fullarg(from,"oops=panic"))
404 if (!memcmp(from, "noexec=", 7))
405 nonx_setup(from + 7);
408 /* crashkernel=size@addr specifies the location to reserve for
409 * a crash kernel. By reserving this memory we guarantee
410 * that linux never set's it up as a DMA target.
411 * Useful for holding code to do something appropriate
412 * after a kernel panic.
414 else if (!memcmp(from, "crashkernel=", 12)) {
415 unsigned long size, base;
416 size = memparse(from+12, &from);
418 base = memparse(from+1, &from);
419 /* FIXME: Do I want a sanity check
420 * to validate the memory range?
422 crashk_res.start = base;
423 crashk_res.end = base + size - 1;
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430 * stored by the crashed kernel. This option will be passed
431 * by kexec loader to the capture kernel.
433 else if(!memcmp(from, "elfcorehdr=", 11))
434 elfcorehdr_addr = memparse(from+11, &from);
437 #ifdef CONFIG_HOTPLUG_CPU
438 else if (!memcmp(from, "additional_cpus=", 16))
439 setup_additional_cpus(from+16);
446 if (COMMAND_LINE_SIZE <= ++len)
451 printk(KERN_INFO "user-defined physical RAM map:\n");
452 e820_print_map("user");
455 *cmdline_p = command_line;
460 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
462 unsigned long bootmap_size, bootmap;
464 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
465 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
467 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
468 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
469 e820_bootmem_free(NODE_DATA(0), 0, end_pfn << PAGE_SHIFT);
470 reserve_bootmem(bootmap, bootmap_size);
474 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
476 #ifdef CONFIG_EDD_MODULE
480 * copy_edd() - Copy the BIOS EDD information
481 * from boot_params into a safe place.
484 static inline void copy_edd(void)
486 memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
487 memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
488 edd.mbr_signature_nr = EDD_MBR_SIG_NR;
489 edd.edd_info_nr = EDD_NR;
492 static inline void copy_edd(void)
497 #define EBDA_ADDR_POINTER 0x40E
499 unsigned __initdata ebda_addr;
500 unsigned __initdata ebda_size;
502 static void discover_ebda(void)
505 * there is a real-mode segmented pointer pointing to the
506 * 4K EBDA area at 0x40E
508 ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
511 ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
513 /* Round EBDA up to pages */
517 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
518 if (ebda_size > 64*1024)
522 void __init setup_arch(char **cmdline_p)
524 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
525 screen_info = SCREEN_INFO;
526 edid_info = EDID_INFO;
527 saved_video_mode = SAVED_VIDEO_MODE;
528 bootloader_type = LOADER_TYPE;
530 #ifdef CONFIG_BLK_DEV_RAM
531 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
532 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
533 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
535 setup_memory_region();
538 if (!MOUNT_ROOT_RDONLY)
539 root_mountflags &= ~MS_RDONLY;
540 init_mm.start_code = (unsigned long) &_text;
541 init_mm.end_code = (unsigned long) &_etext;
542 init_mm.end_data = (unsigned long) &_edata;
543 init_mm.brk = (unsigned long) &_end;
545 code_resource.start = virt_to_phys(&_text);
546 code_resource.end = virt_to_phys(&_etext)-1;
547 data_resource.start = virt_to_phys(&_etext);
548 data_resource.end = virt_to_phys(&_edata)-1;
550 parse_cmdline_early(cmdline_p);
552 early_identify_cpu(&boot_cpu_data);
555 * partially used pages are not usable - thus
556 * we are rounding upwards:
558 end_pfn = e820_end_of_ram();
559 num_physpages = end_pfn; /* for pfn_valid */
565 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
573 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
574 * Call this early for SRAT node setup.
576 acpi_boot_table_init();
579 #ifdef CONFIG_ACPI_NUMA
581 * Parse SRAT to discover nodes.
587 numa_initmem_init(0, end_pfn);
589 contig_initmem_init(0, end_pfn);
592 /* Reserve direct mapping */
593 reserve_bootmem_generic(table_start << PAGE_SHIFT,
594 (table_end - table_start) << PAGE_SHIFT);
597 reserve_bootmem_generic(__pa_symbol(&_text),
598 __pa_symbol(&_end) - __pa_symbol(&_text));
601 * reserve physical page 0 - it's a special BIOS page on many boxes,
602 * enabling clean reboots, SMP operation, laptop functions.
