2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
37 #include <asm/processor.h>
41 #include <asm/system.h>
43 #include <asm/pgtable.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pSeries_reconfig.h>
50 #include <asm/pci-bridge.h>
52 #include <asm/systemcfg.h>
56 #define DBG(fmt...) printk(KERN_ERR fmt)
61 struct pci_reg_property {
62 struct pci_address addr;
67 struct isa_reg_property {
74 typedef int interpret_func(struct device_node *, unsigned long *,
77 extern struct rtas_t rtas;
78 extern struct lmb lmb;
79 extern unsigned long klimit;
81 static int __initdata dt_root_addr_cells;
82 static int __initdata dt_root_size_cells;
85 static int __initdata iommu_is_off;
86 int __initdata iommu_force_on;
87 unsigned long tce_alloc_start, tce_alloc_end;
93 static struct boot_param_header *initial_boot_params __initdata;
95 struct boot_param_header *initial_boot_params;
98 static struct device_node *allnodes = NULL;
100 /* use when traversing tree through the allnext, child, sibling,
101 * or parent members of struct device_node.
103 static DEFINE_RWLOCK(devtree_lock);
105 /* export that to outside world */
106 struct device_node *of_chosen;
108 struct device_node *dflt_interrupt_controller;
109 int num_interrupt_controllers;
112 * Wrapper for allocating memory for various data that needs to be
113 * attached to device nodes as they are processed at boot or when
114 * added to the device tree later (e.g. DLPAR). At boot there is
115 * already a region reserved so we just increment *mem_start by size;
116 * otherwise we call kmalloc.
118 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
123 return kmalloc(size, GFP_KERNEL);
131 * Find the device_node with a given phandle.
133 static struct device_node * find_phandle(phandle ph)
135 struct device_node *np;
137 for (np = allnodes; np != 0; np = np->allnext)
138 if (np->linux_phandle == ph)
144 * Find the interrupt parent of a node.
146 static struct device_node * __devinit intr_parent(struct device_node *p)
150 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
153 p = find_phandle(*parp);
157 * On a powermac booted with BootX, we don't get to know the
158 * phandles for any nodes, so find_phandle will return NULL.
159 * Fortunately these machines only have one interrupt controller
160 * so there isn't in fact any ambiguity. -- paulus
162 if (num_interrupt_controllers == 1)
163 p = dflt_interrupt_controller;
168 * Find out the size of each entry of the interrupts property
171 int __devinit prom_n_intr_cells(struct device_node *np)
173 struct device_node *p;
176 for (p = np; (p = intr_parent(p)) != NULL; ) {
177 icp = (unsigned int *)
178 get_property(p, "#interrupt-cells", NULL);
181 if (get_property(p, "interrupt-controller", NULL) != NULL
182 || get_property(p, "interrupt-map", NULL) != NULL) {
183 printk("oops, node %s doesn't have #interrupt-cells\n",
189 printk("prom_n_intr_cells failed for %s\n", np->full_name);
195 * Map an interrupt from a device up to the platform interrupt
198 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
199 struct device_node *np, unsigned int *ints,
202 struct device_node *p, *ipar;
203 unsigned int *imap, *imask, *ip;
204 int i, imaplen, match;
205 int newintrc = 0, newaddrc = 0;
209 reg = (unsigned int *) get_property(np, "reg", NULL);
210 naddrc = prom_n_addr_cells(np);
213 if (get_property(p, "interrupt-controller", NULL) != NULL)
214 /* this node is an interrupt controller, stop here */
216 imap = (unsigned int *)
217 get_property(p, "interrupt-map", &imaplen);
222 imask = (unsigned int *)
223 get_property(p, "interrupt-map-mask", NULL);
225 printk("oops, %s has interrupt-map but no mask\n",
229 imaplen /= sizeof(unsigned int);
232 while (imaplen > 0 && !match) {
233 /* check the child-interrupt field */
235 for (i = 0; i < naddrc && match; ++i)
236 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
237 for (; i < naddrc + nintrc && match; ++i)
238 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
239 imap += naddrc + nintrc;
240 imaplen -= naddrc + nintrc;
241 /* grab the interrupt parent */
242 ipar = find_phandle((phandle) *imap++);
244 if (ipar == NULL && num_interrupt_controllers == 1)
245 /* cope with BootX not giving us phandles */
246 ipar = dflt_interrupt_controller;
248 printk("oops, no int parent %x in map of %s\n",
249 imap[-1], p->full_name);
252 /* find the parent's # addr and intr cells */
253 ip = (unsigned int *)
254 get_property(ipar, "#interrupt-cells", NULL);
256 printk("oops, no #interrupt-cells on %s\n",
261 ip = (unsigned int *)
262 get_property(ipar, "#address-cells", NULL);
263 newaddrc = (ip == NULL)? 0: *ip;
264 imap += newaddrc + newintrc;
265 imaplen -= newaddrc + newintrc;
268 printk("oops, error decoding int-map on %s, len=%d\n",
269 p->full_name, imaplen);
274 printk("oops, no match in %s int-map for %s\n",
275 p->full_name, np->full_name);
282 ints = imap - nintrc;
287 printk("hmmm, int tree for %s doesn't have ctrler\n",
297 static unsigned char map_isa_senses[4] = {
298 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
299 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
300 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
301 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
304 static unsigned char map_mpic_senses[4] = {
305 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
306 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
307 /* 2 seems to be used for the 8259 cascade... */
308 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
309 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
312 static int __devinit finish_node_interrupts(struct device_node *np,
313 unsigned long *mem_start,
317 int intlen, intrcells, intrcount;
319 unsigned int *irq, virq;
320 struct device_node *ic;
322 if (num_interrupt_controllers == 0) {
324 * Old machines just have a list of interrupt numbers
325 * and no interrupt-controller nodes.
