Kobject: convert kernel/user.c to use kobject_init/add_ng()
[linux-2.6] / drivers / edac / i5000_edac.c
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *      norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  *      http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24
25 #include "edac_core.h"
26
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12 " __DATE__
31 #define EDAC_MOD_STR      "i5000_edac"
32
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0       0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1       0x25F6
44 #endif
45
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
54
55 /* OFFSETS for Function 0 */
56
57 /* OFFSETS for Function 1 */
58 #define         AMBASE                  0x48
59 #define         MAXCH                   0x56
60 #define         MAXDIMMPERCH            0x57
61 #define         TOLM                    0x6C
62 #define         REDMEMB                 0x7C
63 #define                 RED_ECC_LOCATOR(x)      ((x) & 0x3FFFF)
64 #define                 REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3FE00)
66 #define         MIR0                    0x80
67 #define         MIR1                    0x84
68 #define         MIR2                    0x88
69 #define         AMIR0                   0x8C
70 #define         AMIR1                   0x90
71 #define         AMIR2                   0x94
72
73 #define         FERR_FAT_FBD            0x98
74 #define         NERR_FAT_FBD            0x9C
75 #define                 EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define                 FERR_FAT_FBDCHAN 0x30000000
77 #define                 FERR_FAT_M3ERR  0x00000004
78 #define                 FERR_FAT_M2ERR  0x00000002
79 #define                 FERR_FAT_M1ERR  0x00000001
80 #define                 FERR_FAT_MASK   (FERR_FAT_M1ERR | \
81                                                 FERR_FAT_M2ERR | \
82                                                 FERR_FAT_M3ERR)
83
84 #define         FERR_NF_FBD             0xA0
85
86 /* Thermal and SPD or BFD errors */
87 #define                 FERR_NF_M28ERR  0x01000000
88 #define                 FERR_NF_M27ERR  0x00800000
89 #define                 FERR_NF_M26ERR  0x00400000
90 #define                 FERR_NF_M25ERR  0x00200000
91 #define                 FERR_NF_M24ERR  0x00100000
92 #define                 FERR_NF_M23ERR  0x00080000
93 #define                 FERR_NF_M22ERR  0x00040000
94 #define                 FERR_NF_M21ERR  0x00020000
95
96 /* Correctable errors */
97 #define                 FERR_NF_M20ERR  0x00010000
98 #define                 FERR_NF_M19ERR  0x00008000
99 #define                 FERR_NF_M18ERR  0x00004000
100 #define                 FERR_NF_M17ERR  0x00002000
101
102 /* Non-Retry or redundant Retry errors */
103 #define                 FERR_NF_M16ERR  0x00001000
104 #define                 FERR_NF_M15ERR  0x00000800
105 #define                 FERR_NF_M14ERR  0x00000400
106 #define                 FERR_NF_M13ERR  0x00000200
107
108 /* Uncorrectable errors */
109 #define                 FERR_NF_M12ERR  0x00000100
110 #define                 FERR_NF_M11ERR  0x00000080
111 #define                 FERR_NF_M10ERR  0x00000040
112 #define                 FERR_NF_M9ERR   0x00000020
113 #define                 FERR_NF_M8ERR   0x00000010
114 #define                 FERR_NF_M7ERR   0x00000008
115 #define                 FERR_NF_M6ERR   0x00000004
116 #define                 FERR_NF_M5ERR   0x00000002
117 #define                 FERR_NF_M4ERR   0x00000001
118
119 #define                 FERR_NF_UNCORRECTABLE   (FERR_NF_M12ERR | \
120                                                         FERR_NF_M11ERR | \
121                                                         FERR_NF_M10ERR | \
122                                                         FERR_NF_M8ERR | \
123                                                         FERR_NF_M7ERR | \
124                                                         FERR_NF_M6ERR | \
125                                                         FERR_NF_M5ERR | \
126                                                         FERR_NF_M4ERR)
127 #define                 FERR_NF_CORRECTABLE     (FERR_NF_M20ERR | \
128                                                         FERR_NF_M19ERR | \
129                                                         FERR_NF_M18ERR | \
130                                                         FERR_NF_M17ERR)
131 #define                 FERR_NF_DIMM_SPARE      (FERR_NF_M27ERR | \
132                                                         FERR_NF_M28ERR)
133 #define                 FERR_NF_THERMAL         (FERR_NF_M26ERR | \
134                                                         FERR_NF_M25ERR | \
135                                                         FERR_NF_M24ERR | \
136                                                         FERR_NF_M23ERR)
137 #define                 FERR_NF_SPD_PROTOCOL    (FERR_NF_M22ERR)
138 #define                 FERR_NF_NORTH_CRC       (FERR_NF_M21ERR)
139 #define                 FERR_NF_NON_RETRY       (FERR_NF_M13ERR | \
140                                                         FERR_NF_M14ERR | \
141                                                         FERR_NF_M15ERR)
142
143 #define         NERR_NF_FBD             0xA4
144 #define                 FERR_NF_MASK            (FERR_NF_UNCORRECTABLE | \
145                                                         FERR_NF_CORRECTABLE | \
146                                                         FERR_NF_DIMM_SPARE | \
147                                                         FERR_NF_THERMAL | \
148                                                         FERR_NF_SPD_PROTOCOL | \
149                                                         FERR_NF_NORTH_CRC | \
150                                                         FERR_NF_NON_RETRY)
151
152 #define         EMASK_FBD               0xA8
153 #define                 EMASK_FBD_M28ERR        0x08000000
154 #define                 EMASK_FBD_M27ERR        0x04000000
155 #define                 EMASK_FBD_M26ERR        0x02000000
156 #define                 EMASK_FBD_M25ERR        0x01000000
157 #define                 EMASK_FBD_M24ERR        0x00800000
158 #define                 EMASK_FBD_M23ERR        0x00400000
159 #define                 EMASK_FBD_M22ERR        0x00200000
160 #define                 EMASK_FBD_M21ERR        0x00100000
161 #define                 EMASK_FBD_M20ERR        0x00080000
162 #define                 EMASK_FBD_M19ERR        0x00040000
163 #define                 EMASK_FBD_M18ERR        0x00020000
164 #define                 EMASK_FBD_M17ERR        0x00010000
165
166 #define                 EMASK_FBD_M15ERR        0x00004000
167 #define                 EMASK_FBD_M14ERR        0x00002000
168 #define                 EMASK_FBD_M13ERR        0x00001000
169 #define                 EMASK_FBD_M12ERR        0x00000800
170 #define                 EMASK_FBD_M11ERR        0x00000400
171 #define                 EMASK_FBD_M10ERR        0x00000200
172 #define                 EMASK_FBD_M9ERR         0x00000100
173 #define                 EMASK_FBD_M8ERR         0x00000080
174 #define                 EMASK_FBD_M7ERR         0x00000040
175 #define                 EMASK_FBD_M6ERR         0x00000020
176 #define                 EMASK_FBD_M5ERR         0x00000010
177 #define                 EMASK_FBD_M4ERR         0x00000008