604 reserve_bootmem_generic(0, PAGE_SIZE);
606 /* reserve ebda region */
608 reserve_bootmem_generic(ebda_addr, ebda_size);
612 * But first pinch a few for the stack/trampoline stuff
613 * FIXME: Don't need the extra page at 4K, but need to fix
614 * trampoline before removing it. (see the GDT stuff)
616 reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
618 /* Reserve SMP trampoline */
619 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
622 #ifdef CONFIG_ACPI_SLEEP
624 * Reserve low memory region for sleep support.
626 acpi_reserve_bootmem();
628 #ifdef CONFIG_X86_LOCAL_APIC
630 * Find and reserve possible boot-time SMP configuration:
634 #ifdef CONFIG_BLK_DEV_INITRD
635 if (LOADER_TYPE && INITRD_START) {
636 if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
637 reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
639 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
640 initrd_end = initrd_start+INITRD_SIZE;
643 printk(KERN_ERR "initrd extends beyond end of memory "
644 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
645 (unsigned long)(INITRD_START + INITRD_SIZE),
646 (unsigned long)(end_pfn << PAGE_SHIFT));
652 if (crashk_res.start != crashk_res.end) {
653 reserve_bootmem_generic(crashk_res.start,
654 crashk_res.end - crashk_res.start + 1);
663 * set this early, so we dont allocate cpu0
664 * if MADT list doesnt list BSP first
665 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
667 cpu_set(0, cpu_present_map);
670 * Read APIC and some other early information from ACPI tables.
677 #ifdef CONFIG_X86_LOCAL_APIC
679 * get boot-time SMP configuration:
681 if (smp_found_config)
683 init_apic_mappings();
687 * Request address space for all standard RAM and ROM resources
688 * and also for regions reported as reserved by the e820.
691 e820_reserve_resources();
693 request_resource(&iomem_resource, &video_ram_resource);
697 /* request I/O space for devices used on all i[345]86 PCs */
698 for (i = 0; i < STANDARD_IO_RESOURCES; i++)
699 request_resource(&ioport_resource, &standard_io_resources[i]);
705 #if defined(CONFIG_VGA_CONSOLE)
706 conswitchp = &vga_con;
707 #elif defined(CONFIG_DUMMY_CONSOLE)
708 conswitchp = &dummy_con;
713 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
717 if (c->extended_cpuid_level < 0x80000004)
720 v = (unsigned int *) c->x86_model_id;
721 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
722 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
723 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
724 c->x86_model_id[48] = 0;
729 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
731 unsigned int n, dummy, eax, ebx, ecx, edx;
733 n = c->extended_cpuid_level;
735 if (n >= 0x80000005) {
736 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
737 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
738 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
739 c->x86_cache_size=(ecx>>24)+(edx>>24);
740 /* On K8 L1 TLB is inclusive, so don't count it */
744 if (n >= 0x80000006) {
745 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
746 ecx = cpuid_ecx(0x80000006);
747 c->x86_cache_size = ecx >> 16;
748 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
750 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
751 c->x86_cache_size, ecx & 0xFF);
755 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
756 if (n >= 0x80000008) {
757 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
758 c->x86_virt_bits = (eax >> 8) & 0xff;
759 c->x86_phys_bits = eax & 0xff;
764 static int nearby_node(int apicid)
767 for (i = apicid - 1; i >= 0; i--) {
768 int node = apicid_to_node[i];
769 if (node != NUMA_NO_NODE && node_online(node))
772 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
773 int node = apicid_to_node[i];
774 if (node != NUMA_NO_NODE && node_online(node))
777 return first_node(node_online_map); /* Shouldn't happen */
782 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
783 * Assumes number of cores is a power of two.
785 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
790 int cpu = smp_processor_id();
792 unsigned apicid = hard_smp_processor_id();
794 unsigned ecx = cpuid_ecx(0x80000008);
796 c->x86_max_cores = (ecx & 0xff) + 1;
798 /* CPU telling us the core id bits shift? */
799 bits = (ecx >> 12) & 0xF;
801 /* Otherwise recompute */
803 while ((1 << bits) < c->x86_max_cores)
807 /* Low order bits define the core id (index of core in socket) */
808 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
809 /* Convert the APIC ID into the socket ID */
810 c->phys_proc_id = phys_pkg_id(bits);
813 node = c->phys_proc_id;
814 if (apicid_to_node[apicid] != NUMA_NO_NODE)
815 node = apicid_to_node[apicid];
816 if (!node_online(node)) {
817 /* Two possibilities here:
818 - The CPU is missing memory and no node was created.