327 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
329 /* XXX old interpret_pci_props looked in parent too */
330 /* XXX old interpret_macio_props looked for interrupts
331 before AAPL,interrupts */
333 ints = (unsigned int *) get_property(np, "interrupts",
338 np->n_intrs = intlen / sizeof(unsigned int);
339 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
346 for (i = 0; i < np->n_intrs; ++i) {
347 np->intrs[i].line = *ints++;
348 np->intrs[i].sense = IRQ_SENSE_LEVEL
349 | IRQ_POLARITY_NEGATIVE;
354 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
357 intrcells = prom_n_intr_cells(np);
358 intlen /= intrcells * sizeof(unsigned int);
360 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
368 for (i = 0; i < intlen; ++i, ints += intrcells) {
369 n = map_interrupt(&irq, &ic, np, ints, intrcells);
373 /* don't map IRQ numbers under a cascaded 8259 controller */
374 if (ic && device_is_compatible(ic, "chrp,iic")) {
375 np->intrs[intrcount].line = irq[0];
376 sense = (n > 1)? (irq[1] & 3): 3;
377 np->intrs[intrcount].sense = map_isa_senses[sense];
379 virq = virt_irq_create_mapping(irq[0]);
381 if (virq == NO_IRQ) {
382 printk(KERN_CRIT "Could not allocate interrupt"
383 " number for %s\n", np->full_name);
387 np->intrs[intrcount].line = irq_offset_up(virq);
388 sense = (n > 1)? (irq[1] & 3): 1;
389 np->intrs[intrcount].sense = map_mpic_senses[sense];
393 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
394 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
395 char *name = get_property(ic->parent, "name", NULL);
396 if (name && !strcmp(name, "u3"))
397 np->intrs[intrcount].line += 128;
398 else if (!(name && !strcmp(name, "mac-io")))
399 /* ignore other cascaded controllers, such as
405 printk("hmmm, got %d intr cells for %s:", n,
407 for (j = 0; j < n; ++j)
408 printk(" %d", irq[j]);
413 np->n_intrs = intrcount;
418 static int __devinit interpret_pci_props(struct device_node *np,
419 unsigned long *mem_start,
420 int naddrc, int nsizec,
423 struct address_range *adr;
424 struct pci_reg_property *pci_addrs;
427 pci_addrs = (struct pci_reg_property *)
428 get_property(np, "assigned-addresses", &l);
432 n_addrs = l / sizeof(*pci_addrs);
434 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
442 np->n_addrs = n_addrs;
444 for (i = 0; i < n_addrs; i++) {
445 adr[i].space = pci_addrs[i].addr.a_hi;
446 adr[i].address = pci_addrs[i].addr.a_lo |
447 ((u64)pci_addrs[i].addr.a_mid << 32);
448 adr[i].size = pci_addrs[i].size_lo;
454 static int __init interpret_dbdma_props(struct device_node *np,
455 unsigned long *mem_start,
456 int naddrc, int nsizec,
459 struct reg_property32 *rp;
460 struct address_range *adr;
461 unsigned long base_address;
463 struct device_node *db;
467 for (db = np->parent; db != NULL; db = db->parent) {
468 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
469 base_address = db->addrs[0].address;
475 rp = (struct reg_property32 *) get_property(np, "reg", &l);
476 if (rp != 0 && l >= sizeof(struct reg_property32)) {
478 adr = (struct address_range *) (*mem_start);
479 while ((l -= sizeof(struct reg_property32)) >= 0) {
482 adr[i].address = rp[i].address + base_address;
483 adr[i].size = rp[i].size;
489 (*mem_start) += i * sizeof(struct address_range);
495 static int __init interpret_macio_props(struct device_node *np,
496 unsigned long *mem_start,
497 int naddrc, int nsizec,
500 struct reg_property32 *rp;
501 struct address_range *adr;
502 unsigned long base_address;
504 struct device_node *db;
508 for (db = np->parent; db != NULL; db = db->parent) {
509 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
510 base_address = db->addrs[0].address;
516 rp = (struct reg_property32 *) get_property(np, "reg", &l);
517 if (rp != 0 && l >= sizeof(struct reg_property32)) {
519 adr = (struct address_range *) (*mem_start);
520 while ((l -= sizeof(struct reg_property32)) >= 0) {
523 adr[i].address = rp[i].address + base_address;
524 adr[i].size = rp[i].size;
530 (*mem_start) += i * sizeof(struct address_range);
536 static int __init interpret_isa_props(struct device_node *np,
537 unsigned long *mem_start,
538 int naddrc, int nsizec,
541 struct isa_reg_property *rp;
542 struct address_range *adr;
545 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
546 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
548 adr = (struct address_range *) (*mem_start);
549 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
551 adr[i].space = rp[i].space;
552 adr[i].address = rp[i].address;
553 adr[i].size = rp[i].size;
559 (*mem_start) += i * sizeof(struct address_range);
565 static int __init interpret_root_props(struct device_node *np,
566 unsigned long *mem_start,
567 int naddrc, int nsizec,
570 struct address_range *adr;
573 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
575 rp = (unsigned int *) get_property(np, "reg", &l);
576 if (rp != 0 && l >= rpsize) {
578 adr = (struct address_range *) (*mem_start);
579 while ((l -= rpsize) >= 0) {
582 adr[i].address = rp[naddrc - 1];
583 adr[i].size = rp[naddrc + nsizec - 1];
586 rp += naddrc + nsizec;
590 (*mem_start) += i * sizeof(struct address_range);
596 static int __devinit finish_node(struct device_node *np,
597 unsigned long *mem_start,
598 interpret_func *ifunc,
599 int naddrc, int nsizec,
602 struct device_node *child;
605 /* get the device addresses and interrupts */