178 #define                 EMASK_FBD_M3ERR         0x00000004
179 #define                 EMASK_FBD_M2ERR         0x00000002
180 #define                 EMASK_FBD_M1ERR         0x00000001
181
182 #define                 ENABLE_EMASK_FBD_FATAL_ERRORS   (EMASK_FBD_M1ERR | \
183                                                         EMASK_FBD_M2ERR | \
184                                                         EMASK_FBD_M3ERR)
185
186 #define                 ENABLE_EMASK_FBD_UNCORRECTABLE  (EMASK_FBD_M4ERR | \
187                                                         EMASK_FBD_M5ERR | \
188                                                         EMASK_FBD_M6ERR | \
189                                                         EMASK_FBD_M7ERR | \
190                                                         EMASK_FBD_M8ERR | \
191                                                         EMASK_FBD_M9ERR | \
192                                                         EMASK_FBD_M10ERR | \
193                                                         EMASK_FBD_M11ERR | \
194                                                         EMASK_FBD_M12ERR)
195 #define                 ENABLE_EMASK_FBD_CORRECTABLE    (EMASK_FBD_M17ERR | \
196                                                         EMASK_FBD_M18ERR | \
197                                                         EMASK_FBD_M19ERR | \
198                                                         EMASK_FBD_M20ERR)
199 #define                 ENABLE_EMASK_FBD_DIMM_SPARE     (EMASK_FBD_M27ERR | \
200                                                         EMASK_FBD_M28ERR)
201 #define                 ENABLE_EMASK_FBD_THERMALS       (EMASK_FBD_M26ERR | \
202                                                         EMASK_FBD_M25ERR | \
203                                                         EMASK_FBD_M24ERR | \
204                                                         EMASK_FBD_M23ERR)
205 #define                 ENABLE_EMASK_FBD_SPD_PROTOCOL   (EMASK_FBD_M22ERR)
206 #define                 ENABLE_EMASK_FBD_NORTH_CRC      (EMASK_FBD_M21ERR)
207 #define                 ENABLE_EMASK_FBD_NON_RETRY      (EMASK_FBD_M15ERR | \
208                                                         EMASK_FBD_M14ERR | \
209                                                         EMASK_FBD_M13ERR)
210
211 #define         ENABLE_EMASK_ALL        (ENABLE_EMASK_FBD_NON_RETRY | \
212                                         ENABLE_EMASK_FBD_NORTH_CRC | \
213                                         ENABLE_EMASK_FBD_SPD_PROTOCOL | \
214                                         ENABLE_EMASK_FBD_THERMALS | \
215                                         ENABLE_EMASK_FBD_DIMM_SPARE | \
216                                         ENABLE_EMASK_FBD_FATAL_ERRORS | \
217                                         ENABLE_EMASK_FBD_CORRECTABLE | \
218                                         ENABLE_EMASK_FBD_UNCORRECTABLE)
219
220 #define         ERR0_FBD                0xAC
221 #define         ERR1_FBD                0xB0
222 #define         ERR2_FBD                0xB4
223 #define         MCERR_FBD               0xB8
224 #define         NRECMEMA                0xBE
225 #define                 NREC_BANK(x)            (((x)>>12) & 0x7)
226 #define                 NREC_RDWR(x)            (((x)>>11) & 1)
227 #define                 NREC_RANK(x)            (((x)>>8) & 0x7)
228 #define         NRECMEMB                0xC0
229 #define                 NREC_CAS(x)             (((x)>>16) & 0xFFFFFF)
230 #define                 NREC_RAS(x)             ((x) & 0x7FFF)
231 #define         NRECFGLOG               0xC4
232 #define         NREEECFBDA              0xC8
233 #define         NREEECFBDB              0xCC
234 #define         NREEECFBDC              0xD0
235 #define         NREEECFBDD              0xD4
236 #define         NREEECFBDE              0xD8
237 #define         REDMEMA                 0xDC
238 #define         RECMEMA                 0xE2
239 #define                 REC_BANK(x)             (((x)>>12) & 0x7)
240 #define                 REC_RDWR(x)             (((x)>>11) & 1)
241 #define                 REC_RANK(x)             (((x)>>8) & 0x7)
242 #define         RECMEMB                 0xE4
243 #define                 REC_CAS(x)              (((x)>>16) & 0xFFFFFF)
244 #define                 REC_RAS(x)              ((x) & 0x7FFF)
245 #define         RECFGLOG                0xE8
246 #define         RECFBDA                 0xEC
247 #define         RECFBDB                 0xF0
248 #define         RECFBDC                 0xF4
249 #define         RECFBDD                 0xF8
250 #define         RECFBDE                 0xFC
251
252 /* OFFSETS for Function 2 */
253
254 /*
255  * Device 21,
256  * Function 0: Memory Map Branch 0
257  *
258  * Device 22,
259  * Function 0: Memory Map Branch 1
260  */
261 #define PCI_DEVICE_ID_I5000_BRANCH_0    0x25F5
262 #define PCI_DEVICE_ID_I5000_BRANCH_1    0x25F6
263
264 #define AMB_PRESENT_0   0x64
265 #define AMB_PRESENT_1   0x66
266 #define MTR0            0x80
267 #define MTR1            0x84
268 #define MTR2            0x88
269 #define MTR3            0x8C
270
271 #define NUM_MTRS                4
272 #define CHANNELS_PER_BRANCH     (2)
273
274 /* Defines to extract the vaious fields from the
275  *      MTRx - Memory Technology Registers
276  */
277 #define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (0x1 << 8))
278 #define MTR_DRAM_WIDTH(mtr)             ((((mtr) >> 6) & 0x1) ? 8 : 4)
279 #define MTR_DRAM_BANKS(mtr)             ((((mtr) >> 5) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
281 #define MTR_DIMM_RANK(mtr)              (((mtr) >> 4) & 0x1)
282 #define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
283 #define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
284 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
285 #define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
286 #define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
287
288 #ifdef CONFIG_EDAC_DEBUG
289 static char *numrow_toString[] = {
290         "8,192 - 13 rows",
291         "16,384 - 14 rows",
292         "32,768 - 15 rows",
293         "reserved"
294 };
295
296 static char *numcol_toString[] = {
297         "1,024 - 10 columns",
298         "2,048 - 11 columns",
299         "4,096 - 12 columns",
300         "reserved"
301 };
302 #endif
303
304 /* Enumeration of supported devices */
305 enum i5000_chips {
306         I5000P = 0,
307         I5000V = 1,             /* future */
308         I5000X = 2              /* future */
309 };
310
311 /* Device name and register DID (Device ID) */
312 struct i5000_dev_info {
313         const char *ctl_name;   /* name for this device */
314         u16 fsb_mapping_errors; /* DID for the branchmap,control */
315 };
316
317 /* Table of devices attributes supported by this driver */
318 static const struct i5000_dev_info i5000_devs[] = {
319         [I5000P] = {
320                 .ctl_name = "I5000",
321                 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
322         },
323 };
324
325 struct i5000_dimm_info {
326         int megabytes;          /* size, 0 means not present  */
327         int dual_rank;
328 };
329
330 #define MAX_CHANNELS    6       /* max possible channels */
331 #define MAX_CSROWS      (8*2)   /* max possible csrows per channel */
332
333 /* driver private data structure */
334 struct i5000_pvt {
335         struct pci_dev *system_address; /* 16.0 */