819 In that case try picking one from a nearby CPU
820 - The APIC IDs differ from the HyperTransport node IDs
821 which the K8 northbridge parsing fills in.
822 Assume they are all increased by a constant offset,
823 but in the same order as the HT nodeids.
824 If that doesn't result in a usable node fall back to the
825 path for the previous case. */
826 int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
827 if (ht_nodeid >= 0 &&
828 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
829 node = apicid_to_node[ht_nodeid];
830 /* Pick a nearby node */
831 if (!node_online(node))
832 node = nearby_node(apicid);
834 numa_set_node(cpu, node);
836 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
841 static void __init init_amd(struct cpuinfo_x86 *c)
849 * Disable TLB flush filter by setting HWCR.FFDIS on K8
850 * bit 6 of msr C001_0015
852 * Errata 63 for SH-B3 steppings
853 * Errata 122 for all steppings (F+ have it disabled by default)
856 rdmsrl(MSR_K8_HWCR, value);
858 wrmsrl(MSR_K8_HWCR, value);
862 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
863 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
864 clear_bit(0*32+31, &c->x86_capability);
866 /* On C+ stepping K8 rep microcode works well for copy/memset */
867 level = cpuid_eax(1);
868 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
869 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
871 /* Enable workaround for FXSAVE leak */
873 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
875 level = get_model_name(c);
879 /* Should distinguish Models here, but this is only
880 a fallback anyways. */
881 strcpy(c->x86_model_id, "Hammer");
885 display_cacheinfo(c);
887 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
888 if (c->x86_power & (1<<8))
889 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
891 /* Multi core CPU? */
892 if (c->extended_cpuid_level >= 0x80000008)
895 /* Fix cpuid4 emulation for more */
896 num_cache_leaves = 3;
899 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
902 u32 eax, ebx, ecx, edx;
903 int index_msb, core_bits;
905 cpuid(1, &eax, &ebx, &ecx, &edx);
908 if (!cpu_has(c, X86_FEATURE_HT))
910 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
913 smp_num_siblings = (ebx & 0xff0000) >> 16;
915 if (smp_num_siblings == 1) {
916 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
917 } else if (smp_num_siblings > 1 ) {
919 if (smp_num_siblings > NR_CPUS) {
920 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
921 smp_num_siblings = 1;
925 index_msb = get_count_order(smp_num_siblings);
926 c->phys_proc_id = phys_pkg_id(index_msb);
928 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
930 index_msb = get_count_order(smp_num_siblings) ;
932 core_bits = get_count_order(c->x86_max_cores);
934 c->cpu_core_id = phys_pkg_id(index_msb) &
935 ((1 << core_bits) - 1);
938 if ((c->x86_max_cores * smp_num_siblings) > 1) {
939 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
940 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
947 * find out the number of processor cores on the die
949 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
953 if (c->cpuid_level < 4)
956 cpuid_count(4, 0, &eax, &t, &t, &t);
959 return ((eax >> 26) + 1);
964 static void srat_detect_node(void)
968 int cpu = smp_processor_id();
969 int apicid = hard_smp_processor_id();
971 /* Don't do the funky fallback heuristics the AMD version employs
973 node = apicid_to_node[apicid];
974 if (node == NUMA_NO_NODE)
975 node = first_node(node_online_map);
976 numa_set_node(cpu, node);
979 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
983 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
988 init_intel_cacheinfo(c);
989 if (c->cpuid_level > 9 ) {
990 unsigned eax = cpuid_eax(10);
991 /* Check for version and the number of counters */
992 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
993 set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
996 n = c->extended_cpuid_level;
997 if (n >= 0x80000008) {
998 unsigned eax = cpuid_eax(0x80000008);
999 c->x86_virt_bits = (eax >> 8) & 0xff;