607 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
611 rc = finish_node_interrupts(np, mem_start, measure_only);
615 /* Look for #address-cells and #size-cells properties. */
616 ip = (int *) get_property(np, "#address-cells", NULL);
619 ip = (int *) get_property(np, "#size-cells", NULL);
623 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
624 ifunc = interpret_root_props;
625 else if (np->type == 0)
627 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
628 ifunc = interpret_pci_props;
629 else if (!strcmp(np->type, "dbdma"))
630 ifunc = interpret_dbdma_props;
631 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
632 ifunc = interpret_macio_props;
633 else if (!strcmp(np->type, "isa"))
634 ifunc = interpret_isa_props;
635 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
636 ifunc = interpret_root_props;
637 else if (!((ifunc == interpret_dbdma_props
638 || ifunc == interpret_macio_props)
639 && (!strcmp(np->type, "escc")
640 || !strcmp(np->type, "media-bay"))))
643 for (child = np->child; child != NULL; child = child->sibling) {
644 rc = finish_node(child, mem_start, ifunc,
645 naddrc, nsizec, measure_only);
653 static void __init scan_interrupt_controllers(void)
655 struct device_node *np;
660 for (np = allnodes; np != NULL; np = np->allnext) {
661 ic = get_property(np, "interrupt-controller", &iclen);
662 name = get_property(np, "name", NULL);
663 /* checking iclen makes sure we don't get a false
664 match on /chosen.interrupt_controller */
666 && strcmp(name, "interrupt-controller") == 0)
667 || (ic != NULL && iclen == 0
668 && strcmp(name, "AppleKiwi"))) {
670 dflt_interrupt_controller = np;
674 num_interrupt_controllers = n;
678 * finish_device_tree is called once things are running normally
679 * (i.e. with text and data mapped to the address they were linked at).
680 * It traverses the device tree and fills in some of the additional,
681 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
682 * mapping is also initialized at this point.
684 void __init finish_device_tree(void)
686 unsigned long start, end, size = 0;
688 DBG(" -> finish_device_tree\n");
691 /* Initialize virtual IRQ map */
694 scan_interrupt_controllers();
697 * Finish device-tree (pre-parsing some properties etc...)
698 * We do this in 2 passes. One with "measure_only" set, which
699 * will only measure the amount of memory needed, then we can
700 * allocate that memory, and call finish_node again. However,
701 * we must be careful as most routines will fail nowadays when
702 * prom_alloc() returns 0, so we must make sure our first pass
703 * doesn't start at 0. We pre-initialize size to 16 for that
704 * reason and then remove those additional 16 bytes
707 finish_node(allnodes, &size, NULL, 0, 0, 1);
709 end = start = (unsigned long) __va(lmb_alloc(size, 128));
710 finish_node(allnodes, &end, NULL, 0, 0, 0);
711 BUG_ON(end != start + size);
713 DBG(" <- finish_device_tree\n");
716 static inline char *find_flat_dt_string(u32 offset)
718 return ((char *)initial_boot_params) +
719 initial_boot_params->off_dt_strings + offset;
723 * This function is used to scan the flattened device-tree, it is
724 * used to extract the memory informations at boot before we can
727 static int __init scan_flat_dt(int (*it)(unsigned long node,
728 const char *uname, int depth,
732 unsigned long p = ((unsigned long)initial_boot_params) +
733 initial_boot_params->off_dt_struct;
738 u32 tag = *((u32 *)p);
742 if (tag == OF_DT_END_NODE) {
746 if (tag == OF_DT_NOP)
748 if (tag == OF_DT_END)
750 if (tag == OF_DT_PROP) {
751 u32 sz = *((u32 *)p);
753 if (initial_boot_params->version < 0x10)
754 p = _ALIGN(p, sz >= 8 ? 8 : 4);
759 if (tag != OF_DT_BEGIN_NODE) {
760 printk(KERN_WARNING "Invalid tag %x scanning flattened"
761 " device tree !\n", tag);
766 p = _ALIGN(p + strlen(pathp) + 1, 4);
767 if ((*pathp) == '/') {
769 for (lp = NULL, np = pathp; *np; np++)
775 rc = it(p, pathp, depth, data);
784 * This function can be used within scan_flattened_dt callback to get
785 * access to properties
787 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
790 unsigned long p = node;
793 u32 tag = *((u32 *)p);
798 if (tag == OF_DT_NOP)
800 if (tag != OF_DT_PROP)
804 noff = *((u32 *)(p + 4));
806 if (initial_boot_params->version < 0x10)
807 p = _ALIGN(p, sz >= 8 ? 8 : 4);
809 nstr = find_flat_dt_string(noff);
811 printk(KERN_WARNING "Can't find property index"
815 if (strcmp(name, nstr) == 0) {
825 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
830 *mem = _ALIGN(*mem, align);
837 static unsigned long __init unflatten_dt_node(unsigned long mem,
839 struct device_node *dad,
840 struct device_node ***allnextpp,
841 unsigned long fpsize)
843 struct device_node *np;
844 struct property *pp, **prev_pp = NULL;
847 unsigned int l, allocl;
851 tag = *((u32 *)(*p));
852 if (tag != OF_DT_BEGIN_NODE) {
853 printk("Weird tag at start of node: %x\n", tag);
858 l = allocl = strlen(pathp) + 1;
859 *p = _ALIGN(*p + l, 4);
861 /* version 0x10 has a more compact unit name here instead of the full
862 * path. we accumulate the full path size using "fpsize", we'll rebuild
863 * it later. We detect this because the first character of the name is
866 if ((*pathp) != '/') {
869 /* root node: special case. fpsize accounts for path
870 * plus terminating zero. root node only has '/', so