336         struct pci_dev *branchmap_werrors;      /* 16.1 */
337         struct pci_dev *fsb_error_regs; /* 16.2 */
338         struct pci_dev *branch_0;       /* 21.0 */
339         struct pci_dev *branch_1;       /* 22.0 */
340
341         u16 tolm;               /* top of low memory */
342         u64 ambase;             /* AMB BAR */
343
344         u16 mir0, mir1, mir2;
345
346         u16 b0_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
347         u16 b0_ambpresent0;     /* Branch 0, Channel 0 */
348         u16 b0_ambpresent1;     /* Brnach 0, Channel 1 */
349
350         u16 b1_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
351         u16 b1_ambpresent0;     /* Branch 1, Channel 8 */
352         u16 b1_ambpresent1;     /* Branch 1, Channel 1 */
353
354         /* DIMM infomation matrix, allocating architecture maximums */
355         struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
356
357         /* Actual values for this controller */
358         int maxch;              /* Max channels */
359         int maxdimmperch;       /* Max DIMMs per channel */
360 };
361
362 /* I5000 MCH error information retrieved from Hardware */
363 struct i5000_error_info {
364
365         /* These registers are always read from the MC */
366         u32 ferr_fat_fbd;       /* First Errors Fatal */
367         u32 nerr_fat_fbd;       /* Next Errors Fatal */
368         u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
369         u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
370
371         /* These registers are input ONLY if there was a Recoverable  Error */
372         u32 redmemb;            /* Recoverable Mem Data Error log B */
373         u16 recmema;            /* Recoverable Mem Error log A */
374         u32 recmemb;            /* Recoverable Mem Error log B */
375
376         /* These registers are input ONLY if there was a
377          * Non-Recoverable Error */
378         u16 nrecmema;           /* Non-Recoverable Mem log A */
379         u16 nrecmemb;           /* Non-Recoverable Mem log B */
380
381 };
382
383 static struct edac_pci_ctl_info *i5000_pci;
384
385 /*
386  *      i5000_get_error_info    Retrieve the hardware error information from
387  *                              the hardware and cache it in the 'info'
388  *                              structure
389  */
390 static void i5000_get_error_info(struct mem_ctl_info *mci,
391                                  struct i5000_error_info *info)
392 {
393         struct i5000_pvt *pvt;
394         u32 value;
395
396         pvt = mci->pvt_info;
397
398         /* read in the 1st FATAL error register */
399         pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
400
401         /* Mask only the bits that the doc says are valid
402          */
403         value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
404
405         /* If there is an error, then read in the */
406         /* NEXT FATAL error register and the Memory Error Log Register A */
407         if (value & FERR_FAT_MASK) {
408                 info->ferr_fat_fbd = value;
409
410                 /* harvest the various error data we need */
411                 pci_read_config_dword(pvt->branchmap_werrors,
412                                 NERR_FAT_FBD, &info->nerr_fat_fbd);
413                 pci_read_config_word(pvt->branchmap_werrors,
414                                 NRECMEMA, &info->nrecmema);
415                 pci_read_config_word(pvt->branchmap_werrors,
416                                 NRECMEMB, &info->nrecmemb);
417
418                 /* Clear the error bits, by writing them back */
419                 pci_write_config_dword(pvt->branchmap_werrors,
420                                 FERR_FAT_FBD, value);
421         } else {
422                 info->ferr_fat_fbd = 0;
423                 info->nerr_fat_fbd = 0;
424                 info->nrecmema = 0;
425                 info->nrecmemb = 0;
426         }
427
428         /* read in the 1st NON-FATAL error register */
429         pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
430
431         /* If there is an error, then read in the 1st NON-FATAL error
432          * register as well */
433         if (value & FERR_NF_MASK) {
434                 info->ferr_nf_fbd = value;
435
436                 /* harvest the various error data we need */
437                 pci_read_config_dword(pvt->branchmap_werrors,
438                                 NERR_NF_FBD, &info->nerr_nf_fbd);
439                 pci_read_config_word(pvt->branchmap_werrors,
440                                 RECMEMA, &info->recmema);
441                 pci_read_config_dword(pvt->branchmap_werrors,
442                                 RECMEMB, &info->recmemb);
443                 pci_read_config_dword(pvt->branchmap_werrors,
444                                 REDMEMB, &info->redmemb);
445
446                 /* Clear the error bits, by writing them back */
447                 pci_write_config_dword(pvt->branchmap_werrors,
448                                 FERR_NF_FBD, value);
449         } else {
450                 info->ferr_nf_fbd = 0;
451                 info->nerr_nf_fbd = 0;
452                 info->recmema = 0;
453                 info->recmemb = 0;
454                 info->redmemb = 0;
455         }
456 }
457
458 /*
459  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
460  *                                      struct i5000_error_info *info,
461  *                                      int handle_errors);
462  *
463  *      handle the Intel FATAL errors, if any
464  */
465 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
466                                         struct i5000_error_info *info,
467                                         int handle_errors)
468 {
469         char msg[EDAC_MC_LABEL_LEN + 1 + 90];
470         u32 allErrors;
471         int branch;
472         int channel;
473         int bank;
474         int rank;
475         int rdwr;
476         int ras, cas;
477
478         /* mask off the Error bits that are possible */
479         allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
480         if (!allErrors)
481                 return;         /* if no error, return now */
482
483         /* ONLY ONE of the possible error bits will be set, as per the docs */
484         i5000_mc_printk(mci, KERN_ERR,
485                         "FATAL ERRORS Found!!! 1st FATAL Err Reg= 0x%x\n",
486                         allErrors);
487
488         branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489         channel = branch;
490
491         /* Use the NON-Recoverable macros to extract data */
492         bank = NREC_BANK(info->nrecmema);
493         rank = NREC_RANK(info->nrecmema);
494         rdwr = NREC_RDWR(info->nrecmema);
495         ras = NREC_RAS(info->nrecmemb);
496         cas = NREC_CAS(info->nrecmemb);
497
498         debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
499                 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500                 rank, channel, channel + 1, branch >> 1, bank,
501                 rdwr ? "Write" : "Read", ras, cas);
502
503         /* Only 1 bit will be on */
504         if (allErrors & FERR_FAT_M1ERR) {
505                 i5000_mc_printk(mci, KERN_ERR,
506                                 "Alert on non-redundant retry or fast "
507                                 "reset timeout\n");
508