1000 c->x86_phys_bits = eax & 0xff;
1001 /* CPUID workaround for Intel 0F34 CPU */
1002 if (c->x86_vendor == X86_VENDOR_INTEL &&
1003 c->x86 == 0xF && c->x86_model == 0x3 &&
1005 c->x86_phys_bits = 36;
1009 c->x86_cache_alignment = c->x86_clflush_size * 2;
1010 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
1011 (c->x86 == 0x6 && c->x86_model >= 0x0e))
1012 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
1013 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
1014 c->x86_max_cores = intel_num_cpu_cores(c);
1019 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
1021 char *v = c->x86_vendor_id;
1023 if (!strcmp(v, "AuthenticAMD"))
1024 c->x86_vendor = X86_VENDOR_AMD;
1025 else if (!strcmp(v, "GenuineIntel"))
1026 c->x86_vendor = X86_VENDOR_INTEL;
1028 c->x86_vendor = X86_VENDOR_UNKNOWN;
1031 struct cpu_model_info {
1034 char *model_names[16];
1037 /* Do some early cpuid on the boot CPU to get some parameter that are
1038 needed before check_bugs. Everything advanced is in identify_cpu
1040 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
1044 c->loops_per_jiffy = loops_per_jiffy;
1045 c->x86_cache_size = -1;
1046 c->x86_vendor = X86_VENDOR_UNKNOWN;
1047 c->x86_model = c->x86_mask = 0; /* So far unknown... */
1048 c->x86_vendor_id[0] = '\0'; /* Unset */
1049 c->x86_model_id[0] = '\0'; /* Unset */
1050 c->x86_clflush_size = 64;
1051 c->x86_cache_alignment = c->x86_clflush_size;
1052 c->x86_max_cores = 1;
1053 c->extended_cpuid_level = 0;
1054 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1056 /* Get vendor name */
1057 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
1058 (unsigned int *)&c->x86_vendor_id[0],
1059 (unsigned int *)&c->x86_vendor_id[8],
1060 (unsigned int *)&c->x86_vendor_id[4]);
1064 /* Initialize the standard set of capabilities */
1065 /* Note that the vendor-specific code below might override */
1067 /* Intel-defined flags: level 0x00000001 */
1068 if (c->cpuid_level >= 0x00000001) {
1070 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
1071 &c->x86_capability[0]);
1072 c->x86 = (tfms >> 8) & 0xf;
1073 c->x86_model = (tfms >> 4) & 0xf;
1074 c->x86_mask = tfms & 0xf;
1076 c->x86 += (tfms >> 20) & 0xff;
1078 c->x86_model += ((tfms >> 16) & 0xF) << 4;
1079 if (c->x86_capability[0] & (1<<19))
1080 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
1082 /* Have CPUID level 0 only - unheard of */
1087 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
1092 * This does the hard work of actually picking apart the CPU stuff...
1094 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1099 early_identify_cpu(c);
1101 /* AMD-defined flags: level 0x80000001 */
1102 xlvl = cpuid_eax(0x80000000);
1103 c->extended_cpuid_level = xlvl;
1104 if ((xlvl & 0xffff0000) == 0x80000000) {
1105 if (xlvl >= 0x80000001) {
1106 c->x86_capability[1] = cpuid_edx(0x80000001);
1107 c->x86_capability[6] = cpuid_ecx(0x80000001);
1109 if (xlvl >= 0x80000004)
1110 get_model_name(c); /* Default name */
1113 /* Transmeta-defined flags: level 0x80860001 */
1114 xlvl = cpuid_eax(0x80860000);
1115 if ((xlvl & 0xffff0000) == 0x80860000) {
1116 /* Don't set x86_cpuid_level here for now to not confuse. */
1117 if (xlvl >= 0x80860001)
1118 c->x86_capability[2] = cpuid_edx(0x80860001);
1121 c->apicid = phys_pkg_id(0);
1124 * Vendor-specific initialization. In this section we
1125 * canonicalize the feature flags, meaning if there are
1126 * features a certain CPU supports which CPUID doesn't
1127 * tell us, CPUID claiming incorrect flags, or other bugs,
1128 * we handle them here.
1130 * At the end of this section, c->x86_capability better
1131 * indicate the features this CPU genuinely supports!
1133 switch (c->x86_vendor) {
1134 case X86_VENDOR_AMD:
1138 case X86_VENDOR_INTEL:
1142 case X86_VENDOR_UNKNOWN:
1144 display_cacheinfo(c);
1148 select_idle_routine(c);
1152 * On SMP, boot_cpu_data holds the common feature set between
1153 * all CPUs; so make sure that we indicate which features are
1154 * common between the CPUs. The first time this routine gets
1155 * executed, c == &boot_cpu_data.