871 * fpsize should be 2, but we want to avoid the first
872 * level nodes to have two '/' so we use fpsize 1 here
877 /* account for '/' and path size minus terminal 0
886 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
887 __alignof__(struct device_node));
889 memset(np, 0, sizeof(*np));
890 np->full_name = ((char*)np) + sizeof(struct device_node);
892 char *p = np->full_name;
893 /* rebuild full path for new format */
894 if (dad && dad->parent) {
895 strcpy(p, dad->full_name);
897 if ((strlen(p) + l + 1) != allocl) {
898 DBG("%s: p: %d, l: %d, a: %d\n",
899 pathp, strlen(p), l, allocl);
907 memcpy(np->full_name, pathp, l);
908 prev_pp = &np->properties;
910 *allnextpp = &np->allnext;
913 /* we temporarily use the next field as `last_child'*/
917 dad->next->sibling = np;
920 kref_init(&np->kref);
926 tag = *((u32 *)(*p));
927 if (tag == OF_DT_NOP) {
931 if (tag != OF_DT_PROP)
935 noff = *((u32 *)((*p) + 4));
937 if (initial_boot_params->version < 0x10)
938 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
940 pname = find_flat_dt_string(noff);
942 printk("Can't find property name in list !\n");
945 if (strcmp(pname, "name") == 0)
947 l = strlen(pname) + 1;
948 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
949 __alignof__(struct property));
951 if (strcmp(pname, "linux,phandle") == 0) {
952 np->node = *((u32 *)*p);
953 if (np->linux_phandle == 0)
954 np->linux_phandle = np->node;
956 if (strcmp(pname, "ibm,phandle") == 0)
957 np->linux_phandle = *((u32 *)*p);
960 pp->value = (void *)*p;
964 *p = _ALIGN((*p) + sz, 4);
966 /* with version 0x10 we may not have the name property, recreate
967 * it here from the unit name if absent
970 char *p = pathp, *ps = pathp, *pa = NULL;
983 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
984 __alignof__(struct property));
988 pp->value = (unsigned char *)(pp + 1);
991 memcpy(pp->value, ps, sz - 1);
992 ((char *)pp->value)[sz - 1] = 0;
993 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
998 np->name = get_property(np, "name", NULL);
999 np->type = get_property(np, "device_type", NULL);
1002 np->name = "<NULL>";
1004 np->type = "<NULL>";
1006 while (tag == OF_DT_BEGIN_NODE) {
1007 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1008 tag = *((u32 *)(*p));
1010 if (tag != OF_DT_END_NODE) {
1011 printk("Weird tag at end of node: %x\n", tag);
1020 * unflattens the device-tree passed by the firmware, creating the
1021 * tree of struct device_node. It also fills the "name" and "type"
1022 * pointers of the nodes so the normal device-tree walking functions
1023 * can be used (this used to be done by finish_device_tree)
1025 void __init unflatten_device_tree(void)
1027 unsigned long start, mem, size;
1028 struct device_node **allnextp = &allnodes;
1032 DBG(" -> unflatten_device_tree()\n");
1034 /* First pass, scan for size */
1035 start = ((unsigned long)initial_boot_params) +
1036 initial_boot_params->off_dt_struct;
1037 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1038 size = (size | 3) + 1;
1040 DBG(" size is %lx, allocating...\n", size);
1042 /* Allocate memory for the expanded device tree */
1043 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1045 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1046 panic("Couldn't allocate memory with lmb_alloc()!\n");
1048 mem = (unsigned long) __va(mem);
1050 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1052 DBG(" unflattening %lx...\n", mem);
1054 /* Second pass, do actual unflattening */
1055 start = ((unsigned long)initial_boot_params) +
1056 initial_boot_params->off_dt_struct;
1057 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1058 if (*((u32 *)start) != OF_DT_END)
1059 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1060 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1061 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1062 ((u32 *)mem)[size / 4] );
1065 /* Get pointer to OF "/chosen" node for use everywhere */
1066 of_chosen = of_find_node_by_path("/chosen");
1067 if (of_chosen == NULL)
1068 of_chosen = of_find_node_by_path("/chosen@0");
1070 /* Retreive command line */
1071 if (of_chosen != NULL) {
1072 p = (char *)get_property(of_chosen, "bootargs", &l);
1073 if (p != NULL && l > 0)
1074 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1076 #ifdef CONFIG_CMDLINE
1077 if (l == 0 || (l == 1 && (*p) == 0))
1078 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1079 #endif /* CONFIG_CMDLINE */
1081 DBG("Command line is: %s\n", cmd_line);
1083 DBG(" <- unflatten_device_tree()\n");
1087 static int __init early_init_dt_scan_cpus(unsigned long node,
1088 const char *uname, int depth, void *data)
1090 char *type = get_flat_dt_prop(node, "device_type", NULL);
1092 unsigned long size = 0;
1094 /* We are scanning "cpu" nodes only */
1095 if (type == NULL || strcmp(type, "cpu") != 0)
1098 #ifdef CONFIG_PPC_PSERIES
1099 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1101 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1103 pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
1104 if (pft_size != NULL) {
1105 /* pft_size[0] is the NUMA CEC cookie */
1106 ppc64_pft_size = pft_size[1];
1112 boot_cpuid_phys = 0;
1113 if (initial_boot_params && initial_boot_params->version >= 2) {
1114 /* version 2 of the kexec param format adds the phys cpuid