509         } else if (allErrors & FERR_FAT_M2ERR) {
510                 i5000_mc_printk(mci, KERN_ERR,
511                                 "Northbound CRC error on non-redundant "
512                                 "retry\n");
513
514         } else if (allErrors & FERR_FAT_M3ERR) {
515                 i5000_mc_printk(mci, KERN_ERR,
516                                 ">Tmid Thermal event with intelligent "
517                                 "throttling disabled\n");
518         }
519
520         /* Form out message */
521         snprintf(msg, sizeof(msg),
522                  "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
523                  "FATAL Err=0x%x)",
524                  branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
525                  allErrors);
526
527         /* Call the helper to output message */
528         edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
529 }
530
531 /*
532  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
533  *                              struct i5000_error_info *info,
534  *                              int handle_errors);
535  *
536  *      handle the Intel NON-FATAL errors, if any
537  */
538 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
539                                         struct i5000_error_info *info,
540                                         int handle_errors)
541 {
542         char msg[EDAC_MC_LABEL_LEN + 1 + 90];
543         u32 allErrors;
544         u32 ue_errors;
545         u32 ce_errors;
546         u32 misc_errors;
547         int branch;
548         int channel;
549         int bank;
550         int rank;
551         int rdwr;
552         int ras, cas;
553
554         /* mask off the Error bits that are possible */
555         allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
556         if (!allErrors)
557                 return;         /* if no error, return now */
558
559         /* ONLY ONE of the possible error bits will be set, as per the docs */
560         i5000_mc_printk(mci, KERN_WARNING,
561                         "NON-FATAL ERRORS Found!!! 1st NON-FATAL Err "
562                         "Reg= 0x%x\n", allErrors);
563
564         ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
565         if (ue_errors) {
566                 debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
567
568                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569                 channel = branch;
570                 bank = NREC_BANK(info->nrecmema);
571                 rank = NREC_RANK(info->nrecmema);
572                 rdwr = NREC_RDWR(info->nrecmema);
573                 ras = NREC_RAS(info->nrecmemb);
574                 cas = NREC_CAS(info->nrecmemb);
575
576                 debugf0
577                         ("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
578                         "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
579                         rank, channel, channel + 1, branch >> 1, bank,
580                         rdwr ? "Write" : "Read", ras, cas);
581
582                 /* Form out message */
583                 snprintf(msg, sizeof(msg),
584                          "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
585                          "CAS=%d, UE Err=0x%x)",
586                          branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
587                          ue_errors);
588
589                 /* Call the helper to output message */
590                 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
591         }
592
593         /* Check correctable errors */
594         ce_errors = allErrors & FERR_NF_CORRECTABLE;
595         if (ce_errors) {
596                 debugf0("\tCorrected bits= 0x%x\n", ce_errors);
597
598                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
599
600                 channel = 0;
601                 if (REC_ECC_LOCATOR_ODD(info->redmemb))
602                         channel = 1;
603
604                 /* Convert channel to be based from zero, instead of
605                  * from branch base of 0 */
606                 channel += branch;
607
608                 bank = REC_BANK(info->recmema);
609                 rank = REC_RANK(info->recmema);
610                 rdwr = REC_RDWR(info->recmema);
611                 ras = REC_RAS(info->recmemb);
612                 cas = REC_CAS(info->recmemb);
613
614                 debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
615                         "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
616                         rank, channel, branch >> 1, bank,
617                         rdwr ? "Write" : "Read", ras, cas);
618
619                 /* Form out message */
620                 snprintf(msg, sizeof(msg),
621                          "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
622                          "CAS=%d, CE Err=0x%x)", branch >> 1, bank,
623                          rdwr ? "Write" : "Read", ras, cas, ce_errors);
624
625                 /* Call the helper to output message */
626                 edac_mc_handle_fbd_ce(mci, rank, channel, msg);
627         }
628
629         /* See if any of the thermal errors have fired */
630         misc_errors = allErrors & FERR_NF_THERMAL;
631         if (misc_errors) {
632                 i5000_printk(KERN_WARNING, "\tTHERMAL Error, bits= 0x%x\n",
633                         misc_errors);
634         }
635
636         /* See if any of the thermal errors have fired */
637         misc_errors = allErrors & FERR_NF_NON_RETRY;
638         if (misc_errors) {
639                 i5000_printk(KERN_WARNING, "\tNON-Retry  Errors, bits= 0x%x\n",
640                         misc_errors);
641         }
642
643         /* See if any of the thermal errors have fired */
644         misc_errors = allErrors & FERR_NF_NORTH_CRC;
645         if (misc_errors) {
646                 i5000_printk(KERN_WARNING,
647                         "\tNORTHBOUND CRC  Error, bits= 0x%x\n",
648                         misc_errors);
649         }
650
651         /* See if any of the thermal errors have fired */
652         misc_errors = allErrors & FERR_NF_SPD_PROTOCOL;
653         if (misc_errors) {
654                 i5000_printk(KERN_WARNING,
655                         "\tSPD Protocol  Error, bits= 0x%x\n",
656                         misc_errors);
657         }
658
659         /* See if any of the thermal errors have fired */
660         misc_errors = allErrors & FERR_NF_DIMM_SPARE;
661         if (misc_errors) {
662                 i5000_printk(KERN_WARNING, "\tDIMM-Spare  Error, bits= 0x%x\n",
663                         misc_errors);
664         }
665 }
666
667 /*
668  *      i5000_process_error_info        Process the error info that is
669  *      in the 'info' structure, previously retrieved from hardware
670  */
671 static void i5000_process_error_info(struct mem_ctl_info *mci,
672                                 struct i5000_error_info *info,
673                                 int handle_errors)
674 {
675         /* First handle any fatal errors that occurred */
676         i5000_process_fatal_error_info(mci, info, handle_errors);
677
678         /* now handle any non-fatal errors that occurred */
679         i5000_process_nonfatal_error_info(mci, info, handle_errors);
680 }
681
682 /*
683  *      i5000_clear_error       Retrieve any error from the hardware
684  *                              but do NOT process that error.
