2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <asm/uaccess.h>
33 #include <asm/sections.h>
35 #include <asm/setup.h>
36 #include <asm/clock.h>
37 #include <asm/mmu_context.h>
40 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
41 * This value will be used at the very early stage of serial setup.
42 * The bigger value means no problem.
44 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
47 .loops_per_jiffy = 10000000,
50 EXPORT_SYMBOL(cpu_data);
53 * The machine vector. First entry in .machvec.init, or clobbered by
54 * sh_mv= on the command line, prior to .machvec.init teardown.
56 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 struct screen_info screen_info;
63 extern int root_mountflags;
65 #define RAMDISK_IMAGE_START_MASK 0x07FF
66 #define RAMDISK_PROMPT_FLAG 0x8000
67 #define RAMDISK_LOAD_FLAG 0x4000
69 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
71 static struct resource code_resource = {
72 .name = "Kernel code",
73 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
76 static struct resource data_resource = {
77 .name = "Kernel data",
78 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
81 static struct resource bss_resource = {
83 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
86 unsigned long memory_start;
87 EXPORT_SYMBOL(memory_start);
88 unsigned long memory_end = 0;
89 EXPORT_SYMBOL(memory_end);
91 static struct resource mem_resources[MAX_NUMNODES];
93 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
95 static int __init early_parse_mem(char *p)
99 memory_start = (unsigned long)__va(__MEMORY_START);
100 size = memparse(p, &p);
102 if (size > __MEMORY_SIZE) {
103 static char msg[] __initdata = KERN_ERR
104 "Using mem= to increase the size of kernel memory "
106 " Recompile the kernel with the correct value for "
107 "CONFIG_MEMORY_SIZE.\n";
112 memory_end = memory_start + size;
116 early_param("mem", early_parse_mem);
119 * Register fully available low RAM pages with the bootmem allocator.
121 static void __init register_bootmem_low_pages(void)
123 unsigned long curr_pfn, last_pfn, pages;
126 * We are rounding up the start address of usable memory:
128 curr_pfn = PFN_UP(__MEMORY_START);
131 * ... and at the end of the usable range downwards:
133 last_pfn = PFN_DOWN(__pa(memory_end));
135 if (last_pfn > max_low_pfn)
136 last_pfn = max_low_pfn;
138 pages = last_pfn - curr_pfn;
139 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
143 static void __init reserve_crashkernel(void)
145 unsigned long long free_mem;
146 unsigned long long crash_size, crash_base;
149 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
151 ret = parse_crashkernel(boot_command_line, free_mem,
152 &crash_size, &crash_base);
153 if (ret == 0 && crash_size) {
154 if (crash_base <= 0) {
155 printk(KERN_INFO "crashkernel reservation failed - "
156 "you have to specify a base address\n");
160 if (reserve_bootmem(crash_base, crash_size,
161 BOOTMEM_EXCLUSIVE) < 0) {
162 printk(KERN_INFO "crashkernel reservation failed - "
163 "memory is in use\n");
167 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
168 "for crashkernel (System RAM: %ldMB)\n",
169 (unsigned long)(crash_size >> 20),
170 (unsigned long)(crash_base >> 20),
171 (unsigned long)(free_mem >> 20));
172 crashk_res.start = crash_base;
173 crashk_res.end = crash_base + crash_size - 1;
177 static inline void __init reserve_crashkernel(void)
181 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
182 unsigned long end_pfn)
184 struct resource *res = &mem_resources[nid];
186 WARN_ON(res->name); /* max one active range per node for now */
188 res->name = "System RAM";
189 res->start = start_pfn << PAGE_SHIFT;
190 res->end = (end_pfn << PAGE_SHIFT) - 1;
191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 if (request_resource(&iomem_resource, res)) {
193 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
199 * We don't know which RAM region contains kernel data,
200 * so we try it repeatedly and let the resource manager
203 request_resource(res, &code_resource);
204 request_resource(res, &data_resource);
205 request_resource(res, &bss_resource);
208 if (crashk_res.start != crashk_res.end)
209 request_resource(res, &crashk_res);
212 add_active_range(nid, start_pfn, end_pfn);
215 void __init setup_bootmem_allocator(unsigned long free_pfn)
217 unsigned long bootmap_size;
220 * Find a proper area for the bootmem bitmap. After this
221 * bootstrap step all allocations (until the page allocator
222 * is intact) must be done via bootmem_alloc().