1117 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1119 /* Check if it's the boot-cpu, set it's hw index now */
1120 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1121 prop = get_flat_dt_prop(node, "reg", NULL);
1123 boot_cpuid_phys = *prop;
1126 set_hard_smp_processor_id(0, boot_cpuid_phys);
1128 #ifdef CONFIG_ALTIVEC
1129 /* Check if we have a VMX and eventually update CPU features */
1130 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
1131 if (prop && (*prop) > 0) {
1132 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1133 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1136 /* Same goes for Apple's "altivec" property */
1137 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1139 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1140 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1142 #endif /* CONFIG_ALTIVEC */
1144 #ifdef CONFIG_PPC_PSERIES
1146 * Check for an SMT capable CPU and set the CPU feature. We do
1147 * this by looking at the size of the ibm,ppc-interrupt-server#s
1150 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1152 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1153 if (prop && ((size / sizeof(u32)) > 1))
1154 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1160 static int __init early_init_dt_scan_chosen(unsigned long node,
1161 const char *uname, int depth, void *data)
1164 unsigned long *lprop;
1166 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1169 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1172 /* get platform type */
1173 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1177 systemcfg->platform = *prop;
1179 #ifdef CONFIG_PPC_MULTIPLATFORM
1185 /* check if iommu is forced on or off */
1186 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1188 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1192 lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
1194 memory_limit = *lprop;
1197 lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1199 tce_alloc_start = *lprop;
1200 lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1202 tce_alloc_end = *lprop;
1205 #ifdef CONFIG_PPC_RTAS
1206 /* To help early debugging via the front panel, we retreive a minimal
1207 * set of RTAS infos now if available
1210 u64 *basep, *entryp;
1212 basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
1213 entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1214 prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
1215 if (basep && entryp && prop) {
1217 rtas.entry = *entryp;
1221 #endif /* CONFIG_PPC_RTAS */
1227 static int __init early_init_dt_scan_root(unsigned long node,
1228 const char *uname, int depth, void *data)
1235 prop = get_flat_dt_prop(node, "#size-cells", NULL);
1236 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1237 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1239 prop = get_flat_dt_prop(node, "#address-cells", NULL);
1240 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1241 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1247 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1252 /* Ignore more than 2 cells */
1253 while (s > sizeof(unsigned long) / 4) {
1271 static int __init early_init_dt_scan_memory(unsigned long node,
1272 const char *uname, int depth, void *data)
1274 char *type = get_flat_dt_prop(node, "device_type", NULL);
1278 /* We are scanning "memory" nodes only */
1279 if (type == NULL || strcmp(type, "memory") != 0)
1282 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1286 endp = reg + (l / sizeof(cell_t));
1288 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1289 uname, l, reg[0], reg[1], reg[2], reg[3]);
1291 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1292 unsigned long base, size;
1294 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1295 size = dt_mem_next_cell(dt_root_size_cells, ®);
1299 DBG(" - %lx , %lx\n", base, size);
1302 if (base >= 0x80000000ul)
1304 if ((base + size) > 0x80000000ul)
1305 size = 0x80000000ul - base;
1308 lmb_add(base, size);
1313 static void __init early_reserve_mem(void)
1315 unsigned long base, size;
1316 unsigned long *reserve_map;
1318 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1319 initial_boot_params->off_mem_rsvmap);
1321 base = *(reserve_map++);
1322 size = *(reserve_map++);
1325 DBG("reserving: %lx -> %lx\n", base, size);
1326 lmb_reserve(base, size);
1330 DBG("memory reserved, lmbs :\n");
1335 void __init early_init_devtree(void *params)
1337 DBG(" -> early_init_devtree()\n");
1339 /* Setup flat device-tree pointer */
1340 initial_boot_params = params;
1342 /* Retrieve various informations from the /chosen node of the
1343 * device-tree, including the platform type, initrd location and
1344 * size, TCE reserve, and more ...
1346 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1348 /* Scan memory nodes and rebuild LMBs */
1350 scan_flat_dt(early_init_dt_scan_root, NULL);
1351 scan_flat_dt(early_init_dt_scan_memory, NULL);
1352 lmb_enforce_memory_limit(memory_limit);
1355 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1357 lmb_reserve(0, __pa(klimit));
1359 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1361 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1362 early_reserve_mem();
1364 DBG("Scanning CPUs ...\n");
1366 /* Retreive hash table size from flattened tree plus other
1367 * CPU related informations (altivec support, boot CPU ID, ...)