685  *                              Used for 'clearing' out of previous errors
686  *                              Called by the Core module.
687  */
688 static void i5000_clear_error(struct mem_ctl_info *mci)
689 {
690         struct i5000_error_info info;
691
692         i5000_get_error_info(mci, &info);
693 }
694
695 /*
696  *      i5000_check_error       Retrieve and process errors reported by the
697  *                              hardware. Called by the Core module.
698  */
699 static void i5000_check_error(struct mem_ctl_info *mci)
700 {
701         struct i5000_error_info info;
702         debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
703         i5000_get_error_info(mci, &info);
704         i5000_process_error_info(mci, &info, 1);
705 }
706
707 /*
708  *      i5000_get_devices       Find and perform 'get' operation on the MCH's
709  *                      device/functions we want to reference for this driver
710  *
711  *                      Need to 'get' device 16 func 1 and func 2
712  */
713 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
714 {
715         //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
716         struct i5000_pvt *pvt;
717         struct pci_dev *pdev;
718
719         pvt = mci->pvt_info;
720
721         /* Attempt to 'get' the MCH register we want */
722         pdev = NULL;
723         while (1) {
724                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
725                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
726
727                 /* End of list, leave */
728                 if (pdev == NULL) {
729                         i5000_printk(KERN_ERR,
730                                 "'system address,Process Bus' "
731                                 "device not found:"
732                                 "vendor 0x%x device 0x%x FUNC 1 "
733                                 "(broken BIOS?)\n",
734                                 PCI_VENDOR_ID_INTEL,
735                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
736
737                         return 1;
738                 }
739
740                 /* Scan for device 16 func 1 */
741                 if (PCI_FUNC(pdev->devfn) == 1)
742                         break;
743         }
744
745         pvt->branchmap_werrors = pdev;
746
747         /* Attempt to 'get' the MCH register we want */
748         pdev = NULL;
749         while (1) {
750                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
751                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
752
753                 if (pdev == NULL) {
754                         i5000_printk(KERN_ERR,
755                                 "MC: 'branchmap,control,errors' "
756                                 "device not found:"
757                                 "vendor 0x%x device 0x%x Func 2 "
758                                 "(broken BIOS?)\n",
759                                 PCI_VENDOR_ID_INTEL,
760                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
761
762                         pci_dev_put(pvt->branchmap_werrors);
763                         return 1;
764                 }
765
766                 /* Scan for device 16 func 1 */
767                 if (PCI_FUNC(pdev->devfn) == 2)
768                         break;
769         }
770
771         pvt->fsb_error_regs = pdev;
772
773         debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
774                 pci_name(pvt->system_address),
775                 pvt->system_address->vendor, pvt->system_address->device);
776         debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
777                 pci_name(pvt->branchmap_werrors),
778                 pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
779         debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
780                 pci_name(pvt->fsb_error_regs),
781                 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
782
783         pdev = NULL;
784         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
785                         PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
786
787         if (pdev == NULL) {
788                 i5000_printk(KERN_ERR,
789                         "MC: 'BRANCH 0' device not found:"
790                         "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
791                         PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
792
793                 pci_dev_put(pvt->branchmap_werrors);
794                 pci_dev_put(pvt->fsb_error_regs);
795                 return 1;
796         }
797
798         pvt->branch_0 = pdev;
799
800         /* If this device claims to have more than 2 channels then
801          * fetch Branch 1's information
802          */
803         if (pvt->maxch >= CHANNELS_PER_BRANCH) {
804                 pdev = NULL;
805                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
806                                 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
807
808                 if (pdev == NULL) {
809                         i5000_printk(KERN_ERR,
810                                 "MC: 'BRANCH 1' device not found:"
811                                 "vendor 0x%x device 0x%x Func 0 "
812                                 "(broken BIOS?)\n",
813                                 PCI_VENDOR_ID_INTEL,
814                                 PCI_DEVICE_ID_I5000_BRANCH_1);
815
816                         pci_dev_put(pvt->branchmap_werrors);
817                         pci_dev_put(pvt->fsb_error_regs);
818                         pci_dev_put(pvt->branch_0);
819                         return 1;
820                 }
821
822                 pvt->branch_1 = pdev;
823         }
824
825         return 0;
826 }
827
828 /*
829  *      i5000_put_devices       'put' all the devices that we have
830  *                              reserved via 'get'
831  */
832 static void i5000_put_devices(struct mem_ctl_info *mci)
833 {
834         struct i5000_pvt *pvt;
835
836         pvt = mci->pvt_info;
837
838         pci_dev_put(pvt->branchmap_werrors);    /* FUNC 1 */
839         pci_dev_put(pvt->fsb_error_regs);       /* FUNC 2 */
840         pci_dev_put(pvt->branch_0);     /* DEV 21 */
841
842         /* Only if more than 2 channels do we release the second branch */
843         if (pvt->maxch >= CHANNELS_PER_BRANCH)
844                 pci_dev_put(pvt->branch_1);     /* DEV 22 */
845 }
846
847 /*
848  *      determine_amb_resent
849  *
850  *              the information is contained in NUM_MTRS different registers
851  *              determineing which of the NUM_MTRS requires knowing
852  *              which channel is in question
853  *
854  *      2 branches, each with 2 channels
855  *              b0_ambpresent0 for channel '0'
856  *              b0_ambpresent1 for channel '1'
857  *              b1_ambpresent0 for channel '2'
858  *              b1_ambpresent1 for channel '3'
859  */
860 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
861 {
862         int amb_present;
863
864         if (channel < CHANNELS_PER_BRANCH) {
865                 if (channel & 0x1)
866                         amb_present = pvt->b0_ambpresent1;
867                 else
868                         amb_present = pvt->b0_ambpresent0;
869         } else {
870                 if (channel & 0x1)
871                         amb_present = pvt->b1_ambpresent1;
872                 else
873                         amb_present = pvt->b1_ambpresent0;
874         }
875
876         return amb_present;
877 }
878
879 /*
880  * determine_mtr(pvt, csrow, channel)
881  *
882  *      return the proper MTR register as determine by the csrow and channel desired
883  */
884 static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
885 {
886         int mtr;
887
888         if (channel < CHANNELS_PER_BRANCH)
889                 mtr = pvt->b0_mtr[csrow >> 1];
890         else
891                 mtr = pvt->b1_mtr[csrow >> 1];
892
893         return mtr;