1157 if (c != &boot_cpu_data) {
1158 /* AND the already accumulated flags with these */
1159 for (i = 0 ; i < NCAPINTS ; i++)
1160 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1163 #ifdef CONFIG_X86_MCE
1166 if (c == &boot_cpu_data)
1171 numa_add_cpu(smp_processor_id());
1176 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1178 if (c->x86_model_id[0])
1179 printk("%s", c->x86_model_id);
1181 if (c->x86_mask || c->cpuid_level >= 0)
1182 printk(" stepping %02x\n", c->x86_mask);
1188 * Get CPU information for use by the procfs.
1191 static int show_cpuinfo(struct seq_file *m, void *v)
1193 struct cpuinfo_x86 *c = v;
1196 * These flag bits must match the definitions in <asm/cpufeature.h>.
1197 * NULL means this bit is undefined or reserved; either way it doesn't
1198 * have meaning as far as Linux is concerned. Note that it's important
1199 * to realize there is a difference between this table and CPUID -- if
1200 * applications want to get the raw CPUID data, they should access
1201 * /dev/cpu/<cpu_nr>/cpuid instead.
1203 static char *x86_cap_flags[] = {
1205 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1206 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1207 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1208 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
1211 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1212 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1213 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1214 NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
1216 /* Transmeta-defined */
1217 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1218 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1219 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1220 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1222 /* Other (Linux-defined) */
1223 "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
1224 "constant_tsc", NULL, NULL,
1225 "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1226 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1227 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1229 /* Intel-defined (#2) */
1230 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1231 "tm2", NULL, "cid", NULL, NULL, "cx16", "xtpr", NULL,
1232 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1233 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1235 /* VIA/Cyrix/Centaur-defined */
1236 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1237 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1238 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1239 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1241 /* AMD-defined (#2) */
1242 "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
1243 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1244 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1245 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1247 static char *x86_power_flags[] = {
1248 "ts", /* temperature sensor */
1249 "fid", /* frequency id control */
1250 "vid", /* voltage id control */
1251 "ttp", /* thermal trip */
1255 /* nothing */ /* constant_tsc - moved to flags */
1260 if (!cpu_online(c-cpu_data))
1264 seq_printf(m,"processor\t: %u\n"
1266 "cpu family\t: %d\n"
1268 "model name\t: %s\n",
1269 (unsigned)(c-cpu_data),
1270 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1273 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1275 if (c->x86_mask || c->cpuid_level >= 0)
1276 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1278 seq_printf(m, "stepping\t: unknown\n");
1280 if (cpu_has(c,X86_FEATURE_TSC)) {
1281 unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
1284 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1285 freq / 1000, (freq % 1000));
1289 if (c->x86_cache_size >= 0)
1290 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1293 if (smp_num_siblings * c->x86_max_cores > 1) {
1294 int cpu = c - cpu_data;
1295 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1296 seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
1297 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1298 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1304 "fpu_exception\t: yes\n"
1305 "cpuid level\t: %d\n"
1312 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1313 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1314 seq_printf(m, " %s", x86_cap_flags[i]);
1317 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1318 c->loops_per_jiffy/(500000/HZ),
1319 (c->loops_per_jiffy/(5000/HZ)) % 100);
1321 if (c->x86_tlbsize > 0)
1322 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1323 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1324 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1326 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1327 c->x86_phys_bits, c->x86_virt_bits);
1329 seq_printf(m, "power management:");
1332 for (i = 0; i < 32; i++)
1333 if (c->x86_power & (1 << i)) {
1334 if (i < ARRAY_SIZE(x86_power_flags) &&
1336 seq_printf(m, "%s%s",
1337 x86_power_flags[i][0]?" ":"",
1338 x86_power_flags[i]);
1340 seq_printf(m, " [%d]", i);
1344 seq_printf(m, "\n\n");
1349 static void *c_start(struct seq_file *m, loff_t *pos)
1351 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
1354 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1357 return c_start(m, pos);
1360 static void c_stop(struct seq_file *m, void *v)
1364 struct seq_operations cpuinfo_op = {
1368 .show = show_cpuinfo,
1371 #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
1372 #include <linux/platform_device.h>
1373 static __init int add_pcspkr(void)
1375 struct platform_device *pd;
1378 pd = platform_device_alloc("pcspkr", -1);
1382 ret = platform_device_add(pd);
1384 platform_device_put(pd);
1388 device_initcall(add_pcspkr);