1369 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1371 DBG(" <- early_init_devtree()\n");
1377 prom_n_addr_cells(struct device_node* np)
1383 ip = (int *) get_property(np, "#address-cells", NULL);
1386 } while (np->parent);
1387 /* No #address-cells property for the root node, default to 1 */
1392 prom_n_size_cells(struct device_node* np)
1398 ip = (int *) get_property(np, "#size-cells", NULL);
1401 } while (np->parent);
1402 /* No #size-cells property for the root node, default to 1 */
1407 * Work out the sense (active-low level / active-high edge)
1408 * of each interrupt from the device tree.
1410 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1412 struct device_node *np;
1415 /* default to level-triggered */
1416 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1418 for (np = allnodes; np != 0; np = np->allnext) {
1419 for (j = 0; j < np->n_intrs; j++) {
1420 i = np->intrs[j].line;
1421 if (i >= off && i < max)
1422 senses[i-off] = np->intrs[j].sense;
1428 * Construct and return a list of the device_nodes with a given name.
1430 struct device_node *find_devices(const char *name)
1432 struct device_node *head, **prevp, *np;
1435 for (np = allnodes; np != 0; np = np->allnext) {
1436 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1444 EXPORT_SYMBOL(find_devices);
1447 * Construct and return a list of the device_nodes with a given type.
1449 struct device_node *find_type_devices(const char *type)
1451 struct device_node *head, **prevp, *np;
1454 for (np = allnodes; np != 0; np = np->allnext) {
1455 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1463 EXPORT_SYMBOL(find_type_devices);
1466 * Returns all nodes linked together
1468 struct device_node *find_all_nodes(void)
1470 struct device_node *head, **prevp, *np;
1473 for (np = allnodes; np != 0; np = np->allnext) {
1480 EXPORT_SYMBOL(find_all_nodes);
1482 /** Checks if the given "compat" string matches one of the strings in
1483 * the device's "compatible" property
1485 int device_is_compatible(struct device_node *device, const char *compat)
1490 cp = (char *) get_property(device, "compatible", &cplen);
1494 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1503 EXPORT_SYMBOL(device_is_compatible);
1507 * Indicates whether the root node has a given value in its
1508 * compatible property.
1510 int machine_is_compatible(const char *compat)
1512 struct device_node *root;
1515 root = of_find_node_by_path("/");
1517 rc = device_is_compatible(root, compat);
1522 EXPORT_SYMBOL(machine_is_compatible);
1525 * Construct and return a list of the device_nodes with a given type
1526 * and compatible property.
1528 struct device_node *find_compatible_devices(const char *type,
1531 struct device_node *head, **prevp, *np;
1534 for (np = allnodes; np != 0; np = np->allnext) {
1536 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1538 if (device_is_compatible(np, compat)) {
1546 EXPORT_SYMBOL(find_compatible_devices);
1549 * Find the device_node with a given full_name.
1551 struct device_node *find_path_device(const char *path)
1553 struct device_node *np;
1555 for (np = allnodes; np != 0; np = np->allnext)
1556 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1560 EXPORT_SYMBOL(find_path_device);
1564 * New implementation of the OF "find" APIs, return a refcounted
1565 * object, call of_node_put() when done. The device tree and list
1566 * are protected by a rw_lock.
1568 * Note that property management will need some locking as well,
1569 * this isn't dealt with yet.
1574 * of_find_node_by_name - Find a node by its "name" property
1575 * @from: The node to start searching from or NULL, the node
1576 * you pass will not be searched, only the next one
1577 * will; typically, you pass what the previous call
1578 * returned. of_node_put() will be called on it
1579 * @name: The name string to match against
1581 * Returns a node pointer with refcount incremented, use
1582 * of_node_put() on it when done.
1584 struct device_node *of_find_node_by_name(struct device_node *from,
1587 struct device_node *np;
1589 read_lock(&devtree_lock);
1590 np = from ? from->allnext : allnodes;
1591 for (; np != 0; np = np->allnext)
1592 if (np->name != 0 && strcasecmp(np->name, name) == 0
1597 read_unlock(&devtree_lock);
1600 EXPORT_SYMBOL(of_find_node_by_name);
1603 * of_find_node_by_type - Find a node by its "device_type" property
1604 * @from: The node to start searching from or NULL, the node
1605 * you pass will not be searched, only the next one
1606 * will; typically, you pass what the previous call
1607 * returned. of_node_put() will be called on it
1608 * @name: The type string to match against
1610 * Returns a node pointer with refcount incremented, use
1611 * of_node_put() on it when done.
1613 struct device_node *of_find_node_by_type(struct device_node *from,
1616 struct device_node *np;
1618 read_lock(&devtree_lock);
1619 np = from ? from->allnext : allnodes;
1620 for (; np != 0; np = np->allnext)
1621 if (np->type != 0 && strcasecmp(np->type, type) == 0
1626 read_unlock(&devtree_lock);
1629 EXPORT_SYMBOL(of_find_node_by_type);
1632 * of_find_compatible_node - Find a node based on type and one of the
1633 * tokens in its "compatible" property
1634 * @from: The node to start searching from or NULL, the node
1635 * you pass will not be searched, only the next one
1636 * will; typically, you pass what the previous call
1637 * returned. of_node_put() will be called on it
1638 * @type: The type string to match "device_type" or NULL to ignore
1639 * @compatible: The string to match to one of the tokens in the device
1640 * "compatible" list.
1642 * Returns a node pointer with refcount incremented, use
1643 * of_node_put() on it when done.