894 }
895
896 /*
897  */
898 static void decode_mtr(int slot_row, u16 mtr)
899 {
900         int ans;
901
902         ans = MTR_DIMMS_PRESENT(mtr);
903
904         debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
905                 ans ? "Present" : "NOT Present");
906         if (!ans)
907                 return;
908
909         debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
910         debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
911         debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
912         debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
913         debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
914 }
915
916 static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
917                         struct i5000_dimm_info *dinfo)
918 {
919         int mtr;
920         int amb_present_reg;
921         int addrBits;
922
923         mtr = determine_mtr(pvt, csrow, channel);
924         if (MTR_DIMMS_PRESENT(mtr)) {
925                 amb_present_reg = determine_amb_present_reg(pvt, channel);
926
927                 /* Determine if there is  a  DIMM present in this DIMM slot */
928                 if (amb_present_reg & (1 << (csrow >> 1))) {
929                         dinfo->dual_rank = MTR_DIMM_RANK(mtr);
930
931                         if (!((dinfo->dual_rank == 0) &&
932                                 ((csrow & 0x1) == 0x1))) {
933                                 /* Start with the number of bits for a Bank
934                                  * on the DRAM */
935                                 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
936                                 /* Add thenumber of ROW bits */
937                                 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
938                                 /* add the number of COLUMN bits */
939                                 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
940
941                                 addrBits += 6;  /* add 64 bits per DIMM */
942                                 addrBits -= 20; /* divide by 2^^20 */
943                                 addrBits -= 3;  /* 8 bits per bytes */
944
945                                 dinfo->megabytes = 1 << addrBits;
946                         }
947                 }
948         }
949 }
950
951 /*
952  *      calculate_dimm_size
953  *
954  *      also will output a DIMM matrix map, if debug is enabled, for viewing
955  *      how the DIMMs are populated
956  */
957 static void calculate_dimm_size(struct i5000_pvt *pvt)
958 {
959         struct i5000_dimm_info *dinfo;
960         int csrow, max_csrows;
961         char *p, *mem_buffer;
962         int space, n;
963         int channel;
964
965         /* ================= Generate some debug output ================= */
966         space = PAGE_SIZE;
967         mem_buffer = p = kmalloc(space, GFP_KERNEL);
968         if (p == NULL) {
969                 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
970                         __FILE__, __func__);
971                 return;
972         }
973
974         n = snprintf(p, space, "\n");
975         p += n;
976         space -= n;
977
978         /* Scan all the actual CSROWS (which is # of DIMMS * 2)
979          * and calculate the information for each DIMM
980          * Start with the highest csrow first, to display it first
981          * and work toward the 0th csrow
982          */
983         max_csrows = pvt->maxdimmperch * 2;
984         for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
985
986                 /* on an odd csrow, first output a 'boundary' marker,
987                  * then reset the message buffer  */
988                 if (csrow & 0x1) {
989                         n = snprintf(p, space, "---------------------------"
990                                 "--------------------------------");
991                         p += n;
992                         space -= n;
993                         debugf2("%s\n", mem_buffer);
994                         p = mem_buffer;
995                         space = PAGE_SIZE;
996                 }
997                 n = snprintf(p, space, "csrow %2d    ", csrow);
998                 p += n;
999                 space -= n;
1000
1001                 for (channel = 0; channel < pvt->maxch; channel++) {
1002                         dinfo = &pvt->dimm_info[csrow][channel];
1003                         handle_channel(pvt, csrow, channel, dinfo);
1004                         n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1005                         p += n;
1006                         space -= n;
1007                 }
1008                 n = snprintf(p, space, "\n");
1009                 p += n;
1010                 space -= n;
1011         }
1012
1013         /* Output the last bottom 'boundary' marker */
1014         n = snprintf(p, space, "---------------------------"
1015                 "--------------------------------\n");
1016         p += n;
1017         space -= n;
1018
1019         /* now output the 'channel' labels */
1020         n = snprintf(p, space, "            ");
1021         p += n;
1022         space -= n;
1023         for (channel = 0; channel < pvt->maxch; channel++) {
1024                 n = snprintf(p, space, "channel %d | ", channel);
1025                 p += n;
1026                 space -= n;
1027         }
1028         n = snprintf(p, space, "\n");
1029         p += n;
1030         space -= n;
1031
1032         /* output the last message and free buffer */
1033         debugf2("%s\n", mem_buffer);
1034         kfree(mem_buffer);
1035 }
1036
1037 /*
1038  *      i5000_get_mc_regs       read in the necessary registers and
1039  *                              cache locally
1040  *
1041  *                      Fills in the private data members
1042  */
1043 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1044 {
1045         struct i5000_pvt *pvt;
1046         u32 actual_tolm;
1047         u16 limit;
1048         int slot_row;
1049         int maxch;
1050         int maxdimmperch;
1051         int way0, way1;
1052
1053         pvt = mci->pvt_info;
1054
1055         pci_read_config_dword(pvt->system_address, AMBASE,
1056                         (u32 *) & pvt->ambase);
1057         pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1058                         ((u32 *) & pvt->ambase) + sizeof(u32));
1059
1060         maxdimmperch = pvt->maxdimmperch;
1061         maxch = pvt->maxch;
1062
1063         debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1064                 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1065
1066         /* Get the Branch Map regs */
1067         pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1068         pvt->tolm >>= 12;
1069         debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1070                 pvt->tolm);
1071
1072         actual_tolm = pvt->tolm << 28;
1073         debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1074
1075         pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1076         pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1077         pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1078
1079         /* Get the MIR[0-2] regs */
1080         limit = (pvt->mir0 >> 4) & 0x0FFF;
1081         way0 = pvt->mir0 & 0x1;
1082         way1 = pvt->mir0 & 0x2;
1083         debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1084         limit = (pvt->mir1 >> 4) & 0x0FFF;
1085         way0 = pvt->mir1 & 0x1;
1086         way1 = pvt->mir1 & 0x2;
1087         debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1088         limit = (pvt->mir2 >> 4) & 0x0FFF;
1089         way0 = pvt->mir2 & 0x1;
1090         way1 = pvt->mir2 & 0x2;
1091         debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1092
1093         /* Get the MTR[0-3] regs */
1094         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1095                 int where = MTR0 + (slot_row * sizeof(u32));