224 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
225 min_low_pfn, max_low_pfn);
227 __add_active_range(0, min_low_pfn, max_low_pfn);
228 register_bootmem_low_pages();
233 * Reserve the kernel text and
234 * Reserve the bootmem bitmap. We do this in two steps (first step
235 * was init_bootmem()), because this catches the (definitely buggy)
236 * case of us accidentally initializing the bootmem allocator with
237 * an invalid RAM area.
239 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
240 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
244 * reserve physical page 0 - it's a special BIOS page on many boxes,
245 * enabling clean reboots, SMP operation, laptop functions.
247 reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
249 sparse_memory_present_with_active_regions(0);
251 #ifdef CONFIG_BLK_DEV_INITRD
252 ROOT_DEV = Root_RAM0;
254 if (LOADER_TYPE && INITRD_START) {
255 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
256 reserve_bootmem(INITRD_START + __MEMORY_START,
257 INITRD_SIZE, BOOTMEM_DEFAULT);
258 initrd_start = INITRD_START + PAGE_OFFSET +
260 initrd_end = initrd_start + INITRD_SIZE;
262 printk("initrd extends beyond end of memory "
263 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
264 INITRD_START + INITRD_SIZE,
265 max_low_pfn << PAGE_SHIFT);
271 reserve_crashkernel();
274 #ifndef CONFIG_NEED_MULTIPLE_NODES
275 static void __init setup_memory(void)
277 unsigned long start_pfn;
280 * Partially used pages are not usable - thus
281 * we are rounding upwards:
283 start_pfn = PFN_UP(__pa(_end));
284 setup_bootmem_allocator(start_pfn);
287 extern void __init setup_memory(void);
291 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
292 * is_kdump_kernel() to determine if we are booting after a panic. Hence
293 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
295 #ifdef CONFIG_CRASH_DUMP
296 /* elfcorehdr= specifies the location of elf core header
297 * stored by the crashed kernel.
299 static int __init parse_elfcorehdr(char *arg)
303 elfcorehdr_addr = memparse(arg, &arg);
306 early_param("elfcorehdr", parse_elfcorehdr);
309 void __init setup_arch(char **cmdline_p)
313 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
315 printk(KERN_NOTICE "Boot params:\n"
316 "... MOUNT_ROOT_RDONLY - %08lx\n"
317 "... RAMDISK_FLAGS - %08lx\n"
318 "... ORIG_ROOT_DEV - %08lx\n"
319 "... LOADER_TYPE - %08lx\n"
320 "... INITRD_START - %08lx\n"
321 "... INITRD_SIZE - %08lx\n",
322 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
323 ORIG_ROOT_DEV, LOADER_TYPE,
324 INITRD_START, INITRD_SIZE);
326 #ifdef CONFIG_BLK_DEV_RAM
327 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
328 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
329 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
332 if (!MOUNT_ROOT_RDONLY)
333 root_mountflags &= ~MS_RDONLY;
334 init_mm.start_code = (unsigned long) _text;
335 init_mm.end_code = (unsigned long) _etext;
336 init_mm.end_data = (unsigned long) _edata;
337 init_mm.brk = (unsigned long) _end;
339 code_resource.start = virt_to_phys(_text);
340 code_resource.end = virt_to_phys(_etext)-1;
341 data_resource.start = virt_to_phys(_etext);
342 data_resource.end = virt_to_phys(_edata)-1;
343 bss_resource.start = virt_to_phys(__bss_start);
344 bss_resource.end = virt_to_phys(_ebss)-1;
346 memory_start = (unsigned long)__va(__MEMORY_START);
348 memory_end = memory_start + __MEMORY_SIZE;
350 #ifdef CONFIG_CMDLINE_BOOL
351 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
353 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
356 /* Save unparsed command line copy for /proc/cmdline */
357 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
358 *cmdline_p = command_line;
365 * Find the highest page frame number we have available
367 max_pfn = PFN_DOWN(__pa(memory_end));
370 * Determine low and high memory ranges:
372 max_low_pfn = max_pfn;
373 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
375 nodes_clear(node_online_map);
377 /* Setup bootmem with available RAM */