1645 struct device_node *of_find_compatible_node(struct device_node *from,
1646 const char *type, const char *compatible)
1648 struct device_node *np;
1650 read_lock(&devtree_lock);
1651 np = from ? from->allnext : allnodes;
1652 for (; np != 0; np = np->allnext) {
1654 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1656 if (device_is_compatible(np, compatible) && of_node_get(np))
1661 read_unlock(&devtree_lock);
1664 EXPORT_SYMBOL(of_find_compatible_node);
1667 * of_find_node_by_path - Find a node matching a full OF path
1668 * @path: The full path to match
1670 * Returns a node pointer with refcount incremented, use
1671 * of_node_put() on it when done.
1673 struct device_node *of_find_node_by_path(const char *path)
1675 struct device_node *np = allnodes;
1677 read_lock(&devtree_lock);
1678 for (; np != 0; np = np->allnext) {
1679 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1683 read_unlock(&devtree_lock);
1686 EXPORT_SYMBOL(of_find_node_by_path);
1689 * of_find_node_by_phandle - Find a node given a phandle
1690 * @handle: phandle of the node to find
1692 * Returns a node pointer with refcount incremented, use
1693 * of_node_put() on it when done.
1695 struct device_node *of_find_node_by_phandle(phandle handle)
1697 struct device_node *np;
1699 read_lock(&devtree_lock);
1700 for (np = allnodes; np != 0; np = np->allnext)
1701 if (np->linux_phandle == handle)
1705 read_unlock(&devtree_lock);
1708 EXPORT_SYMBOL(of_find_node_by_phandle);
1711 * of_find_all_nodes - Get next node in global list
1712 * @prev: Previous node or NULL to start iteration
1713 * of_node_put() will be called on it
1715 * Returns a node pointer with refcount incremented, use
1716 * of_node_put() on it when done.
1718 struct device_node *of_find_all_nodes(struct device_node *prev)
1720 struct device_node *np;
1722 read_lock(&devtree_lock);
1723 np = prev ? prev->allnext : allnodes;
1724 for (; np != 0; np = np->allnext)
1725 if (of_node_get(np))
1729 read_unlock(&devtree_lock);
1732 EXPORT_SYMBOL(of_find_all_nodes);
1735 * of_get_parent - Get a node's parent if any
1736 * @node: Node to get parent
1738 * Returns a node pointer with refcount incremented, use
1739 * of_node_put() on it when done.
1741 struct device_node *of_get_parent(const struct device_node *node)
1743 struct device_node *np;
1748 read_lock(&devtree_lock);
1749 np = of_node_get(node->parent);
1750 read_unlock(&devtree_lock);
1753 EXPORT_SYMBOL(of_get_parent);
1756 * of_get_next_child - Iterate a node childs
1757 * @node: parent node
1758 * @prev: previous child of the parent node, or NULL to get first
1760 * Returns a node pointer with refcount incremented, use
1761 * of_node_put() on it when done.
1763 struct device_node *of_get_next_child(const struct device_node *node,
1764 struct device_node *prev)
1766 struct device_node *next;
1768 read_lock(&devtree_lock);
1769 next = prev ? prev->sibling : node->child;
1770 for (; next != 0; next = next->sibling)
1771 if (of_node_get(next))
1775 read_unlock(&devtree_lock);
1778 EXPORT_SYMBOL(of_get_next_child);
1781 * of_node_get - Increment refcount of a node
1782 * @node: Node to inc refcount, NULL is supported to
1783 * simplify writing of callers
1787 struct device_node *of_node_get(struct device_node *node)
1790 kref_get(&node->kref);
1793 EXPORT_SYMBOL(of_node_get);
1795 static inline struct device_node * kref_to_device_node(struct kref *kref)
1797 return container_of(kref, struct device_node, kref);
1801 * of_node_release - release a dynamically allocated node
1802 * @kref: kref element of the node to be released
1804 * In of_node_put() this function is passed to kref_put()
1805 * as the destructor.
1807 static void of_node_release(struct kref *kref)
1809 struct device_node *node = kref_to_device_node(kref);
1810 struct property *prop = node->properties;
1812 if (!OF_IS_DYNAMIC(node))
1815 struct property *next = prop->next;
1823 kfree(node->full_name);
1829 * of_node_put - Decrement refcount of a node
1830 * @node: Node to dec refcount, NULL is supported to
1831 * simplify writing of callers
1834 void of_node_put(struct device_node *node)
1837 kref_put(&node->kref, of_node_release);
1839 EXPORT_SYMBOL(of_node_put);
1842 * Plug a device node into the tree and global list.
1844 void of_attach_node(struct device_node *np)
1846 write_lock(&devtree_lock);
1847 np->sibling = np->parent->child;
1848 np->allnext = allnodes;
1849 np->parent->child = np;
1851 write_unlock(&devtree_lock);
1855 * "Unplug" a node from the device tree. The caller must hold
1856 * a reference to the node. The memory associated with the node
1857 * is not freed until its refcount goes to zero.
1859 void of_detach_node(const struct device_node *np)
1861 struct device_node *parent;
1863 write_lock(&devtree_lock);
1865 parent = np->parent;
1868 allnodes = np->allnext;
1870 struct device_node *prev;
1871 for (prev = allnodes;
1872 prev->allnext != np;
1873 prev = prev->allnext)
1875 prev->allnext = np->allnext;
1878 if (parent->child == np)
1879 parent->child = np->sibling;
1881 struct device_node *prevsib;
1882 for (prevsib = np->parent->child;
1883 prevsib->sibling != np;
1884 prevsib = prevsib->sibling)
1886 prevsib->sibling = np->sibling;
1889 write_unlock(&devtree_lock);
1892 #ifdef CONFIG_PPC_PSERIES
1894 * Fix up the uninitialized fields in a new device node:
1895 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1897 * A lot of boot-time code is duplicated here, because functions such
1898 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1901 * This should probably be split up into smaller chunks.