1096
1097                 pci_read_config_word(pvt->branch_0, where,
1098                                 &pvt->b0_mtr[slot_row]);
1099
1100                 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1101                         pvt->b0_mtr[slot_row]);
1102
1103                 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1104                         pci_read_config_word(pvt->branch_1, where,
1105                                         &pvt->b1_mtr[slot_row]);
1106                         debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1107                                 where, pvt->b0_mtr[slot_row]);
1108                 } else {
1109                         pvt->b1_mtr[slot_row] = 0;
1110                 }
1111         }
1112
1113         /* Read and dump branch 0's MTRs */
1114         debugf2("\nMemory Technology Registers:\n");
1115         debugf2("   Branch 0:\n");
1116         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1117                 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1118         }
1119         pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1120                         &pvt->b0_ambpresent0);
1121         debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1122         pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1123                         &pvt->b0_ambpresent1);
1124         debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1125
1126         /* Only if we have 2 branchs (4 channels) */
1127         if (pvt->maxch < CHANNELS_PER_BRANCH) {
1128                 pvt->b1_ambpresent0 = 0;
1129                 pvt->b1_ambpresent1 = 0;
1130         } else {
1131                 /* Read and dump  branch 1's MTRs */
1132                 debugf2("   Branch 1:\n");
1133                 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1134                         decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1135                 }
1136                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1137                                 &pvt->b1_ambpresent0);
1138                 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1139                         pvt->b1_ambpresent0);
1140                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1141                                 &pvt->b1_ambpresent1);
1142                 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1143                         pvt->b1_ambpresent1);
1144         }
1145
1146         /* Go and determine the size of each DIMM and place in an
1147          * orderly matrix */
1148         calculate_dimm_size(pvt);
1149 }
1150
1151 /*
1152  *      i5000_init_csrows       Initialize the 'csrows' table within
1153  *                              the mci control structure with the
1154  *                              addressing of memory.
1155  *
1156  *      return:
1157  *              0       success
1158  *              1       no actual memory found on this MC
1159  */
1160 static int i5000_init_csrows(struct mem_ctl_info *mci)
1161 {
1162         struct i5000_pvt *pvt;
1163         struct csrow_info *p_csrow;
1164         int empty, channel_count;
1165         int max_csrows;
1166         int mtr;
1167         int csrow_megs;
1168         int channel;
1169         int csrow;
1170
1171         pvt = mci->pvt_info;
1172
1173         channel_count = pvt->maxch;
1174         max_csrows = pvt->maxdimmperch * 2;
1175
1176         empty = 1;              /* Assume NO memory */
1177
1178         for (csrow = 0; csrow < max_csrows; csrow++) {
1179                 p_csrow = &mci->csrows[csrow];
1180
1181                 p_csrow->csrow_idx = csrow;
1182
1183                 /* use branch 0 for the basis */
1184                 mtr = pvt->b0_mtr[csrow >> 1];
1185
1186                 /* if no DIMMS on this row, continue */
1187                 if (!MTR_DIMMS_PRESENT(mtr))
1188                         continue;
1189
1190                 /* FAKE OUT VALUES, FIXME */
1191                 p_csrow->first_page = 0 + csrow * 20;
1192                 p_csrow->last_page = 9 + csrow * 20;
1193                 p_csrow->page_mask = 0xFFF;
1194
1195                 p_csrow->grain = 8;
1196
1197                 csrow_megs = 0;
1198                 for (channel = 0; channel < pvt->maxch; channel++) {
1199                         csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1200                 }
1201
1202                 p_csrow->nr_pages = csrow_megs << 8;
1203
1204                 /* Assume DDR2 for now */
1205                 p_csrow->mtype = MEM_FB_DDR2;
1206
1207                 /* ask what device type on this row */
1208                 if (MTR_DRAM_WIDTH(mtr))
1209                         p_csrow->dtype = DEV_X8;
1210                 else
1211                         p_csrow->dtype = DEV_X4;
1212
1213                 p_csrow->edac_mode = EDAC_S8ECD8ED;
1214
1215                 empty = 0;
1216         }
1217
1218         return empty;
1219 }
1220
1221 /*
1222  *      i5000_enable_error_reporting
1223  *                      Turn on the memory reporting features of the hardware
1224  */
1225 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1226 {
1227         struct i5000_pvt *pvt;
1228         u32 fbd_error_mask;
1229
1230         pvt = mci->pvt_info;
1231
1232         /* Read the FBD Error Mask Register */
1233         pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1234                         &fbd_error_mask);
1235
1236         /* Enable with a '0' */
1237         fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1238
1239         pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1240                         fbd_error_mask);
1241 }
1242
1243 /*
1244  * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1245  *
1246  *      ask the device how many channels are present and how many CSROWS
1247  *       as well
1248  */
1249 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1250                                         int *num_dimms_per_channel,
1251                                         int *num_channels)
1252 {
1253         u8 value;
1254
1255         /* Need to retrieve just how many channels and dimms per channel are
1256          * supported on this memory controller
1257          */
1258         pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1259         *num_dimms_per_channel = (int)value *2;
1260
1261         pci_read_config_byte(pdev, MAXCH, &value);
1262         *num_channels = (int)value;
1263 }
1264
1265 /*
1266  *      i5000_probe1    Probe for ONE instance of device to see if it is
1267  *                      present.
1268  *      return:
1269  *              0 for FOUND a device
1270  *              < 0 for error code
1271  */
1272 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1273 {
1274         struct mem_ctl_info *mci;
1275         struct i5000_pvt *pvt;
1276         int num_channels;
1277         int num_dimms_per_channel;
1278         int num_csrows;
1279
1280         debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1281                 __func__,
1282                 pdev->bus->number,
1283                 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1284
1285         /* We only are looking for func 0 of the set */
1286         if (PCI_FUNC(pdev->devfn) != 0)
1287                 return -ENODEV;
1288
1289         /* make sure error reporting method is sane */
1290         switch (edac_op_state) {
1291         case EDAC_OPSTATE_POLL:
1292         case EDAC_OPSTATE_NMI:
1293                 break;
1294         default:
1295                 edac_op_state = EDAC_OPSTATE_POLL;
1296                 break;
1297         }
1298
1299         /* Ask the devices for the number of CSROWS and CHANNELS so
1300          * that we can calculate the memory resources, etc
1301          *
1302          * The Chipset will report what it can handle which will be greater
1303          * or equal to what the motherboard manufacturer will implement.