381 #ifdef CONFIG_DUMMY_CONSOLE
382 conswitchp = &dummy_con;
385 /* Perform the machine specific initialisation */
386 if (likely(sh_mv.mv_setup))
387 sh_mv.mv_setup(cmdline_p);
396 static const char *cpu_name[] = {
397 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
398 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
399 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
400 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
401 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
402 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
403 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
404 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
405 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
406 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
407 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
408 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
409 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
410 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
411 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
412 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
413 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
414 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
417 const char *get_cpu_subtype(struct sh_cpuinfo *c)
419 return cpu_name[c->type];
421 EXPORT_SYMBOL(get_cpu_subtype);
423 #ifdef CONFIG_PROC_FS
424 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
425 static const char *cpu_flags[] = {
426 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
427 "ptea", "llsc", "l2", "op32", NULL
430 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
434 seq_printf(m, "cpu flags\t:");
437 seq_printf(m, " %s\n", cpu_flags[0]);
441 for (i = 0; cpu_flags[i]; i++)
442 if ((c->flags & (1 << i)))
443 seq_printf(m, " %s", cpu_flags[i+1]);
448 static void show_cacheinfo(struct seq_file *m, const char *type,
449 struct cache_info info)
451 unsigned int cache_size;
453 cache_size = info.ways * info.sets * info.linesz;
455 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
456 type, cache_size >> 10, info.ways);
460 * Get CPU information for use by the procfs.
462 static int show_cpuinfo(struct seq_file *m, void *v)
464 struct sh_cpuinfo *c = v;
465 unsigned int cpu = c - cpu_data;
467 if (!cpu_online(cpu))
471 seq_printf(m, "machine\t\t: %s\n", get_system_type());
473 seq_printf(m, "processor\t: %d\n", cpu);
474 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
475 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
476 if (c->cut_major == -1)
477 seq_printf(m, "cut\t\t: unknown\n");
478 else if (c->cut_minor == -1)
479 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
481 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
485 seq_printf(m, "cache type\t: ");
488 * Check for what type of cache we have, we support both the
489 * unified cache on the SH-2 and SH-3, as well as the harvard
490 * style cache on the SH-4.
492 if (c->icache.flags & SH_CACHE_COMBINED) {
493 seq_printf(m, "unified\n");
494 show_cacheinfo(m, "cache", c->icache);
496 seq_printf(m, "split (harvard)\n");
497 show_cacheinfo(m, "icache", c->icache);
498 show_cacheinfo(m, "dcache", c->dcache);
501 /* Optional secondary cache */
502 if (c->flags & CPU_HAS_L2_CACHE)
503 show_cacheinfo(m, "scache", c->scache);
505 seq_printf(m, "bogomips\t: %lu.%02lu\n",
506 c->loops_per_jiffy/(500000/HZ),
507 (c->loops_per_jiffy/(5000/HZ)) % 100);
512 static void *c_start(struct seq_file *m, loff_t *pos)
514 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
516 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
519 return c_start(m, pos);
521 static void c_stop(struct seq_file *m, void *v)
524 const struct seq_operations cpuinfo_op = {
528 .show = show_cpuinfo,
530 #endif /* CONFIG_PROC_FS */
532 struct dentry *sh_debugfs_root;
534 static int __init sh_debugfs_init(void)
536 sh_debugfs_root = debugfs_create_dir("sh", NULL);
537 if (IS_ERR(sh_debugfs_root))
538 return PTR_ERR(sh_debugfs_root);
542 arch_initcall(sh_debugfs_init);