1904 static int of_finish_dynamic_node(struct device_node *node,
1905 unsigned long *unused1, int unused2,
1906 int unused3, int unused4)
1908 struct device_node *parent = of_get_parent(node);
1910 phandle *ibm_phandle;
1912 node->name = get_property(node, "name", NULL);
1913 node->type = get_property(node, "device_type", NULL);
1920 /* We don't support that function on PowerMac, at least
1923 if (systemcfg->platform == PLATFORM_POWERMAC)
1926 /* fix up new node's linux_phandle field */
1927 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1928 node->linux_phandle = *ibm_phandle;
1931 of_node_put(parent);
1935 static int prom_reconfig_notifier(struct notifier_block *nb,
1936 unsigned long action, void *node)
1941 case PSERIES_RECONFIG_ADD:
1942 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1944 printk(KERN_ERR "finish_node returned %d\n", err);
1955 static struct notifier_block prom_reconfig_nb = {
1956 .notifier_call = prom_reconfig_notifier,
1957 .priority = 10, /* This one needs to run first */
1960 static int __init prom_reconfig_setup(void)
1962 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1964 __initcall(prom_reconfig_setup);
1968 * Find a property with a given name for a given node
1969 * and return the value.
1971 unsigned char *get_property(struct device_node *np, const char *name,
1974 struct property *pp;
1976 for (pp = np->properties; pp != 0; pp = pp->next)
1977 if (strcmp(pp->name, name) == 0) {
1984 EXPORT_SYMBOL(get_property);
1987 * Add a property to a node
1989 void prom_add_property(struct device_node* np, struct property* prop)
1991 struct property **next = &np->properties;
1995 next = &(*next)->next;
1999 /* I quickly hacked that one, check against spec ! */
2000 static inline unsigned long
2001 bus_space_to_resource_flags(unsigned int bus_space)
2003 u8 space = (bus_space >> 24) & 0xf;
2007 return IORESOURCE_MEM;
2008 else if (space == 0x01)
2009 return IORESOURCE_IO;
2011 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2018 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2019 struct address_range *range)
2024 /* Check this one */
2025 mask = bus_space_to_resource_flags(range->space);
2026 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2027 if ((pdev->resource[i].flags & mask) == mask &&
2028 pdev->resource[i].start <= range->address &&
2029 pdev->resource[i].end > range->address) {
2030 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2031 /* Add better message */
2032 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2038 if (i == DEVICE_COUNT_RESOURCE)
2040 return &pdev->resource[i];
2044 * Request an OF device resource. Currently handles child of PCI devices,
2045 * or other nodes attached to the root node. Ultimately, put some
2046 * link to resources in the OF node.
2048 struct resource *request_OF_resource(struct device_node* node, int index,
2049 const char* name_postfix)
2051 struct pci_dev* pcidev;
2052 u8 pci_bus, pci_devfn;
2053 unsigned long iomask;
2054 struct device_node* nd;
2055 struct resource* parent;
2056 struct resource *res = NULL;
2059 if (index >= node->n_addrs)
2062 /* Sanity check on bus space */
2063 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2064 if (iomask & IORESOURCE_MEM)
2065 parent = &iomem_resource;
2066 else if (iomask & IORESOURCE_IO)
2067 parent = &ioport_resource;
2071 /* Find a PCI parent if any */
2075 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2076 pcidev = pci_find_slot(pci_bus, pci_devfn);
2081 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2083 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2088 res = __request_region(parent, node->addrs[index].address,
2089 node->addrs[index].size, NULL);
2092 nlen = strlen(node->name);
2093 plen = name_postfix ? strlen(name_postfix) : 0;
2094 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2096 strcpy((char *)res->name, node->name);
2098 strcpy((char *)res->name+nlen, name_postfix);
2104 EXPORT_SYMBOL(request_OF_resource);
2106 int release_OF_resource(struct device_node *node, int index)
2108 struct pci_dev* pcidev;
2109 u8 pci_bus, pci_devfn;
2110 unsigned long iomask, start, end;
2111 struct device_node* nd;
2112 struct resource* parent;
2113 struct resource *res = NULL;
2115 if (index >= node->n_addrs)
2118 /* Sanity check on bus space */
2119 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2120 if (iomask & IORESOURCE_MEM)
2121 parent = &iomem_resource;
2122 else if (iomask & IORESOURCE_IO)
2123 parent = &ioport_resource;
2127 /* Find a PCI parent if any */
2131 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2132 pcidev = pci_find_slot(pci_bus, pci_devfn);
2137 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2139 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2144 /* Find us in the parent and its childs */
2145 res = parent->child;
2146 start = node->addrs[index].address;
2147 end = start + node->addrs[index].size - 1;
2149 if (res->start == start && res->end == end &&
2150 (res->flags & IORESOURCE_BUSY))
2152 if (res->start <= start && res->end >= end)
2164 release_resource(res);
2169 EXPORT_SYMBOL(release_OF_resource);
2170 #endif /* CONFIG_PCI */