1304          *
1305          * As we don't have a motherboard identification routine to determine
1306          * actual number of slots/dimms per channel, we thus utilize the
1307          * resource as specified by the chipset. Thus, we might have
1308          * have more DIMMs per channel than actually on the mobo, but this
1309          * allows the driver to support upto the chipset max, without
1310          * some fancy mobo determination.
1311          */
1312         i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1313                                         &num_channels);
1314         num_csrows = num_dimms_per_channel * 2;
1315
1316         debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1317                 __func__, num_channels, num_dimms_per_channel, num_csrows);
1318
1319         /* allocate a new MC control structure */
1320         mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1321
1322         if (mci == NULL)
1323                 return -ENOMEM;
1324
1325         debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1326
1327         mci->dev = &pdev->dev;  /* record ptr  to the generic device */
1328
1329         pvt = mci->pvt_info;
1330         pvt->system_address = pdev;     /* Record this device in our private */
1331         pvt->maxch = num_channels;
1332         pvt->maxdimmperch = num_dimms_per_channel;
1333
1334         /* 'get' the pci devices we want to reserve for our use */
1335         if (i5000_get_devices(mci, dev_idx))
1336                 goto fail0;
1337
1338         /* Time to get serious */
1339         i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1340
1341         mci->mc_idx = 0;
1342         mci->mtype_cap = MEM_FLAG_FB_DDR2;
1343         mci->edac_ctl_cap = EDAC_FLAG_NONE;
1344         mci->edac_cap = EDAC_FLAG_NONE;
1345         mci->mod_name = "i5000_edac.c";
1346         mci->mod_ver = I5000_REVISION;
1347         mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1348         mci->dev_name = pci_name(pdev);
1349         mci->ctl_page_to_phys = NULL;
1350
1351         /* Set the function pointer to an actual operation function */
1352         mci->edac_check = i5000_check_error;
1353
1354         /* initialize the MC control structure 'csrows' table
1355          * with the mapping and control information */
1356         if (i5000_init_csrows(mci)) {
1357                 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1358                         "    because i5000_init_csrows() returned nonzero "
1359                         "value\n");
1360                 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1361         } else {
1362                 debugf1("MC: Enable error reporting now\n");
1363                 i5000_enable_error_reporting(mci);
1364         }
1365
1366         /* add this new MC control structure to EDAC's list of MCs */
1367         if (edac_mc_add_mc(mci)) {
1368                 debugf0("MC: " __FILE__
1369                         ": %s(): failed edac_mc_add_mc()\n", __func__);
1370                 /* FIXME: perhaps some code should go here that disables error
1371                  * reporting if we just enabled it
1372                  */
1373                 goto fail1;
1374         }
1375
1376         i5000_clear_error(mci);
1377
1378         /* allocating generic PCI control info */
1379         i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1380         if (!i5000_pci) {
1381                 printk(KERN_WARNING
1382                         "%s(): Unable to create PCI control\n",
1383                         __func__);
1384                 printk(KERN_WARNING
1385                         "%s(): PCI error report via EDAC not setup\n",
1386                         __func__);
1387         }
1388
1389         return 0;
1390
1391         /* Error exit unwinding stack */
1392 fail1:
1393
1394         i5000_put_devices(mci);
1395
1396 fail0:
1397         edac_mc_free(mci);
1398         return -ENODEV;
1399 }
1400
1401 /*
1402  *      i5000_init_one  constructor for one instance of device
1403  *
1404  *      returns:
1405  *              negative on error
1406  *              count (>= 0)
1407  */
1408 static int __devinit i5000_init_one(struct pci_dev *pdev,
1409                                 const struct pci_device_id *id)
1410 {
1411         int rc;
1412
1413         debugf0("MC: " __FILE__ ": %s()\n", __func__);
1414
1415         /* wake up device */
1416         rc = pci_enable_device(pdev);
1417         if (rc == -EIO)
1418                 return rc;
1419
1420         /* now probe and enable the device */
1421         return i5000_probe1(pdev, id->driver_data);
1422 }
1423
1424 /*
1425  *      i5000_remove_one        destructor for one instance of device
1426  *
1427  */
1428 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1429 {
1430         struct mem_ctl_info *mci;
1431
1432         debugf0(__FILE__ ": %s()\n", __func__);
1433
1434         if (i5000_pci)
1435                 edac_pci_release_generic_ctl(i5000_pci);
1436
1437         if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1438                 return;
1439
1440         /* retrieve references to resources, and free those resources */
1441         i5000_put_devices(mci);
1442
1443         edac_mc_free(mci);
1444 }
1445
1446 /*
1447  *      pci_device_id   table for which devices we are looking for
1448  *
1449  *      The "E500P" device is the first device supported.
1450  */
1451 static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1452         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1453          .driver_data = I5000P},
1454
1455         {0,}                    /* 0 terminated list. */
1456 };
1457
1458 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1459
1460 /*
1461  *      i5000_driver    pci_driver structure for this module
1462  *
1463  */
1464 static struct pci_driver i5000_driver = {
1465         .name = KBUILD_BASENAME,
1466         .probe = i5000_init_one,
1467         .remove = __devexit_p(i5000_remove_one),
1468         .id_table = i5000_pci_tbl,
1469 };
1470
1471 /*
1472  *      i5000_init              Module entry function
1473  *                      Try to initialize this module for its devices
1474  */
1475 static int __init i5000_init(void)
1476 {
1477         int pci_rc;
1478
1479         debugf2("MC: " __FILE__ ": %s()\n", __func__);
1480
1481         pci_rc = pci_register_driver(&i5000_driver);
1482
1483         return (pci_rc < 0) ? pci_rc : 0;
1484 }
1485
1486 /*
1487  *      i5000_exit()    Module exit function
1488  *                      Unregister the driver
1489  */
1490 static void __exit i5000_exit(void)
1491 {
1492         debugf2("MC: " __FILE__ ": %s()\n", __func__);
1493         pci_unregister_driver(&i5000_driver);
1494 }
1495
1496 module_init(i5000_init);
1497 module_exit(i5000_exit);
1498
1499 MODULE_LICENSE("GPL");
1500 MODULE_AUTHOR
1501     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1502 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1503                 I5000_REVISION);
1504 module_param(edac_op_state, int, 0444);
1505 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");